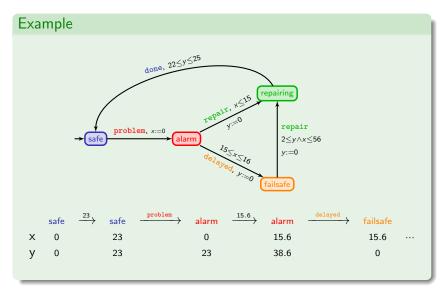
Timed Automata with Observers under Energy Constraints

Patricia Bouyer-Decitre¹ Uli Fahrenberg² Kim G. Larsen² Nicolas Markey¹

> ¹ LSV, CNRS & ENS Cachan, France ² Aalborg Universitet, Danmark

The standard timed automaton model [AD90,AD94]



[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

• System resources might be relevant and even crucial information

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - bandwidth,
 - ...

- price to pay,
- benefits,
- temperature,

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - bandwidth,
 - ...

- price to pay,
- benefits.
- · temperature,

→ timed automata are not powerful enough!

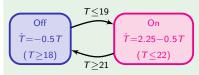
- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - bandwidth,
 - ...

- price to pay,
- benefits.
- temperature,
- → timed automata are not powerful enough!
- A possible solution: use hybrid automata

- System resources might be relevant and even crucial information
 - energy consumption.
 - memory usage,
 - bandwidth,
 - ...

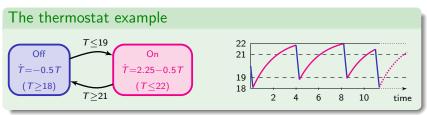
- price to pay,
- benefits,
- temperature,
- → timed automata are not powerful enough!
- A possible solution: use hybrid automata

The thermostat example



- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - bandwidth,
 - ...

- price to pay,
- benefits,
- temperature,
- → timed automata are not powerful enough!
- A possible solution: use hybrid automata



- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - bandwidth,
 - ...

- price to pay,
- benefits.
- temperature,
- → timed automata are not powerful enough!
- A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - bandwidth,
 - ...

- price to pay,
- benefits.
- temperature.
- → timed automata are not powerful enough!
- A possible solution: use hybrid automata

Theorem [HKPV95]

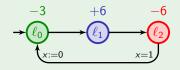
The reachability problem is undecidable in hybrid automata.

- An alternative: weighted/priced timed automata [ALP01,BFH+01]
 - → hybrid variables are observer variables (they do not constrain a priori the system)

A simple example of priced timed automata (PTA)

[ALP01,BFH+01]

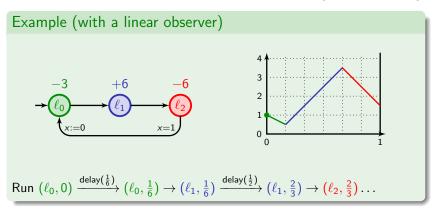
Example (with a linear observer)

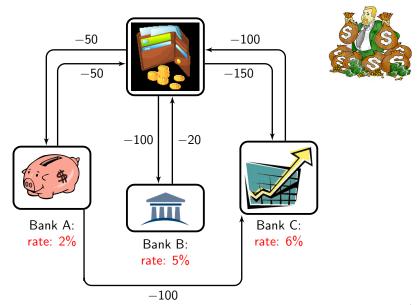


$$\mathsf{Run}\ (\ell_0,0) \xrightarrow{\mathsf{delay}(\frac{1}{6})} (\ell_0,\frac{1}{6}) \to (\ell_1,\frac{1}{6}) \xrightarrow{\mathsf{delay}(\frac{1}{2})} (\ell_1,\frac{2}{3}) \to (\boldsymbol{\ell}_2,\frac{2}{3}) \dots$$

A simple example of priced timed automata (PTA)

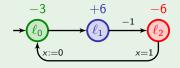
[ALP01,BFH+01]





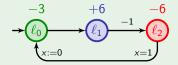
Example

We also consider PTA with an exponential observer:



Example

We also consider PTA with an exponential observer:



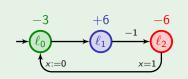
Rate -3 in location ℓ_0 means

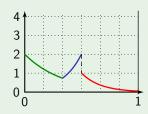
$$\frac{\partial \ \mathrm{cost}}{\partial \ \mathrm{time}} = -3 \times \mathrm{cost}$$

$$cost = cost_0 \cdot e^{-3 \times t}$$

Example

We also consider PTA with an exponential observer:





Rate -3 in location ℓ_0 means

$$\frac{\partial \, \cos t}{\partial \, time} = -3 \times \cos t$$

$$cost = cost_0 \cdot e^{-3 \times t}$$

- Various optimization questions (optimal reachability, optimal mean-cost or discounted infinite schedules, etc)
 - → an abundant literature since 2001 (for the linear observers only)

- Various optimization questions (optimal reachability, optimal mean-cost or discounted infinite schedules, etc)
 - → an abundant literature since 2001 (for the linear observers only)
- Scheduling under energy constraints (resource management): are there scheduling policies/strategies when energy is constrained?

