

Robustness in Timed Automata: A Game-Based Approach

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

Based on joint works with Nicolas Markey, Pierre-Alain Reynier and Ocan Sankur Acknowledgment to Nicolas and Ocan for slides

Time-dependent systems

• We are interested in timed systems

Reasoning about real-time systems

The model of timed automata [AD94]

- A timed automaton is made of
 - a finite automaton-based structure

Reasoning about real-time systems

The model of timed automata [AD94]

- A timed automaton is made of
 - a finite automaton-based structure
 - a set of clocks

Reasoning about real-time systems

The model of timed automata [AD94]

- A timed automaton is made of
 - a finite automaton-based structure
 - a set of clocks
 - timing constraints on transitions

safe

- X 0
- y 0

	safe	$\xrightarrow{23}$	safe
х	0		23
у	0		23

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm
х	0		23		0
у	0		23		23

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm
х	0		23		0		15.6
у	0		23		23		38.6

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

failsafe

... 15.6

0

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

failsafe	$\xrightarrow{2.3}$	failsafe
 15.6		17.9
0		2.3

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}} \rightarrow$	failsafe	
х	0		23		0		15.6		15.6	
y	0		23		23		38.6		0	

failsafe	$\xrightarrow{2.3}$	failsafe	$\xrightarrow{\text{repair}}$	repairing
 15.6		17.9		17.9
0		2.3		0

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

	failsafe	$\xrightarrow{2.3}$	failsafe	$\xrightarrow{\text{repair}}$	repairing	$\xrightarrow{22.1}$	repairing
•••	15.6		17.9		17.9		40
	0		2.3		0		22.1

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}} \rightarrow$	failsafe	
х	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

	failsafe	$\xrightarrow{2.3}$	failsafe	$\xrightarrow{\text{repair}}$	repairing	$\xrightarrow{22.1}$	repairing	$\xrightarrow{\text{done}}$	safe
•••	15.6		17.9		17.9		40		40
	0		2.3		0		22.1		22.1

...because computers are digital!

...because computers are digital!

...because computers are digital!

...because computers are digital!

...because computers are digital!

...because computers are digital!

...because computers are digital!

... real-time models for real-time systems!

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other important properties). It is PSPACE-complete.

• Technical tool: region abstraction

... real-time models for real-time systems!

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other important properties). It is PSPACE-complete.

- Technical tool: region abstraction
- Efficient symbolic technics based on zones, implemented in tools

The continuous-time semantics is an idealization of a physical system. It is adequate for abstract design and high-level analysis.

The continuous-time semantics is an idealization of a physical system. It is adequate for abstract design and high-level analysis.

However it suffers from multiple inaccuracies:

It might not be proper for implementation
 → analysis made at the abstract level does not transfer to real world

The continuous-time semantics is an idealization of a physical system. It is adequate for abstract design and high-level analysis.

However it suffers from multiple inaccuracies:

- It might not be proper for implementation
 → analysis made at the abstract level does not transfer to real world
- It may generate timing anomalies

The continuous-time semantics is an idealization of a physical system. It is adequate for abstract design and high-level analysis.

However it suffers from multiple inaccuracies:

- It might not be proper for implementation
 → analysis made at the abstract level does not transfer to real world
- It may generate timing anomalies
- It does not exclude non-realizable behaviours:
 - not only Zeno behaviours
 - many convergence phenomena are hidden

 \rightsquigarrow this requires infinite precision and might not be realizable

Example 1: Imprecision on clock values

[ACS10] Abdellatif, Combaz, Sifakis. Model-based implementation of real-time applications. Int. Conf. Embedded Software, ACM 2010.

Example 1: Imprecision on clock values

[ACS10] Abdellatif, Combaz, Sifakis. Model-based implementation of real-time applications. Int. Conf. Embedded Software, ACM 2010.

 \sim \bigcirc is reachable, however small may be the jitter

Example 3: Scheduling and timing anomaly

- Scheduling analysis with timed automata [AAM06]
- **Goal:** analyze a *work-conserving* scheduling policy on given scenarios (no machine is idle if a task is waiting for execution)

Example of a scenario

with the dependency constraints: $A \rightarrow B$ and $C \rightarrow D, E$.

