Partial observation of timed systems

Patricia Bouyer

LSV – CNRS & ENS de Cachan – France

GDV'05 - July 2005

Controller synthesis

Controller synthesis

Outline

1 Introduction

2 Control synthesis games

3 Control under partial observation

4 Fault diagnosis

(5) Conclusion and further developments

Timed automata

- A finite control structure + variables (clocks)
- A transition is of the form:

• An invariant in each location

x, y : clocks

x, y : clocks

x, y : clocks

x, y : clocks

 \rightarrow timed word (a, 4.1)(b, 5.5)

[Alur & Dill 90's]

Theorem

Emptiness of timed automata is decidable and PSPACE-complete.

[Alur & Dill 90's]

Theorem

Emptiness of timed automata is decidable and PSPACE-complete.

[Alur & Dill 90's]

Theorem

Emptiness of timed automata is decidable and PSPACE-complete.

The region abstraction

[Alur & Dill 90's]

Theorem

Emptiness of timed automata is decidable and PSPACE-complete.

The region abstraction

[Alur & Dill 90's]

Theorem

Emptiness of timed automata is decidable and PSPACE-complete.

The region abstraction

[Alur & Dill 90's]

Theorem

Emptiness of timed automata is decidable and PSPACE-complete.

The region abstraction

[Alur & Dill 90's]

Theorem

Emptiness of timed automata is decidable and PSPACE-complete.

The region abstraction

Equivalence of finite index

region defined by $I_x =]1; 2[, I_y =]0; 1[$ $\{x\} < \{y\}$

[Alur & Dill 90's]

Theorem

Emptiness of timed automata is decidable and PSPACE-complete.

The region abstraction

Equivalence of finite index

region defined by $I_x =]1; 2[, I_y =]0; 1[$ $\{x\} < \{y\}$

delay successors

[Alur & Dill 90's]

Theorem

Emptiness of timed automata is decidable and PSPACE-complete.

The region abstraction

Equivalence of finite index

region defined by $I_x =]1; 2[, I_y =]0; 1[$ $\{x\} < \{y\}$

delay successors

successor by reset

A model not far from undecidability

Properties

۰...

- Universality is undecidable
- Inclusion is undecidable
- Determinizability is undecidable
- Complementability is undecidable

[Alur & Dill 90's]

[Alur & Dill 90's]

[Tripakis 2003]

[Tripakis 2003]

A model not far from undecidability

Properties

- Universality is undecidable
- Inclusion is undecidable
- Determinizability is undecidable
- Complementability is undecidable

[Alur & Dill 90's] [Alur & Dill 90's] [Tripakis 2003] [Tripakis 2003]

Example

۰...

A non-determinizable/non-complementable timed automaton:

Power of ε -transitions

[Bérard, Diekert, Gastin, Petit 1998]

Proposition

- ε -transitions can not be removed in timed automata.
- Timed automata with ε -transitions are strictly more expressive than timed automata without ε -transitions.

Introduction

② Control synthesis games

3 Control under partial observation

4 Fault diagnosis

(5) Conclusion and further developments

An example, the car periphery supervision

 \odot Society of Automative Engineers Inc.

- Embedded system
- Hostile environment
- Sensors
 - distances
 - speeds

Control synthesis games

Environment against controller (Non-symmetrical game)

- some actions are controllable Σ_c
- some actions are uncontrollable Σ_u
- player "environment" can:
 - interrupt time elapsing,
 - enforce zeno behaviours
 - . . .
- a plant \mathcal{P} is a deterministic timed automaton over alphabet $\Sigma_c \cup \Sigma_u$ (it represents both real system and environment)

• A strategy is a partial function

$$f: Runs(\mathcal{P}) \longrightarrow \Sigma_c \cup \{\lambda\}$$
 $\lambda: \text{ time elapsing}$

• A strategy is a partial function

 $f: Runs(\mathcal{P}) \longrightarrow \Sigma_c \cup \{\lambda\}$ $\lambda: \text{ time elapsing}$

• needs to satisfy some *continuity* property:

$$f(\rho) = \lambda \implies \exists t > 0, \ \forall 0 \le t' < t, \ f(\rho \xrightarrow{\delta(t')}) = \lambda$$

• A strategy is a partial function

 $f: Runs(\mathcal{P}) \longrightarrow \Sigma_c \cup \{\lambda\}$ $\lambda: \text{ time elapsing}$

• needs to satisfy some *continuity* property:

$$f(\rho) = \lambda \implies \exists t > 0, \ \forall 0 \le t' < t, \ f(\rho \xrightarrow{\delta(t')}) = \lambda$$

• A controller is a deterministic timed automaton over $\Sigma_c \cup \Sigma_u$ which runs in parallel with \mathcal{P}

• A strategy is a partial function

 $f: Runs(\mathcal{P}) \longrightarrow \Sigma_c \cup \{\lambda\}$ $\lambda: \text{ time elapsing}$

• needs to satisfy some *continuity* property:

$$f(\rho) = \lambda \implies \exists t > 0, \ \forall 0 \le t' < t, \ f(\rho \xrightarrow{\delta(t')}) = \lambda$$

• A controller is a deterministic timed automaton over $\Sigma_c \cup \Sigma_u$ which runs in parallel with \mathcal{P}

It should not be too powerful!

