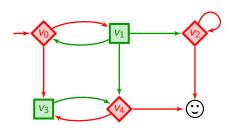
Nash equilibria in games on graphs with a public signal monitoring

Patricia Bouyer

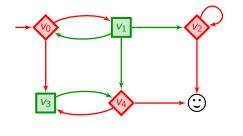
LSV, CNRS & ENS Paris-Saclay Université Paris-Saclay, Cachan, France

What this talk is about

- pure Nash equilibria in game graphs
- imperfect information monitoring
- public signals
- epistemic abstraction
- computability issues



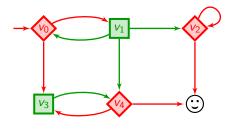
- Game graph G = (V, E)
- ullet V partitioned into V_{\Diamond} and V_{\Box}



- Game graph G = (V, E)
- ullet V partitioned into V_{\Diamond} and V_{\Box}
- Strategy for player *i*:

$$\sigma_i \colon V^*V_i \to V$$

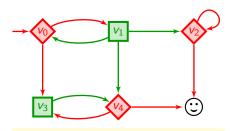
• out(σ_{\diamondsuit}): all paths compatible with σ_{\diamondsuit}



- Game graph G = (V, E)
- ullet V partitioned into V_{\Diamond} and V_{\Box}
- Strategy for player *i*:

$$\sigma_i \colon V^* V_i \to V$$

- out (σ_{\diamondsuit}) : all paths compatible with σ_{\diamondsuit}
- Objective for \diamond : $\Omega \subseteq V^{\omega}$
- σ_{\diamondsuit} winning strat. if $\operatorname{out}(\sigma_{\diamondsuit}) \subseteq \Omega$

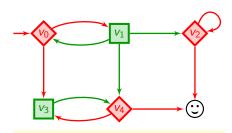


- Objective of ♦: Reach ☺
- $\sigma_{\diamondsuit}(v_0) = v_3$, $\sigma_{\diamondsuit}(v_2) = \sigma_{\diamondsuit}(v_4) = \odot$ is a winning strategy

- Game graph G = (V, E)
- ullet V partitioned into V_{\Diamond} and V_{\Box}
- Strategy for player *i*:

$$\sigma_i \colon V^* V_i \to V$$

- out(σ_{\diamondsuit}): all paths compatible with σ_{\diamondsuit}
- Objective for \diamondsuit : $\Omega \subseteq V^{\omega}$
- σ_{\diamondsuit} winning strat. if $\operatorname{out}(\sigma_{\diamondsuit}) \subseteq \Omega$



- Objective of ◊: Reach ☺
- $\sigma_{\diamondsuit}(v_0) = v_3$, $\sigma_{\diamondsuit}(v_2) = \sigma_{\diamondsuit}(v_4) = ©$ is a winning strategy

- Game graph G = (V, E)
- ullet V partitioned into V_{\Diamond} and V_{\Box}
- Strategy for player *i*:

$$\sigma_i \colon V^* V_i \to V$$

- out(σ_{\diamondsuit}): all paths compatible with σ_{\diamondsuit}
- Objective for \diamondsuit : $\Omega \subseteq V^{\omega}$
- σ_{\diamondsuit} winning strat. if $\operatorname{out}(\sigma_{\diamondsuit}) \subseteq \Omega$
- Determinacy: Either \diamondsuit has a winning strategy for Ω , or \square has a winning strategy for $V^{\omega} \setminus Omega$

 $\bullet \ \mathsf{Several} \ \mathsf{players} \ \mathsf{Agt} = \{ A_1, \dots, A_N \}$

- Several players $Agt = \{A_1, \dots, A_N\}$
- \bullet Each player A plays according to a strategy σ_{A}

- Several players $Agt = \{A_1, \ldots, A_N\}$
- Each player A plays according to a strategy σ_A
- Each player A has a payoff function

$$\mathsf{payoff}_{\mathcal{A}}:V^\omega\to\mathbb{R}$$

- Several players $Agt = \{A_1, \ldots, A_N\}$
- Each player A plays according to a strategy σ_A
- Each player A has a payoff function

$$\mathsf{payoff}_A:V^\omega\to\mathbb{R}$$

Non-zero-sum...