- A, D, E must be scheduled on machine M_1
- **2** B, C must be scheduled on machine M_2
- O starts no sooner than 2 time units

Example 3: Scheduling and timing anomaly

Example of a scenario

 \sim Schedulable in 6 time units
Example of a scenario

- \sim Schedulable in 6 time units
 - Unexpectedly, the duration of A drops to 1.999

Example of a scenario

 \sim Schedulable in 6 time units

• Unexpectedly, the duration of A drops to 1.999

is not work-conserving

Example of a scenario

- \sim Schedulable in 6 time units
 - Unexpectedly, the duration of A drops to 1.999

is not work-conserving

is work-conserving and completes in 7.999 t.u.

Example of a scenario

 $\, \sim \,$ Schedulable in 6 time units

• Unexpectedly, the duration of A drops to 1.999

 \rightsquigarrow Standard analysis does not capture this timing anomaly

Example 4: Zeno behaviours

Example 4: Zeno behaviours

[HS11] Herbreteau, Srivathsan. Coarse abstractions make Zeno behaviours difficult to detect, Logic. Meth. Comp. Science, 2011.

Example 4: Zeno behaviours

[HS11] Herbreteau, Srivathsan. Coarse abstractions make Zeno behaviours difficult to detect, Logic. Meth. Comp. Science, 2011.

Add robustness to the theory of timed automata!

Add robustness to the theory of timed automata!

• We need to understand what is the real system behind the mathematical model, and also which implementation we have in mind, if any.

Add robustness to the theory of timed automata!

- We need to understand what is the real system behind the mathematical model, and also which implementation we have in mind, if any.
- Aim: provide frameworks to build robustly correct systems

Add robustness to the theory of timed automata!

- We need to understand what is the real system behind the mathematical model, and also which implementation we have in mind, if any.
- Aim: provide frameworks to build robustly correct systems

We focus on perturbations on time measurements and jitter.

Robust model-checking: the worst-case approach

- Compute an overapproximation of the set of perturbed behaviours (Possibly relate with an implementation)
- Prove correctness of this approximation

Robust model-checking: the worst-case approach

- Compute an overapproximation of the set of perturbed behaviours (Possibly relate with an implementation)
- Prove correctness of this approximation

 \sim Many decidability results!

Often: same complexity as standard verification

Robust model-checking: the worst-case approach

- Compute an overapproximation of the set of perturbed behaviours (Possibly relate with an implementation)
- Prove correctness of this approximation

\sim Many decidability results!

Often: same complexity as standard verification

Robust control

- The strategy (partially) dictates the behaviour of the system
- It should tolerate imprecisions in timing measurements
- Simpler case: robust realisability

Robust model-checking: the worst-case approach

- Compute an overapproximation of the set of perturbed behaviours (Possibly relate with an implementation)
- Prove correctness of this approximation

\sim Many decidability results!

Often: same complexity as standard verification

Robust control

- The strategy (partially) dictates the behaviour of the system
- It should tolerate imprecisions in timing measurements
- Simpler case: robust realisability

We propose a game-based approach to robust realisability

Realisability

Realisability

Strategy: in location \bigcirc with value x, delay $\frac{2-x}{2}$

• This strategy requires infinite precision

Robust realisability

Strategy: in location \bigcirc with value x, delay $\frac{2-x}{2}$

- This strategy requires infinite precision
- In practice, when x is close to 2, no additional delay is supported: the run is theoretically infinite, but it is actually blocking

Robust realisability

Strategy: in location \bigcirc with value x, delay $\frac{2-x}{2}$

- This strategy requires infinite precision
- In practice, when x is close to 2, no additional delay is supported: the run is theoretically infinite, but it is actually blocking
- And that is unavoidable

Robust realisability

Idea of robust realisability

- $\sim\,$ Synthesize strategies that realise some property while tolerating small timing perturbations
- → Consequence: remove convergence phenomena

Robust realisability via a game semantics

Timed automaton $\ensuremath{\mathcal{A}}$

Timed automaton ${\mathcal A}$

Game $\mathcal{G}_{\delta}(\mathcal{A})$

Game semantics $\mathcal{G}_{\delta}(\mathcal{A})$ of timed automaton \mathcal{A}_{\cdots}

... between Controller and Perturbator:

Game semantics $\mathcal{G}_{\delta}(\mathcal{A})$ of timed automaton \mathcal{A}_{\cdots}

- ... between Controller and Perturbator:
 - from (ℓ, v) , Controller suggests a delay $d \ge \delta$ and a next edge $e = (\ell \xrightarrow{g, Y} \ell')$ that is available after delay d

Game semantics $\mathcal{G}_{\delta}(\mathcal{A})$ of timed automaton \mathcal{A} ...