- Various optimization questions (optimal reachability, optimal mean-cost or discounted infinite schedules, etc)
 - → an abundant literature since 2001 (for the linear observers only)
- Scheduling under energy constraints (resource management): are there scheduling policies/strategies when energy is constrained?
 - problem statement and preliminary results in [BFLMS08] (for the linear observers only)

	exist. problem	univ. problem	games
L	€ P	€ P	€ UP ∩ coUP P-hard
L+W	€ P	€ P	€ NP ∩ coNP P-hard
L+U	€ PSPACE NP-hard	€ P	EXPTIME-c.

	exist. problem	univ. problem	games
L	€ P	€ P	7
L+W	€ P	€ P	7
L+U	7	7	undecidable

		essit. proceem	unvv. proceem	games
	L	7	7	7
ĺ	L+W	7	7	7
I	L+U	7	7	undecidable

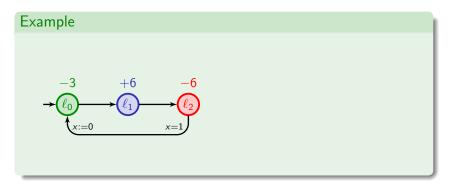
- Various optimization questions (optimal reachability, optimal mean-cost or discounted infinite schedules, etc)
 - → an abundant literature since 2001 (for the linear observers only)
- Scheduling under energy constraints (resource management): are there scheduling policies/strategies when energy is constrained?
 - problem statement and preliminary results in [BFLMS08] (for the linear observers only)

	easst. proceem	unry, proceem	games
L	€ P	€ P	€ UP ∩ coUP P-hard
L+W	€ P	€ P	∈ NP ∩ coNP P-hard
L+U	€ PSPACE NP-hard	€ P	EXPTIME-c.
	L+W	L+W ∈ P ∈ PSPACE	L ∈P ∈P L+W ∈P ∈P

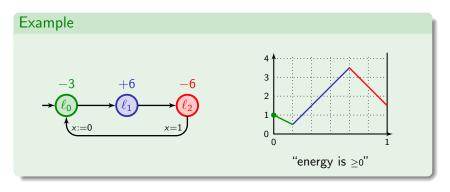
	exist. problem	univ. problem	games
L	€ P	€ P	7
L+W	€ P	€ P	7
L+U	7	7	undecidable

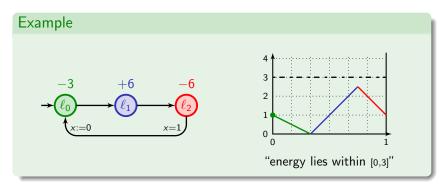
	eassz. proceem	unv. proceen	games
L	2	7	7
L+W	2	7	7
L+U	2	7	undecidable

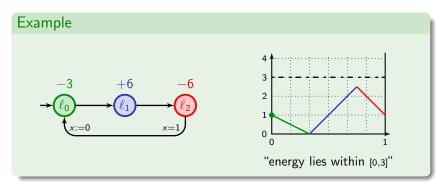
ightarrow go further in the understanding (+ exponential observers): this work











In this work, we focus on:

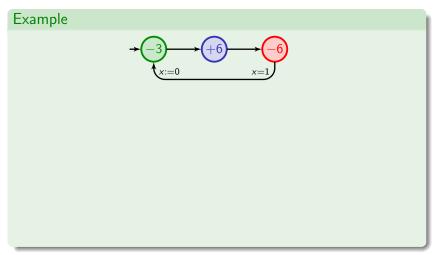
- the energy constraint "energy is ≥ 0 ";
- single-clock PTA;
- a linear or exponential observer variable.

Idea: delay in the most profitable location

 \sim the corner-point abstraction

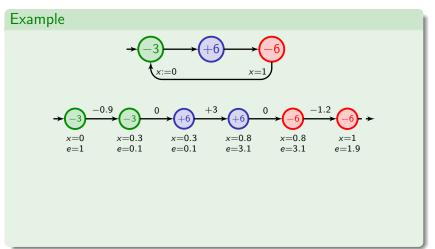
Idea: delay in the most profitable location

→ the corner-point abstraction



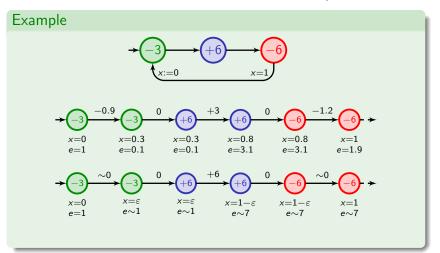
Idea: delay in the most profitable location

 \sim the corner-point abstraction



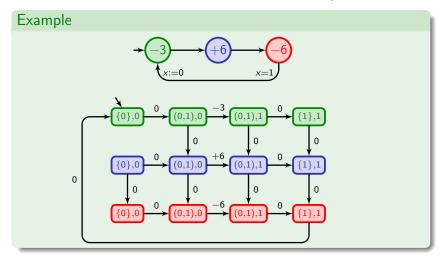
Idea: delay in the most profitable location

→ the corner-point abstraction



Idea: delay in the most profitable location

→ the corner-point abstraction



Idea: delay in the most profitable location

→ the corner-point abstraction

Theorem [BFLMS08]

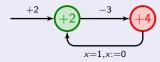
The corner-point abstraction is sound and complete for single-clock PTA with a linear observer and with no discrete costs.

