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Introduction

Timed automata [Alur & Dill 90’s]

A finite control structure + variables (clocks)

A transition is of the form:

g , a, C := 0

Enabling condition Reset to zero

An enabling condition (or guard) is:

g ::= x ∼ c | g ∧ g

where ∼∈ {<,≤,=,≥, >}

An invariant in each location
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Introduction

Timed automata (example)

x , y : clocks

`0 `1 `2

x ≤ 5, a, y := 0 y > 1, b, x := 0
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x , y : clocks

`0 `1 `2

x ≤ 5, a, y := 0 y > 1, b, x := 0

`0
δ(4.1) `0

a `1
δ(1.4) `1

b `2
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Introduction

Timed automata (example)

x , y : clocks

`0 `1 `2

x ≤ 5, a, y := 0 y > 1, b, x := 0

`0
δ(4.1) `0

a `1
δ(1.4) `1

b `2

x 0 4.1 4.1 5.5 0
y 0 4.1 0 1.4 1.4

(clock) valuation

➜ timed word (a, 4.1)(b, 5.5)
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Introduction

Fundamental result [Alur & Dill 90’s]

Theorem

Emptiness of timed automata is decidable and PSPACE-complete.
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Fundamental result [Alur & Dill 90’s]

Theorem

Emptiness of timed automata is decidable and PSPACE-complete.

The region abstraction
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Equivalence of finite index
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Introduction

Fundamental result [Alur & Dill 90’s]

Theorem

Emptiness of timed automata is decidable and PSPACE-complete.

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

region defined by

Ix =]1; 2[, Iy =]0; 1[

{x} < {y}

delay successors

successor by reset
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Introduction

A model not far from undecidability

Properties

Universality is undecidable [Alur & Dill 90’s]

Inclusion is undecidable [Alur & Dill 90’s]

Determinizability is undecidable [Tripakis 2003]

Complementability is undecidable [Tripakis 2003]

...
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Introduction

A model not far from undecidability

Properties

Universality is undecidable [Alur & Dill 90’s]

Inclusion is undecidable [Alur & Dill 90’s]

Determinizability is undecidable [Tripakis 2003]

Complementability is undecidable [Tripakis 2003]

...

Example

A non-determinizable/non-complementable timed automaton:

a

a, x := 0

a

x = 1, a

a
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Introduction

Power of ε-transitions

[Bérard, Diekert, Gastin, Petit 1998]

Proposition

ε-transitions can not be removed in timed automata.

Timed automata with ε-transitions are strictly more expressive than
timed automata without ε-transitions.

x = 1, a, x := 0

x = 1, ε, x := 0
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Control synthesis games

An example, the car periphery supervision

Embedded system

Hostile environment

Sensors

distances

speeds

c© Society of Automative Engineers Inc.
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Control synthesis games

Control synthesis games

Environment against controller
(Non-symmetrical game)

some actions are controllable Σc

some actions are uncontrollable Σu

player “environment” can:

interrupt time elapsing,

enforce zeno behaviours

. . .

a plant P is a deterministic timed automaton over alphabet
Σc ∪ Σu (it represents both real system and environment)
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Control synthesis games

Strategies and controllers

A strategy is a partial function

f : Runs(P) −→ Σc ∪ {λ} λ : time elapsing
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Control synthesis games

Strategies and controllers

A strategy is a partial function

f : Runs(P) −→ Σc ∪ {λ} λ : time elapsing

needs to satisfy some continuity property:

f (ρ) = λ =⇒ ∃t > 0, ∀0 ≤ t′ < t, f (ρ
δ(t′)
−−−→) = λ

A controller is a deterministic timed automaton over Σc ∪Σu which
runs in parallel with P

It should not be too powerful!

needs to be non-restricting for uncontrollable actions

needs to be non-blocking: if there is no deadlock in the original

plant, there will be no deadlock in the controlled system

GDV’05 – July 2005 Partial observation of timed systems 13 / 39



Control synthesis games

An example

`0

[x ≤ 5]

`1

`2

Bad
x ≥ 1; a; y := 0

y ≥ 1; b1 ≤ x ≤ 5; c ; x := 0

3 < x ; u

Aim: control the system in such a way that Bad state is avoided.
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Control synthesis games

An example

`0 `1

`2

Bad
x ≥ 1; a; y := 0

y ≥ 1; b1 ≤ x ≤ 5; c ; x := 0

3 < x ; u
[x ≤ 3]

x ≤ 2

[x ≤ 2]

Aim: control the system in such a way that Bad state is avoided.
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Control synthesis games

An example

`0

[x ≤ 5]

`1

`2

Bad
x ≥ 1; a; y := 0

y ≥ 1; b1 ≤ x ≤ 5; c ; x := 0

3 < x ; u

Aim: control the system in such a way that Bad state is avoided.