- ... between Controller and Perturbator:
 - from (ℓ, v) , Controller suggests a delay $d \ge \delta$ and a next edge $e = (\ell \xrightarrow{g, Y} \ell')$ that is available after delay d
 - Perturbator then chooses a perturbation $\epsilon \in [-\delta; +\delta]$

Timed automaton
$$\mathcal{A}$$
 Game $\mathcal{G}_{\delta}(\mathcal{A})$
 $\ell \xrightarrow{g,Y} \ell' \sim \ell, v \xrightarrow{d \ge \delta} e^{-\delta \le \epsilon \le \delta} \ell', v'$ with $v'(v+d+\epsilon)[Y \leftarrow 0]$

Game semantics $\mathcal{G}_{\delta}(\mathcal{A})$ of timed automaton \mathcal{A}_{\cdots}

- ... between Controller and Perturbator:
 - from (ℓ, ν) , Controller suggests a delay $d \ge \delta$ and a next edge $e = (\ell \xrightarrow{g, Y} \ell')$ that is available after delay d
 - Perturbator then chooses a perturbation $\epsilon \in [-\delta; +\delta]$
 - Next state is $(\ell', (\nu + d + \epsilon)[Y \leftarrow 0])$

Timed automaton
$$\mathcal{A}$$
 Game $\mathcal{G}_{\delta}(\mathcal{A})$
 $\ell \xrightarrow{g,Y} \ell' \sim \ell, v \xrightarrow{d \ge \delta} e^{-\delta \le \epsilon \le \delta} \ell', v'$ with $v'(v+d+\epsilon)[Y \leftarrow 0]$

Game semantics $\mathcal{G}_{\delta}(\mathcal{A})$ of timed automaton \mathcal{A}_{\cdots}

... between Controller and Perturbator:

- from (ℓ, ν) , Controller suggests a delay $d \ge \delta$ and a next edge $e = (\ell \xrightarrow{g, Y} \ell')$ that is available after delay d
- Perturbator then chooses a perturbation $\epsilon \in [-\delta; +\delta]$
- Next state is $(\ell', (v + d + \epsilon)[Y \leftarrow 0])$

Note: when $\delta = 0$, this is the standard semantics of timed automata.

Timed automaton
$$\mathcal{A}$$
 Game $\mathcal{G}_{\delta}(\mathcal{A})$
 $\ell \xrightarrow{g,Y} \ell' \sim \ell, v \xrightarrow{d \ge \delta} e^{-\delta \le \epsilon \le \delta} \ell', v'$ with $v'(v+d+\epsilon)[Y \leftarrow 0]$

Game semantics $\mathcal{G}_{\delta}(\mathcal{A})$ of timed automaton \mathcal{A}_{\cdots}

... between Controller and Perturbator:

- from (ℓ, ν) , Controller suggests a delay $d \ge \delta$ and a next edge $e = (\ell \xrightarrow{g, Y} \ell')$ that is available after delay d
- Perturbator then chooses a perturbation $\epsilon \in [-\delta; +\delta]$
- Next state is $(\ell', (v + d + \epsilon)[Y \leftarrow 0])$

Note: when $\delta = 0$, this is the standard semantics of timed automata.

A δ -robust strategy for Controller is then a strategy that satisfies the expected property, whatever plays Perturbator.

Constraints may not be satisfied after the perturbation: that is, only v + d should satisfy g

→ Allows simple design of constraints, ensures divergence of time, avoids convergence phenomena

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

Two challenges

Accumulation of perturbations:

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

Two challenges

Accumulation of perturbations:

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

Two challenges

Accumulation of perturbations:

New regions become reachable

$$\xrightarrow{x=y=1} \xrightarrow{y:=0} -$$

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

Theorem

The parameterized synthesis problem for reachability properties is decidable and EXPTIME-complete. Furthermore, uniform winning strategies (w.r.t. δ) can be computed.

