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Timed Automata [AD 90’s]

x , y : clocks

`0 `1 `2

x ≤ 5, a, y := 0 y > 1, b, x := 0
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Timed Automata [AD 90’s]

x , y : clocks

`0 `1 `2

x ≤ 5, a, y := 0 y > 1, b, x := 0

`0
δ(4.1) `0

a `1
δ(1.4) `1

b `2
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Timed Automata [AD 90’s]

x , y : clocks

`0 `1 `2

x ≤ 5, a, y := 0 y > 1, b, x := 0

`0
δ(4.1) `0

a `1
δ(1.4) `1

b `2

x 0 4.1 4.1 5.5 0
y 0 4.1 0 1.4 1.4

(clock) valuation
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Model of Priced Timed Automata [HSCC’01]

` `′

g , a, C := 0

pP P ′

price rate discrete price cost ≡ price

FSTTCS’04 3 / 16



Model of Priced Timed Automata [HSCC’01]

` `′

g , a, C := 0

pP P ′

price rate discrete price cost ≡ price

a configuration: (`, v)

two kinds of transitions:










(`, v)
δ(d)
−−−−→ (`, v + d)

(`, v)
a
−−→ (`′, v ′) where

{

v |= g
v ′ = [C ← 0]v

for some `
g ,a,C :=
−−−−−−→ `′
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Model of Priced Timed Automata [HSCC’01]

` `′

g , a, C := 0

pP P ′

price rate discrete price cost ≡ price

a configuration: (`, v)

two kinds of transitions:










(`, v)
δ(d)
−−−−→ (`, v + d)

(`, v)
a
−−→ (`′, v ′) where

{

v |= g
v ′ = [C ← 0]v

for some `
g ,a,C :=
−−−−−−→ `′

Cost

(

(`, v)
δ(d)
−−−−→ (`, v + d)

)

= P.d Cost
(

(`, v)
a
−−→ (`′, v ′)

)

= p

Cost(ρ) = accumulated cost along run ρ
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Model of Priced Timed Automata (cont.)

` `′

g , a, C := 0

pP P ′

price rate discrete price cost ≡ price
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Model of Priced Timed Automata (cont.)

` `′

g , a, C := 0

pP P ′

price rate discrete price cost ≡ price

one player problems:

reachability with an optimization criterium on the price

[BFH+01a,BFH+01b,LBB+01,ALTP01]

safety with a mean-cost optimization criterium [BBL04]
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Model of Priced Timed Automata (cont.)

` `′

g , a, C := 0

pP P ′

price rate discrete price cost ≡ price

one player problems:

reachability with an optimization criterium on the price

[BFH+01a,BFH+01b,LBB+01,ALTP01]

safety with a mean-cost optimization criterium [BBL04]

what if an opponent?
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Model of Priced Timed Automata (cont.)

` `′

g , a, C := 0

pP P ′

price rate discrete price cost ≡ price

one player problems:

reachability with an optimization criterium on the price

[BFH+01a,BFH+01b,LBB+01,ALTP01]

safety with a mean-cost optimization criterium [BBL04]

what if an opponent?

➜ optimal reachability timed game
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An Example

`0

cost(`0) = 5

`1

y = 0

`2

cost(`2) = 10

`3

cost(`3) = 1

W
x ≤ 2; c1; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2; cost = 7

ci : controllable action
u: uncontrollable action

Question: what is the optimal price we can ensure in state `0?
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cost(`2) = 10
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cost(`3) = 1
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x ≤ 2; c1; y := 0

u

u
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`0

cost(`0) = 5

`1

y = 0

`2

cost(`2) = 10

`3

cost(`3) = 1

W
x ≤ 2; c1; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2; cost = 7

ci : controllable action
u: uncontrollable action

Question: what is the optimal price we can ensure in state `0?

max ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 )
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An Example

`0

cost(`0) = 5

`1

y = 0

`2

cost(`2) = 10

`3

cost(`3) = 1

W
x ≤ 2; c1; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2; cost = 7

ci : controllable action
u: uncontrollable action

Question: what is the optimal price we can ensure in state `0?
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0≤t≤2

max ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 14 +
1
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`0

cost(`0) = 5

`1

y = 0

`2

cost(`2) = 10

`3

cost(`3) = 1

W
x ≤ 2; c1; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2; cost = 7

ci : controllable action
u: uncontrollable action

Question: what is the optimal price we can ensure in state `0?

inf
0≤t≤2

max ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 14 +
1

3

➜ strategy: wait in `0, and when t = 4

3
, go to `1

How to automatically compute such optimal prices?