- Several players $Agt = \{A_1, \ldots, A_N\}$
- Each player A plays according to a strategy σ_A
- Each player A has a payoff function

$$\mathsf{payoff}_A:V^\omega\to\mathbb{R}$$

- Non-zero-sum...
- Selfishness hypothesis: each player wants to maximize her own payoff!

- Several players $Agt = \{A_1, \dots, A_N\}$
- Each player A plays according to a strategy σ_A
- Each player A has a payoff function

$$\mathsf{payoff}_A:V^\omega\to\mathbb{R}$$

- Non-zero-sum...
- Selfishness hypothesis: each player wants to maximize her own payoff!
- Need of solution concepts to describe the kind of interactions between the players

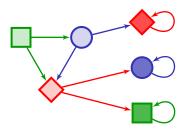
- Several players $Agt = \{A_1, \dots, A_N\}$
- Each player A plays according to a strategy σ_A
- Each player A has a payoff function

$$\mathsf{payoff}_A:V^\omega\to\mathbb{R}$$

- Non-zero-sum...
- Selfishness hypothesis: each player wants to maximize her own payoff!
- Need of solution concepts to describe the kind of interactions between the players
- The simplest: Nash equilibria

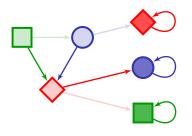
Nash equilibrium

A strategy profile $(\sigma_A)_{A\in Agt}$ is a Nash equilibrium if no player can improve her payoff by unilaterally changing her strategy.



Nash equilibrium

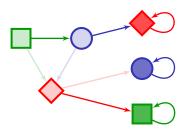
A strategy profile $(\sigma_A)_{A\in Agt}$ is a Nash equilibrium if no player can improve her payoff by unilaterally changing her strategy.



is a Nash equilibrium with payoff (0,1,0)

Nash equilibrium

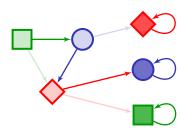
A strategy profile $(\sigma_A)_{A\in Agt}$ is a Nash equilibrium if no player can improve her payoff by unilaterally changing her strategy.



is not a Nash equilibrium

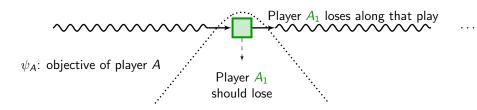
Nash equilibrium

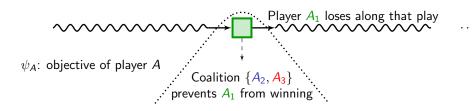
A strategy profile $(\sigma_A)_{A\in Agt}$ is a Nash equilibrium if no player can improve her payoff by unilaterally changing her strategy.

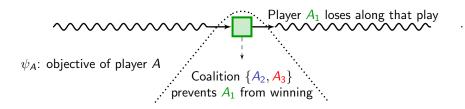


is a Nash equilibrium with payoff (0,1,0)

 ψ_A : objective of player A







Recipe

- ullet for every $A\in \mathsf{Agt}$, compute the set of winning states W_A
- find a path witness for the formula:

$$\Phi_{\mathsf{NE}} = \bigwedge_{A \in \mathsf{Agt}} \left(\neg \psi_A \Rightarrow \mathbf{G} \neg W_A \right)$$

(valid for tail or reachability objectives)

[UW11,Umm11]

ullet There always exists a Nash equilibrium for Boolean ω -regular objectives

[UW11,Umm11]

- There always exists a Nash equilibrium for Boolean ω -regular objectives
- One can decide the constrained existence of a Nash equilibrium (and compute one!)