• A strategy is a partial function

 $f: Runs(\mathcal{P}) \longrightarrow \Sigma_c \cup \{\lambda\}$ $\lambda: \text{ time elapsing}$

• needs to satisfy some *continuity* property:

$$f(
ho) = \lambda \implies \exists t > 0, \ \forall 0 \leq t' < t, \ f(
ho \stackrel{\delta(t')}{\longrightarrow}) = \lambda$$

• A controller is a deterministic timed automaton over $\Sigma_c \cup \Sigma_u$ which runs in parallel with \mathcal{P}

It should not be too powerful!

• needs to be *non-restricting* for uncontrollable actions

- A strategy is a partial function
 - $f: Runs(\mathcal{P}) \longrightarrow \Sigma_c \cup \{\lambda\}$ $\lambda: \text{ time elapsing}$

• needs to satisfy some *continuity* property:

$$f(\rho) = \lambda \implies \exists t > 0, \ \forall 0 \le t' < t, \ f(\rho \xrightarrow{\delta(t')}) = \lambda$$

• A controller is a deterministic timed automaton over $\Sigma_c \cup \Sigma_u$ which runs in parallel with \mathcal{P}

It should not be too powerful!

- needs to be *non-restricting* for uncontrollable actions
- needs to be *non-blocking*: if there is no deadlock in the original plant, there will be no deadlock in the controlled system

Aim: control the system in such a way that Bad state is avoided.

Aim: control the system in such a way that Bad state is avoided.

Aim: control the system in such a way that Bad state is avoided.

A controller:

Aim: control the system in such a way that Bad state is avoided.

A controller:

Decidability and complexity

- The **attractor** of a zone-definable set is computable.
- Winning states of safety and reachability games are computable.
- Winning strategies can be computed and are polyhedral.
- Winning strategies can be state-based.

Theorem [Henzinger, Kopke 1999]

Safety and reachability control are decidable and are EXPTIME-complete.

• controllable and uncontrollable discrete predecessors:

$$\operatorname{cPred}(X) = \bigcup_{c \in \Sigma_c} \operatorname{Pred}^c(X)$$
 $\operatorname{uPred}(X) = \bigcup_{u \in \Sigma_u} \operatorname{Pred}^u(X)$

• controllable and uncontrollable discrete predecessors:

$$\operatorname{cPred}(X) = \bigcup_{c \in \Sigma_c} \operatorname{Pred}^c(X)$$
 $\operatorname{uPred}(X) = \bigcup_{u \in \Sigma_u} \operatorname{Pred}^u(X)$

• time controllable predecessor of X ($Pred_{\delta}$):

$$s \xrightarrow{t} s' \in X$$

• controllable and uncontrollable discrete predecessors:

$$\operatorname{cPred}(X) = \bigcup_{c \in \Sigma_c} \operatorname{Pred}^c(X)$$
 $\operatorname{uPred}(X) = \bigcup_{u \in \Sigma_u} \operatorname{Pred}^u(X)$

• time controllable predecessor of X (Pred_{δ}):

• controllable and uncontrollable discrete predecessors:

$$\operatorname{cPred}(X) = \bigcup_{c \in \Sigma_c} \operatorname{Pred}^c(X)$$
 $\operatorname{uPred}(X) = \bigcup_{u \in \Sigma_u} \operatorname{Pred}^u(X)$

• time controllable predecessor of X (Pred_{δ}):

• winning states: greatest fixed point of

$$\pi(X) = \mathsf{Pred}_{\delta}(X \cap \mathsf{cPred}(X), \mathsf{uPred}(\overline{X}))$$

Further objectives

• TCTL objectives [Fae

[Faella, La Torre, Murano 2002]

- CTL, LTL objectives [Faella, La Torre, Murano 2002]
- general symmetric parity games
 [de Alfaro, Faella, Henzinger, Majumdar, Stoelinga 2003]
- external specifications given by timed automata
 [D'Souza, Madhusudan 2002]

→ use theory of classical untimed games

Introduction

3 Control under partial observation

4 Fault diagnosis

Example (The car periphery supervision)

Environment is seen through sensors.