A controller:

`0 `1

`2

z ≤ 2; a

b
c ; z := 0

[z ≤ 3][z ≤ 2]

u

u

u
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Control synthesis games

An example

`0

[x ≤ 5]

`1

`2

Bad
x ≥ 1; a; y := 0

y ≥ 1; b1 ≤ x ≤ 5; c ; x := 0

3 < x ; u

Aim: control the system in such a way that Bad state is avoided.

A controller:

`0 `1

`2

z ≤ 2; a

b
c ; z := 0

[z ≤ 3][z ≤ 2]

u

u

u

A winning strategy:

{

f (`0, x < 1) = λ

f (`0, x = 1) = a







f (`1, x < 2) = λ

f (`1, x = 2) = b

f (`2, x = 2) = c
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Control synthesis games

Decidability and complexity

The attractor of a zone-definable set is computable.

Winning states of safety and reachability games are computable.

Winning strategies can be computed and are polyhedral.

Winning strategies can be state-based.

Theorem [Henzinger, Kopke 1999]

Safety and reachability control are decidable and are EXPTIME-complete.
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Control synthesis games

Computing winning states

controllable and uncontrollable discrete predecessors:

cPred(X ) =
⋃

c∈Σc

Predc(X ) uPred(X ) =
⋃

u∈Σu

Predu(X )
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Control synthesis games

Computing winning states

controllable and uncontrollable discrete predecessors:

cPred(X ) =
⋃

c∈Σc

Predc(X ) uPred(X ) =
⋃

u∈Σu

Predu(X )

time controllable predecessor of X (Predδ):

s s ′ ∈ X

Xu

t ′ t − t ′

×
winning states: greatest fixed point of

π(X ) = Predδ(X ∩ cPred(X ), uPred(X ))
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Control synthesis games

Further objectives

TCTL objectives [Faella, La Torre, Murano 2002]

CTL, LTL objectives [Faella, La Torre, Murano 2002]

general symmetric parity games
[de Alfaro, Faella, Henzinger, Majumdar, Stoelinga 2003]

external specifications given by timed automata
[D’Souza, Madhusudan 2002]

➜ use theory of classical untimed games
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Control under partial observation

Outline
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2 Control synthesis games
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4 Fault diagnosis
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Control under partial observation

Why partial observation?

Example (The car periphery supervision)

Environment is seen through sensors.
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Control under partial observation

Why partial observation?

Example (The car periphery supervision)

Environment is seen through sensors.

some actions are non-controllable

some non-controllable actions are even non-observable
[Partial observation]

Stumbling blocks:

ε-transitions can not be removed from timed automata

timed automata can not be determinized
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Control under partial observation

Control under partial observation

Theorem [Bouyer, D’Souza, Madhusudan, Petit 2003]

Safety and reachability control under partial observation is undecidable.
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Control under partial observation

Control under partial observation

Theorem [Bouyer, D’Souza, Madhusudan, Petit 2003]

Safety and reachability control under partial observation is undecidable.

➜ by reduction of universality problem for timed automata

Take A a (complete) timed automaton. Construct P as follows.

` `′
g , a, C := 0

is replaced by ` • `′
(`, g , a, C := 0, `′), z := 0 g ∧ z = 0, a, C := 0

Thus,

P is a deterministic timed automaton, thus a plant

(δ0, t0)(a0, t
′
0)(δ1, t1)(a1, t

′
1)... is accepted by P iff ti = t ′i for every i

and (a0, t0)(a1, t1)... is accepted by A along the path δ0δ1...

We note ∆ = {(`, g , a,C := 0, `′) transition of A}
and make all actions from ∆ non-observable.
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Control under partial observation

Take A a (complete) timed automaton. Construct P as follows.

` `′
g , a, C := 0

is replaced by ` • `′
(`, g , a, C := 0, `′), z := 0 g ∧ z = 0, a, C := 0

There exists a controller C which enforces non-final states of P
iff

A is not universal
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Control under partial observation

Take A a (complete) timed automaton. Construct P as follows.

