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Traditional Hybrid Automata

Traditional Hybrid Automata do not model
delay and finite precision in sensing and actuation

Imprecision
Delay

But implementations of hybrid system have
inertial delays and imprecision in sensing and actuation

PLANT CONTROLLER
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Alternative models
 Discrete Hybrid Automata (Torrisi et al) – Consists of

a finite state machine communicating with a
switched affine system through mode selector and
event generator.

 Linear and Polynomial Hybrid Automata (Franzle et
al) –  Semi-decidable in most cases barring some
pathological cases in which safety depends on
complete absence of noise.

 Lazy Linear Hybrid Automata (LLHA) (Agrawal and
Thiagarajan) – Models the inertial delays as well as
finite precision of sensors and actuators. Reachability
in LLHA is decidable.
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Contributions

Goal: To develop  a scalable technique for
reachability analysis of LLHA

 New sound abstraction technique for LLHA
 Along with a counter-example guided approach to

refinement

 Symbolic Bounded Model Checking (BMC) of
abstraction of LLHA, with k-induction
 BMC extended to deal with inertial delays

 Demonstration of scalability of our approach on
examples like TCAS and AHS
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Talk Outline

 Background: Lazy Linear Hybrid
Automata (LLHA)

 Overview of Approach
 Abstraction Hierarchy for LLHA
 Symbolic BMC of LLHA and K-Induction
 Case Studies and Comparison
 Conclusion
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Lazy Linear Hybrid Automata

LLHA is a tuple (X,V,flow,inv,init,E,jump,Σ,syn, D,ε,B,P)

X-Continuous Variables
V-Control Modes / Locations
Flow- Constant rates of change
Inv –Invariants at control modes
E - Control mode switches
Jump - Guards over switches
Σ – reset actions
Syn – synchronization labels
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Lazy Linear Hybrid automata

LLHA is a tuple
(X,V,flow,inv,init,E,jump,Σ,syn,D,ε,B,P)

Corresponding to the interface

D = {g, δg, h, δh} (bounded delays)

Such that g · actuation delay · g+δg

               h · sensing delay · h+δh

The continuous variables are observed by the controller with
precision ε and are expected to be in a range B = [Bmin, Bmax]

The controller samples the values of variables at intervals of period
P. For simplicity, we assume it to be 1.
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Reachability in LLHA [Agrawal-Thiagarajan]

Interface defines an equivalence relation

Let Δ = GCD(P,g,δg,h,δh) and Γ = GCD(RΔ, ε, Bmax, Bmin)
Γ used to construct an equivalence class partitioning.
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Reachability in LLHA [Agrawal-Thiagarajan]

Interface defines an equivalence relation

This equivalence relation is stable with respect to transitions.
[ E(P1,P2) � P1 -> Q1 ] => 9 Q2 s.t. [ P2 -> Q2 � E(Q1,Q2) ]

Ymin, Xmin Xmax

Ymax

0Γ,
0Γ

0Γ,
1Γ

0Γ,
2Γ

0Γ,
3Γ

0Γ,
4Γ

0Γ,
5Γ

0Γ,
6Γ

0Γ,
7Γ

1Γ,
0Γ

1Γ,
1Γ

1Γ,
2Γ

1Γ,
3Γ

1Γ,
4Γ

1Γ,
5Γ

1Γ,
6Γ

1Γ,
7Γ

2Γ,
0Γ

2Γ,
1Γ

2Γ,
2Γ

2Γ,
3Γ

2Γ,
4Γ

2Γ,
5Γ

2Γ,
6Γ

2Γ,
7Γ

3Γ,
0Γ

3Γ,
1Γ

3Γ,
2Γ

3Γ,
3Γ

3Γ,
4Γ

3Γ,
5Γ

3Γ,
6Γ

3Γ,
7Γ

4Γ,
0Γ

4Γ,
1Γ

4Γ,
2Γ

4Γ,
3Γ

4Γ,
4Γ

4Γ,
5Γ

4Γ,
6Γ

4Γ,
7Γ



10

Reachability in LLHA [Agrawal-Thiagarajan]

 Reachability of lazy linear hybrid automata is decidable. Several
relaxations of LLHA like non-linear but computable guards are
also decidable.

 The finite quotient space generated is finite with size
O(|Q|4 22n Σ3n)

Where Q = number of locations
     n = number of continuous variables
     Σ = Bmax/Γ – Bmin /Γ

This can be very large !

For just 4 variables, 4 control modes and Σ as 10,
the above bound is 1.6777216 _ 1019
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Exploring Huge State Space

 Symbolic Bounded Model Checking –
 Similar to Zone automata construction from the

Region automata [Alur & Dill, 94]
 Explicit enumeration avoided
 Uses bit-vector decision procedure UCLID

 Abstraction Refinement –
 Reducing the value Σ in the above formula by

looking at larger quanta Γ

 Establish a hierarchy of sound abstractions with
respect to safety properties.
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Talk Outline

 Background: Lazy Linear Hybrid
Automata (LLHA)

 Overview of Approach
 Abstraction Hierarchy for LLHA
 Symbolic BMC of LLHA and K-Induction
 Case Studies and Comparison
 Conclusion
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Overall Tool Flow

Input

Lazy Linear Hybrid
Automata and

Reachability query

Output

Reachable – A concrete
path to the target state

OR

Unreachable – A proof
based on induction or all

states explored
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Overall Tool Flow

