On the value problem
in weighted timed games

Patricia Bouyer-Decitre
LSV, CNRS & ENS Cachan, France

Joint work with Samy Jaziri and Nicolas Markey

1/25

An example: The task graph scheduling problem

Compute Dx(Cx(A+B))+(A+B)+(CxD) using two processors:

P, (fast):
time
+ | 2 picoseconds
L ke X | 3 picoseconds
n
o
- energy
ide [10 Watt
in use | 90 Watts

P, (slow):
time
=F | 5 picoseconds

7 picoseconds

energy
idle [20 Watts
in use | 30 Watts

A B c D
T1 T2
c
N
T3 T,
D
b N
Ts Te

2/25

An example: The task graph scheduling problem

Compute Dx(Cx(A+B))+(A+B)+(CxD) using two processors:

D
Py (fast): Py (slow): - -
time time c
3F | 2 picoseconds =F | 5 picoseconds \
X | 3 picoseconds 7 picoseconds A A
; energy energy R
ide [10 Watt idle [20 Watts X
in use | 90 Watts in use | 30 Watts Ts Te
0 10 15 20 25
T
P n || | T T B
2 2 3 5 6 L35 0secq, !
G Py T T4 ‘ ‘ | reiouteg

2/25

An example: The task graph scheduling problem

Compute Dx(Cx(A+B))+(A+B)+(CxD) using two processors: A B c b
Py (fast): P, (slow):
! (fast) 2 (slow) R R
time time c
+ ‘ 2 picoseconds =F ‘ 5 picoseconds \
X ‘ 3 picoseconds

7 picoseconds
T3 Ty
energy R

energy
ide [10 Watt idle [20 Watts @_»
in use ‘ 90 Watts in use ‘ 30 Watts Ts Te
0 5 10 15 20 25
1
P T, ‘ ‘ T. ‘ T, i ! \
z 1 2 3 5 6 L3 secg, \7
» P, T Ty ‘ ‘ ‘ ['Qjoy/,
Pl T ‘ T ‘ Te T, T, f b
o 1| ™o 3 5 4 6 L. 39 05ecop \7
e ™ HEEN ||

2/25

An example: The task graph scheduling problem

Compute Dx(Cx(A+B))+(A+B)+(CxD) using two processors:

o

Py (fast): Py (slow): - -
time time c 1
+ ‘ 2 picoseconds =F ‘ 5 picoseconds \
X ‘ 3 picoseconds 7 picoseconds

T3T Ty
D
energy P

energy
ide [10 Watt idle [20 Watts @_»
in use ‘ 90 Watts in use ‘ 30 Watts Ts Te
0 5 10 15 20 25
P T, ‘ ‘ T ‘ i i F 13, [
g 1 2 3 5 6 1.37, %Secony ‘f
» P, T Ty ‘ ‘ ‘ [oy
Pl T ‘ T ‘ Te T, T, f b
o 1| ™o 3 5 4 6 e ;J:EFDWS ‘7
e ™ HEEN ||
1
e s [L [T
£ 1] 3 4 1.3) %Secong, ‘f
2 Py T2 Ts Te | | oules

2/25

The model of timed automata

<25
done: 0=

repairing

A .
¥ repair
2<yAx<56

problem, x:=0

y:=0

3/25

The model of timed automata

0%y <%

problem, x:=0

23 problen 15.6
safe — safe — alarm ——
X 0 23 0
y 0 23 23
) 2.3) repair
failsafe ~—> failsafe ~———> repairing
15.6 17.9 17.9
0 2.3 0

repairing

repair

y:=0

alarm
15.6
38.6

22.1

2<yAx<56

delayed

repairing
40
22.1

failsafe
15.6
0
ﬁf—) safe
40
22.1

3/25

Modelling the task graph scheduling problem

4/25

Modelling the task graph scheduling problem

@ Processors

Py x=2 x=3
done; done;

(x=<2) x:=0 x:=0 (x<3)
Py: y=5 y=7

doney @ doney
addy multy

(y<5) x=o =0 W=7)

4/25

Modelling the task graph scheduling problem

@ Processors

Py x=2 x=3
done; done;
(x=<2) x:=0 x:=0 (x<3)
= =7
Py: y=5 Y
doney doney
(y<5) x:=0 x:=0 (r<7)

Ty

Ts.