Idea: delay in the most profitable location

 \sim the corner-point abstraction

Remark

The corner-point abstraction is not correct with discrete costs.

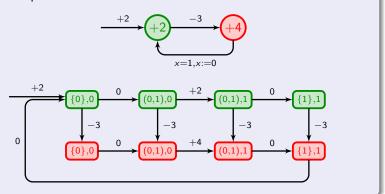


Idea: delay in the most profitable location

→ the corner-point abstraction

Remark

The corner-point abstraction is not correct with discrete costs.

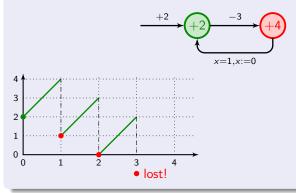


Idea: delay in the most profitable location

 \sim the corner-point abstraction

Remark

The corner-point abstraction is not correct with discrete costs.



Idea: delay in the most profitable location

→ the corner-point abstraction

Remark The corner-point abstraction is not correct with discrete costs. x=1,x:=03 3 2 1 0 lost!

Outline of the presentation

1. Introduction

 Solving the problem (and even more) along a unit path Linear observer
 Exponential observer

3. Solving the general problem

4. Conclusion

Outline of the presentation

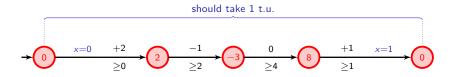
1 Introduction

2. Solving the problem (and even more) along a unit path Linear observer

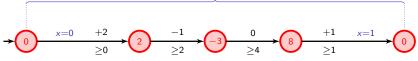
Exponential observer

3. Solving the general problem

4. Conclusion

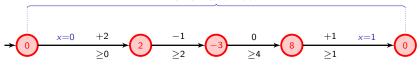


• starting with initial credit 0, it is not possible to reach the last location;

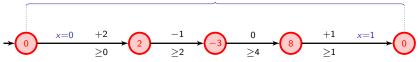


- starting with initial credit 0, it is not possible to reach the last location:
- starting with credit 1, we can exit with credit 5;

should take 1 t.u.



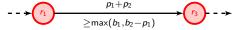
- starting with initial credit 0, it is not possible to reach the last location;
- starting with credit 1, we can exit with credit 5;
- starting with credit 3, it is possible to exit with final credit 13.



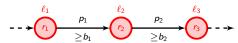
- starting with initial credit 0, it is not possible to reach the last location;
- starting with credit 1, we can exit with credit 5;
- starting with credit 3, it is possible to exit with final credit 13.

Simplifying annotated unit paths

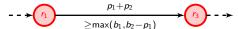
If (for some reason) no time should elapse in ℓ_2 , then this path is equivalent (regarding the final cost) to

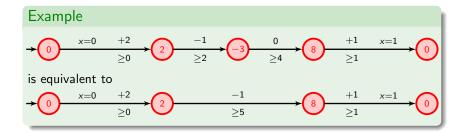


Simplifying annotated unit paths



If (for some reason) no time should elapse in ℓ_2 , then this path is equivalent (regarding the final cost) to

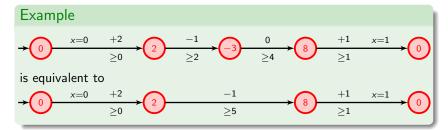




Simplifying annotated unit paths

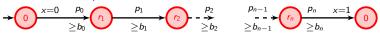
If (for some reason) no time should elapse in ℓ_2 , then this path is equivalent (regarding the final cost) to

$$- \rightarrow \begin{matrix} r_1 \\ \hline \\ \geq \max(b_1, b_2 - p_1) \end{matrix} \longrightarrow \begin{matrix} r_3 \\ \hline \\ \end{pmatrix} - \rightarrow \begin{matrix} r_3 \\ \hline \\ \end{matrix}$$



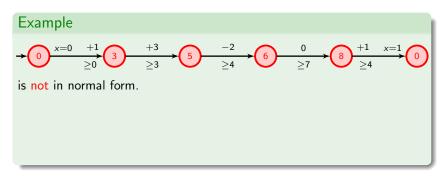
→ we can select locations with increasing rates (if some rate is positive...)