[UW11,Umm11]

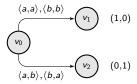
- ullet There always exists a Nash equilibrium for Boolean ω -regular objectives
- One can decide the constrained existence of a Nash equilibrium (and compute one!)
- One cannot decide the existence of a mixed (i.e. stochastic) Nash equilibrium

[UW11,Umm11]

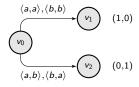
- There always exists a Nash equilibrium for Boolean ω -regular objectives
- One can decide the constrained existence of a Nash equilibrium (and compute one!)
- One cannot decide the existence of a mixed (i.e. stochastic) Nash equilibrium

ightharpoonup this is why we restrict to pure equilibria

The matching-penny game:

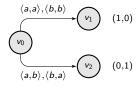


The matching-penny game:



There is no pure Nash eq.

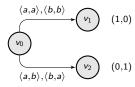
The matching-penny game:



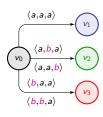
 $(a,a,a) \longrightarrow (v_1)$ $(a,b,a) \longrightarrow (v_2)$ $(b,a,a) \longrightarrow (v_3)$ $(b,b,a) \longrightarrow (v_3)$

There is no pure Nash eq.

The matching-penny game:

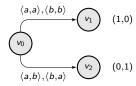


There is no pure Nash eq.

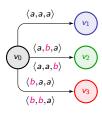


• $susp((v_0, v_3), \langle a, a, a \rangle) = \{A_1\}$

The matching-penny game:



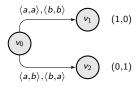
There is no pure Nash eq.



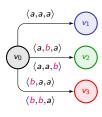
•
$$susp((v_0, v_3), \langle a, a, a \rangle) = \{A_1\}$$

•
$$susp((v_0, v_2), \langle a, a, a \rangle) = \{A_2, A_3\}$$

The matching-penny game:



There is no pure Nash eq.

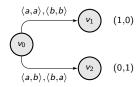


•
$$susp((v_0, v_3), \langle a, a, a \rangle) = \{A_1\}$$

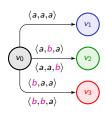
•
$$susp((v_0, v_2), \langle a, a, a \rangle) = \{A_2, A_3\}$$

Solution via the suspect game abstraction, a structure to track suspect players

The matching-penny game:



There is no pure Nash eq.



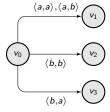
•
$$susp((v_0, v_3), \langle a, a, a \rangle) = \{A_1\}$$

•
$$susp((v_0, v_2), \langle a, a, a \rangle) = \{A_2, A_3\}$$

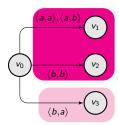
Solution via the suspect game abstraction, a structure to track suspect players

Can we add more partial information to that framework?

Concurrent games with signals



Concurrent games with signals

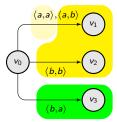


• Signal for player A_1 : • and •

- On playing a, player A_1 will receive •
- On playing b, player A₁ will receive either
 or

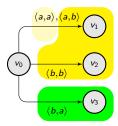
[Tom98] Tomala. Pure equilibria of repeated games with public observation (International Journal of Game Theory)

Concurrent games with signals



- Signal for player A_1 : and •
- Signal for player A_2 : \bigcirc , \bigcirc and \bigcirc
- On playing a, player A_1 will receive •
- On playing b, player A₁ will receive either
 or
- On playing a, player A₂ will receive either
 or
- On playing b, player A_2 will receive \bigcirc

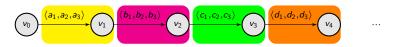
Concurrent games with signals



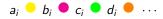
- Signal for player A_1 : and •
- Signal for player A_2 : \bigcirc , \bigcirc and \bigcirc
- On playing a, player A_1 will receive •
- On playing b, player A₁ will receive either
 or
- On playing a, player A₂ will receive either
 or
- On playing b, player A_2 will receive \bigcirc

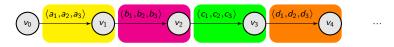
Public signal

Same signal to every player!