How to synthesize optimal strategies (if one exists)?
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Our Formalization

➜ a run-based definition of the problem
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Our Formalization

➜ a run-based definition of the problem

a strategy is a partial function from finite runs to {c | c cont.} ∪ {λ}

Example

f (ρ) =

8

<

:

λ if ρ ends in (`0, x < 4

3
) or in (`2, x < 2) or in (`3, x < 2)

c1 if ρ ends in (`0, x ≥
4

3
)

c2 if ρ ends in (`2, x ≥ 2) or in (`3, x ≥ 2)
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Our Formalization

➜ a run-based definition of the problem

a strategy is a partial function from finite runs to {c | c cont.} ∪ {λ}

Example

f (ρ) =

8

<

:

λ if ρ ends in (`0, x < 4

3
) or in (`2, x < 2) or in (`3, x < 2)

c1 if ρ ends in (`0, x ≥
4

3
)

c2 if ρ ends in (`2, x ≥ 2) or in (`3, x ≥ 2)

Outcome(f , (`, v)): runs generated by strategy f from (`, v)

f is a winning strategy from (`, v) if all maximal runs in
Outcome(f , (`, v)) contain a winning state

the cost of a strategy f from (`, v) is:

Cost(f , (`, v)) = sup {cost(ρ) | ρ ∈ Outcome(f , (`, v))}

FSTTCS’04 6 / 16



Optimal Control Problems

Optimal cost computation: compute the optimal cost

optcost(`, v) = inf {Cost(f , (`, v)) | f winning strategy from (`, v)}
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Optimal Control Problems

Optimal cost computation: compute the optimal cost

optcost(`, v) = inf {Cost(f , (`, v)) | f winning strategy from (`, v)}

Optimal strategy existence: does there exist a winning strategy f
s.t.

Cost(f , (`, v)) = optcost(`, v)

Optimal strategy synthesis: in case an optimal winning strategy
exists, construct one such
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Do Optimal Strategies Always Exist?

`0

cost(`0) = 1

x < 1

`1

cost(`1) = 2

x ≤ 1

W
x < 1; c x = 1; c

8

>

>

<

>

>

:

f (`0, x < 1) = λ

f (`1, x < 1) = λ

f (`1, x = 1) = c
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Do Optimal Strategies Always Exist?

`0

cost(`0) = 1

x < 1

`1

cost(`1) = 2

x ≤ 1

W
x < 1; c x = 1; c

8

>

>

<

>

>

:

f (`0, x < 1) = λ

f (`1, x < 1) = λ

f (`1, x = 1) = c

 

8

>

>

<

>

>

:

fε(`0, x < 1 − ε) = λ

fε(`0, 1 − ε ≤ x < 1) = c

fε(`1, x < 1) = λ

fε(`1, x = 1) = c

➜ no optimal strategy exists, but rather a family (fε)ε>0

of ε-approximating strategies (cost(fε) = 1 + ε)
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Relation with Recursive Definition

➜ a recursive definition
(close to that of [LTMM02,ABM04])

O(s) = inf
s

t,p
−→ s′

t≥0

max



































min









min
s′

c,p
′

−→ s′′

c cont.

p + p′ + O(s ′′) , p + O(s ′)









sup

s
t
′
,p

′

−→ s′′

t′≤t

max
s′′

u,p
′′

−→ s′′′

u uncont.

p′ + p′′ + O(s ′′′)
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min
s′

c,p
′

−→ s′′

c cont.

p + p′ + O(s ′′) , p + O(s ′)









sup

s
t
′
,p

′

−→ s′′

t′≤t

max
s′′

u,p
′′

−→ s′′′

u uncont.

p′ + p′′ + O(s ′′′)

Theorem

For linear hybrid games, O(s) = optcost(s).
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Timed/Hybrid Games, Strategy Extraction

π(X ) = Predt(X ∪ cPred(X ), uPred(X ))

➜ controllable predecessors

The winning states are those computed by the least fix-point of
λX .W ∪ π(X ).
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However, it does not give us directly winning strategies...

`0 W
x > 0; c 

f (`0, x = 0) = λ

f (`0, x > 0) = c
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Timed/Hybrid Games, Strategy Extraction

π(X ) = Predt(X ∪ cPred(X ), uPred(X ))

➜ controllable predecessors

The winning states are those computed by the least fix-point of
λX .W ∪ π(X ).

However, it does not give us directly winning strategies...