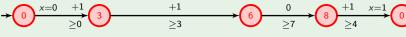
An annotated unit path



is in normal form if one of the following cases holds:

- n = 1 (trivial normal form);
- the rates r_i are positive and increasing, and $b_{i-1} + p_{i-1} < b_i$ for all $1 \le i \le n-1$ (positive normal form);
- the rates r_i are negative and decreasing, and $b_{i-1} + p_{i-1} > b_i$ for all $1 \le i \le n-1$ (negative normal form).





is in (positive) normal form.

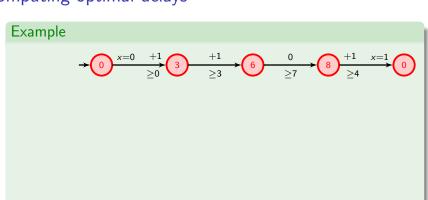
Example

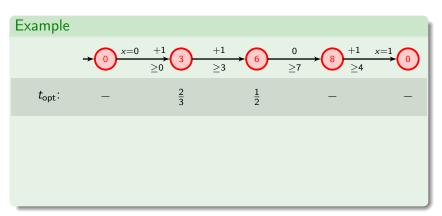
is not in normal form.

is in (positive) normal form.

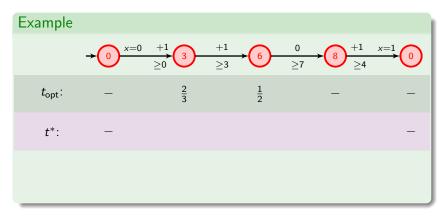
Lemma

Any annotated unit path can be transformed into an equivalent (w.r.t. maximal final cost) normal form path.

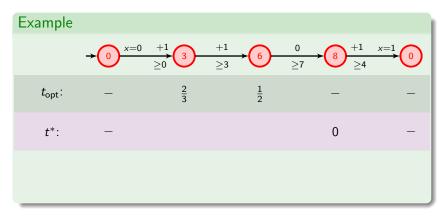




• compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;



- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;



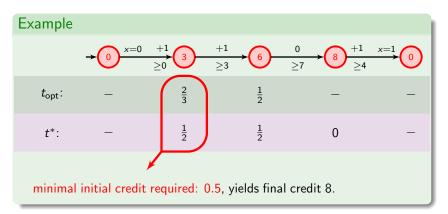
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;

Example t_{opt}: *t**:

- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;

Example t_{opt}: t*:

- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;



- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;

Example t_{opt}: t*:

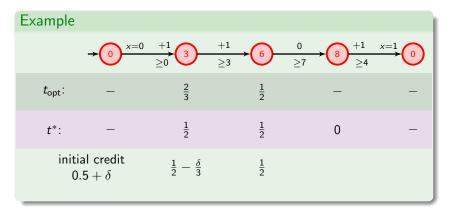
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.

Example t_{opt}: t*: initial credit $0.5 + \delta$

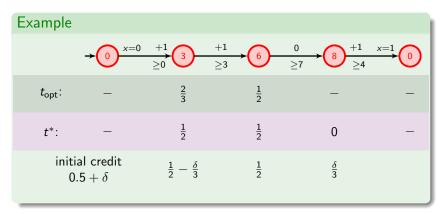
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.

Example t_{opt}: t*: initial credit $\frac{1}{2}-\frac{\delta}{3}$ $0.5 + \delta$

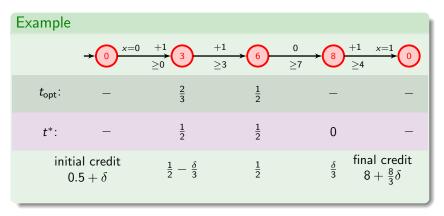
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.



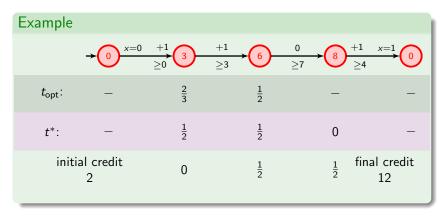
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.



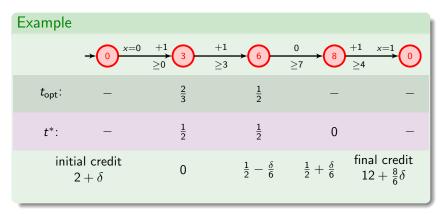
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.



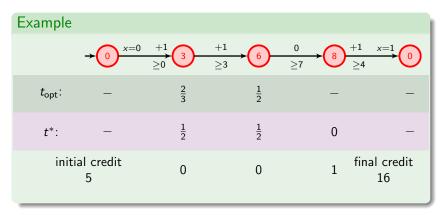
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.



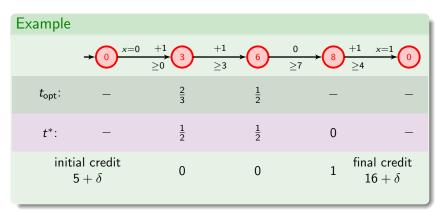
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.



