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Model of Priced Timed Automata [HSCC'01]
price rate discrete price cost = price
P 1 P’
P
© 0,
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Model of Priced Timed Automata [HSCC'01]
price rate discrete price cost = price
|
P ; P’
@ g, a C:=0 @
@ a configuration: (¢, v)
@ two kinds of transitions:
(6.v) 2 (tv+d)
(,v) =5 (0, V) where{ Z, :g[c —ov for some ¢ &%=,y
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Model of Priced Timed Automata [HSCC’01]
price rate discrete price cost = price
P 1 P’
P
© 0,

@ a configuration: (¢, v)
@ two kinds of transitions:

(t,v) 2 (4, v+ d)

(,v) =5 (0, V) where{ v

g g,a,C:=
v/ =[C « Qv

for some ¢ =2 ¢/

Cost ((e, v) 29 v d)) =Pd  Cost((L,v) 2 (£,v)) =p

Cost(p) = accumulated cost along run p
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Model of Priced Timed Automata (cont.)

price rate discrete price cost = price
| ,
P p P
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S
Model of Priced Timed Automata (cont.)

price rate discrete price cost = price
P P’
p
4 4
O— 70

@ one player problems:

@ reachability with an optimization criterium on the price
[BFH+01a,BFH+01b,LBB-+01,ALTPO1]
o safety with a mean-cost optimization criterium [BBLO4]
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Model of Priced Timed Automata (cont.)

price rate discrete price cost = price
P P’
p
4 4
O— 70

@ one player problems:

@ reachability with an optimization criterium on the price
[BFH+01a,BFH+01b,LBB+01,ALTP01]
o safety with a mean-cost optimization criterium [BBLO4]

@ what if an opponent?
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Model of Priced Timed Automata (cont.)

price rate discrete price cost = price
/
O @
4 4
g, a C:=0

@ one player problems:

@ reachability with an optimization criterium on the price
[BFH+01a,BFH+01b,LBB+01,ALTP01]
o safety with a mean-cost optimization criterium [BBLO4]

@ what if an opponent?
[0 optimal reachability timed game
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An Example

cj: controllable action

u: uncontrollable action cost(£2) = 10

x> 2; co;cost =1

u -
‘ x<2¢c;y:=0 .:’/
cost(fp) =5 y= PN

x> 2; co; cost =7

cost(43) =1

Question: what is the optimal price we can ensure in state £57?
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An Example

cj: controllable action

u: uncontrollable action cost(£2) = 10

x> 2; co;cost =1

cost({p) =5 y=0 ~
x> 2; co; cost =7

cost(43) =1

Question: what is the optimal price we can ensure in state £57?
1
inf  max (5t+10(2—1t)+1, 5t+(2—t)+7):14+§

0<t<2

O strategy: wait in {o, and when t = 5, go to /
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An Example

cj: controllable action

u: uncontrollable action cost(£2) = 10

x> 2; co;cost =1

cost(fp) =5 y=0 ~
x> 2; co; cost =7

cost(43) =1

Question: what is the optimal price we can ensure in state £57?

. 1
oslr:f§2 max(5t+10(2—t)+1,5t+(2—t)+7)—14+§

O strategy: wait in {o, and when t = 5, go to /

@ How to automatically compute such optimal prices?
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S
An Example

cj: controllable action

u: uncontrollable action cost(£2) = 10

x> 2; co;cost =1

cost(fp) =5 y=0 ~
x> 2; co; cost =7

cost(43) =1

Question: what is the optimal price we can ensure in state /3?

. 1
Oslr:f§2 max(5t+10(2—t)+1,5t+(2—t)+7)—14+§

O strategy: wait in {o, and when t = 5, go to /

@ How to automatically compute such optimal prices?