` `′
g , a, C := 0

is replaced by ` • `′
(`, g , a, C := 0, `′), z := 0 g ∧ z = 0, a, C := 0

There exists a controller C which enforces non-final states of P
iff

A is not universal

Indeed, for any timed word γ = (a0, t0)(a1, t1)...,

P ‖ γ represents all the possible runs for γ with transitions in A

NB: this undecidability result seems robust...
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Control under partial observation

Fixing resources

[Bouyer, D’Souza, Madhusudan, Petit 2003]

Resources: µ = (X ,m,max)

x ∼ c =⇒ c ∈
ZZ

m
and |c | ≤ max
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With fixed resources, control of simple winning objectives becomes
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x ∼ c =⇒ c ∈
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Control under partial observation

Fixing resources

[Bouyer, D’Souza, Madhusudan, Petit 2003]

Resources: µ = (X ,m,max)

x ∼ c =⇒ c ∈
ZZ

m
and |c | ≤ max

With fixed resources, control of simple winning objectives becomes
decidable (and 2EXPTIME-complete).

Control under partial observation
is a difficult problem

➜ We focus on a simpler problem, where partial observation is crucial
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Fault diagnosis

Principle of fault diagnosis [Sampath, Sengupta, Lafortune,
Sinnamohideen, Teneketzis 1995]

Principle: “observe the behavior of a plant, and
tell if something wrong has happened”

System:
f

a b

u
a c
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Principle of fault diagnosis [Sampath, Sengupta, Lafortune,
Sinnamohideen, Teneketzis 1995]

Principle: “observe the behavior of a plant, and
tell if something wrong has happened”

System:
f

a b

u
a c

Sensors:

Σo = {a, b, c} Σu = {f , u}

ε
a b

ε
a c

Observation: «ab» or «ac»
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Fault diagnosis

Principle of fault diagnosis [Sampath, Sengupta, Lafortune,
Sinnamohideen, Teneketzis 1995]

Principle: “observe the behavior of a plant, and
tell if something wrong has happened”

System:
f

a b

u
a c

Sensors:

Σo = {a, b, c} Σu = {f , u}

ε
a b

ε
a c

Observation: «ab» or «ac»

Did a fault occur?
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Fault diagnosis

The timed framework

Plant = timed automaton

Σo observable events, and Σu unobservable events
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Fault diagnosis

The timed framework

Plant = timed automaton

Σo observable events, and Σu unobservable events

Pb: Given an observation (timed word over Σo), did a fault occur?
Aim: answer within ∆ units of time

Example: Σo = {a, b} Σu = {f }

Execution of the plant: w = (a, 1)(f , 3.1)(b, 4.5)

Observation: π(w) = (a, 1)(b, 4.5)
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Fault diagnosis

The timed framework

Plant = timed automaton

Σo observable events, and Σu unobservable events

Pb: Given an observation (timed word over Σo), did a fault occur?
Aim: answer within ∆ units of time

Example: Σo = {a, b} Σu = {f }

Execution of the plant: w = (a, 1)(f , 3.1)(b, 4.5)

Observation: π(w) = (a, 1)(b, 4.5)

1-diagnoser: has to announce fault on π(w)
2-diagnoser: can announce fault on π(w)

may announce nothing on π(w)
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Fault diagnosis

∆-diagnosis

A ∆-diagnoser for P is a function D : TW (Σo) → {0, 1} such that:

GDV’05 – July 2005 Partial observation of timed systems 26 / 39



Fault diagnosis

∆-diagnosis

A ∆-diagnoser for P is a function D : TW (Σo) → {0, 1} such that:

for every non-faulty execution ρ of P, D(πΣo
(ρ)) = 0

GDV’05 – July 2005 Partial observation of timed systems 26 / 39



Fault diagnosis

∆-diagnosis

A ∆-diagnoser for P is a function D : TW (Σo) → {0, 1} such that:

for every non-faulty execution ρ of P, D(πΣo
(ρ)) = 0

for every ∆-faulty execution ρ of P, D(πΣo
(ρ)) = 1

GDV’05 – July 2005 Partial observation of timed systems 26 / 39



Fault diagnosis

∆-diagnosis

A ∆-diagnoser for P is a function D : TW (Σo) → {0, 1} such that:

for every non-faulty execution ρ of P, D(πΣo
(ρ)) = 0

for every ∆-faulty execution ρ of P, D(πΣo
(ρ)) = 1

Example

x < 2
f

a, x := 0

b b

This system is 2-diagnosable... but not 1-diagnosable because (f , 0)(b, 1)
and (b, 1) raise the same observation.
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Fault diagnosis