Example (The car periphery supervision)

Environment is seen through sensors.

• some actions are non-controllable

Example (The car periphery supervision)

Environment is seen through sensors.

- some actions are non-controllable
- some non-controllable actions are even non-observable

[Partial observation]

Example (The car periphery supervision)

Environment is seen through sensors.

- some actions are non-controllable
- some non-controllable actions are even non-observable

[Partial observation]

Stumbling blocks:

- ε -transitions can not be removed from timed automata
- timed automata can not be determinized

Theorem [Bouyer, D'Souza, Madhusudan, Petit 2003]

Safety and reachability control under partial observation is undecidable.

Theorem [Bouyer, D'Souza, Madhusudan, Petit 2003]

Safety and reachability control under partial observation is undecidable.

 \rightarrow by reduction of universality problem for timed automata

Theorem [Bouyer, D'Souza, Madhusudan, Petit 2003]

Safety and reachability control under partial observation is undecidable.

 \rightarrow by reduction of universality problem for timed automata

Take \mathcal{A} a (complete) timed automaton. Construct \mathcal{P} as follows.

$$\ell \xrightarrow{g, a, C := 0} \ell' \text{ is replaced by } \ell \xrightarrow{(\ell, g, a, C := 0, \ell'), z := 0} \bullet \xrightarrow{g \land z = 0, a, C := 0} \ell'$$

Theorem [Bouyer, D'Souza, Madhusudan, Petit 2003]

Safety and reachability control under partial observation is undecidable.

 \rightarrow by reduction of universality problem for timed automata

Take \mathcal{A} a (complete) timed automaton. Construct \mathcal{P} as follows.

$$\ell \xrightarrow{g, a, C := 0} \ell' \text{ is replaced by } \ell \xrightarrow{(\ell, g, a, C := 0, \ell'), z := 0} \bullet \xrightarrow{g \land z = 0, a, C := 0} \ell'$$

Thus,

- $\bullet \ \mathcal{P}$ is a *deterministic* timed automaton, thus a plant
- (δ₀, t₀)(a₀, t'₀)(δ₁, t₁)(a₁, t'₁)... is accepted by P iff t_i = t'_i for every i and (a₀, t₀)(a₁, t₁)... is accepted by A along the path δ₀δ₁...

We note $\Delta = \{(\ell, g, a, C := 0, \ell') \text{ transition of } A\}$ and make all actions from Δ non-observable. Take A a (complete) timed automaton. Construct P as follows.

$$\ell \xrightarrow{g, a, C := 0} \ell' \text{ is replaced by } \ell \xrightarrow{(\ell, g, a, C := 0, \ell'), z := 0} \bullet \xrightarrow{g \land z = 0, a, C := 0} \ell'$$

There exists a controller ${\mathcal C}$ which enforces non-final states of ${\mathcal P}$ iff ${\mathcal A}$ is not universal

Take \mathcal{A} a (complete) timed automaton. Construct \mathcal{P} as follows.

$$\ell \xrightarrow{g, a, C := 0} \ell' \text{ is replaced by } \ell \xrightarrow{(\ell, g, a, C := 0, \ell'), z := 0} \bullet \xrightarrow{g \land z = 0, a, C := 0} \ell'$$

There exists a controller ${\mathcal C}$ which enforces non-final states of ${\mathcal P}$ iff ${\mathcal A}$ is not universal

Indeed, for any timed word $\gamma = (a_0, t_0)(a_1, t_1)...$,

 $\mathcal{P} \parallel \gamma$ represents all the possible runs for γ with transitions in \mathcal{A}

Take \mathcal{A} a (complete) timed automaton. Construct \mathcal{P} as follows.

$$\ell \xrightarrow{g, a, C := 0} \ell' \text{ is replaced by } \ell \xrightarrow{(\ell, g, a, C := 0, \ell'), z := 0} \bullet \xrightarrow{g \land z = 0, a, C := 0} \ell'$$

There exists a controller ${\mathcal C}$ which enforces non-final states of ${\mathcal P}$ iff ${\mathcal A}$ is not universal

Indeed, for any timed word $\gamma = (a_0, t_0)(a_1, t_1)...,$

 $\mathcal{P} \parallel \gamma$ represents all the possible runs for γ with transitions in \mathcal{A}

NB: this undecidability result seems robust...

Resources: $\mu = (X, m, max)$

$$x \sim c \implies c \in \frac{\mathbb{Z}}{m} \text{ and } |c| \leq \max$$

Resources: $\mu = (X, m, \max)$

$$x \sim c \implies c \in \frac{\mathbb{Z}}{m}$$
 and $|c| \leq \max$

With fixed resources, control of simple winning objectives becomes decidable (and 2EXPTIME-complete).