@ Tasks

o=
add;

0
done;

O~

add;

O O

—O

done;

A schedule is a path in the product automaton)

4/25

Modelling the task graph scheduling problem

@ Processors

P x=2 x=3
done; done;
add; multy

(x<2) -0 x=0 (x<3)
Py y=5 y=7
donep donep
addy multy

(y<5) x:=0 x:=0 (v<7)

@ Modelling energy

P, x=2 x=3
done; done;
addy multy
(x=2) x:=0 x:=0 (x=3)
=5 =7
Ps: Y v
doney donep
addy multy
<5 e = (<)

@ Tasks

Tal _tiAt
O add;
t3
O add;

t4::b
done;

t5:=
done; O

Ts.

O O

A good schedule is a path in the
product automaton with a low cost

4/25

Modelling the task graph scheduling problem

@ Processors

P x=2 x=3
done; done;
add; multy

(x=2) x:=0 x:=0 (x<3)
Py y:5 y:7
donep donep
addy multy

(y<5) x:=0 x:=0 (r<7)

@ Modelling energy

Py x=2 x=3
done; done;
addy multy
(x=2) x:=0 x:=0 (x=3)
=5 =7
Ps: Y v
doney donep
addy multy
<5 e = (<)

@ Tasks

Tal _tiAt
O add;
t3
O add;

t4::b
done;

ts:=1
done; O

Ts.

O O

@ Modelling uncertainty

X x>1 x>1
P e T TTA Y I I
done; done;
(x<2) x:=0 x:=0 (x<3)
X y>3 y>2
P2 e T T T Y IR
donep donep
(x<2) x:=0 x:=0 (x<3)

4/25

Modelling the task graph scheduling problem

A (good) schedule is a strategy in
the product game (with a low cost)

4/25

Weighted /priced timed automata [ALPO1,BFH-+01]
+10

x<2,c,y:=0
-®

+5

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

5/25

Weighted /priced timed automata

x<2,c,y:=0
~®

+5
6w 2o S o0 Ao 2 o S O
x 0 13 13 13 2

y 0 1.3 0 0 0.7

5/25

Weighted /priced timed automata

x<2,c,y:=0
~®

+5

o o S o Lo 2o S 0O
x 0 13 13 13 2
y 0 13 0 0 0.7

5/25

Weighted /priced timed automata

x<2,c,y:=0
~®

+5

o o S o Lo 2o S 0O
x 0 13 13 13 2
y 0 13 0 0 0.7

cost : 6.5

5/25

Weighted /priced timed automata

+10

x<2,c,y:=0
~®

+5

f{) E} é’[) — 81 AU—> (,3 —01—> (3 AC—> ©
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

5/25

Weighted /priced timed automata

+10

x<2,c,y:=0
~®

+5

f{) E} é’[) — 81 AU—> (,3 —01—> (3 AC—> ©
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

5/25

Weighted /priced timed automata

+10

x<2,c,y:=0
~®

+5

f{) E} é’[) — 81 AU—> (,3 —01—> (3 AC—> ©
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

5/25

Weighted /priced timed automata

+10

x<2,c,y:=0
~®

+5

f{) E} é’[) — 81 AU—> (,3 —01—> (3 AC—> ©
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

5/25

Weighted /priced timed automata

+10

x<2,c,y:=0
-®

+5

6w 2o S o0 Ao 2 o S O
x 0 13 13 13 2
y 0 13 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 —+ 7 = 142

5/25

Weighted /priced timed automata

x<2,c,y:=0
-®

+5

Question: what is the optimal cost for reaching ©?

5/25

Weighted /priced timed automata

x<2,c,y:=0
-®

+5

Question: what is the optimal cost for reaching ©?