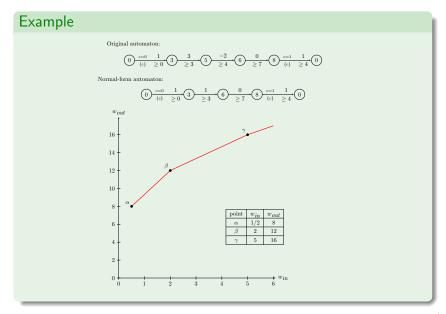
- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.



- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.



- compute optimal delays t_{opt} in ℓ_1 to ℓ_{n-1} ;
- compute optimal possible delays t^* in ℓ_1 to ℓ_{n-1} ;
- compute other points on the energy function curve.



Outline of the presentation

1. Introduction

 Solving the problem (and even more) along a unit path Linear observer
 Exponential observer

3. Solving the general problem

4. Conclusion

• starting with initial credit 0, it is not possible to reach the final location;

- starting with initial credit 0, it is not possible to reach the final location;
- starting with credit 1 and spending 1 t.u. in (2), we have credit $exp(2) \sim 7.39$ when exiting (2), which is not sufficient to reach the final location:

- starting with initial credit 0, it is not possible to reach the final location;
- starting with credit 1 and spending 1 t.u. in (2), we have credit $exp(2) \sim 7.39$ when exiting (2), which is not sufficient to reach the final location;
- starting with credit 1,
 - spending 0.8 t.u. in 2, we have credit $\exp(2*0.8) \sim 4.95$;
 - we reach with credit around 0.95;
 - spending the remaining 0.2 t.u. there, we exit the path with credit approx. 0.72.

Normal form for exponential observers

A restricted unit path

is in normal form if one of the following cases holds:

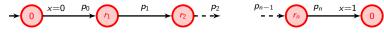
- n = 1 (trivial normal form);
- the rates r_i are positive and increasing, and

$$\frac{p_{i-1} \cdot r_{i-1} \cdot r_i}{r_{i-1} - r_i} < \frac{p_i \cdot r_i \cdot r_{i+1}}{r_i - r_{i+1}}$$

for all $2 \le i \le n-1$ (positive normal form);

Normal form for exponential observers

A restricted unit path



is in normal form if one of the following cases holds:

- n = 1 (trivial normal form);
- the rates r_i are positive and increasing, and

$$\frac{p_{i-1} \cdot r_{i-1} \cdot r_i}{r_{i-1} - r_i} < \frac{p_i \cdot r_i \cdot r_{i+1}}{r_i - r_{i+1}}$$

for all $2 \le i \le n-1$ (positive normal form);

Lemma

Any restricted unit path can be transformed into an equivalent (w.r.t. maximal final credit) normal form path.

$$c_{\mathsf{out}} = (c_{\mathsf{in}} \cdot e^{r_i t_i^{\mathsf{opt}}} + p_i) \cdot e^{r_{i+1} t_{i+1}^{\mathsf{opt}}}$$

$$c_{\mathsf{out}} = (c_{\mathsf{in}} \cdot e^{r_i(t_i^{\mathsf{opt}} + \delta)} + p_i) \cdot e^{r_{i+1}(t_{i+1}^{\mathsf{opt}} - \delta)}$$

$$c_{\mathsf{out}} = (c_{\mathsf{in}} \cdot e^{r_i(t_i^{\mathsf{opt}} + \delta)} + p_i) \cdot e^{r_{i+1}(t_{i+1}^{\mathsf{opt}} - \delta)}$$

$$\frac{\partial c_{\text{out}}}{\partial \delta} = r_i c_{\text{in}} \cdot e^{r_i (t_i^{\text{opt}} + \delta)} \cdot e^{r_{i+1} (t_{i+1}^{\text{opt}} - \delta)}$$
$$- (r_{i+1} (c_{\text{in}} \cdot e^{r_i (t_i^{\text{opt}} + \delta)} + p_i) \cdot e^{r_{i+1} (t_{i+1}^{\text{opt}} - \delta)}$$

$$c_{\text{out}} = (c_{\text{in}} \cdot e^{r_i(t_i^{\text{opt}} + \delta)} + p_i) \cdot e^{r_{i+1}(t_{i+1}^{\text{opt}} - \delta)}$$

$$\frac{\partial c_{\text{out}}}{\partial \delta} = r_i c_{\text{in}} \cdot e^{r_i t_i^{\text{opt}}} \cdot e^{r_{i+1} t_{i+1}^{\text{opt}}} - (r_{i+1} (c_{\text{in}} \cdot e^{r_i t_i^{\text{opt}}} + p_i) \cdot e^{r_{i+1} t_{i+1}^{\text{opt}}}$$

$$= 0$$

We have

$$c_{\text{out}} = (c_{\text{in}} \cdot e^{r_i(t_i^{\text{opt}} + \delta)} + p_i) \cdot e^{r_{i+1}(t_{i+1}^{\text{opt}} - \delta)}$$