Resources: $\mu = (X, m, \max)$

$$x \sim c \implies c \in \frac{\mathbb{Z}}{m}$$
 and $|c| \leq \max$

With fixed resources, control of simple winning objectives becomes decidable (and 2EXPTIME-complete).

Control under partial observation is a difficult problem

Resources: $\mu = (X, m, \max)$

$$x \sim c \implies c \in \frac{\mathbb{Z}}{m}$$
 and $|c| \leq \max$

With fixed resources, control of simple winning objectives becomes decidable (and 2EXPTIME-complete).

Control under partial observation is a difficult problem

 \rightarrow We focus on a simpler problem, where partial observation is crucial

Outline

Introduction

Ontrol synthesis games

3 Control under partial observation

4 Fault diagnosis

5 Conclusion and further developments

[Sampath, Sengupta, Lafortune, Sinnamohideen, Teneketzis 1995]

Principle: "observe the behavior of a plant, and tell if something wrong has happened"

System:

[Sampath, Sengupta, Lafortune, Sinnamohideen, Teneketzis 1995]

Principle: "observe the behavior of a plant, and tell if something wrong has happened"

$$\Sigma_o = \{a, b, c\} \quad \Sigma_u = \{f, u\}$$

Sensors:

System:

[Sampath, Sengupta, Lafortune, Sinnamohideen, Teneketzis 1995]

[Sampath, Sengupta, Lafortune, Sinnamohideen, Teneketzis 1995]

Did a fault occur?

- Plant = timed automaton
- Σ_o observable events, and Σ_u unobservable events

- Plant = timed automaton
- Σ_o observable events, and Σ_u unobservable events

Pb: Given an observation (timed word over Σ_o), did a fault occur?

- Plant = timed automaton
- Σ_o observable events, and Σ_u unobservable events

Pb: Given an observation (timed word over Σ_o), did a fault occur? **Aim:** answer within Δ units of time

- Plant = timed automaton
- Σ_o observable events, and Σ_u unobservable events

Pb: Given an observation (timed word over Σ_o), did a fault occur? **Aim:** answer within Δ units of time

Example: $\Sigma_o = \{a, b\}$ $\Sigma_u = \{f\}$

- Execution of the plant: w = (a, 1)(f, 3.1)(b, 4.5)
- Observation: $\pi(w) = (a, 1)(b, 4.5)$

- Plant = timed automaton
- Σ_o observable events, and Σ_u unobservable events

Pb: Given an observation (timed word over Σ_o), did a fault occur? **Aim:** answer within Δ units of time

Example: $\Sigma_o = \{a, b\}$ $\Sigma_u = \{f\}$

- Execution of the plant: w = (a, 1)(f, 3.1)(b, 4.5)
- Observation: $\pi(w) = (a, 1)(b, 4.5)$

1-diagnoser:has to announce fault on $\pi(w)$ 2-diagnoser:can announce fault on $\pi(w)$ may announce nothing on $\pi(w)$

A Δ -diagnoser for \mathcal{P} is a function $D: TW(\Sigma_o) \rightarrow \{0,1\}$ such that:

A Δ -diagnoser for \mathcal{P} is a function $D: TW(\Sigma_o) \to \{0,1\}$ such that:

• for every non-faulty execution ρ of \mathcal{P} , $D(\pi_{\Sigma_{\sigma}}(\rho)) = 0$

- A Δ -diagnoser for \mathcal{P} is a function $D: TW(\Sigma_o) \to \{0,1\}$ such that:
 - for every non-faulty execution ρ of \mathcal{P} , $D(\pi_{\Sigma_{\sigma}}(\rho)) = 0$
 - for every Δ -faulty execution ρ of \mathcal{P} , $D(\pi_{\Sigma_{\sigma}}(\rho)) = 1$

A Δ -diagnoser for \mathcal{P} is a function $D : TW(\Sigma_o) \rightarrow \{0,1\}$ such that:

- for every non-faulty execution ρ of \mathcal{P} , $D(\pi_{\Sigma_{\alpha}}(\rho)) = 0$
- for every Δ -faulty execution ρ of \mathcal{P} , $D(\pi_{\Sigma_o}(\rho)) = 1$

Example

This system is 2-diagnosable... but not 1-diagnosable because (f, 0)(b, 1) and (b, 1) raise the same observation.
- A Δ -diagnoser for \mathcal{P} is a function $D : TW(\Sigma_o) \rightarrow \{0, 1\}$ such that:
 - for every non-faulty execution ρ of \mathcal{P} , $D(\pi_{\Sigma_{\sigma}}(\rho)) = 0$
 - for every Δ -faulty execution ρ of \mathcal{P} , $D(\pi_{\Sigma_{\sigma}}(\rho)) = 1$