`0 W
x > 0; c 

f (`0, x = 0) = λ

f (`0, x > 0) = c
 



fε(`0, x < ε) = λ

fε(`0, x ≥ ε) = c

➜ a “realizability” problem

➜ constructive proof of realizable and state-based strategies
(see research report)
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Our Solution

Idea: tranform the cost into a decreasing linear hybrid variable

G G′

`0 `1

g , a, Y := 0

cost = 1

cost(`0) = 5

=⇒ `′
0

˙cost = −5

`′
1

g , a, Y := 0

cost := cost − 1

Winning: W Winning: W ∧ cost ≥ 0
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Our Solution

Idea: tranform the cost into a decreasing linear hybrid variable

G G′

`0 `1

g , a, Y := 0

cost = 1

cost(`0) = 5

=⇒ `′
0

˙cost = −5

`′
1

g , a, Y := 0

cost := cost − 1

Winning: W Winning: W ∧ cost ≥ 0

Theorem

For priced timed games (under some hypotheses),

∃f winning strategy in G
s.t. cost(f , (`, v)) ≤ γ

}

⇐⇒ (`, v , cost = γ) winning in G′

+ constructive proof
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Our Solution (2)

The set of winning states in G′ is upward-closed for the cost, i.e. of the form
[

i∈I

(Pi ∧ cost �i ki ) (with �i either > or ≥)
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Our Solution (2)

The set of winning states in G′ is upward-closed for the cost, i.e. of the form
[

i∈I

(Pi ∧ cost �i ki ) (with �i either > or ≥)

Corollary

For priced timed games (under some hypotheses),

“reachable” optimal cost, or not (cost ≥ γ or cost > γ)

existence of an optimal strategy decidable

+ constructive proof
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Our Solution (2)

The set of winning states in G′ is upward-closed for the cost, i.e. of the form
[

i∈I

(Pi ∧ cost �i ki ) (with �i either > or ≥)

Corollary

For priced timed games (under some hypotheses),

“reachable” optimal cost, or not (cost ≥ γ or cost > γ)

existence of an optimal strategy decidable

+ constructive proof

Nature of the strategy:

state-based for the hybrid game, thus cost-dependent for the
optimal timed game

cost-dependence is unavoidable in general!

cost-independent strategies for syntactical restrictions of the games
c: large constraints, u: strict constraints
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Cost-Dependence is Unavoidable

`0

cost = 2

x ≤ 1

W

`1

cost = 1

x = 1, c

x < 1, u, y := 0
y > 0 c

optimal cost: 2

optimal strategy:
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Cost-Dependence is Unavoidable

`0

cost = 2

x ≤ 1

W

`1

cost = 1

x = 1, c

x < 1, u y := 0 y > 0, c

optimal cost: 2

optimal strategy: d time before a u occurs, d ′ time waited in `1

The cost of the run is 2.d + d ′.
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Cost-Dependence is Unavoidable

`0

cost = 2

x ≤ 1

W

`1

cost = 1

x = 1, c

x < 1, u y := 0 y > 0, c

optimal cost: 2

optimal strategy: d time before a u occurs, d ′ time waited in `1

The cost of the run is 2.d + d ′.

2.d + d ′ ≤ 2

(accumulated cost) + d ′ ≤ 2
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Hypotheses for Termination

all clocks are bounded (not restrictive)

the cost function is strictly non-zeno
➞ This condition is restrictive, but is decidable

FSTTCS’04 14 / 16



Hypotheses for Termination

all clocks are bounded (not restrictive)

the cost function is strictly non-zeno
➞ This condition is restrictive, but is decidable

m1

M1

cost ≥ f 1 =↑f 1

κ

f 2

m2
κ

κ

κ

κ

κ
m7

↑f 7

cost

R
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Hypotheses for Termination

all clocks are bounded (not restrictive)

the cost function is strictly non-zeno
➞ This condition is restrictive, but is decidable

m1

M1

cost ≥ f 1 =↑f 1

κ

f 2

m2
κ

κ

κ

κ

κ
m7

↑f 7

cost

R

Open problem

Is this strict non-zenoness hypothesis really necessary?
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Related Work

[LTMM02] and [ABM04]

a recursive definition of the cost function

a clever (exponential) bound on the number of splits needed

Our work:

a simple and natural run-based definition of cost optimality

decidability of the existence of an optimal strategy
(under hypotheses)

structural properties of strategies
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Conclusion

Summary:

run-based definition of cost optimality for priced timed games

reduction to hybrid games

computability of optimal cost, and decidability of the existence of

optimal strategies under a non-zenoness hypothesis

nature of optimal winning strategies

algorithm easy to implement using HyTech

work complementary to that of [ABM04]
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Conclusion

Summary:

run-based definition of cost optimality for priced timed games

reduction to hybrid games

computability of optimal cost, and decidability of the existence of

optimal strategies under a non-zenoness hypothesis

nature of optimal winning strategies

algorithm easy to implement using HyTech

work complementary to that of [ABM04]

Several remaining open questions:

termination without the hypothesis of a strongly non-zeno cost

when no optimal strategy exists, synthesize a family of
approximating strategies

Further direction:

extension to safety games with a mean-cost optimality criterium
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