On Expressiveness and Complexity in Real-time Model Checking

Patricia Bouyer Nicolas Markey LSV, CNRS, ENS Cachan, France

Joël Ouaknine James Worrell Oxford University, UK

Outline

1. Introduction

- 2. The logic MTL
- 3. Towards tractable fragments of MTL
- 4. Conclusion

system:

system:	property: $\Rightarrow \mathbf{p}$
₹	Š
→ model-checking algorithm	= G (request $ ightarrow$ F grant)

 yes/no

Towards real-time model-checking

• Classical theory:

- Finite automata, temporal logics, etc...
- Discrete model of time (ordered sequences of states/actions)
- Theoretical foundations rather well understood

Towards real-time model-checking

• Classical theory:

- Finite automata, temporal logics, etc...
- Discrete model of time (ordered sequences of states/actions)
- Theoretical foundations rather well understood

[Tra95]: "Lift the 'classical' [theory] to real-time systems."

Towards real-time model-checking

• Classical theory:

- Finite automata, temporal logics, etc...
- Discrete model of time (ordered sequences of states/actions)
- Theoretical foundations rather well understood

[Tra95]: "Lift the 'classical' [theory] to real-time systems."

• Real-time theory:

- Timed automata, timed temporal logics, etc...
- Quantitative and dense model of time
- Theoretical foundations under active development

LTL: linear-time temporal logic [Pnu77]

$$\mathsf{LTL} \ni \varphi \quad ::= \quad \bullet \ \mid \varphi \land \varphi \ \mid \varphi \lor \varphi \ \mid \neg \varphi \ \mid \mathbf{X} \varphi \ \mid \varphi \mathbf{U} \varphi$$

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).

LTL: linear-time temporal logic [Pnu77]

$$\mathsf{LTL} \ni \varphi \quad ::= \quad \bullet \ \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi$$

LTL: linear-time temporal logic [Pnu77]

$$\mathsf{LTL} \ni \varphi \quad ::= \quad \bullet \ \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi$$

LTL: linear-time temporal logic [Pnu77]

$$\mathsf{LTL} \ni \varphi \quad ::= \quad \bullet \ \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi$$

LTL: linear-time temporal logic [Pnu77]

$$\mathsf{LTL} \ni \varphi \quad ::= \quad \bullet \ \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi$$

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).

[[]Pnu77] Pnueli. The temporal logic of programs (FOCS'77).

LTL: linear-time temporal logic [Pnu77]

$$\mathsf{LTL} \ni \varphi \quad ::= \quad \bullet \ \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi$$

response property:

 $\mathbf{G}\left(ullet
ightarrow\mathbf{F}ullet
ight)$

LTL: linear-time temporal logic [Pnu77]

$$\mathsf{LTL} \ni \varphi \quad ::= \quad \bullet \ \mid \varphi \land \varphi \ \mid \varphi \lor \varphi \ \mid \neg \varphi \ \mid \mathbf{X} \varphi \ \mid \varphi \mathbf{U} \varphi$$

response property:

 $\mathbf{G}(ullet
ightarrow\mathbf{F}ullet)$

Iiveness property:

 $GF \bullet$

LTL: linear-time temporal logic [Pnu77] LTL $\ni \varphi$::= • | $\varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi$

 $\mathbf{G}(ullet
ightarrow\mathbf{F}ullet)$

GF•

- response property:
- liveness property:
- safety property:

 $\mathbf{G} \neg \bullet$

LTL: linear-time temporal logic [Pnu77] LTL $\ni \varphi$::= • | $\varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi$

• response property:

 $\mathbf{G}\left(ullet
ightarrow\mathbf{F}ullet
ight)$

GF•

• liveness property:

• safety property:

 $\mathbf{G} \neg \bullet$

• a more complex property:

 $(\bullet \land (F \bullet \lor G \bullet)) U \bullet$

- The satisfiability problem:
 - Input: an LTL formula φ
 - *Output:* is there a model of φ ? If yes, describe one.

- The satisfiability problem:
 - Input: an LTL formula φ
 - *Output:* is there a model of φ ? If yes, describe one.
- The model-checking problem:
 - *Input:* a finite automaton \mathcal{A} , an LTL formula φ
 - Output: does A satisfy φ?