A solution [Tripakis02]: state estimation

→ the Δ -diagnosis problem is PSPACE-complete

- A Δ -diagnoser for \mathcal{P} is a function $D : TW(\Sigma_o) \rightarrow \{0, 1\}$ such that:
 - for every non-faulty execution ρ of \mathcal{P} , $D(\pi_{\Sigma_{\sigma}}(\rho)) = 0$
 - for every Δ -faulty execution ρ of \mathcal{P} , $D(\pi_{\Sigma_o}(\rho)) = 1$

A solution [Tripakis02]: state estimation

→ the Δ -diagnosis problem is PSPACE-complete

Limit of this approach:

- expensive (in theory) if we want to run it online
- not close enough to controller synthesis

- A Δ -diagnoser for \mathcal{P} is a function $D: TW(\Sigma_o) \to \{0,1\}$ such that:
 - for every non-faulty execution ρ of \mathcal{P} , $D(\pi_{\Sigma_{\sigma}}(\rho)) = 0$
 - for every Δ -faulty execution ρ of \mathcal{P} , $D(\pi_{\Sigma_o}(\rho)) = 1$

A solution [Tripakis02]: state estimation

→ the Δ -diagnosis problem is PSPACE-complete

Limit of this approach:

- expensive (in theory) if we want to run it online
- not close enough to controller synthesis

→ Our aim: build a deterministic diagnoser \mathcal{O} ...

- A Δ -diagnoser for \mathcal{P} is a function $D : TW(\Sigma_o) \rightarrow \{0, 1\}$ such that:
 - for every non-faulty execution ρ of \mathcal{P} , $D(\pi_{\Sigma_{\sigma}}(\rho)) = 0$
 - for every Δ -faulty execution ρ of \mathcal{P} , $D(\pi_{\Sigma_o}(\rho)) = 1$

A solution [Tripakis02]: state estimation

→ the Δ -diagnosis problem is PSPACE-complete

Limit of this approach:

- expensive (in theory) if we want to run it online
- not close enough to controller synthesis

→ Our aim: build a deterministic diagnoser \mathcal{O} ...

$$L_{\Delta f}(\mathcal{P}) \subseteq L(\mathcal{O}) \subseteq L_{\neg f}(\mathcal{P})^{c}$$

• less general than previous diagnosis

• the diagnosis problem with deterministic timed automata (DTA) is not solved yet

• less general than previous diagnosis

- the diagnosis problem with deterministic timed automata (DTA) is not solved yet
- the "precise" diagnosis problem and the "asap" diagnosis problem with DTA are undecidable [Chevalier 2004]

• less general than previous diagnosis

- the diagnosis problem with deterministic timed automata (DTA) is not solved yet
- the "precise" diagnosis problem and the "asap" diagnosis problem with DTA are undecidable [Chevalier 2004]
- restriction to bounded resources $\mu = (X, m, \max)$

• less general than previous diagnosis

- the diagnosis problem with deterministic timed automata (DTA) is not solved yet
- the "precise" diagnosis problem and the "asap" diagnosis problem with DTA are undecidable [Chevalier 2004]
- restriction to bounded resources $\mu = (X, m, \max)$

Theorem [Bouyer, Chevalier, D'Souza 2005]

 Δ -diagnosis of timed systems with DTA_{μ} is 2EXPTIME-complete.

Observation as a game

We will transform the diagnosis problem into a two-player safety game:

- ullet one player is the observer \Box
- ullet the other player is the environment \bigcirc

The plant is Δ -DTA_{μ}-diagnosable iff \Box has a winning strategy

Is there an observer for the plant with one clock and constants 0 and 1?

Is there an observer for the plant with one clock and constants 0 and 1?

Diagnosis by DTA_{μ}

Proposition

 \Box has a winning strategy in $\mathcal{G}_{\mathcal{P},\mu}$ iff there is a diagnoser for \mathcal{P} in DTA_{μ}.

→ Δ -DTA_µ-diagnosability is in 2EXPTIME

Δ -DTA_{μ}-observability if 2EXPTIME-hard

\rightarrow By reduction of the acceptance of an Alternating Turing Machine using exponential space

Δ -DTA_{μ}-observability if 2EXPTIME-hard

 \rightarrow By reduction of the acceptance of an Alternating Turing Machine using exponential space

- The plant plays "a"'s.
- The diagnoser reads these "a"'s and plays a sequence of configurations.
- The plant verifies that this sequence is correct.