5t+10(2—t)+1

5/25

Weighted /priced timed automata

x<2,c,y:=0
-®

+5

+1

Question: what is the optimal cost for reaching ©?

5t+10(2—t)+1,5t+(2—t)+7

5/25

Weighted /priced timed automata

x<2,c,y:=0
-®

+5

+1

Question: what is the optimal cost for reaching ©?

min (5t +10(2 —t) + 1,5t +(2—1t)+7)

5/25

Weighted /priced timed automata

x<2,c,y:=0
-®

+5

+1

Question: what is the optimal cost for reaching ©?

0§|qu2 min (5t +102—t)+1,5t+(2—-t)+7)=9

5/25

Weighted /priced timed automata

x<2,c,y:=0
-®

+5

+1

Question: what is the optimal cost for reaching ©?

OSIQfQ min (5t +102—t)+1,5t+(2—-t)+7)=9

~ strategy: leave immediately ¢y, go to {3, and wait there 2 t.u.

5/25

Weighted /priced timed automata

+10

x<2,c,y:=0
-®

+5

Question: what is the optimal cost for reaching ©?

OSIQfQ min (5t +102—t)+1,5t+(2—-t)+7)=9

~ strategy: leave immediately ¢y, go to {3, and wait there 2 t.u.

That can be generalized!)

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+-01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
[BBBRO7] Bouyer, Brihaye, Bruyére, Raskin. On the optimal reachability problem (Formal Methods in System Design).

5/25

A simple timed game

6/25

A simple weighted timed game

x<2,c,y:=0 -
~@ ®

+5 (y=0) AN

6/25

A simple weighted timed game

x<2,c,y:=0 Phs
~© @

+5 (y=0) ~-

Question: what is the optimal cost we can ensure while reaching @?

6/25

A simple weighted timed game

x<2,c,y:=0 -
~© @

+5 (y=0) ~-

Question: what is the optimal cost we can ensure while reaching @?

5t+10(2—t) +1

6/25

A simple weighted timed game

x<2,c,y:=0 -
~© @

+5 (y=0) ~-

Question: what is the optimal cost we can ensure while reaching @?

5t+102—t)+1,5t+(2—-t)+7

6/25

A simple weighted timed game

x<2,c,y:=0 -
~© @

+5 (y=0) ~-

Question: what is the optimal cost we can ensure while reaching @?

max (5t +10(2—t)+ 1,5t +(2—t)+7)

6/25

A simple weighted timed game

x<2,c,y:=0 -
-®)

+5 (y=0) "~

Question: what is the optimal cost we can ensure while reaching @?

. 1
Oér:; max (5t +10(2 —¢t)+ 1, 5t+(2—t)+7)—14+§

6/25

A simple weighted timed game

x<2,c,y:=0 -
-® ©

+5 (y=0) ~-

Question: what is the optimal cost we can ensure while reaching @?
1

i 10(2 — 1 2 — = =

Ogur:; max (5t +10(2—t)+1,5t+(2—t)+7) =14+ 3

~ strategy: wait in {g, and when t = 3, go to {;

6/25

Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...

[LMMO02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

[ABMO4] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP'04).

[BCFLO4] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS'04).

[BBROS5] Brihaye, Bruyére, Raskin. On optimal timed strategies (FORMATS'05).

[BBMO6] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).

[BLMRO6] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS'06).

[Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (QAPL'11).

[HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (CONCUR'13).

[BGK-+14] Brihaye, Geeraerts, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (CONCUR'14).)
7/25

Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...
[LMMO02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK-+14]

[LMMO2]
Tree-like weighted timed games can be solved in 2EXPTIME. J

7/25

Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...
[LMMO02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMMO2]
Tree-like weighted timed games can be solved in 2EXPTIME.

[ABMO04,BCFL04|

Depth-k weighted timed games can be solved in EXPTIME. There is a
symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost.)

7/25

Optimal reachability in weighted timed games (2)

[BBRO5,BBMO6]

In weighted timed games, the optimal cost cannot be computed, as soon
as games have three clocks or more.