(do all behaviours of A satisfy φ ?)

- The satisfiability problem:
 - Input: an LTL formula φ
 - Output: is there a model of φ ? If yes, describe one.
- The model-checking problem:
 - *Input:* a finite automaton \mathcal{A} , an LTL formula φ
 - Output: does A satisfy φ?

(do all behaviours of A satisfy φ ?)

Theorem [SC85]

These two problems are PSPACE-complete.

- The satisfiability problem:
 - Input: an LTL formula φ
 - Output: is there a model of φ ? If yes, describe one.
- The model-checking problem:
 - *Input:* a finite automaton \mathcal{A} , an LTL formula φ
 - Output: does A satisfy φ?

(do all behaviours of A satisfy φ ?)

Theorem [SC85]

These two problems are PSPACE-complete.

 \mathbb{R} it's time to extend to quantitative specifications

[SC85] Sistla, Clarke. The complexity of propositional linear temporal logics (JACM'85).

Outline

- 1. Introduction
- 2. The logic MTL
- 3. Towards tractable fragments of MTL
- 4. Conclusion

[Koy90]

$\mathsf{MTL} \ni \varphi \quad ::= \quad \bullet \ | \ \neg \varphi \ | \ \varphi \lor \varphi \ | \ \varphi \land \varphi \ | \ \varphi \mathsf{U}_{\mathsf{I}} \varphi$

where *I* is an interval with integral bounds.

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).

[Koy90]

 $\mathsf{MTL} \ni \varphi \quad ::= \quad \bullet \quad | \quad \neg \varphi \quad | \quad \varphi \lor \varphi \quad | \quad \varphi \land \varphi \quad | \quad \varphi \mathsf{U}_{\mathsf{I}} \varphi$

where *I* is an interval with integral bounds.

• This is a timed extension of LTL

[Koy90]

 $\mathsf{MTL} \ni \varphi \quad ::= \quad \bullet \quad | \quad \neg \varphi \quad | \quad \varphi \lor \varphi \quad | \quad \varphi \land \varphi \quad | \quad \varphi \mathsf{U}_{\mathsf{I}} \varphi$

where I is an interval with integral bounds.

- This is a timed extension of LTL
- There are several semantics for MTL

[Koy90]

 $\mathsf{MTL} \ni \varphi \quad ::= \quad \bullet \quad | \quad \neg \varphi \quad | \quad \varphi \lor \varphi \quad | \quad \varphi \land \varphi \quad | \quad \varphi \mathsf{U}_{\mathsf{I}} \varphi$

where I is an interval with integral bounds.

- This is a timed extension of LTL
- There are several semantics for MTL

№ we focus on the continuous semantics...

MTL formulas are interpreted over signals:

MTL formulas are interpreted over signals:

 \mathbf{w} the system is observed continuously

MTL formulas are interpreted over signals:

 ${}^{\mbox{\tiny IMS}}$ the system is observed continuously

MTL formulas are interpreted over signals:

 ${}^{\mbox{\tiny IMS}}$ the system is observed continuously

The decidability of MTL

- The satisfiability problem:
 - Input: an MTL formula φ
 - *Output:* is there a model of φ ? If yes, describe one.

The decidability of MTL

- The satisfiability problem:
 - Input: an MTL formula φ
 - *Output:* is there a model of φ ? If yes, describe one.
- The model-checking problem:
 - Input: a timed automaton \mathcal{A} , an MTL formula φ
 - Output: does A satisfy φ ?
- The satisfiability problem:
 - Input: an MTL formula φ
 - *Output:* is there a model of φ ? If yes, describe one.
- The model-checking problem:
 - Input: a timed automaton \mathcal{A} , an MTL formula φ
 - Output: does A satisfy φ ?

Theorem [AH92,OW05,OW06]

The model-checking and the satisfiability problems for MTL is undecidable for almost all semantics, except for the most restrictive one (in which case, it is non-primitive recursive...).