Δ -DTA_{μ}-observability if 2EXPTIME-hard

 \rightarrow By reduction of the acceptance of an Alternating Turing Machine using exponential space

- The plant plays "a"'s.
- The diagnoser reads these "a"'s and plays a sequence of configurations.
- The plant verifies that this sequence is correct.
- NB: the plant non-deterministically chooses one test

Shape of the plant

${\cal O}$ has 1 clock.

 $\ensuremath{\mathcal{O}}$ makes a choice

reset x or y

 \mathcal{O} has 1 clock.

 \mathcal{O} has 1 clock. ?, z := 0z=0, a $x > 2 \land y > 1, a$ \checkmark , z := 02' $x>2\wedge y<1,$ a a, y := 0z=0, aa, x := 0 \mathcal{P} 2 $x < 2 \land y > 1, a$?, z := 0 z = 0, f.áЗ (3' ${\mathcal P}$ verifies the choice of ${\mathcal O}$ is correct \mathcal{O} makes a choice reset x or y

 \mathcal{P} can force \mathcal{O} "remember" x:

 \mathcal{O} has 1 clock. z=0, a?, z := 0 $x > 2 \land y > 1, a$ $\checkmark, z := 0$ a, y := 0 $x > 2 \land y < 1, a$ a, x := 0z=0, a \mathcal{P} $x < 2 \land y > 1, a$?, z := 0(3' 3 \mathcal{O} makes a choice \mathcal{P} verifies the choice of \mathcal{O} is correct reset x or y

 \mathcal{P} can force \mathcal{O} "remember" x:

 \mathcal{O} has 1 clock. ?, z := 0z=0, a $x > 2 \land y > 1, a$ $\checkmark, z := 0$ $x > 2 \wedge y < 1, a$ a, y := 0a, x := 0z=0, a \mathcal{P} $x < 2 \land y > 1, a$?, z := 0(3' 3 \mathcal{O} makes a choice \mathcal{P} verifies the choice of \mathcal{O} is correct reset x or y

 \mathcal{P} can force \mathcal{O} "remember" x:

 \mathcal{O} has 1 clock. ?, z := 0z=0, a $x > 2 \land y > 1, a$ $\checkmark, z := 0$ a, y := 0 $x > 2 \land y < 1, a$ a, x := 0z=0, a \mathcal{P} $x < 2 \land y > 1, a$?, z := 0(3' 3 \mathcal{O} makes a choice \mathcal{P} verifies the choice of \mathcal{O} is correct reset x or y

 \mathcal{P} can force \mathcal{O} "remember" x:

 \mathcal{O} has 1 clock. ?, z := 0z=0, a $x > 2 \land y > 1, a$ a, y := 0 $x > 2 \land y < 1, a$ z=0, aa, x := 0✓, z := 0 \mathcal{P} $x < 2 \land y > 1, a$?, z := 0 3' 3 \mathcal{O} makes a choice \mathcal{P} verifies the choice of \mathcal{O} is correct reset x or y

 \mathcal{P} can force \mathcal{O} "remember" x:

 \mathcal{O} has 1 clock. ?, z := 0z=0, a $x > 2 \land y > 1, a$ $\checkmark, z := 0$ a, y := 0 $x > 2 \land y < 1, a$ a, x := 0z=0, a \mathcal{P} $x < 2 \land y > 1, a$?, z := 0(3' 3 \mathcal{O} makes a choice \mathcal{P} verifies the choice of \mathcal{O} is correct reset x or y

 \mathcal{P} can force \mathcal{O} "remember" x:

 \mathcal{O} has 1 clock. ?, z := 0z = 0, a $x > 2 \land y > 1, a$ $\checkmark, z := 0$ a, y := 0 $x > 2 \land y < 1, a$ a, x := 0z=0, a \mathcal{P} $x < 2 \land y > 1, a$?, z := 0(3' 3 \mathcal{O} makes a choice \mathcal{P} verifies the choice of \mathcal{O} is correct reset x or y

 \mathcal{P} can force \mathcal{O} "remember" x:

 \mathcal{O} has 1 clock. z = 0, a?, z := 0 $x > 2 \land y > 1, a$ $\checkmark, z := 0$ a, y := 0 $x > 2 \land y < 1, a$ a, x := 0z=0, a \mathcal{P} $x < 2 \land y > 1, a$?, z := 0(3' 3 \mathcal{O} makes a choice \mathcal{P} verifies the choice of \mathcal{O} is correct reset x or y

 \mathcal{P} can force \mathcal{O} "remember" x:

 \mathcal{O} has 1 clock. z = 0, a?, z := 0 $x > 2 \land y > 1, a$ $\checkmark, z := 0$ a, y := 0 $x > 2 \land y < 1, a$ a, x := 0z=0, a \mathcal{P} $x < 2 \land y > 1, a$?, z := 0 3 \mathcal{O} makes a choice \mathcal{P} verifies the choice of \mathcal{O} is correct reset x or y

 \mathcal{P} can force \mathcal{O} "remember" x:

 \mathcal{O} has 1 clock. ?, z := 0z = 0, a $x > 2 \land y > 1, a$ $\checkmark, z := 0$ a, y := 0 $x > 2 \land y < 1, a$ a, x := 0z=0, a \mathcal{P} $x < 2 \land y > 1, a$?, z := 03' 3 \mathcal{O} makes a choice \mathcal{P} verifies the choice of \mathcal{O} is correct reset x or y

 \mathcal{P} can force \mathcal{O} "remember" x:

 \mathcal{O} has 1 clock. ?, z := 0 z = 0, a $x > 2 \land y > 1, a$ $a,\ y:=0$ $x > 2 \land y < 1, a$ x := 0 ✓, z := 0 \mathcal{P} ′ 2' $x < 2 \land y > 1, a$?, z := 0 3 \mathcal{O} makes a choice \mathcal{P} verifies the choice of \mathcal{O} is correct reset x or y

\mathcal{P} can force \mathcal{O} "remember" x:

- if \mathcal{O} "remembers" y, diagnosis is impossible
- if \mathcal{O} "remembers" x, diagnosis is possible

 \mathcal{O} has 1 clock. ?, z := 0 z = 0, a $x > 2 \land y > 1, a$ $a,\ y:=0$ $x > 2 \land y < 1, a$ x := 0 ✓, z := 0 \mathcal{P} (2' $x < 2 \land y > 1, a$?, z := 0 3 \mathcal{O} makes a choice \mathcal{P} verifies the choice of \mathcal{O} is correct reset x or y

\mathcal{P} can force \mathcal{O} "remember" x:

- if \mathcal{O} "remembers" y, diagnosis is impossible
- if \mathcal{O} "remembers" x, diagnosis is possible
\mathcal{O} has 1 clock. ?, z := 0z = 0, a $x > 2 \land y > 1, a$ $a,\ y:=0$ $x > 2 \land y < 1, a$ x := 0 ✓, z := 0 \mathcal{P} (2' $x < 2 \land y > 1, a$?, z := 0 3 \mathcal{O} makes a choice \mathcal{P} verifies the choice of \mathcal{O} is correct reset x or y

- if \mathcal{O} "remembers" y, diagnosis is impossible
- if \mathcal{O} "remembers" x, diagnosis is possible

 \mathcal{O} has 1 clock. z = 0, a?, z := 0 $x > 2 \land y > 1, a$ $a,\ y:=0$ $x > 2 \land y < 1, a$ x := 0 ✓, z := 0 \mathcal{P} (2' $x < 2 \land y > 1, a$?, z := 0 3 \mathcal{O} makes a choice \mathcal{P} verifies the choice of \mathcal{O} is correct reset x or y

- if \mathcal{O} "remembers" y, diagnosis is impossible
- if \mathcal{O} "remembers" x, diagnosis is possible

 \mathcal{O} has 1 clock. ?, z := 0 z = 0, a $x > 2 \land y > 1, a$ $a,\ y:=0$ $x > 2 \land y < 1, a$ x := 0 ✓, z := 0 \mathcal{P} ′ 2' $x < 2 \land y > 1, a$?, z := 0 3 \mathcal{O} makes a choice \mathcal{P} verifies the choice of \mathcal{O} is correct reset x or y

- if \mathcal{O} "remembers" y, diagnosis is impossible
- if \mathcal{O} "remembers" x, diagnosis is possible

 ${\cal O}$ has 1 clock.

- if \mathcal{O} "remembers" y, diagnosis is impossible
- if \mathcal{O} "remembers" x, diagnosis is possible

 \mathcal{O} has 1 clock. ?, z := 0z = 0, a $x > 2 \land y > 1, a$ $a,\ y:=0$ $x > 2 \land y < 1, a$ x := 0 ✓, z := 0 \mathcal{P} (2' $x < 2 \land y > 1, a$?, z := 0 3 \mathcal{O} makes a choice \mathcal{P} verifies the choice of \mathcal{O} is correct reset x or y

- if \mathcal{O} "remembers" y, diagnosis is impossible
- if \mathcal{O} "remembers" x, diagnosis is possible

- if \mathcal{O} "remembers" y, diagnosis is impossible
- if \mathcal{O} "remembers" x, diagnosis is possible