8/25

Optimal reachability in weighted timed games (2)

[BBRO5,BBMO6]

In weighted timed games, the optimal cost cannot be computed, as soon
as games have three clocks or more.

[BLMRO06,Rut11,HIM13,BGK-+14]

Turn-based optimal timed games are decidable in EXPTIME (resp.
PTIME) when automata have a single clock (resp. with two rates). They
are PTIME-hard.

.

8/25

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)

9/25

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)
Add™* (x) Add™ (x)
y=1,y:=0 y=1,y:=0 y=L,y:= y=L,y:=0
z:=0 Q x=1,x:=0 Q z=1,z:=0 z:=0 Q x=1,x:=0 Q z=1,z:=0
U \J \J U
0 1 _. 1 0

The cost is increased by xy The cost is increased by 1—xg

9/25

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)

)

2
o O
Y=Yo ;‘

=0

9/25

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)

=0 'O_" Add " (x) ——— Add" (x) ——— Add" (y) —»@
x=x0 z.- e e ——— T +2
Y=Y [) ~‘~§A 2=0

¥=0 O—» Add ™ (x) ———> Add™ (x) ——> Add" (y) —1>©

° In@, cost =2xp + (1 — y) +2

9/25

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)

0 O Add (1) ——— Add () ——— ‘A'aa!(;;;_><+2 D)
- O O R ——» R —— RO —— @
° In@, cost =2xp + (1 — y) +2

In @ cost =2(1 —xp) +yo +1

9/25

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)

J e —
;=0 'O_> Add* (x) — > Add" (x) — > Add~(y) —>©
x=x0 z.- +2
Y=Y C ‘~~~A 2=0

<=0 O—» Add™ (x) =——> Add™ (x) > Add"(y) —1>©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +yo +1

o if yp < 2xp, player 2 chooses the first branch: cost > 3

9/25

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)

J e —
;=0 'O_> Add* (x) — > Add" (x) — > Add~(y) —>©
x=x0 z.- +2
Y=Y C ‘~\~L 2=0

<=0 O—» Add™ (x) =——> Add™ (x) > Add"(y) —1>©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +yo +1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3

9/25

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. J

=0 - . o . .
=0 'O_> Add (x) ———> Add" (x) ——— Add~(y) —»@
X=Xp C: Ze-" ’ ’ E y +2
Y=o MDY z=0 4 ; "

=<0 Y Add™ (x) —— Add~ (x) Add* (y) - ©

° In@, cost =2xp + (1 — y) +2
In @ cost =2(1 —xp) +y+1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3
if yo = 2xp, in both branches, cost =3

9/25

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. J

=0 - . o . .
=0 'O_> Add (x) ———> Add" (x) ——— Add~(y) —»@
X=Xp C: Ze-" ’ ’ E y +2
Y=o MDY z=0 4 ; "

=<0 Y Add™ (x) —— Add~ (x) Add* (y) - ©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +y+1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3
if yo = 2xp, in both branches, cost =3

~» player 2 can enforce cost 3 + |yo — 2xo|

9/25

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. J

z=0 =~ . ; 5 F
L0 'O_’ Add* (x) ———> Add" (x) —— Add~ (y) —(2)
X=Xp C: Ze-" ’ : ’ E y +2
Y=o PREISS z=0 4 ; "
“0(C Y——> Add™ (x) ——> Add~ (x) Add* (y) - ©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +y+1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3
if yo = 2xp, in both branches, cost =3

~» player 2 can enforce cost 3 + |yo — 2xo|

@ Player 1 has a winning strategy with cost < 3 iff yp = 2xg

9/25

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=3q

10/25

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X = — and)/:3—62

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3. J

10/25

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=3q

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3. J

Globally, (x<1,y<1,u<1)

x=1,x:=0 x=1,x:=0)
V y=1,y:=0 V y=1,y:=0 Test, (x=2z)

A :
u:=0 Q 2:=0 Q u=1,u:=0 , (u=0)
J J O

10/25

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=3q

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3. J

x=1,x:=0 x=1,x:=0)
V y=1,y:=0 V y=1,y:=0 Test, (x=2z)