- The satisfiability problem:
 - Input: an MTL formula φ
 - *Output:* is there a model of φ ? If yes, describe one.
- The model-checking problem:
 - Input: a timed automaton \mathcal{A} , an MTL formula φ
 - Output: does A satisfy φ ?

Theorem [AH92,OW05,OW06]

The model-checking and the satisfiability problems for MTL is undecidable for almost all semantics, except for the most restrictive one (in which case, it is non-primitive recursive...).

\square a quest to more tractable fragments of MTL

[AH92] Alur, Henzinger. Logics and models of real-time: A survey (REX'91).
[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05).
[OW06] Ouaknine, Worrell. On metric temporal logic and faulty Turing machines (FoSSaCS'06).

- The satisfiability problem:
 - Input: an MTL formula φ
 - *Output:* is there a model of φ ? If yes, describe one.
- The model-checking problem:
 - Input: a timed automaton \mathcal{A} , an MTL formula φ
 - Output: does A satisfy φ?

Theorem [AH92,OW05,OW06]

The model-checking and the satisfiability problems for MTL is undecidable for almost all semantics, except for the most restrictive one (in which case, it is non-primitive recursive...).

a quest to more tractable fragments of MTL ban punctuality?

[AH92] Alur, Henzinger. Logics and models of real-time: A survey (REX'91). [OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05). [OW06] Ouaknine, Worrell. On metric temporal logic and faulty Turing machines (FoSSaCS'06).

- The satisfiability problem:
 - Input: an MTL formula φ
 - Output: is there a model of φ ? If yes, describe one.
- The model-checking problem:
 - Input: a timed automaton \mathcal{A} , an MTL formula φ
 - Output: does A satisfy φ?

Theorem [AH92,OW05,OW06]

The model-checking and the satisfiability problems for MTL is undecidable for almost all semantics, except for the most restrictive one (in which case, it is non-primitive recursive...).

 ${\bf I}$ a quest to more tractable fragments of MTL $\begin{cases} ban punctuality? \\ or not ban punctuality? \end{cases}$

[AH92] Alur, Henzinger. Logics and models of real-time: A survey (REX'91). [OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05). [OW06] Ouaknine, Worrell. On metric temporal logic and faulty Turing machines (FoSSaCS'06).

- 1. Introduction
- 2. The logic MTL
- 3. Towards tractable fragments of MTL
- 4. Conclusion

$\mathsf{MTL} \ni \varphi ::= \bullet \mid \neg \bullet \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi \mathsf{U}_{\mathsf{I}} \varphi \mid \varphi \widetilde{\mathsf{U}}_{\mathsf{I}} \varphi$

$\mathsf{MITL} \ni \varphi ::= \bullet \mid \neg \bullet \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi \mathsf{U}_{\mathsf{I}} \varphi \mid \varphi \widetilde{\mathsf{U}}_{\mathsf{I}} \varphi$

with / non-singular, *i.e.*, with no "punctuality"

[AFH96] Alur, Feder Henzinger. The benefits of relaxing punctuality (JACM'96).

$\mathsf{Bounded}\mathsf{MTL} \ni \varphi ::= \bullet \mid \neg \bullet \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi \mathsf{U}_{\mathsf{I}} \varphi \mid \varphi \widetilde{\mathsf{U}}_{\mathsf{I}} \varphi$

with / bounded

SafetyMTL
$$\ni \varphi ::= \bullet | \neg \bullet | \varphi \lor \varphi | \varphi \land \varphi | \varphi \mathsf{U}_J \varphi | \varphi \widetilde{\mathsf{U}}_I \varphi$$

with J bounded

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05).

with I unbounded $\Rightarrow \psi \in \mathsf{LTL}$

$\mathsf{coFlat}\mathsf{MTL}_{\mathsf{LTL}} \ni \varphi ::= \bullet \mid \neg \bullet \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi \mathsf{U}_{\mathsf{I}} \psi \mid \psi \widetilde{\mathsf{U}}_{\mathsf{I}} \varphi$

with / unbounded $\Rightarrow \psi \in \mathsf{LTL}$

$BoundedMTL + Invariance \subseteq coFlatMTL_{LTL}$

[BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS'07).