∆-diagnosis

A ∆-diagnoser for P is a function D : TW (Σo) → {0, 1} such that:

for every non-faulty execution ρ of P, D(πΣo
(ρ)) = 0

for every ∆-faulty execution ρ of P, D(πΣo
(ρ)) = 1

A solution [Tripakis02]: state estimation
➜ the ∆-diagnosis problem is PSPACE-complete
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Fault diagnosis

∆-diagnosis

A ∆-diagnoser for P is a function D : TW (Σo) → {0, 1} such that:

for every non-faulty execution ρ of P, D(πΣo
(ρ)) = 0
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A solution [Tripakis02]: state estimation
➜ the ∆-diagnosis problem is PSPACE-complete

Limit of this approach:

expensive (in theory) if we want to run it online

not close enough to controller synthesis

➜ Our aim: build a deterministic diagnoser O...

L∆f (P) ⊆ L(O) ⊆ L¬f (P)c

GDV’05 – July 2005 Partial observation of timed systems 26 / 39
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Diagnosis with deterministic timed automata

less general than previous diagnosis

x = 1, u, x := 0

x = 0, f
x = 0, a

0 < x < 1, a

the diagnosis problem with deterministic timed automata (DTA) is
not solved yet

the “precise” diagnosis problem and the “asap” diagnosis problem
with DTA are undecidable [Chevalier 2004]

restriction to bounded resources µ = (X ,m,max)

Theorem [Bouyer, Chevalier, D’Souza 2005]

∆-diagnosis of timed systems with DTAµ is 2EXPTIME-complete.
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Fault diagnosis

Observation as a game

We will transform the diagnosis problem into a two-player safety game:

one player is the observer 2

the other player is the environment ©

The plant is ∆-DTAµ-diagnosable iff 2 has a winning strategy
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Fault diagnosis

P 1 2

f

u

a, x := 0

x > 1, f .b

x ≤ 1, u.b

Is there an observer for the plant with one clock and constants 0 and 1?
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Fault diagnosis

Diagnosis by DTAµ

Proposition

2 has a winning strategy in GP,µ iff there is a diagnoser for P in DTAµ.

➜ ∆-DTAµ-diagnosability is in 2EXPTIME
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Fault diagnosis

∆-DTAµ-observability if 2EXPTIME-hard

→ By reduction of the acceptance of
an Alternating Turing Machine using exponential space
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∆-DTAµ-observability if 2EXPTIME-hard

→ By reduction of the acceptance of
an Alternating Turing Machine using exponential space

The plant plays “a”’s.

The diagnoser reads these “a”’s and plays a sequence of
configurations.

The plant verifies that this sequence is correct.

NB: the plant non-deterministically chooses one test
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Fault diagnosis

Shape of the plant

Check initial
configuration

Check succ.
relation

u

u

a a· · ·

#

a a· · ·

#
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Fault diagnosis

O has 1 clock.

P q
a, x := 0 a, y := 0

O makes a choice

reset x or y
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z = 0, f .a
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Fault diagnosis

An example of encoding for a 3SAT formula

Formula p1 ∨ ¬p3:

Choice for p1 No choice needed for p2 Choice for p3 Breaking the
uncertainty
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Fault diagnosis

Diagnosis by event-recording timed automata

one clock xa per event a

clock xa is reset when a occurs
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Fault diagnosis

Diagnosis by event-recording timed automata

one clock xa per event a

clock xa is reset when a occurs

Property

Event-recording timed automata are determinizable
[Alur, Fix, Henzinger 1994]

Event-recording timed automata are input-determined

[D’Souza, Tabareau 2004]
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Fault diagnosis

Diagnosis by event-recording timed automata

one clock xa per event a

clock xa is reset when a occurs

Property

Event-recording timed automata are determinizable
[Alur, Fix, Henzinger 1994]

Event-recording timed automata are input-determined

[D’Souza, Tabareau 2004]

➜ Diagnosis (with bounded resources) becomes PSPACE-complete
[BCD05]
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Conclusion and further developments

Conclusion & further developments

Conclusion

Partial observation adds complexity to control problems

Even fault diagnosis is difficult

Related domains: conformance testing, monitoring. . .
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Conclusion and further developments

Conclusion & further developments

Conclusion

Partial observation adds complexity to control problems

Even fault diagnosis is difficult

Related domains: conformance testing, monitoring. . .

Further developments

Algorithms for control under partial observation
e.g. forward zone-based algorithm (cf Emmanuel’s talk)

Fault diagnosis with DTA/ERA

Get rid of some resources or the ∆ parameter

Control under partial observation for other classes of systems
(e.g. o-minimal hybrid games)
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