A :
u:=0 Q 2:=0 Q u=1,u:=0 , (u=0)
J J O

10/25

Computing the optimal cost: why is that hard?
Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1

e and Y =3q

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

x=1,x:=0 x=1,x:=0
VvV y=1l,y:=0 V y=1,y:=0 Test, (x=2z)
A
u:=0 Q 2:=0 Q u=1,u:=0 , (u=0)
O O o

10/25

Computing the optimal cost: why is that hard?
Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1

T 3a

e and y

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

x=1,x:=0 x=1,x:=0
V y=1,y:=0 V y=1,y:=0 Test, (x=2z)
u:=0 Q 2:=0 Q u=1,u:=0 (u=0)
\J \J
x=3e x=5+a
_1 _ 1
Y=3d y737+a
z=%

z=0

10/25

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:

@ each instruction is encoded as a module;

@ the counter values ¢; and ¢, are encoded by two clocks:

1
e and Y =3q

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

)

x=1,x:=0 x=1,x:=0
V y=1,y:=0 VvV y=1,y:=0 Test, (x=2z)
u:=0 Q 2:=0 Q u=1,u:=0 (u=0)
O O O
x:z% x:2%+oc xX=
—1 _1
Y=3d y737+a
z=x%

z=0

NS
T
Q G~ W=

10/25

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:

@ each instruction is encoded as a module;

@ the counter values ¢; and ¢, are encoded by two clocks:

1
e and Y =3q

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

)

x=1,x:=0
V y=1,y:=0

V y=1,y:=0 Test, (x=2z)
u:=0 Q z:=0 Q
\J

u=1,u:=0 O
=L

_1 _1
y=sate Y=3d
z=0 z

(u=0)

1 _1
3¢ X=zc+to
=1
Y=3d
*

N

_ 1
= gert

10/25

Shape of the reduction

11/25

Shape of the reduction

— —
AS A
o—> ~
(—
BN c— |
(c—
" Instruction o

" Test module

11/25

Are we done?

12/25

Are we done? No! Let's be a bit more precise!

12/25

Are we done? No! Let's be a bit more precise!

Given G a weighted timed game,

@ a strategy o is winning whenever all its outcomes are winning;

12/25

Are we done? No! Let's be a bit more precise!

Given G a weighted timed game,
@ a strategy o is winning whenever all its outcomes are winning;

@ Cost of a winning strategy o

cost(o) = sup{cost(p) | p outcome of o up to the target}

12/25

Are we done? No! Let's be a bit more precise!

Given G a weighted timed game,
@ a strategy o is winning whenever all its outcomes are winning;

@ Cost of a winning strategy o
cost(o) = sup{cost(p) | p outcome of o up to the target}

@ Optimal cost:
optcostg = inf cost(o)

o winning strat.

(set it to 400 if there is no winning strategy)

12/25

Are we done? No! Let's be a bit more precise!

Given G a weighted timed game,
@ a strategy o is winning whenever all its outcomes are winning;

@ Cost of a winning strategy o
cost(o) = sup{cost(p) | p outcome of o up to the target}

@ Optimal cost:
optcostg = inf cost(o)

o winning strat.

(set it to 400 if there is no winning strategy)

Two problems of interest

@ The value problem asks, given G and a threshold i ¢, whether
optcostg > c?

12/25

Are we done? No! Let's be a bit more precise!

Given G a weighted timed game,
@ a strategy o is winning whenever all its outcomes are winning;

@ Cost of a winning strategy o
cost(o) = sup{cost(p) | p outcome of o up to the target}

@ Optimal cost:
optcostg = inf cost(o)

o winning strat.

(set it to 400 if there is no winning strategy)

Two problems of interest

@ The value problem asks, given G and a threshold > ¢, whether
optcostg > c?

@ The existence problem asks, given G and a threshold 1 ¢, whether
there exists a winning strategy in G such that cost(c) < ¢?

12/25

Are we done? No! Let's be a bit more precise!