Hence

$$c_{\mathsf{in}} \cdot e^{r_i t_i^{\mathsf{opt}}} = \frac{p_i \cdot r_{i+1}}{r_i - r_{i+1}}$$

We have

$$c_{\text{out}} = (c_{\text{in}} \cdot e^{r_i(t_i^{\text{opt}} + \delta)} + p_i) \cdot e^{r_{i+1}(t_{i+1}^{\text{opt}} - \delta)}$$

Hence

$$c_{\mathsf{in}} \cdot e^{r_i t_i^{\mathsf{opt}}} = \frac{p_i \cdot r_{i+1}}{r_i - r_{i+1}}$$

Lemma

The optimal credit with which to exit $\frac{\ell_i}{r-r}$ is $\frac{p_i \cdot r_{i+1}}{r-r}$.

We have

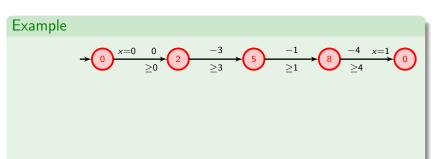
$$c_{\text{out}} = (c_{\text{in}} \cdot e^{r_i(t_i^{\text{opt}} + \delta)} + p_i) \cdot e^{r_{i+1}(t_{i+1}^{\text{opt}} - \delta)}$$

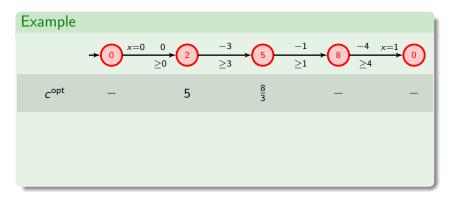
Hence

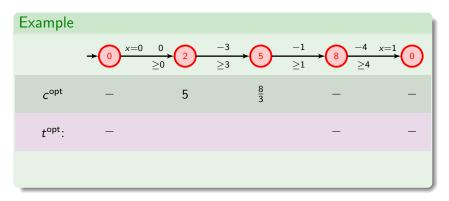
$$c_{\mathsf{in}} \cdot e^{r_i t_i^{\mathsf{opt}}} = \frac{p_i \cdot r_{i+1}}{r_i - r_{i+1}}$$

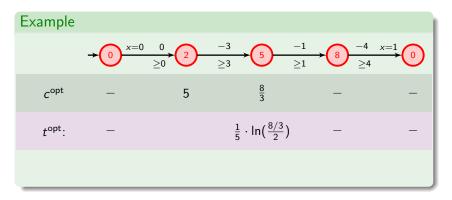
Lemma

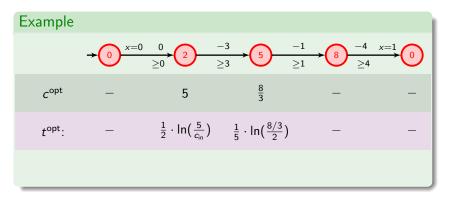
Optimal runs spend no time in $\underbrace{\ell_i}$ if $\underbrace{p_{i-1} \cdot r_i}_{r_i-1-r_i} + p_{i-1} \ge \underbrace{p_i \cdot r_{i+1}}_{r_i-r_{i+1}}$.

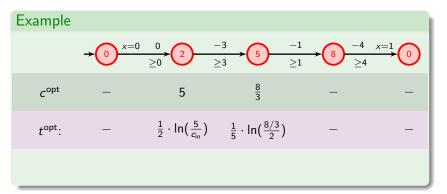






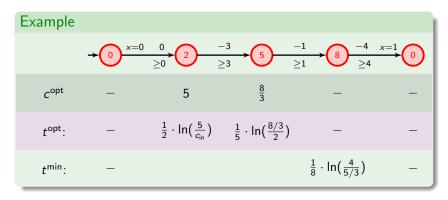




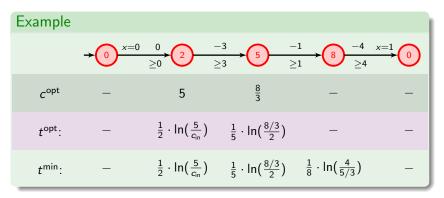


Lemma

The optimal strategy is to delay t_i^{opt} as long as possible.

