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Modelling the task graph scheduling problem

A (good) schedule is a strategy in
the product game (with a low cost)
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Weighted /priced timed automata [ALPO1,BFH-+01]
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[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Weighted /priced timed automata
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cost : 6.5 + 0 + 0 + 0.7 —+ 7 = 142
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+10

x<2,c,y:=0
-®
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Question: what is the optimal cost for reaching ©?

OSIQfQ min (5t +102—t)+1,5t+(2—-t)+7)=9

~ strategy: leave immediately ¢y, go to {3, and wait there 2 t.u.

That can be generalized! )

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+-01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
[BBBRO7] Bouyer, Brihaye, Bruyére, Raskin. On the optimal reachability problem (Formal Methods in System Design).
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A simple weighted timed game

x<2,c,y:=0 -
-® ©

+5 (y=0) ~-

Question: what is the optimal cost we can ensure while reaching @?
1

i 10(2 — 1 2 — = =

Ogur:; max (5t +10(2—t)+1,5t+(2—t)+7) =14+ 3

~ strategy: wait in {g, and when t = 3, go to {;
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Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...

[LMMO02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

[ABMO4] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP'04).

[BCFLO4] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS'04).

[BBROS5] Brihaye, Bruyére, Raskin. On optimal timed strategies (FORMATS'05).

[BBMO6] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).

[BLMRO6] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS'06).

[Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (QAPL'11).

[HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (CONCUR'13).

[BGK-+14] Brihaye, Geeraerts, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (CONCUR'14). )
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Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...
[LMMO02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMMO2]
Tree-like weighted timed games can be solved in 2EXPTIME.

[ABMO04,BCFL04|

Depth-k weighted timed games can be solved in EXPTIME. There is a
symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost. )
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Optimal reachability in weighted timed games (2)

[BBRO5,BBMO6]

In weighted timed games, the optimal cost cannot be computed, as soon
as games have three clocks or more.
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Optimal reachability in weighted timed games (2)

[BBRO5,BBMO6]

In weighted timed games, the optimal cost cannot be computed, as soon
as games have three clocks or more.

[BLMRO06,Rut11,HIM13,BGK-+14]

Turn-based optimal timed games are decidable in EXPTIME (resp.
PTIME) when automata have a single clock (resp. with two rates). They
are PTIME-hard.

.
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Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. )
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Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. J

z=0 =~ . ; 5 F
L0 'O_’ Add* (x) ———> Add" (x) —— Add~ (y) —(2)
X=Xp C: Ze-" ’ : ’ E y +2
Y=o PREISS z=0 4 ; "
“0(C Y——> Add™ (x) ——> Add~ (x) Add* (y) - ©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +y+1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3
if yo = 2xp, in both branches, cost =3

~» player 2 can enforce cost 3 + |yo — 2xo|

@ Player 1 has a winning strategy with cost < 3 iff yp = 2xg
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Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=3q
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Computing the optimal cost: why is that hard?
Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1

T 3a

e and y

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.
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@ each instruction is encoded as a module;

@ the counter values ¢; and ¢, are encoded by two clocks:

1
e and Y =3q

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.
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Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:

@ each instruction is encoded as a module;

@ the counter values ¢; and ¢, are encoded by two clocks:

1
e and Y =3q

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.
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V y=1,y:=0

V y=1,y:=0 Test, (x=2z)
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Given G a weighted timed game,
@ a strategy o is winning whenever all its outcomes are winning;

@ Cost of a winning strategy o
cost(o) = sup{cost(p) | p outcome of o up to the target}

@ Optimal cost:
optcostg = inf cost(o)

o winning strat.

(set it to 400 if there is no winning strategy)

Two problems of interest

@ The value problem asks, given G and a threshold > ¢, whether
optcostg > c?

@ The existence problem asks, given G and a threshold 1 ¢, whether
there exists a winning strategy in G such that cost(c) < ¢?
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Are we done? No! Let's be a bit more precise!

Given G a weighted timed game,
@ a strategy o is winning whenever all its outcomes are winning;

@ Cost of a winning strategy o
cost(o) = sup{cost(p) | p outcome of o up to the target}

@ Optimal cost:
optcostg = inf cost(o)

o winning strat.