Given G a weighted timed game,
@ a strategy o is winning whenever all its outcomes are winning;

@ Cost of a winning strategy o
cost(o) = sup{cost(p) | p outcome of o up to the target}

@ Optimal cost:
optcostg = inf cost(o)

o winning strat.

(set it to 400 if there is no winning strategy)

Two problems of interest

@ The value problem asks, given G and a threshold > ¢, whether
optcostg > c?

@ The existence problem asks, given G and a threshold 1 ¢, whether
there exists a winning strategy in G such that cost(c) < ¢?

Note: These problems are distinct...

12/25

The value of the game is 3, but no strategy has cost 3. J

13/25

The value of the game is 3, but no strategy has cost 3.)

13/25

The value of the game is 3, but no strategy has cost 3. J

13/25

@ Weighted timed automata

In weighted timed automata, the optimal cost is an integer, and can be
computed in PSPACE. J

14/25

@ Weighted timed automata

computed-in-PSPACE.-

The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.

14/25

@ Weighted timed automata

computed-in-PSPACE.-
The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.

@ Weighted timed games

Turn-based optimal timed games are decidable in EXPTIME when automata
have a single clock. J

14/25

@ Weighted timed automata

computed-in-PSPACE.-
The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.

@ Weighted timed games

have-asingleclock:
The value problem

is decidable in EXPTIME in single-clock weighted timed
games. Almost-optimal memoryless winning strategies can be computed.

14/25

@ Weighted timed automata

computed-in-PSPACE.-
The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.

@ Weighted timed games

have-asingleclock:
The value problem is decidable in EXPTIME in single-clock weighted timed
games. Almost-optimal memoryless winning strategies can be computed.

There is a symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost.

14/25

@ Weighted timed automata

computed-in-PSPACE.-
The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.

@ Weighted timed games

have-asingleclock:
The value problem is decidable in EXPTIME in single-clock weighted timed
games. Almost-optimal memoryless winning strategies can be computed.

non-Zeno—cost:
The value problem can be decided in EXPTIME in weighted timed games with
a strongly non-Zeno cost. Almost-optimal winning strategies can be computed.

14/25

@ Weighted timed automata

eomputed—PSPACE-
The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.

@ Weighted timed games

have-asingleeloek:
The value problem is decidable in EXPTIME in single-clock weighted timed
games. Almost-optimal memoryless winning strategies can be computed.

nen-Zene—<€ost:
The value problem can be decided in EXPTIME in weighted timed games with
a strongly non-Zeno cost. Almost-optimal winning strategies can be computed.

In weighted timed games, the optimal cost cannot be computed, as soon as
games have three clocks or more.

14/25

@ Weighted timed automata

eomputed—PSPACE-
The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.

@ Weighted timed games

have-a-single-—cloek:
The value problem is decidable in EXPTIME in single-clock weighted timed
games. Almost-optimal memoryless winning strategies can be computed.

non-Zeno—cost:
The value problem can be decided in EXPTIME in weighted timed games with
a strongly non-Zeno cost. Almost-optimal winning strategies can be computed.

games-have-three—clocks-ormeore:

The existence problem is undecidable in weighted timed games.

14/25

Our recent developments

@ The value problem is undecidable in weighted timed games
~ Intellectually satisfactory to not have this discrepancy in the set of
results
~ A first proof based on a diagonal construction (originally proposed in

the context of quantitative temporal logics [BMM14] — see Nicolas
Markey's talk)

~> A second direct proof

[BMM14] Bouyer, Markey, Matteplackel. Averaging in LTL (CONCUR'14).

15/25

Our recent developments

@ The value problem is undecidable in weighted timed games
~ Intellectually satisfactory to not have this discrepancy in the set of
results
~ A first proof based on a diagonal construction (originally proposed in

the context of quantitative temporal logics [BMM14] — see Nicolas
Markey's talk)

~> A second direct proof

@ An approximation algorithm for a large class of weighted timed
games (that comprises the class of games used for proving the above
undecidability)

o Almost-optimality in practice should be sufficient
o Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

[BMM14] Bouyer, Markey, Matteplackel. Averaging in LTL (CONCUR'14).