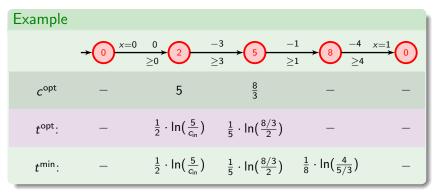


Example					
	→ 0 x=0	<u>0</u> ≥ <u>2</u> ≥	-3 → 5 - ≥	—→(X)——	×=1 0
C ^{opt}	-	5	8/3	-	-
t ^{opt} :	_	$\frac{1}{2} \cdot \ln(\frac{5}{c_{in}})$	$\frac{1}{5} \cdot \ln\left(\frac{8/3}{2}\right)$	-	_
t ^{min} :	_	$\frac{1}{2} \cdot \ln(\frac{5}{c_{in}})$	$\frac{1}{5} \cdot \ln\left(\frac{8/3}{2}\right)$	$\frac{1}{8} \cdot \ln\left(\frac{4}{5/3}\right)$	_

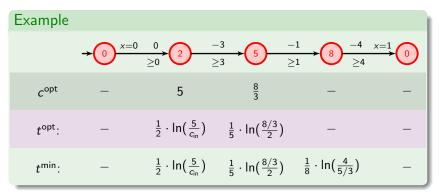


The minimal initial credit to reach the final location is

$$c^{\min} = 5 \cdot e^{-2} \cdot \left(\frac{12}{5}\right)^{1/4} \cdot \left(\frac{4}{3}\right)^{2/5}.$$



Starting with credit $k \cdot c_{\min}$ (between c_{\min} and 5):



Starting with credit $k \cdot c_{\min}$ (between c_{\min} and 5):

• we spend $\frac{1}{2} \ln(\frac{5}{k \cdot c_{\min}})$ in location (2);

Example

$$c^{\text{opt}} - 5 \frac{8}{3} - -$$

$$t^{\text{opt}}: - \frac{1}{2} \cdot \ln(\frac{5}{c_{\text{in}}}) \frac{1}{5} \cdot \ln(\frac{8/3}{2}) -$$

$$t^{\text{min}}: - \frac{1}{2} \cdot \ln(\frac{5}{c_{\text{in}}}) \frac{1}{5} \cdot \ln(\frac{8/3}{2}) -$$

Starting with credit $k \cdot c_{min}$ (between c_{min} and 5):

• we spend $\frac{1}{2}\ln(\frac{5}{k \cdot c_{\min}}) = t_{\min} - \frac{1}{2} \cdot \ln(k)$ in location (2);

Example $c^{\text{opt}} - 5 \frac{8}{3} - -$ $t^{\text{opt}}: - \frac{1}{2} \cdot \ln(\frac{5}{c_{\text{in}}}) \frac{1}{5} \cdot \ln(\frac{8/3}{2}) -$ $t^{\text{min}}: - \frac{1}{2} \cdot \ln(\frac{5}{c_{\text{in}}}) \frac{1}{5} \cdot \ln(\frac{8/3}{2}) -$

Starting with credit $k \cdot c_{min}$ (between c_{min} and 5):

- we spend $\frac{1}{2}\ln(\frac{5}{k\cdot c_{\min}})=t_{\min}-\frac{1}{2}\cdot \ln(k)$ in location (2);
- we transfer $\frac{1}{2} \cdot \ln(k)$ t.u. to location 8;

Example

$$c^{\text{opt}} - 5 \frac{8}{3} - -$$

$$t^{\text{opt}}: - \frac{1}{2} \cdot \ln(\frac{5}{c_{\text{in}}}) \frac{1}{5} \cdot \ln(\frac{8/3}{2}) -$$

$$t^{\text{min}}: - \frac{1}{2} \cdot \ln(\frac{5}{c_{\text{in}}}) \frac{1}{5} \cdot \ln(\frac{8/3}{2}) -$$

Starting with credit $k \cdot c_{min}$ (between c_{min} and 5):

- we spend $\frac{1}{2}\ln(\frac{5}{k \cdot c_{\min}}) = t_{\min} \frac{1}{2} \cdot \ln(k)$ in location (2);
- we transfer $\frac{1}{2} \cdot \ln(k)$ t.u. to location $\binom{8}{3}$;
- the final credit is $4 \cdot e^{8 \cdot \frac{1}{2} \cdot \ln(k)} 4$.

Example

$$c^{\text{opt}} - 5 \frac{8}{3} - -$$

$$t^{\text{min}}: - \frac{1}{2} \cdot \ln(\frac{5}{c_{\text{in}}}) \frac{1}{5} \cdot \ln(\frac{8/3}{2}) -$$

$$t^{\text{opt}} - \frac{1}{2} \cdot \ln(\frac{5}{c_{\text{in}}}) - \frac{1}{5} \cdot \ln(\frac{8/3}{2}) -$$

Starting with credit $k \cdot c_{min}$ (between c_{min} and 5):

- we spend $\frac{1}{2}\ln(\frac{5}{k \cdot c_{\min}}) = t_{\min} \frac{1}{2} \cdot \ln(k)$ in location (2);
- we transfer $\frac{1}{2} \cdot \ln(k)$ t.u. to location $\frac{8}{3}$;
- the final credit is $4 \cdot e^{8 \cdot \frac{1}{2} \cdot \ln(k)} 4 = 4 \cdot \left(\frac{c_{\text{in}}}{c_{\text{min}}}\right)^4 4$.

