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Introduction

Time-dependent systems

We are interested in timed systems
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Introduction

Reasoning about real-time systems

[AD94] Alur, Dill. A Theory of Timed Automata. Theor. Comp. Science, 1994.

The model of timed automata [AD94]

A timed automaton is made of

a finite automaton-based structure

a set of clocks

timing constraints on transitions

Example

safe alarm

repairing

failsafe

problem,

x :=0

re
pa
ir

,

x≤
15

delayed,

y :=0

repair

2≤y∧x≤56

y :=0

done
,

22≤y≤25

x,y
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Introduction

Example – cont’d

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0

23 0 15.6 15.6 ···

y 0

23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1
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Introduction

Discrete-time semantics

[Alur91] Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i

6/25



Introduction

Discrete-time semantics

[Alur91] Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i

6/25



Introduction

Discrete-time semantics

[Alur91] Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i

6/25



Introduction

Discrete-time semantics

[Alur91] Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i

6/25



Introduction

Discrete-time semantics

[Alur91] Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i

6/25



Introduction

Discrete-time semantics

[Alur91] Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i

6/25



Introduction

Discrete-time semantics

[Alur91] Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under continuous-time, the output can be 1:

t

i

6/25



Introduction

Continuous-time semantics

...real-time models for real-time systems!

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools
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Introduction

Are we doing the right job?

The continuous-time semantics is
an idealization of a physical system.

It is adequate for abstract design and high-level analysis.

However it suffers from multiple inaccuracies:

It might not be proper for implementation
; analysis made at the abstract level does not transfer to real world

It may generate timing anomalies

It does not exclude non-realizable behaviours:

not only Zeno behaviours
many convergence phenomena are hidden

; this requires infinite precision and might not be realizable
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Introduction

Example 1: Imprecision on clock values

[ACS10] Abdellatif, Combaz, Sifakis. Model-based implementation of real-time applications. Int. Conf. Embedded Software, ACM 2010.

Frame capture

frame 0 frame 1 frame 2 frame 3 frame 4 frame 5

2 t.u.

encod. 0 encod. 1 encod. 2 encod. 3 encod. 4

2 t.u.

encod. 0 encod. 1 encod. 2 encod. 3 encod. 4

2 + ε

; A frame will eventually be skipped
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Introduction

Example 2: Does actual analysis transfer to real world?

[Puri00] Puri. Dynamical properties of timed automata. Disc. Event Dyn. Syst., 2000.
[DDMR08] De Wulf, Doyen, Markey, Raskin. Robust safety of timed automata. FMSD, 2008.

Impact of small timing jitters

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧ y≥2

; is reachable, however small may be the jitter
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Introduction

Example 3: Scheduling and timing anomaly

[AAM06] Abdeddaim, Asarin, Maler. Scheduling with timed automata. Theor. Comp. Science, 2006.

Scheduling analysis with timed automata [AAM06]

Goal: analyze a work-conserving scheduling policy on given
scenarios (no machine is idle if a task is waiting for execution)

Example of a scenario

0 1 2 3 4 5 6 7

M2

M1 A

C B

D E

with the dependency constraints: A→ B and C → D,E .

1 A,D,E must be scheduled on machine M1

2 B,C must be scheduled on machine M2

3 C starts no sooner than 2 time units

; Standard analysis does not capture this timing anomaly

11/25
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Introduction

Example 4: Zeno behaviours

[HS11] Herbreteau, Srivathsan. Coarse abstractions make Zeno behaviours difficult to detect, Logic. Meth. Comp. Science, 2011.

x<1∧ y<1

x :=0

y=1

y

0
x

1

1

Those are easy to detect and can be handled; [HS11]

They are easy to remove by construction.
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Introduction

Example 5: More complex convergence phenomena

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges
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Introduction

An important issue in timed-automata verification

Add robustness to the theory of timed automata!

We need to understand what is the real system behind the
mathematical model, and also which implementation we have in
mind, if any.

Aim: provide frameworks to build robustly correct systems

We focus on perturbations on time measurements and jitter.
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Introduction

Some hints into the robustness of timed automata

Robust model-checking: the worst-case approach

Compute an overapproximation of the set of perturbed behaviours
(Possibly relate with an implementation)

Prove correctness of this approximation

; Many decidability results!
Often: same complexity as standard verification

Robust control

The strategy (partially) dictates the behaviour of the system

It should tolerate imprecisions in timing measurements

Simpler case: robust realisability

We propose a game-based approach to robust realisability
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Robust realisability

Realisability

Example (Can we ensure an infinite behaviour?)

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

Strategy: in location with value x , delay 2−x
2

This strategy requires infinite precision

In practice, when x is close to 2, no additional delay is supported:
the run is theoretically infinite, but it is actually blocking

And that is unavoidable

Idea of robust realisability

; Synthesize strategies that realise some property while tolerating
small timing perturbations

; Consequence: remove convergence phenomena
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Robust realisability

Robust realisability via a game semantics

Timed automaton A

` `′
g ,Y

e

;

Game Gδ(A)

`,v e

`′,v ′ with v′(v+d+ε)[Y←0]
d≥δ −δ≤ε≤δ

Game semantics Gδ(A) of timed automaton A...

