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Introduction

Time-dependent systems

@ We are interested in timed systems
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Reasoning about real-time systems

The model of timed automata [AD94|
A timed automaton is made of

@ a finite automaton-based structure

@ a set of clocks

@ timing constraints on transitions

Introduction

Example

repairing

repair
2<y Ax<56

y:=0

failsafe

[ADQ. T
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problem, x:=0

y:=0

failsafe

23 problen 15.6
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0 23 0 15.6
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2.3 repair 22.1
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...because computers are digital!

Introduction

Example [Alur91]
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e under discrete-time, the output is always O:

[Alur91] Techniques for automatic verification of real-time systems. PhD thesis, 1991
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Introduction
Discrete-time semantics

...because computers are digital! J

Example [Alur91]

132] 01
NOT

12 oy 1
| NOT
OR Og
1,2] 03
NOT

e under continuous-time, the output can be 1:

[Alur91] Techniques for automatic verification of real-time systems. PhD thesis, 1991
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Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
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@ Technical tool: region abstraction
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Continuous-time semantics

...real-time models for real-time systems! )
Example
x<2, x:=0 X=0 A
x=1 C'/ ~ y>2
y:=0 AN S~ :::: ::::
y=>2, y:=0

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

@ Technical tool: region abstraction

o Efficient symbolic technics based on zones, implemented in tools
7/25
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Introduction

Are we doing the right job?

The continuous-time semantics is
an idealization of a physical system.
It is adequate for abstract design and high-level analysis.

However it suffers from multiple inaccuracies:

@ It might not be proper for implementation
~» analysis made at the abstract level does not transfer to real world

@ It may generate timing anomalies

@ It does not exclude non-realizable behaviours:

e not only Zeno behaviours
e many convergence phenomena are hidden

~ this requires infinite precision and might not be realizable
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Example 1: Imprecision on clock values

Frame capture

Introduction

frame 0 frame 1 frame 2 frame 3 frame 4 frame 5

SRR

encod. 0 | encod. 1 | encod. 2 | encod. 3 | encod. 4

2 t.u.

[ACS10] Abdellatif, Combaz, Sifakis. Model-based implementation of real-time applications. Int. Conf. Embedded Software, ACM 2010.
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Introduction

Example 1: Imprecision on clock values

Frame capture

2 t.u.

frame 0 frame 1 frame 2 frame 3 frame 4 frame 5

encod. 0 I encod. 1I encod. I encod

2+¢€

~» A frame will eventually be skipped

[ACS10] Abdellatif, Combaz, Sifakis. Model-based implementation of real-time applications. Int. Conf. Embedded Software, ACM 2010.
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Example 2: Does actual analysis transfer to real world?

Impact of small timing jitters
y
) [fevecanoanachanacoacanas “““““““““
o I Ao
R I A S
X
0 1 2 3
x<2, x:=0
x=1 x=0Ay>2
y:=0
y=>2, y:=0

[Puri00] Puri. Dynamical properties of timed automata. Disc. Event Dyn. Syst., 2000.
[DDMRO08] De Wulf, Doyen, Markey, Raskin. Robust safety of timed automata. FMSD, 2008.
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Example 2: Does actual analysis transfer to real world?

Impact of small timing jitters

~ Qs reachable, however small may be the jitter

[Puri00] Puri. Dynamical properties of timed automata. Disc. Event Dyn. Syst., 2000.
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Example 3: Scheduling and timing anomaly

@ Scheduling analysis with timed automata [AAMO6]

o Goal: analyze a work-conserving scheduling policy on given
scenarios (no machine is idle if a task is waiting for execution)

Example of a scenario

M [ A DJE
M, C [ B

with the dependency constraints: A — B and C — D, E.
@ A, D, E must be scheduled on machine M;
@ B, C must be scheduled on machine M,
@ C starts no sooner than 2 time units

Introduction

[AAMO06] Abdeddaim, Asarin, Maler. Scheduling with timed automata. Theor. Comp. Science, 2006.
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Example of a scenario

M,

M A

~> Schedulable in 6 time units

@ Unexpectedly, the duration of A drops to 1.999

M,
M,

0123 4567

01 23 456 7 8

DJE

Al
|

C

| B

My, [ A D[E]
M, ! B | C ‘ ‘

is not work-conserving

is work-conserving
and completes in 7.999 t.u.
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Example 3: Scheduling and timing anomaly

Example of a scenario

M, [ A DJE
M, C | B

~> Schedulable in 6 time units
@ Unexpectedly, the duration of A drops to 1.999

Introduction

012 3 456 7 01 2 3 45 6 7 8
My [A ] DJE My [ A D[E]
m | [ C B M, [ [BJC] |

is not work-conserving is work-conserving

and completes in 7.999 t.u.