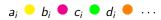


• What player A_i sees:

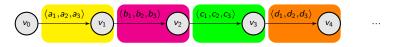




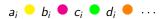
• What player A_i sees:



 \sim induces undistinguishability relation \sim_{A_i}

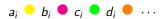


• What player A_i sees:



- \sim induces undistinguishability relation \sim_{A_i}
- Strategy of player A_i has to respect \sim_{A_i}

• What player A_i sees:



- \sim induces undistinguishability relation \sim_{A_i}
- Strategy of player A_i has to respect \sim_{A_i}
- Privately visible payoff: based on

$$a_i \circ b_i \circ c_i \circ d_i \circ \cdots$$

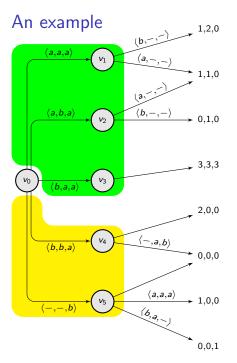
• What player A_i sees:

$$a_i \circ b_i \circ c_i \circ d_i \circ \cdots$$

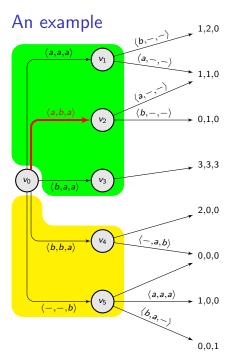
- \sim induces undistinguishability relation \sim_{A_i}
- Strategy of player A_i has to respect \sim_{A_i}
- Privately visible payoff: based on

$$a_i \circ b_i \circ c_i \circ d_i \circ \cdots$$

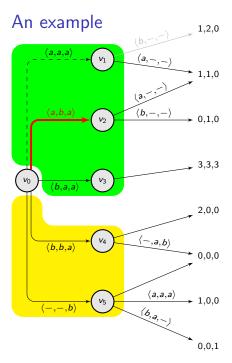
• Publicly visible payoff: based on sequences of colors



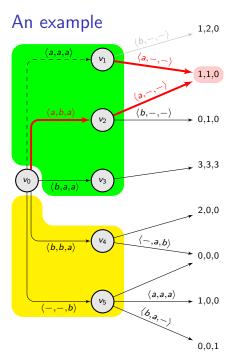
• Three players concurrent game with public signal



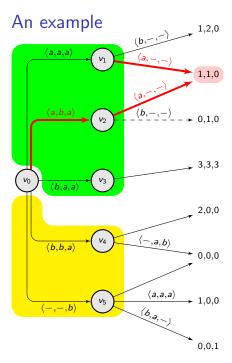
- Three players concurrent game with public signal
- Consider the (partial) strategy profile σ_{Agt} . Can we complete it into a Nash equilibrium?



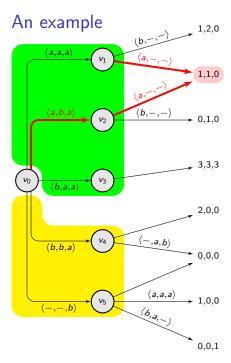
- Three players concurrent game with public signal
- Consider the (partial) strategy profile $\sigma_{\rm Agt}$. Can we complete it into a Nash equilibrium?
- This is an A_2 -deviation, which is invisible to both A_1 and A_3 . A_1 has to play a.



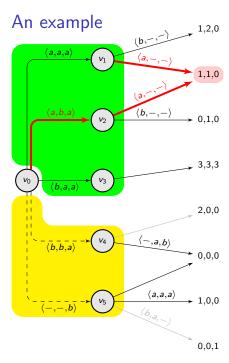
- Three players concurrent game with public signal
- Consider the (partial) strategy profile $\sigma_{\rm Agt}$. Can we complete it into a Nash equilibrium?
- This is an A₂-deviation, which is invisible to both A₁ and A₃. A₁ has to play a.
 Which we propagate out of v₂.



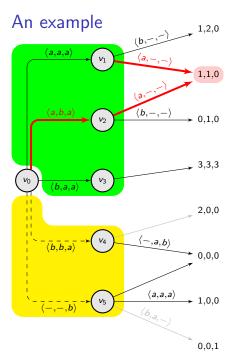
- Three players concurrent game with public signal
- Consider the (partial) strategy profile $\sigma_{\rm Agt}$. Can we complete it into a Nash equilibrium?
- This is an A₂-deviation, which is invisible to both A₁ and A₃. A₁ has to play a.
 Which we propagate out of v₂.
- This is a non-profitable A_1 -deviation.