(set it to 400 if there is no winning strategy)

Two problems of interest

@ The value problem asks, given G and a threshold > ¢, whether
optcostg > c?

@ The existence problem asks, given G and a threshold 1 ¢, whether
there exists a winning strategy in G such that cost(c) < ¢?

Note: These problems are distinct...
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The value of the game is 3, but no strategy has cost 3. J
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@ Weighted timed automata

In weighted timed automata, the optimal cost is an integer, and can be
computed in PSPACE. J
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computed-in-PSPACE.-

The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.
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@ Weighted timed automata

computed-in-PSPACE.-
The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.

@ Weighted timed games

Turn-based optimal timed games are decidable in EXPTIME when automata
have a single clock. J
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@ Weighted timed automata

computed-in-PSPACE.-
The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.

@ Weighted timed games

have-asingleclock:
The value problem is decidable in EXPTIME in single-clock weighted timed
games. Almost-optimal memoryless winning strategies can be computed.

There is a symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost.
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@ Weighted timed automata

eomputed—PSPACE-
The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.

@ Weighted timed games

have-asingleeloek:
The value problem is decidable in EXPTIME in single-clock weighted timed
games. Almost-optimal memoryless winning strategies can be computed.

nen-Zene—<€ost:
The value problem can be decided in EXPTIME in weighted timed games with
a strongly non-Zeno cost. Almost-optimal winning strategies can be computed.

In weighted timed games, the optimal cost cannot be computed, as soon as
games have three clocks or more.
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@ Weighted timed automata

eomputed—PSPACE-
The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.

@ Weighted timed games

have-a-single-—cloek:
The value problem is decidable in EXPTIME in single-clock weighted timed
games. Almost-optimal memoryless winning strategies can be computed.

non-Zeno—cost:
The value problem can be decided in EXPTIME in weighted timed games with
a strongly non-Zeno cost. Almost-optimal winning strategies can be computed.

games-have-three—clocks-ormeore:

The existence problem is undecidable in weighted timed games.
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Our recent developments

@ The value problem is undecidable in weighted timed games
~ Intellectually satisfactory to not have this discrepancy in the set of
results
~ A first proof based on a diagonal construction (originally proposed in

the context of quantitative temporal logics [BMM14] — see Nicolas
Markey's talk)

~> A second direct proof

[BMM14] Bouyer, Markey, Matteplackel. Averaging in LTL (CONCUR'14).
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Our recent developments

@ The value problem is undecidable in weighted timed games
~ Intellectually satisfactory to not have this discrepancy in the set of
results
~ A first proof based on a diagonal construction (originally proposed in

the context of quantitative temporal logics [BMM14] — see Nicolas
Markey's talk)

~> A second direct proof

@ An approximation algorithm for a large class of weighted timed
games (that comprises the class of games used for proving the above
undecidability)

o Almost-optimality in practice should be sufficient
o Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

[BMM14] Bouyer, Markey, Matteplackel. Averaging in LTL (CONCUR'14).
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A snapshot on the undecidability proof

™

C_"" Instruction

C_"" Test module
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A snapshot on the undecidability proof
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Leave with cost 3+ 1/2" (n: length of the path)
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A snapshot on the undecidability proof

Leave

M does not halt iff the
value of Gaq is 3 J

Leave

Leave

Leave <—O

Leave with cost 3+ 1/2" (n: length of the path)

16/25



Optimal cost is computable...
. when cost is strongly non-zeno. [AMO04,BCFL04]

That is, there exists £ > 0 such that for every region cycle C, for every real run
o read on C,
cost(p) > K

Optimal cost is not computable...
. when cost is almost-strongly non-zeno.

That is, there exists K > 0 such that for every region cycle C, for every real run
o read on C,
cost(g) > Kk or cost(p) =0

Note: In both cases, we can assume k = 1.
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Optimal cost is computable...
. when cost is strongly non-zeno. [AMO04,BCFL04]

That is, there exists £ > 0 such that for every region cycle C, for every real run
o read on C,
cost(p) > K

Optimal cost is not computable... but is approximable!
. when cost is almost-strongly non-zeno. [BIJM15]

That is, there exists K > 0 such that for every region cycle C, for every real run
o read on C,
cost(g) >k or cost(p) =0

Note: In both cases, we can assume k = 1.