® How to synthesize optimal strategies (if one exists)?
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Our Formalization

00 a run-based definition of the problem
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@ a strategy is a partial function from finite runs to {c | ¢ cont.} U{A\}

Example

A ifpendsin (fo,x < %) orin (f2,x <2)orin (l3,x < 2)
f(p)=14 a ifpendsin (lo,x > 3)
c2 if pendsin (€2,x > 2) orin (f3,x > 2)
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Our Formalization

00 a run-based definition of the problem

@ a strategy is a partial function from finite runs to {c | ¢ cont.} U{A}

Example
A if pendsin (fo,x < %)
f(p)=14 a ifpendsin (lo,x > 3)
c2 if pendsin ({2,x > 2)

orin (f2,x < 2) orin (f3,x < 2)

orin ({3,x > 2)

@ Outcome(f, (¢, v)): runs generated by strategy f from (¢, v)

@ f is a winning strategy from (¢, v) if all maximal runs in
Outcome(f, (£, v)) contain a winning state

@ the cost of a strategy f from (¢, v) is:

Cost(f, (£, v)) = sup {cost(p) | p € Outcome(f, (¢,v))}
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Optimal Control Problems

@ Optimal cost computation: compute the optimal cost

[ optcost({, v) = inf {Cost(f, (¢, v)) | f winning strategy from (¢, v)} ]
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S
Optimal Control Problems

@ Optimal cost computation: compute the optimal cost

[ optcost({, v) = inf {Cost(f, (¢, v)) | f winning strategy from (¢, v)} ]

@ Optimal strategy existence: does there exist a winning strategy f
s.t.

[ Cost(F, (¢, v)) = optcost((, v) |

@ Optimal strategy synthesis: in case an optimal winning strategy
exists, construct one such
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S
Do Optimal Strategies Always Exist?

cost(o) =1 cost(¢1) =2
x<1;c x=1;c
x <1 x<1
f(lo,x <1)= A
f(£1,X < 1) =
f(el,X = 1) =cC
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Do Optimal Strategies Always Exist?

cost(fo) =1 cost(f1) =2
x<1;c x=1;c
x <1 x<1
flo,x <1)=2A fe(lo,x <1—¢)=A

fz(lo,1—e<x<1l)=c
f(£1,X < 1) =A fg(£1,X < 1) =A
f(ly,x=1)=c f(li,x=1)=c
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S
Do Optimal Strategies Always Exist?

cost(fo) =1 cost(f1) =2
x<1;c x=1;c
x <1 x<1
flo,x <1)=2A fe(lo,x <1—¢)=A

fz(lo,1—e<x<1l)=c
f(£1,X < 1) =A fg(f1,X < 1) =A
f(ly,x=1)=c f(li,x=1)=c

~

O no optimal strategy exists, but rather a family (£).>0
of e-approximating strategies (cost(f.) = 1+¢)
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e
Relation with Recursive Definition

O a recursive definition
(close to that of [LTMMO02,ABM04])

min min  p+p +0(s"), p+ O(s)
c cont.

’ 1z "
sup max  p' 4+ p”" + O(s")
/1’
s t/ p/ S s u,p s
<t u uncont.
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e
Relation with Recursive Definition

O a recursive definition
(close to that of [LTMMO02,ABM04])

min min  p+p +0(s"), p+ O(s)
’ c.p’ ’r
O(s) inf  max * ¢ eont,
t.p
>0 sup max p' +p” + O(s")
s t/’_P: S s up’ s
t'<t u uncont.
Theorem
For linear hybrid games, O(s) = optcost(s). J

FSTTCS'04 9/16



S
Timed /Hybrid Games, Strategy Extraction

7(X) = Pred:(X U cPred(X), uPred(X))

O controllable predecessors

The winning states are those computed by the least fix-point of
AX. W U (X).
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Timed /Hybrid Games, Strategy Extraction

7(X) = Pred.(X U cPred(X), uPred(X))

O controllable predecessors

The winning states are those computed by the least fix-point of
AX. W U (X).

However, it does not give us directly winning strategies...