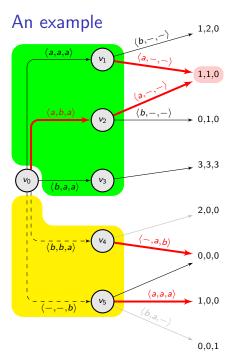
- Three players concurrent game with public signal
- Consider the (partial) strategy profile $\sigma_{\rm Agt}$. Can we complete it into a Nash equilibrium?
- This is an A₂-deviation, which is invisible to both A₁ and A₃. A₁ has to play a.
 Which we propagate out of v₂.
- This is a non-profitable A_1 -deviation.
- No one (alone) can deviate to v_3 .



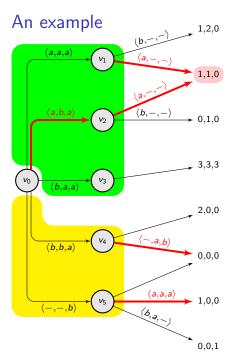
- Three players concurrent game with public signal
- Consider the (partial) strategy profile $\sigma_{\rm Agt}$. Can we complete it into a Nash equilibrium?
- This is an A₂-deviation, which is invisible to both A₁ and A₃. A₁ has to play a.
 Which we propagate out of v₂.
- This is a non-profitable A_1 -deviation.
- No one (alone) can deviate to v_3 .
- A_1 can deviate to v_4 and A_3 can deviate to v_5 : A_2 knows there has been a deviation, but (s)he doesn't know whether A_1 or A_3 did so, and whether the game proceeds to v_4 or v_5 . On the other hand, both A_1 and A_3 know!



- Three players concurrent game with public signal
- Consider the (partial) strategy profile $\sigma_{\rm Agt}$. Can we complete it into a Nash equilibrium?
- This is an A₂-deviation, which is invisible to both A₁ and A₃. A₁ has to play a.
 Which we propagate out of v₂.
- This is a non-profitable A_1 -deviation.
- No one (alone) can deviate to v_3 .
- A₁ can deviate to v₄ and A₃ can deviate to v₅: A₂ knows there has been a deviation, but (s)he doesn't know whether A₁ or A₃ did so, and whether the game proceeds to v₄ or v₅. On the other hand, both A₁ and A₃ know! But if the game proceeds to v₄, A₃ can help A₂ punishing A₁, and if the game proceeds to v₅, A₁ can help A₂ punishing A₃.



- Three players concurrent game with public signal
- Consider the (partial) strategy profile $\sigma_{\rm Agt}$. Can we complete it into a Nash equilibrium?
- This is an A₂-deviation, which is invisible to both A₁ and A₃. A₁ has to play a.
 Which we propagate out of v₂.
- This is a non-profitable A_1 -deviation.
- No one (alone) can deviate to v_3 .
- A_1 can deviate to v_4 and A_3 can deviate to v_5 : A_2 knows there has been a deviation, but (s)he doesn't know whether A_1 or A_3 did so, and whether the game proceeds to v_4 or v_5 . On the other hand, both A_1 and A_3 know! But if the game proceeds to v_4 , A_3 can help A_2 punishing A_1 , and if the game proceeds to v_5 , A_1 can help A_2 punishing A_3 .



 Main outcome of a Nash equilibrium has to be robust to invisible deviations

- Main outcome of a Nash equilibrium has to be robust to invisible deviations
- Visible deviations may induce some uncertainty on possible deviators (no common knowledge)

- Main outcome of a Nash equilibrium has to be robust to invisible deviations
- Visible deviations may induce some uncertainty on possible deviators (no common knowledge)
- How to systematically track all individual deviations and uncertainty induced by imperfect information monitoring?

- Main outcome of a Nash equilibrium has to be robust to invisible deviations
- Visible deviations may induce some uncertainty on possible deviators (no common knowledge)
- How to systematically track all individual deviations and uncertainty induced by imperfect information monitoring?
- Is that always possible?