- Technical tools: a region-based refined game abstraction, shrunk DBMs
- © Extends to two-player games (i.e. to real control problems)

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

Theorem

The parameterized synthesis problem for reachability properties is decidable and EXPTIME-complete. Furthermore, uniform winning strategies (w.r.t. δ) can be computed.

- Technical tools: a region-based refined game abstraction, shrunk DBMs
- © Extends to two-player games (i.e. to real control problems)
- © Only valid for reachability properties

Constraints have to be satisfied after the perturbation: that is, $v + d + \epsilon$ should satisfy g for every $\epsilon \in [-\delta; +\delta]$

→ Strongly ensures timing constraints, ensures divergence of time, prevents converging phenomena

The conservative game semantics - Results

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

The conservative game semantics – Results

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

Theorem

The synthesis problem for Büchi properties is decidable and PSPACE-complete. Furthermore, winning strategies with uniform descriptions (w.r.t. δ) can be computed.

The conservative game semantics – Results

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

Theorem

The synthesis problem for Büchi properties is decidable and PSPACE-complete. Furthermore, winning strategies with uniform descriptions (w.r.t. δ) can be computed.

- \bigcirc Valid for all ω -regular properties
- © Same complexity as standard verification!
- Extends partially to timed games [ORS14]

[ORS14] Oualhadj, Reynier, Sankur. Robust strategies in timed games.

• Some cycles are converging (non-forgetful)

"There is a constraining half-space"

• Some cycles are converging (non-forgetful)

• Some cycles are converging (non-forgetful)

Characterization

There is $\delta > 0$ such that Controller has a δ -robust winning strategy in $\mathcal{G}_{\delta}(\mathcal{A})$ iff $R(\mathcal{A})$ has a reachable aperiodic^a non-punctual winning lasso.

^aThat is, all its iterations are forgetful.

Example

The cycle is not forgetful (that is, not strongly connected): there is an initial component I, and a non-decreasing function L_I .

• Idea: target the middle of the regions

Idea: target the middle of the regions
Let π be a forgetful (in fact complete) cycle.

• Fact (technical): preimage of s by π under δ -perturbations is $r - \delta Q$ (Q fixed) for small δ 's

- Fact (technical): preimage of s by π under δ -perturbations is $r \delta Q$ (Q fixed) for small δ 's
- Property of s: $s \subseteq r \delta Q$ for small δ 's

- Fact (technical): preimage of s by π under δ -perturbations is $r \delta Q$ (Q fixed) for small δ 's
- Property of s: $s \subseteq r \delta Q$ for small δ 's
- \Rightarrow Robust strategy: enforce s at each cycle

- Fact (technical): preimage of s by π under δ -perturbations is $r \delta Q$ (Q fixed) for small δ 's
- Property of s: $s \subseteq r \delta Q$ for small δ 's
- \Rightarrow Robust strategy: enforce *s* at each cycle
- Technical tool: shrunk DBMs [BMS12]

Conclusion

- Timed automata: a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.
- Not always easy to transfer correctness proven in this model to real behaviours of the system.
- Robustness: an important issue!

Conclusion

- Timed automata: a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.
- Not always easy to transfer correctness proven in this model to real behaviours of the system.
- Robustness: an important issue!
- Algorithms for robust realisability
- Extension to richer models seems unfortunately hard [BMS13]
- A quantitative approach to robustness: what if Perturbator plays randomly?

Conclusion

- Timed automata: a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.
- Not always easy to transfer correctness proven in this model to real behaviours of the system.
- Robustness: an important issue!
- Algorithms for robust realisability
- Extension to richer models seems unfortunately hard [BMS13]
- A quantitative approach to robustness: what if Perturbator plays randomly?

Some references:

- PhD thesis of Ocan Sankur: "Robustness in Timed Automata: Analysis, Synthesis, Implementation" (2013)
- Survey at RP'13: "Robustness in Timed Automata" (Bouyer, Markey, Sankur)
- Survey at SiES'11: "Robustness in Real-time Systems" (Markey)