{f(éo,x:o):A w{fg(éo,x<s):)\

f(o,x >0)=c f-(bo,x >€e)=c
O a “realizability” problem

O constructive proof of realizable and state-based strategies

(see research report)
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Our Solution

Idea: tranform the cost into a decreasing linear hybrid variable

g g’
g, a Y:=0 Y =
‘—‘ —
@ cost =1 @ cost := cost — 1
cost(£p) =5 cost = —5
Winning: W Winning: W A cost > 0
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e
Our Solution

Idea: tranform the cost into a decreasing linear hybrid variable

g g’
. g, a, Y:=0 . Y =0
cost =1 cost := cost — 1
cost(£p) =5 cost = —5
Winning: W Winning: W A cost > 0
Theorem

For priced timed games (under some hypotheses),

3f winning strategy in G

_ o,
s.t. cost(f, (£, v)) <~ } < (¢, v,cost =) winning in G

+ constructive proof
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Our Solution (2)

The set of winning states in G’ is upward-closed for the cost, i.e. of the form

(J (PiAcost =; ki) (with >; either > or >)
iel
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The set of winning states in G’ is upward-closed for the cost, i.e. of the form

U (P;j A cost >; ki) (with >; either > or >)
icl

Corollary
For priced timed games (under some hypotheses),
® ‘reachable” optimal cost, or not (cost >~ or cost > )
@ existence of an optimal strategy decidable
+ constructive proof
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S
Our Solution (2)

The set of winning states in G’ is upward-closed for the cost, i.e. of the form

U (P; N cost =; ki) (with >; either > or >)
icl

Corollary
For priced timed games (under some hypotheses),
® ‘reachable” optimal cost, or not (cost >~ or cost > )
@ existence of an optimal strategy decidable
+ constructive proof

Nature of the strategy:

@ state-based for the hybrid game, thus cost-dependent for the
optimal timed game

@ cost-dependence is unavoidable in general!
@ cost-independent strategies for syntactical restrictions of the games

c: large constraints, u: strict constraints
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Cost-Dependence is Unavoidable

cost =2

@ optimal cost: 2
@ optimal strategy:
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cost =1

@ optimal cost: 2

@ optimal strategy: d time before a u occurs, d’ time waited in /3
The cost of the runis 2.d + d"’.
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S
Cost-Dependence is Unavoidable

cost =2

cost =1

@ optimal cost: 2

@ optimal strategy: d time before a u occurs, d’ time waited in /3
The cost of the runis 2.d + d"’.

2d+d <2

(accumulated cost) + d" <2
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Hypotheses for Termination

@ all clocks are bounded (not restrictive)

@ the cost function is strictly non-zeno
0O This condition is restrictive, but is decidable
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Hypotheses for Termination

@ all clocks are bounded (not restrictive)

@ the cost function is strictly non-zeno
[0 This condition is restrictive, but is decidable

Open problem

Is this strict non-zenoness hypothesis really necessary? J
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Related Work

[LTMMO2] and [ABMO04]
@ a recursive definition of the cost function

@ a clever (exponential) bound on the number of splits needed

Our work:
@ a simple and natural run-based definition of cost optimality

@ decidability of the existence of an optimal strategy
(under hypotheses)

@ structural properties of strategies
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Conclusion

Summary:
@ run-based definition of cost optimality for priced timed games

@ reduction to hybrid games

@ computability of optimal cost, and decidability of the existence of
optimal strategies under a non-zenoness hypothesis
@ nature of optimal winning strategies

@ algorithm easy to implement using HyTech
@ work complementary to that of [ABM04]
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Conclusion

Summary:
@ run-based definition of cost optimality for priced timed games

@ reduction to hybrid games

o computability of optimal cost, and decidability of the existence of
optimal strategies under a non-zenoness hypothesis
@ nature of optimal winning strategies

@ algorithm easy to implement using HyTech
@ work complementary to that of [ABM04]

Several remaining open questions:
@ termination without the hypothesis of a strongly non-zeno cost

@ when no optimal strategy exists, synthesize a family of
approximating strategies

Further direction:

@ extension to safety games with a mean-cost optimality criterium
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