 \mathcal{O} has 1 clock. ?, z := 0 z = 0, a $x > 2 \land y > 1, a$ $a,\ y:=0$ $x > 2 \land y < 1, a$ x := 0 ✓, z := 0 \mathcal{P} (2' $x < 2 \land y > 1, a$?, z := 0 3 \mathcal{O} makes a choice \mathcal{P} verifies the choice of \mathcal{O} is correct reset x or y

- if \mathcal{O} "remembers" y, diagnosis is impossible
- if \mathcal{O} "remembers" x, diagnosis is possible

An example of encoding for a 3SAT formula

Formula $p_1 \vee \neg p_3$:

Diagnosis by event-recording timed automata

- one clock x_a per event a
- clock x_a is reset when a occurs

Diagnosis by event-recording timed automata

- one clock x_a per event a
- clock x_a is reset when a occurs

Property

• Event-recording timed automata are determinizable

[Alur, Fix, Henzinger 1994]

• Event-recording timed automata are input-determined

[D'Souza, Tabareau 2004]

Diagnosis by event-recording timed automata

- one clock x_a per event a
- clock x_a is reset when a occurs

Property

• Event-recording timed automata are determinizable

[Alur, Fix, Henzinger 1994]

• Event-recording timed automata are input-determined

[D'Souza, Tabareau 2004]

→ Diagnosis (with bounded resources) becomes PSPACE-complete
[BCD05]

Outline

Introduction

Ontrol synthesis games

Control under partial observation

4 Fault diagnosis

6 Conclusion and further developments

Conclusion & further developments

Conclusion

- Partial observation adds complexity to control problems
- Even fault diagnosis is difficult
- Related domains: conformance testing, monitoring...

Conclusion & further developments

Conclusion

- Partial observation adds complexity to control problems
- Even fault diagnosis is difficult
- Related domains: conformance testing, monitoring...

Further developments

- Algorithms for control under partial observation *e.g.* forward zone-based algorithm (*cf* Emmanuel's talk)
- Fault diagnosis with DTA/ERA
- $\bullet\,$ Get rid of some resources or the Δ parameter
- Control under partial observation for other classes of systems (*e.g.* o-minimal hybrid games)

Bibliography I

- [AD90] Alur, Dill. Automata for Modeling Real-Time Systems. ICALP'90 (LNCS 443).
- [AD94] Alur, Dill. A Theory of Timed Automata. TCS 126(2), 1994.
- [dAFH+03] de Alfaro, Faella, Henzinger, Majumdar, Stoelinga. The Element of Surprise in Timed Games. CONCUR'03 (LNCS 2761).
- [AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller Synthesis fot Timed Automata. Symp. System Structure and Control'98.
- [BCD05] Bouyer, Chevalier, D'Souza. Fault Diagnosis using Timed Automata. FoSSaCS'05 (LNCS 3441).
- [BDGP98] Bérard, Diekert, Gastin, Petit. Characterization of the Expressive Power of Silent Transitions in Timed Automata. Fundamenta Informaticae 36(2–3), 1998.
- [BDMP03] Bouyer, D'Souza, Madhusudan, Petit. Timed Control with Partial Observability. CAV'03 (LNCS 2725).
 - [Che04] Chevalier. Détection d'erreurs dans les systèmes temporisés. Master Thesis, 2004.
 - [DM02] D'Souza, Madhusudan. Timed Control Synthesis for External Specifications. STACS'02 (LNCS 2285).

Bibliography II

[FLM02a] Faella, La Torre, Murano. Dense Real-Time Games. LICS'02.

- [FLM02b] Faella, La Torre, Murano. Automata-Theoretic Decision of Timed Games. VMCAI'02 (LNCS 2294).
 - [HK99] Henzinger, Kopke. Discrete-Time Control for Rectangular Hybrid Automata. TCS 221, 1999.
- [SSL+95] Sampath, Sengupta, Lafortune, Sinnamohideen, Teneketzis. Diagnosability of Discrete Event Systems. IEEE Transactions Automatic Control 40(9), 1995.
- [SSL+96] Sampath, Sengupta, Lafortune, Sinnamohideen, Teneketzis. Failure Diagnosis using Discrete Event Systems. IEEE Transactions Control Systems Technology 4(2), 1996.
 - [Tri02] Tripakis. Fault Diagnosis for Timed Automata. FTRTFT'02 (LNCS 2469).
 - [Tri03] Tripakis. Folk Theorems on the Determinization and Minimization of Timed Automata. FORMATS'03 (LNCS 2791).

Acknowledgments: Fabrice Chevalier for providing some of the slides