~ Standard analysis does not capture this timing anomaly

11/25
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Example 4: Zeno behaviours

x<1lAy<1

/Qm . O

N\
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Example 4: Zeno behaviours

x<1Ay<1

O O———0

@ Those are easy to detect and can be handled; [HS11]

[HS11] Herbreteau, Srivathsan. Coarse abstractions make Zeno behaviours difficult to detect, Logic. Meth. Comp. Science, 2011.
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Example 4: Zeno behaviours

x<1Ay<1

O O———0

@ Those are easy to detect and can be handled; [HS11]
@ They are easy to remove by construction.

[HS11] Herbreteau, Srivathsan. Coarse abstractions make Zeno behaviours difficult to detect, Logic. Meth. Comp. Science, 2011.
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Example 5: More complex convergence phenomena

x<2, x:=0
x=1
y:=0

y=>2, y:=0
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Example 5: More complex convergence phenomena

x<2, x:=0

y=>2, y:=0

~ Value of clock x when hitting Ois converging,

even though global time diverges
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Add robustness to the theory of timed automata! J

@ We need to understand what is the real system behind the

mathematical model, and also which implementation we have in
mind, if any.

@ Aim: provide frameworks to build robustly correct systems

We focus on perturbations on time measurements and jitter. )
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o Compute an overapproximation of the set of perturbed behaviours
(Possibly relate with an implementation)

@ Prove correctness of this approximation

~» Many decidability results!
Often: same complexity as standard verification

Robust control
@ The strategy (partially) dictates the behaviour of the system
@ It should tolerate imprecisions in timing measurements

@ Simpler case: robust realisability

We propose a game-based approach to robust realisability
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Example (Can we ensure an infinite behaviour?)

x<2, x:=0
x=1
—_
y:=0
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0 1 2

Strategy: in location O with value x, delay =5*
@ This strategy requires infinite precision

@ In practice, when x is close to 2, no additional delay is supported:
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Robust realisability

Example (Can we ensure an infinite behaviour?)

x<2, x:=0
x=1
—_
y:=0
y>2, y:=0

0 1 2

Strategy: in location O with value x, delay =5*
@ This strategy requires infinite precision

@ In practice, when x is close to 2, no additional delay is supported:
the run is theoretically infinite, but it is actually blocking

@ And that is unavoidable

16/25
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Robust realisability

Idea of robust realisability

~> Synthesize strategies that realise some property while tolerating
small timing perturbations

~ Consequence: remove convergence phenomena
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e e 0 @ LE ] v ) with v/ (vi-d+e)[Y+«0]

Game semantics Gs(.A) of timed automaton A...

... between Controller and Perturbator:
e from (¢, v), Controller suggests a delay d > § and a next edge
e=(¢ O ') that is available after delay d
@ Perturbator then chooses a perturbation € € [—d; 4]
o Next state is (¢, (v + d +€)[Y < 0])

Note: when § = 0, this is the standard semantics of timed automata.

A J-robust strategy for Controller is then a strategy that satisfies the
expected property, whatever plays Perturbator. J
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Robust realisability

The excess game semantics

Constraints may not be satisfied after the perturbation:
that is, only v + d should satisfy g

Example

x=y=1
- O |
y:=0 |

1
e !
I
I
I
|

~> Allows simple design of constraints, ensures divergence of time,
avoids convergence phenomena

[BMS12] Bouyer, Markey, Sankur. Robust reachability in timed automata: A game-based approach. ICALP'12.
18/25



Robust realisability

The excess game semantics — Algorithmics

The (parameterized) synthesis problem
Synthesize § > 0 and a d-robust strategy that achieves a given goal. J

19/25



Robust realisability

The excess game semantics — Algorithmics

The (parameterized) synthesis problem

Synthesize § > 0 and a d-robust strategy that achieves a given goal.

Two challenges

© Accumulation of perturbations:
y y

x<2 x=
O-=0=0

19/25



Robust realisability

The excess game semantics — Algorithmics

The (parameterized) synthesis problem

Synthesize § > 0 and a d-robust strategy that achieves a given goal.

Two challenges

© Accumulation of perturbations:
y y

<2 e e
XS2 N\ x=2 20,
O y:=0 UISX—yO j N ZZi

X

19/25



Robust realisability

The excess game semantics — Algorithmics

The (parameterized) synthesis problem
Synthesize § > 0 and a d-robust strategy that achieves a given goal.