- Main outcome of a Nash equilibrium has to be robust to invisible deviations
- Visible deviations may induce some uncertainty on possible deviators (no common knowledge)
- How to systematically track all individual deviations and uncertainty induced by imperfect information monitoring?
- Is that always possible?
- Can we build a finite epistemic structure?

The epistemic game abstraction

Inspired by:

- the standard powerset construction [Rei84]
- the epistemic unfolding for coordination/distributed synthesis
 [BKP11]
- the suspect game [BBMU15]
- the deviator game [Bre16]

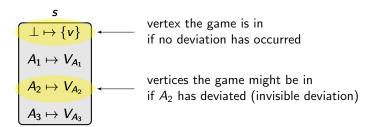
The epistemic game abstraction

Inspired by:

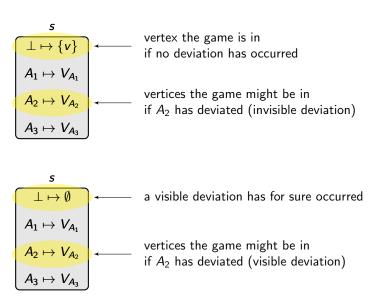
- the standard powerset construction [Rei84]
- the epistemic unfolding for coordination/distributed synthesis
 [BKP11]
- the suspect game [BBMU15]
- the deviator game [Bre16]

The idea is to track all possible undistinguishable behaviours, including the single-player deviations

Epistemic states



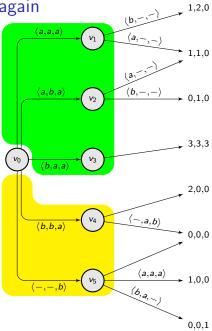
Epistemic states

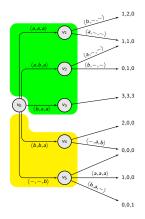


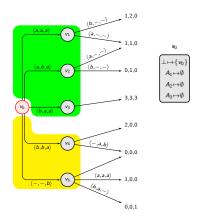
The example again $\langle a, a, a \rangle$ 1,1,0 $\langle a,b,a \rangle$ **→** 0,1,0 3,3,3 v_0 $\langle b, a, a \rangle$ 2,0,0 $\langle -,a,b \rangle$ $\langle b,b,a\rangle$ 0,0,0 $\langle a, a, a \rangle$ 1,0,0 $\langle -, -, b \rangle$