Theorem

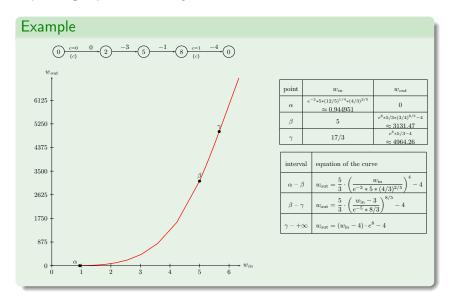
Given a restricted unit path and an initial credit, we can compute in polynomial time the optimal final credit (in closed form).

Theorem

Given a restricted unit path and an initial credit, we can compute in polynomial time the optimal final credit (in closed form).

Moreover the energy function:

- is piecewise of the form $\alpha \cdot (c_{in} \beta)^{r_i/r_j} + \gamma$, with $r_i \geq r_j$;
- has continuous derivative.



Outline of the presentation

1. Introduction

 Solving the problem (and even more) along a unit path Linear observer
 Exponential observer

3. Solving the general problem

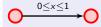
4. Conclusion

Remark

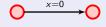
For the sake of simplicity, we restrict to closed timed automata.

Lemma

We can assume that there is a global invariant $x \le 1$, and that there are only three kind of transitions:



or

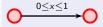


or

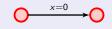
$$\bigcirc \xrightarrow{x=1} \bigcirc \bigcirc$$

Lemma

We can assume that there is a global invariant $x \le 1$, and that there are only three kind of transitions:

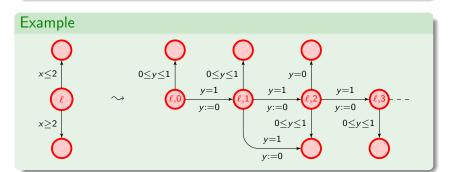


or



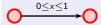
or



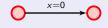


Lemma

We can assume that there is a global invariant $x \le 1$, and that there are only three kind of transitions:

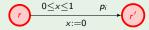


or



or

Example



 \sim

0 x=1

Handling non-resetting cycles

Lemma

For each location ℓ , we can compute a value $w_{\sf Zeno}(\ell)$ such that there is an infinite non-resetting feasible run from ℓ with initial credit w iff $w \geq w_{\sf Zeno}(\ell)$.

Handling non-resetting cycles

Lemma

For each location ℓ , we can compute a value $w_{\sf Zeno}(\ell)$ such that there is an infinite non-resetting feasible run from ℓ with initial credit w iff $w \geq w_{\sf Zeno}(\ell)$.

Lemma

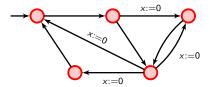
From an automaton A, we can compute an equivalent automaton A' labelled with w_{Zeno} and not containing any non-resetting cycle.

Theorem

- either with a linear observer;
- or with an exponential observer with non-positive discrete costs.

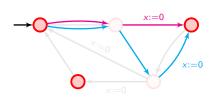
Theorem

- either with a linear observer;
- or with an exponential observer with non-positive discrete costs.
- transform the automaton into an automaton with energy functions;



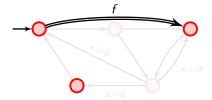
Theorem

- either with a linear observer;
- or with an exponential observer with non-positive discrete costs.
- transform the automaton into an automaton with energy functions;



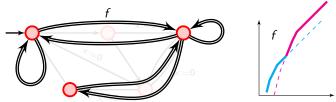
Theorem

- either with a linear observer;
- or with an exponential observer with non-positive discrete costs.
- transform the automaton into an automaton with energy functions;



Theorem

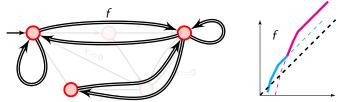
- either with a linear observer;
- or with an exponential observer with non-positive discrete costs.
- transform the automaton into an automaton with energy functions;



Theorem

Optimization, reachability and existence of infinite runs satisfying the constraint ≥ 0 can be decided in EXPTIME in single-clock PTA

- either with a linear observer;
- or with an exponential observer with non-positive discrete costs.
- transform the automaton into an automaton with energy functions;



• check if simple cycles can be iterated, or if a Zeno cycle can be reached (use of w_{Zeno}).

Outline of the presentation

1 Introduction

 Solving the problem (and even more) along a unit path Linear observer
 Exponential observer

3. Solving the general problem

4. Conclusion

Conclusion & future work

Results:

- computation of (infinite) schedules satisfying some simple energy constraints (energy should remain ≥ 0)
- surprisingly decidable for exponential observers?
- required an optimization algorithm along unit paths

Conclusion & future work

Results:

- computation of (infinite) schedules satisfying some simple energy constraints (energy should remain ≥ 0)
- surprisingly decidable for exponential observers?
- required an optimization algorithm along unit paths

Many open problems:

- general case for exponential observers?
- can we go beyond linear and exponential observers?
 (In particular can we handle observers that mix linear and exponential evolutions?)
- what if there are upper bounds on the observer variable?
- what if there are more than one clock?
- what if there is an interacting environment (games)?
- . . .