Input

Lazy Linear Hybrid
Automata and

Reachability query

Finite State Model
Constructed by

Abstraction

BMC Engine with
Induction

SAT based Decision
Procedure Bit Vector
Arithmetic - UCLID

SAT/UNSATSMT formula

Abstract FSM Refinement

Output

Reachable – A concrete
path to the target state

OR

Unreachable – A proof
based on induction or all

states explored
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Abstraction of States
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Use 2kΓ instead of Γ for abstraction. The abstraction so
created is called k-abstraction

State space of k-abstraction would be

O(|Q|4 22n (Σ/2k)3n) , i.e. decrease by 23kn
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Abstraction of Transitions
Transition due to switches – Guards and invariants are relaxed.
For example,

 267(x-35)/x·150, that is, x·35£267/117 .
 Let Γ be 1 and the abstraction be taken 25Γ, 8((m-2)/m)·5,

that is, m·6, that is, x·6£25
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Abstraction of Flows

 Key Idea: Adding more flows to preserve simulation

 If rates of change of a variable X is given as the
discrete set Rx = {ri}

 The rates of change of the variable in k-abstraction is
given by
R’x = [i{ bri/2kΓc2kΓ , dri/2kΓe2kΓ }

 So if the rates of change were [a,a+1……b], then the
abstract rates of change is given by
[ ba/2kΓc 2kΓ  ���  db/2kΓe 2kΓ ]
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Abstraction of Flows

Flow :  RateX = { 2Γ, 3Γ }

X
(Γ)

Time (Δ)

Reachable
Configurations in Γ-

abstraction

2

3

1
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Abstraction of Flows

Abstract Flow :  RateX = { 2Γ, 3Γ, 4Γ }

X
(Γ)

Time (Δ)

Reachable
Configurations in
2Γ-abstraction

Spuriously reachable
configurations due to

abstraction

2

1

4

Equivalence Class
in Γ abstraction

Equivalence Class
in 2Γ abstraction
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Key Results

 Simulation Result:
The k-abstraction defined above simulates the lazy linear

hybrid automata.

 Hierarchy Result:
For any k>m, k-abstraction simulates the m-abstraction.



22

Key Results

 Simulation Result:
The k-abstraction defined above simulates the lazy linear

hybrid automata.

 Hierarchy Result:
For any k>m, k-abstraction simulates the m-abstraction.

Corollary: If a configuration is not reachable in k-
abstraction for some k, it is not reachable in any k’-
abstraction for k’ < k and is also not reachable in the
lazy linear hybrid automata.
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Abstraction-Refinement
 Given an LLHA, chose a “suitable” k, to construct a k-

abstraction with tractable state space.

 If the target state is not reachable, then declare safe.

 If the target state is reachable, do counter-example
guided refinement.

 So, sequence of considered abstraction would be
k,k1,k2,…… where  k>k1>k2… So, at most k
iterations.

 Repeat till 0-abstraction. If target state is still
reachable, then it is also reachable in LLHA since 0-
abstraction bisimulates LLHA.

0

k1

k



24

Overall Tool Flow

Input

Lazy Linear Hybrid
Automata and

Reachability query

Finite State Model
Constructed by

Abstraction

BMC Engine with
Induction

SAT based Decision
Procedure Bit Vector
Arithmetic - UCLID

SAT/UNSATSMT formula

Abstract FSM Refinement

Output

Reachable – A concrete
path to the target state

OR

Unreachable – A proof
based on induction or all

states explored
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Talk Outline

 Background: Lazy Linear Hybrid
Automata (LLHA)

 Overview of Approach
 Abstraction Hierarchy for LLHA
 Symbolic BMC of LLHA and K-Induction
 Case Studies and Comparison
 Conclusion
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BMC Formulation

Initial State:

Init(F0) := (l=vstart) � φ0(X),
where l denoted the control mode and
φ0 is the initial predicate over the continuous variables.

Transition Predicate:

T(Fk-1,Fk) := �(i,j) 2 E Gij(Fk-1,Fk) � �i2 V Ei(Fk-1,Fk),
where Gij corresponds to switches and  Ei corresponds to evolutions.

Is Init(F0) � � 0· i · d T(Fi,Fi+1) � !safe(Fd) satisfiable ?
(Is !safe reachable in d-steps)
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Complete IND-BMC

Check if there exists a
simple path unexplored ?

Check if the new paths
found (with length=j) can
reach bad state ?

Check if j-depth induction
can be applied ?

SAT function used in
decision boxes correspond
to calls to underlying
decision procedure - UCLID
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Case study 1: AHS
Normal cruise speed – [a,f]

  Recovery cruise speed – ru, rl

Recovery speed –  slow[b,c]

             fast [d,e]

Possible collision α

Actual collision α’
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Case Study 1: AHS

Phaver times out (>10 hours for 15 cars), our technique took less than 2 minutes
for 150 cars.



31

Case Study 2: Simplified TCAS
Model similar to those considered by Tomlin-Pappas

The parameter values obtained from TCAS document by Avionics

Non-linear
Guard
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Case Study 2: Simplified TCAS

16-abstraction is 10 times
faster than 0-abstraction
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Conclusion

 New sound abstraction technique for LLHA
 Along with a counter-example guided

approach to refinement

 Symbolic Bounded Model Checking (BMC)
of abstraction of LLHA, with k-induction
 BMC extended to deal with inertial delays

 Demonstration of scalability of our
approach on examples like TCAS and AHS