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games.
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Approximation of the optimal cost

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every ¢ > 0, one can compute:

@ two values v and v such that

lv.m —vo|<e and v_ <opteostg < v
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Approximation of the optimal cost

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every ¢ > 0, one can compute:

@ two values v, and v/ such that
lv.m —vo|<e and v_ <opteostg < v
@ one strategy o, such that

optcostg < cost(o.) < optcostg + €

It is an e-optimal winning strategy.

@ Standard technics: unfold the game to get more precision, and
compute two adjacency sequences
~> This is not possible here
There might be runs with prefixes of arbitrary length and cost 0 (e.g. the
game of the undecidability proof)
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|dea for approximation

Idea

Only partially unfold the game:
@ Keep components with cost 0 untouched — we call it the kernel
@ Unfold the rest of the game
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Semi-unfolding

Only cost 0
Kernel K

Only cost 0
Kernel K
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Semi-unfolding

Only cost 0
Kernel K

Hypothesis:

cost > 0 implies cost > K
Only cost 0
Kernel KC

20/25



Semi-unfolding

Only cost 0
Kernel K

Hypothesis:

cost > 0 implies cost > K
Only cost 0
Kernel KC

Conclusion: we can stop unfolding the game after N steps
(e.g. N=(M+2)-|R(A)

, where M is a pre-computed bound on optcost)
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Approximation scheme
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Approximation scheme
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Approximation scheme
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Approximation scheme
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First step: Tree-like parts

~ Goes back to [LMMO02]

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
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First step: Tree-like parts

~ Goes back to [LMMO02]

I/ o(¢,v) = t’|v4i»r:ff):g’ max((a), )
g/, Y/ \\ g//- Y//
/! \\ c//

\
Y
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Ogl OZ// () = tc+c + O(ﬁl, V’)
o, vy o v

v/ =[Y'«0](v+t')
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First step: Tree-like parts

~ Goes back to [LMMO02]

l o, v) = t’|v4i»r:.f):g’ max((a), (7))
g/, Y/ \\ g//- y//
/! \\ c//

\

c
”
OE/ OZ// () = tc+c + O(ﬁl, V’)
ow,v) oW v")
(B) = sup t'c+c+ 0" v")
t//St/|V+t//':g//

v/ =[Y'«0](v+t')
v =[Y" +0](v+t")

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
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Second step: Kernels
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Second step: Kernels

@ Refine the regions such that f differs
of at most e within a small region

A
I
b ‘b' @ Under- and:‘c‘)ver—approx“i‘mate by

piecewise constant functions .~ and
£

Output cost functions f
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Second step: Kernels

@ Refine/split the kernel along the new
small regions and fix 7 or ", write f;

f.: constant  f.: constant
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Second step: Kernels

@ Refine/split the kernel along the new
small regions and fix 7 or ", write f;

@ Since cost is 0 everywhere, the
resulting game is nothing more than a
constant reachability timed game with an order
on target (output) edges (given by f.)

O/\A © Those can be solved using standard

7 technics based on attractors: small
/ : regions are sufficient, and the local
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Second step: Kernels

@ Refine/split the kernel along the new
small regions and fix 7 or ", write f;

@ Since cost is 0 everywhere, the
resulting game is nothing more than a

reachability timed game with an order
‘ on target (output) edges (given by f.)
! © Those can be solved using standard
O/\N/ technics based on attractors: small
/ : regions are sufficient, and the local
?—» O—>L_YI optimal cost (for output 7.) is constant
Z within a small region
~» We have computed e-approximations of
™ ™ the optimal cost, which are constant

within small regions. Corresponding
strategies can be inferred
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Conclusion

Summary of the talk

@ Very quick overview of results concerning the optimal reachability
problem in weighted timed games
@ Some new insight into the value problem for this model:

e Undecidability of this problem
o Approximability of the optimal cost
(under some conditions)
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Conclusion

Summary of the talk
@ Very quick overview of results concerning the optimal reachability
problem in weighted timed games
@ Some new insight into the value problem for this model:

e Undecidability of this problem
o Approximability of the optimal cost
(under some conditions)

Future work

IX|
@ Improve the approximation scheme (2EXP(|G|) - (1/6) )

@ Extend to the whole class of weighted timed games, or understand
why it is not possible
@ Assume stochastic uncertainty?
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