15/25

A snapshot on the undecidability proof

™

C_"" Instruction

C_"" Test module

16/25

A snapshot on the undecidability proof

™

C_"" Instruction

C_"" Test module

16/25

A snapshot on the undecidability proof

Leave

Leave

Leave

Leave <—O

Leave with cost 3+ 1/2" (n: length of the path)

16/25

A snapshot on the undecidability proof

Leave

M does not halt iff the
value of Gaq is 3 J

Leave

Leave

Leave <—O

Leave with cost 3+ 1/2" (n: length of the path)

16/25

Optimal cost is computable...
. when cost is strongly non-zeno. [AMO04,BCFL04]

That is, there exists £ > 0 such that for every region cycle C, for every real run
o read on C,
cost(p) > K

Optimal cost is not computable...
. when cost is almost-strongly non-zeno.

That is, there exists K > 0 such that for every region cycle C, for every real run
o read on C,
cost(g) > Kk or cost(p) =0

Note: In both cases, we can assume k = 1.

17/25

Optimal cost is computable...
. when cost is strongly non-zeno. [AMO04,BCFL04]

That is, there exists £ > 0 such that for every region cycle C, for every real run
o read on C,
cost(p) > K

Optimal cost is not computable... but is approximable!
. when cost is almost-strongly non-zeno. [BIJM15]

That is, there exists K > 0 such that for every region cycle C, for every real run
o read on C,
cost(g) >k or cost(p) =0

Note: In both cases, we can assume k = 1.

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games.

17/25

Approximation of the optimal cost

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every ¢ > 0, one can compute:

@ two values v and v such that

lv.m —vo|<e and v_ <opteostg < v

18/25

Approximation of the optimal cost

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every ¢ > 0, one can compute:

@ two values v and v such that
lv.m —vo|<e and v_ <opteostg < v
@ one strategy o, such that
optcostg < cost(o.) < optcostg + €

It is an e-optimal winning strategy.

18/25

Approximation of the optimal cost

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every ¢ > 0, one can compute:

@ two values v, and v/ such that
lv.m —vo|<e and v_ <opteostg < v
@ one strategy o, such that
optcostg < cost(o.) < optcostg + €

It is an e-optimal winning strategy.

@ Standard technics: unfold the game to get more precision, and
compute two adjacency sequences

18/25

Approximation of the optimal cost

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every ¢ > 0, one can compute:

@ two values v, and v/ such that
lv.m —vo|<e and v_ <opteostg < v
@ one strategy o, such that

optcostg < cost(o.) < optcostg + €

It is an e-optimal winning strategy.

@ Standard technics: unfold the game to get more precision, and
compute two adjacency sequences
~> This is not possible here
There might be runs with prefixes of arbitrary length and cost 0 (e.g. the
game of the undecidability proof)

18/25

|dea for approximation

Idea

Only partially unfold the game:
@ Keep components with cost 0 untouched — we call it the kernel
@ Unfold the rest of the game

19/25

Semi-unfolding

Only cost 0
Kernel K

Only cost 0
Kernel K

20/25

Semi-unfolding

Only cost 0
Kernel K

Only cost 0
Kernel K

20/25

Semi-unfolding

Only cost 0
Kernel K

Only cost 0
Kernel K

20/25

Semi-unfolding

Only cost 0
Kernel K

Hypothesis:

cost > 0 implies cost > K
Only cost 0
Kernel KC

20/25

Semi-unfolding

Only cost 0
Kernel K

Hypothesis:

cost > 0 implies cost > K
Only cost 0
Kernel KC

Conclusion: we can stop unfolding the game after N steps
(e.g. N=(M+2)-|R(A)

, where M is a pre-computed bound on optcost)

20/25

Approximation scheme

21/25

Approximation scheme

21/25

Approximation scheme

D .O D’R*o . b, b

e ~"'E'>'<‘act computation-.. -

21/25

Approximation scheme

T - Exact computatioﬁ'w.v,.,,._._,‘,...:.._._...,.~-'-‘

2 .[:] o) [:f}:{?:) ;: \\\ih--_——"'ﬂg,

21/25

Approximation scheme

- R 7R
oo D’P\O _/ AD. &, pproximation-.. 7

R +“Exact computation ...