Two challenges

© Accumulation of perturbations:
y y

e
x<2 = !
S2 N\ x=2 &
O y:=0 U]Sx—yO z
@ New regions become reachable

x=y=1 /
y:=0

N
N
BN
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The excess game semantics — Algorithmics

The (parameterized) synthesis problem
Synthesize § > 0 and a J-robust strategy that achieves a given goal.

Theorem

The parameterized synthesis problem for reachability properties is
decidable and EXPTIME-complete. Furthermore, uniform winning
strategies (w.r.t. ) can be computed.

@ Technical tools: a region-based refined game abstraction, shrunk
DBMs

© Extends to two-player games (i.e. to real control problems)
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Synthesize § > 0 and a J-robust strategy that achieves a given goal.

Theorem

The parameterized synthesis problem for reachability properties is
decidable and EXPTIME-complete. Furthermore, uniform winning
strategies (w.r.t. ) can be computed.

@ Technical tools: a region-based refined game abstraction, shrunk
DBMs

© Extends to two-player games (i.e. to real control problems)

® Only valid for reachability properties

[BMS12] Bouyer, Markey, Sankur. Robust reachability in timed automata: A game-based approach. ICALP'12.
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Robust realisability

The conservative game semantics

Constraints have to be satisfied after the perturbation: that is,
v + d + € should satisfy g for every ¢ € [—J; +0]

Example

o
|
1<x<2 X
> —,( )_ -
|
y:=0 |
|
————>

~ Strongly ensures timing constraints, ensures divergence of time,

prevents converging phenomena

[SBMR13] Sankur, Bouyer, Markey, Reynier. Robust Controller Synthesis in Timed Automata. CONCUR'13
20/25
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Robust realisability

The conservative game semantics — Results

The (parameterized) synthesis problem
Synthesize § > 0 and a d0-robust strategy that achieves a given goal. J

Theorem

The synthesis problem for Biichi properties is decidable and
PSPACE-complete. Furthermore, winning strategies with uniform
descriptions (w.r.t. §) can be computed.

© Valid for all w-regular properties

© Same complexity as standard verification!

Extends partially to timed games [ORS14]

[ORS14] Oualhadj, Reynier, Sankur. Robust strategies in timed games
21/25
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Robust realisability

The problem consists in finding cycles that do not become blocked.

@ Some cycles are converging (non-forgetful)

“There is a constraining half-space”

@ The other cycles are non-converging (forgetful)

A A-A-A-L

Characterization

There is § > 0 such that Controller has a §-robust winning strategy in
Gs(A) iff R(A) has a reachable aperiodic? non-punctual winning lasso.

?That is, all its iterations are forgetful.
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Non-forgetful cycle = deadlock

Example

x<2, x:=0

y2>2, y:=0

A1 = p1A1 + p3ds
with )\; e (1 — p1 — p{)Al + A2
A3 =pias+ (1= p3)As
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Robust realisability

Non-forgetful cycle = deadlock

Example
x<2, x:=0
x=1
—_
y:=0
y22, y:=0

The cycle is not forgetful (that is, not strongly connected): there is an
initial component /, and a non-decreasing function L;.

L; = sum of barycentric coordinates in /

23/25



Robust realisability

Non-forgetful cycle = deadlock

Example

x<2, x:=0

y>2, y:=0

Perturbator can enforce rapid decrease of L,;!
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o Idea: target the middle of the regions
Let 7w be a forgetful (in fact complete) cycle.

preimage by 7 r

/—\

o Fact (technical): preimage of s by 7 under §-perturbations is r — 6 Q
(Q fixed) for small 8's
o Property of s: s Cr—6Q for small §'s
= Robust strategy: enforce s at each cycle

@ Technical tool: shrunk DBMs [BMS12]

[BMS12] Bouyer, Markey, Sankur. Robust reachability in timed automata: A game-based approach. ICALP'12.
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Timed automata: a nice mathematical model for real-time systems
with interesting decidability properties and algorithmics solutions.

Not always easy to transfer correctness proven in this model to real
behaviours of the system.

Robustness: an important issue!

Algorithms for robust realisability
Extension to richer models seems unfortunately hard [BMS13]

A quantitative approach to robustness: what if Perturbator plays
randomly?

Some references:

PhD thesis of Ocan Sankur: “Robustness in Timed Automata: Analysis,
Synthesis, Implementation” (2013)

Survey at RP'13: “Robustness in Timed Automata” (Bouyer, Markey,
Sankur)

Survey at SiES’11: “Robustness in Real-time Systems” (Markey)
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