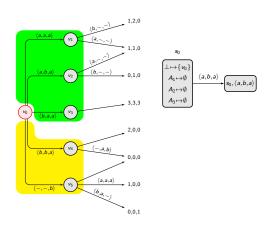
0,0,1

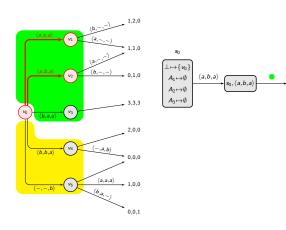
The example again

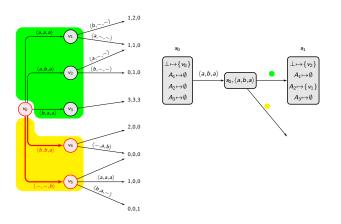


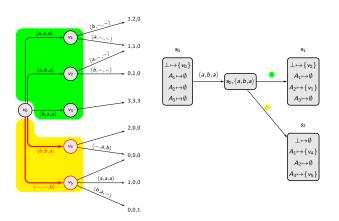


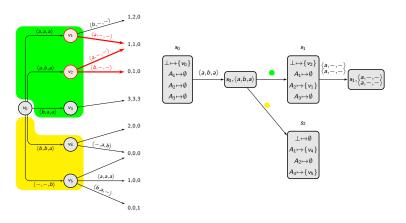


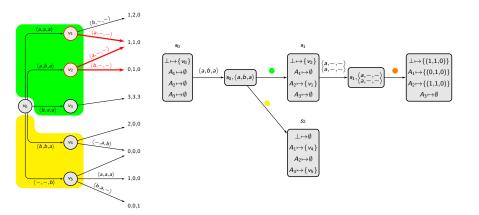


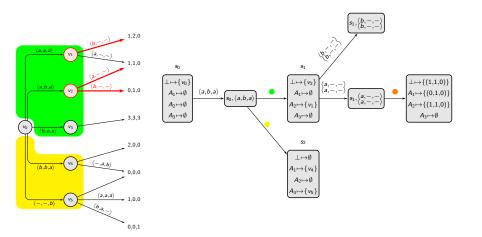


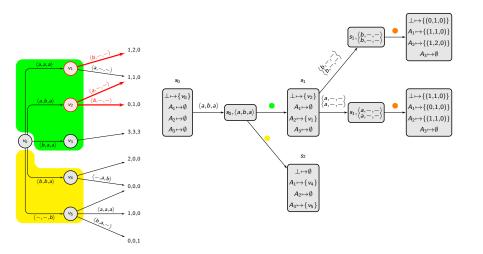


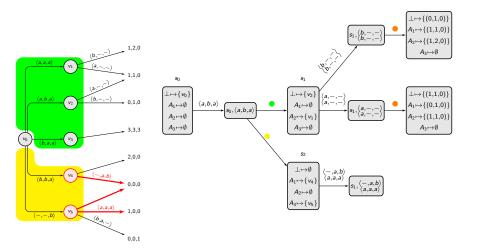


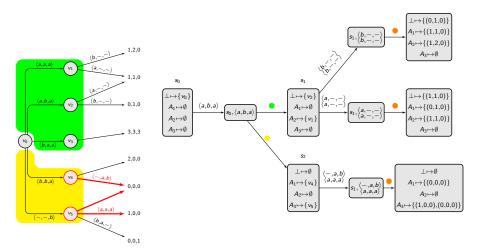


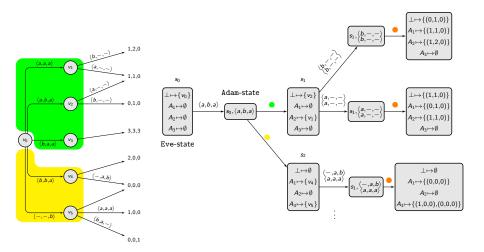












Properties of the epistemic game

- To every history H in the epistemic game, one can associate sets
 - concrete_⊥(H): at most one concrete real history (if no deviation)
 - concrete_A(H): all possible A-deviations
 - $concrete(H) = \bigcup_{A \in Agt \cup \{\bot\}} concrete_A(H)$

Properties of the epistemic game

- To every history H in the epistemic game, one can associate sets
 - $concrete_{\perp}(H)$: at most one concrete real history (if no deviation)
 - concrete_A(H): all possible A-deviations
 - $concrete(H) = \bigcup_{A \in Agt \cup \{\bot\}} concrete_A(H)$

H history in the epistemic game. For every $h_1 \neq h_2 \in \mathit{concrete}(H)$,

$$h_1 \sim_A h_2$$
 iff $h_1, h_2 \notin concrete_A(H)$

Properties of the epistemic game (cont'd)

Winning condition for Eve

A strategy σ_{Eve} is said winning for payoff $p \in \mathbb{R}^{\text{Agt}}$ from s_0 whenever payoff $(concrete_{\perp}(\text{out}_{\perp}(\sigma_{\text{Eve}}, s_0))) = p$, and for every $R \in \text{out}(\sigma_{\text{Eve}}, s_0)$, for every $A \in \text{Agt}$, for every $\rho \in concrete_A(R)$, payoff $_A(\rho) \leq p_A$.

Properties of the epistemic game (cont'd)

Winning condition for Eve (publicly visible payoffs)

A strategy σ_{Eve} is said winning for p from s_0 whenever payoff' $(\text{out}_{\perp}(\sigma_{\text{Eve}}, s_0)) = p$, and for every $R \in \text{out}(\sigma_{\text{Eve}}, s_0)$, for every $A \in \text{susp}(R)$, payoff' $_A(R) \leq p_A$.