$\mathsf{coFlat}\mathsf{MTL}_{\mathsf{MITL}} \ni \varphi ::= \bullet \mid \neg \bullet \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi \mathsf{U}_{\mathsf{I}} \psi \mid \psi \widetilde{\mathsf{U}}_{\mathsf{I}} \varphi$

with / unbounded $\Rightarrow \psi \in \mathsf{MITL}$

This talk!

Towards tractable fragments of MTL

What can we express?

• MITL vs BoundedMTL

- MITL vs BoundedMTL
 - A dual point-of-view:

- MITL vs BoundedMTL
 - A dual point-of-view:

MITL: ban small intervals (no punctuality!)

- MITL vs BoundedMTL
 - A dual point-of-view:
 - MITL: ban small intervals (no punctuality!)

BoundedMTL: ban large intervals

- MITL vs BoundedMTL
 - A dual point-of-view:
 - MITL: ban small intervals (no punctuality!)

BoundedMTL: ban large intervals

• MITL defines regular languages [AFH96]

- MITL vs BoundedMTL
 - A dual point-of-view:

MITL: ban small intervals (no punctuality!)

BoundedMTL: ban large intervals

• MITL defines regular languages [AFH96]

The formula $\mathbf{G}_{(0,1)}(\bullet \to \mathbf{F}_{=1} \bullet)$ is in BoundedMTL and defines the non-regular language $\{\bullet^m \bullet^n \mid m \leq n\}$.

- MITL vs BoundedMTL
 - A dual point-of-view:

MITL: ban small intervals (no punctuality!)

BoundedMTL: ban large intervals

- MITL defines regular languages [AFH96]
 - The formula $\mathbf{G}_{(0,1)}(\bullet \to \mathbf{F}_{=1} \bullet)$ is in BoundedMTL and defines the non-regular language $\{\bullet^m \bullet^n \mid m \le n\}$.
- What is missing?

- MITL vs BoundedMTL
 - A dual point-of-view:

- MITL vs BoundedMTL
 - A dual point-of-view:

- MITL vs BoundedMTL
 - A dual point-of-view:

• What's the point with coFlatMTL_{MITL}?

- MITL vs BoundedMTL
 - A dual point-of-view:

- What's the point with coFlatMTL_{MITL}?
 - Includes both MITL and BoundedMTL

- MITL vs BoundedMTL
 - A dual point-of-view:

- What's the point with coFlatMTL_{MITL}?
 - Includes both MITL and BoundedMTL
 - Allows to express global invariance, bounded response, some punctuality

- MITL vs BoundedMTL
 - A dual point-of-view:

- What's the point with coFlatMTL_{MITL}?
 - Includes both MITL and BoundedMTL
 - Allows to express global invariance, bounded response, some punctuality
 - For instance, the formula

$$\mathbf{G}\left(ullet
ightarrow\mathbf{F}_{=1}ullet
ight)$$

is in coFlatMTL_MITL, but neither in MITL, nor in BoundedMTL

Complexity results for the model-checking problem

constants:	binary encoding	unary encoding	
LTL	PSPACE-complete [SC85]		
MITL	EXPSPACE-complete [AFH96]	PSPACE-complete [HR05]	
BoundedMTL	EXPSPACE-complete [BMOW07]		
coFlatMTL _{LTL}	EXPSPACE-complete [BMOW07]		
SafetyMTL	decidable, NPR [OW05]		
$coFlatMTL_{MITL}$			

[SC85] Sistla, Clarke. The complexity of propositional linear temporal logics (JACM'85). [AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (JACM'96). [HR05] Hirshfeld, Rabinovich. Timed formulas and decidable metric temporal logic (I&C'05). [BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS'07). [OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05).

Complexity results for the model-checking problem

constants:	binary encoding	unary encoding	
LTL	PSPACE-complete [SC85]		
MITL	EXPSPACE-complete [AFH96]	PSPACE-complete [HR05]	
BoundedMTL	EXPSPACE-complete [BMOW07]	PSPACE-complete	
coFlatMTL _{LTL}	EXPSPACE-complete [BMOW07]	EXPSPACE-complete	
SafetyMTL	decidable, NPR [OW05]		
coFlatMTL _{MITL}	EXPSPACE-complete	EXPSPACE-complete	

[SC85] Sistla, Clarke. The complexity of propositional linear temporal logics (JACM'85). [AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (JACM'96). [HR05] Hirshfeld, Rabinovich. Timed formulas and decidable metric temporal logic (I&C'05). [BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS'07). [OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05).