... between Controller and Perturbator:

from (`, v), Controller suggests a delay d ≥ δ and a next edge

e = (`
g ,Y−−→ `′) that is available after delay d

Perturbator then chooses a perturbation ε ∈ [−δ; +δ]

Next state is (`′, (v + d + ε)[Y ← 0])

Note: when δ = 0, this is the standard semantics of timed automata.

A δ-robust strategy for Controller is then a strategy that satisfies the
expected property, whatever plays Perturbator.
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Robust realisability

The excess game semantics

[BMS12] Bouyer, Markey, Sankur. Robust reachability in timed automata: A game-based approach. ICALP’12.

Constraints may not be satisfied after the perturbation:
that is, only v + d should satisfy g

Example

x=y=1

y :=0

; Allows simple design of constraints, ensures divergence of time,
avoids convergence phenomena
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Robust realisability

The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize δ > 0 and a δ-robust strategy that achieves a given goal.
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Robust realisability

The excess game semantics – Algorithmics

[BMS12] Bouyer, Markey, Sankur. Robust reachability in timed automata: A game-based approach. ICALP’12.

The (parameterized) synthesis problem

Synthesize δ > 0 and a δ-robust strategy that achieves a given goal.

Theorem
The parameterized synthesis problem for reachability properties is
decidable and EXPTIME-complete. Furthermore, uniform winning
strategies (w.r.t. δ) can be computed.

Technical tools: a region-based refined game abstraction, shrunk
DBMs

, Extends to two-player games (i.e. to real control problems)

/ Only valid for reachability properties
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Robust realisability

The conservative game semantics

[SBMR13] Sankur, Bouyer, Markey, Reynier. Robust Controller Synthesis in Timed Automata. CONCUR’13.

Constraints have to be satisfied after the perturbation: that is,
v + d + ε should satisfy g for every ε ∈ [−δ; +δ]

Example

1<x<2

y :=0

; Strongly ensures timing constraints, ensures divergence of time,
prevents converging phenomena
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Robust realisability

The conservative game semantics – Results

[ORS14] Oualhadj, Reynier, Sankur. Robust strategies in timed games.

The (parameterized) synthesis problem

Synthesize δ > 0 and a δ-robust strategy that achieves a given goal.

Theorem
The synthesis problem for Büchi properties is decidable and
PSPACE-complete. Furthermore, winning strategies with uniform
descriptions (w.r.t. δ) can be computed.

, Valid for all ω-regular properties

, Same complexity as standard verification!

, Extends partially to timed games [ORS14]
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Robust realisability

[AB11] Asarin, Basset. Thin and Thick Timed Regular Languages. FORMATS’11.

The problem consists in finding cycles that do not become blocked.

Some cycles are converging (non-forgetful)

“There is a constraining half-space”

The other cycles are non-converging (forgetful)

Characterization
There is δ > 0 such that Controller has a δ-robust winning strategy in
Gδ(A) iff R(A) has a reachable aperiodica non-punctual winning lasso.

aThat is, all its iterations are forgetful.
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Robust realisability

Non-forgetful cycle ⇒ deadlock

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

A region cycle:

y

0
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1
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2

y

0
x
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1

2

2 delay

y

0
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y

0
x
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1
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2 delay

y

0
x

1

1

2

2
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The corresponding (folded) orbit graph:
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Robust realisability

Non-forgetful cycle ⇒ deadlock

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

LI = sum of barycentric coordinates in I
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Robust realisability

Non-forgetful cycle ⇒ deadlock

Example
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λ′
1 λ′

2

λ′
3

with


λ′

1 = p1λ1 + p3λ3

λ′
2 = (1− p1 − p′

1)λ1 + λ2

λ′
3 = p′

1λ1 + (1− p3)λ3

LI = sum of barycentric coordinates in I
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Robust realisability

Non-forgetful cycle ⇒ deadlock

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

The cycle is not forgetful (that is, not strongly connected): there is an
initial component I , and a non-decreasing function LI .

LI = sum of barycentric coordinates in I

23/25



Robust realisability

Non-forgetful cycle ⇒ deadlock

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

Perturbator can enforce rapid decrease of LI !

≥ ε

23/25



Robust realisability

Forgetful cycle ⇒ robust strategy

[BMS12] Bouyer, Markey, Sankur. Robust reachability in timed automata: A game-based approach. ICALP’12.

Idea: target the middle of the regions

Let π be a forgetful (in fact complete) cycle.

s

rpreimage by π

Fact (technical): preimage of s by π under δ-perturbations is r − δQ
(Q fixed) for small δ’s
Property of s: s ⊆ r − δQ for small δ’s

⇒ Robust strategy: enforce s at each cycle

Technical tool: shrunk DBMs [BMS12]
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Conclusion

Conclusion

Timed automata: a nice mathematical model for real-time systems
with interesting decidability properties and algorithmics solutions.

Not always easy to transfer correctness proven in this model to real
behaviours of the system.

Robustness: an important issue!

Algorithms for robust realisability

Extension to richer models seems unfortunately hard [BMS13]

A quantitative approach to robustness: what if Perturbator plays
randomly?

Some references:

PhD thesis of Ocan Sankur: “Robustness in Timed Automata: Analysis,
Synthesis, Implementation” (2013)

Survey at RP’13: “Robustness in Timed Automata” (Bouyer, Markey,
Sankur)

Survey at SiES’11: “Robustness in Real-time Systems” (Markey)
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