Properties of the epistemic game (cont'd)

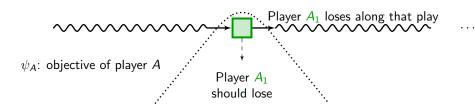
Winning condition for Eve (publicly visible payoffs)

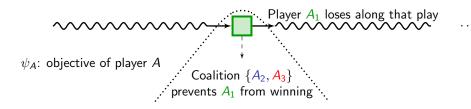
A strategy σ_{Eve} is said winning for p from s_0 whenever payoff' $(\text{out}_{\perp}(\sigma_{\text{Eve}}, s_0)) = p$, and for every $R \in \text{out}(\sigma_{\text{Eve}}, s_0)$, for every $A \in \text{susp}(R)$, payoff' $_A(R) \leq p_A$.

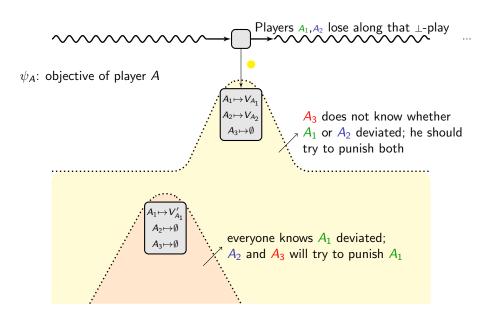
Proposition

There is a Nash equilibrium in \mathcal{G} with payoff p from v_0 if and only if Eve has a winning strategy for p in $\mathcal{E}_{\mathcal{G}}$ from s_0 .

 ψ_A : objective of player A







Application to ω -regular objectives (cont'd)

• This amounts to solving two-player turn-based games with generalized (i.e. conjunctions of) ω -regular objectives

Application to ω -regular objectives (cont'd)

• This amounts to solving two-player turn-based games with generalized (i.e. conjunctions of) ω -regular objectives

Theorem

One can decide the (constrained) existence of a Nash equilibrium in a game with public signal and publicly visible payoff functions associated with parity conditions in EXPSPACE. It is EXPTIME-hard.

Application to ω -regular objectives (cont'd)

• This amounts to solving two-player turn-based games with generalized (i.e. conjunctions of) ω -regular objectives

Theorem

One can decide the (constrained) existence of a Nash equilibrium in a game with public signal and publicly visible payoff functions associated with parity conditions in EXPSPACE. It is EXPTIME-hard.

 By reduction from the distributed synthesis problem (proof of [BK10]):

Theorem

One cannot decide the existence of a Nash equilibrium in a game with private signals and publicly visible ω -regular payoff functions. Even for three players.

Application to mean-payoff functions

• Using results on the polyhedron problem [BR15]:

Theorem

One can decide the (constrained) existence of a Nash equilibrium in a game with public signal and publicly visible mean-payoff functions, in NP, with a coNEXPTIME oracle. This in particular can be solved in EXPSPACE. It is EXPTIME-hard.

Application to mean-payoff functions

• Using results on the polyhedron problem [BR15]:

Theorem

One can decide the (constrained) existence of a Nash equilibrium in a game with public signal and publicly visible mean-payoff functions, in NP, with a coNEXPTIME oracle. This in particular can be solved in EXPSPACE. It is EXPTIME-hard.

 By reduction from blind mean-payoff games (proven undecidable in [DDG+10])

Theorem

One cannot decide the constrained existence of a Nash equilibrium in a game with public signal and privately visible mean-payoff functions. Even for two players.

Conclusion

We have:

- proposed a framework for games over graphs with a public signal monitoring Note: framework inspired by [Tom98]
- proposed an abstraction called the epistemic game abstraction, which allows to detect deviators and tocharacterize Nash equilibria in the original game
- used it to show several decidability results.

Conclusion

We have:

- proposed a framework for games over graphs with a public signal monitoring Note: framework inspired by [Tom98]
- proposed an abstraction called the epistemic game abstraction, which allows to detect deviators and tocharacterize Nash equilibria in the original game
- used it to show several decidability results.

We want to:

- work out the precise complexities
- understand whether one can extend the approach to other communication architectures ([RT98]??)
- understand whether other multiagent frameworks (like fragments of Strategy Logic) can be handled under the assumption of public signal