 \equiv satisfiability of FlatMTL_{MITL}

\equiv satisfiability of FlatMTL_{MITL}

• Any satisfiable $\mathsf{Flat}\mathsf{MTL}_\mathsf{MITL}$ formula φ has a model such that:

\equiv satisfiability of FlatMTL_{MITL}

• Any satisfiable $\mathsf{Flat}\mathsf{MTL}_\mathsf{MITL}$ -formula φ has a model such that:

\equiv satisfiability of FlatMTL_{MITL}

• Any satisfiable $\mathsf{Flat}\mathsf{MTL}_\mathsf{MITL}$ -formula φ has a model such that:

• Stretchable signal:

1				
	e			
· ·		· .		
1				
		·		
		· · · · · · · · · · · · · · · · · · ·		
-				·
			Terrare and the second s	

\equiv satisfiability of FlatMTL_{MITL}

• Any satisfiable $\mathsf{Flat}\mathsf{MTL}_\mathsf{MITL}$ -formula φ has a model such that:

• Stretchable signal:

1			· · · · · · · · · · · · · · · · · · ·
	1		
1.			1
1			
		2 C	
			e de la construcción de la constru
1			
	and the second		A CONTRACT OF
	and the second		
		1	

• Any model of an LTL formula is stretchable.

\equiv satisfiability of FlatMTL_{MITL}

• Any satisfiable $\mathsf{Flat}\mathsf{MTL}_\mathsf{MITL}$ -formula φ has a model such that:

• Stretchable signal:

- Any model of an LTL formula is stretchable.
- Any model of an MITL formula is *somewhat* stretchable.

• non-punctual part:

somewhat stretchable

- \rightarrow transformed into a stretchable part using extra atomic propositions
- \rightarrow transform into LTL constraints

- non-punctual part:
 - somewhat stretchable
 - \rightarrow transformed into a stretchable part using extra atomic propositions
 - $\rightarrow \quad \text{transform into LTL constraints}$
- punctual part:
- non-punctual part:
 - somewhat stretchable
 - \rightarrow transformed into a stretchable part using extra atomic propositions
 - $\rightarrow \quad \text{transform into LTL constraints}$
- punctual part: non-stretchable... 🙁

- non-punctual part:
 - somewhat stretchable
 - \rightarrow transformed into a stretchable part using extra atomic propositions
 - $\rightarrow \quad \text{transform into LTL constraints}$
- punctual part: non-stretchable... ③ but not too long... ③

- non-punctual part:
 - somewhat stretchable
 - \rightarrow transformed into a stretchable part using extra atomic propositions
 - $\rightarrow \quad \text{transform into LTL constraints}$

- non-punctual part:
 - somewhat stretchable
 - \rightarrow transformed into a stretchable part using extra atomic propositions
 - $\rightarrow \quad \text{transform into LTL constraints}$
- punctual part: non-stretchable... © but not too long... ©

A tableau satisfiability problem

check non-punctual formulas

A tableau satisfiability problem

check non-punctual formulas

 \mathbb{R} transform into sat. prob. for LTL+Past over \mathbb{R}_+ (PSPACE: [Rey04])

Outline

1. Introduction

- 2. The logic MTL
- 3. Towards tractable fragments of MTL
- 4. Conclusion

Conclusion

- \bullet We have proposed a subclass of MTL called coFlatMTL_MITL s.t.
 - its model-checking problem is EXPSPACE-complete;
 - it includes most known timed temporal languages that can be efficiently model-checked.
- Our tableau construction \equiv small-model property
- Note:
 - coFlatMTL_{MITL} is not closed under negation;
 - \bullet The satisfiability problem for coFlatMTL_MITL is undecidable.

Further investigations

- Can we apply such ideas to branching-time logics?
- Can we find some more practical algorithms?