21/25

First step: Tree-like parts

~ Goes back to [LMMO02]

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
22/25

First step: Tree-like parts

~ Goes back to [LMMO02]

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
22/25

First step: Tree-like parts

~ Goes back to [LMMO02]

¢ o(¢,v) =

/ ! \ 12} 1!
g,y v ghY
cl ‘\ c//

\

E’ b El/

o.v) O,

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
22/25

First step: Tree-like parts

~ Goes back to [LMMO02]

¢ O(,v)= inf

/ / " 1!
gy gy
cl ‘\ c//

\

E’ b ZI/

o.v) O,

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
22/25

First step: Tree-like parts

~ Goes back to [LMMO02]

l o, v) = t’|v4i»r:ff):g’ max(,)

g/, Y/ \\ g//- Y//
\
c/ N c//
\
Y
¢ O

o.v) O,

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
22/25

First step: Tree-like parts

~ Goes back to [LMMO02]

I/ o(¢,v) = t’|v4i»r:ff):g’ max((a),)
g/, Y/ \\ g//- Y//
/! \\ c//

\
Y

C
Ogl OZ// () = tc+c + O(ﬁl, V’)
o, vy o v

v/ =[Y'«0](v+t')

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

22/25

First step: Tree-like parts

~ Goes back to [LMMO02]

l o, v) = t’|v4i»r:.f):g’ max((a), (7))
g/, Y/ \\ g//- y//
/! \\ c//

\

c
”
OE/ OZ// () = tc+c + O(ﬁl, V’)
ow,v) oW v")
(B) = sup t'c+c+ 0" v")
t//St/|V+t//':g//

v/ =[Y'«0](v+t')
v =[Y" +0](v+t")

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
22/25

Second step: Kernels

/?H %l
SN

Output cost functions f

23/25

Second step: Kernels

@ Refine the regions such that f differs
of at most e within a small region

/wﬂ?&
N

Output cost functions f

23/25

Second step: Kernels

@ Refine the regions such that f differs
of at most e within a small region

/wﬂ?&
N

Output cost functions f

23/25

Second step: Kernels

@ Refine the regions such that f differs
of at most e within a small region

/wﬂ?&
N

Output cost functions f

23/25

Second step: Kernels

@ Refine the regions such that f differs
of at most e within a small region

A
I
b ‘b' @ Under- and:‘c‘)ver—approx“i‘mate by

piecewise constant functions .~ and
£

Output cost functions f

23/25

Second step: Kernels

@ Refine/split the kernel along the new
small regions and fix 7 or ", write f;

f.: constant f.: constant

24/25

Second step: Kernels

@ Refine/split the kernel along the new
small regions and fix 7 or ", write f;

@ Since cost is 0 everywhere, the
resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by f.)

f.: constant f.: constant

24/25

Second step: Kernels

@ Refine/split the kernel along the new
small regions and fix 7 or ", write f;

@ Since cost is 0 everywhere, the
resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by f.)

© Those can be solved using standard

O/\N/ technics based on attractors: small
/ : regions are sufficient, and the local

O—>L_YI optimal cost (for output 7.) is constant

within a small region

f.: constant f.: constant

24/25

Second step: Kernels

@ Refine/split the kernel along the new
small regions and fix 7 or ", write f;

@ Since cost is 0 everywhere, the
resulting game is nothing more than a
constant reachability timed game with an order
on target (output) edges (given by f.)

O/\A © Those can be solved using standard

7 technics based on attractors: small
/ : regions are sufficient, and the local
?—' O—'L_Yl optimal cost (for output 7.) is constant
Z & within a small region

f.: constant f.: constant

24/25

Second step: Kernels

@ Refine/split the kernel along the new
small regions and fix 7 or ", write f;

@ Since cost is 0 everywhere, the
resulting game is nothing more than a

reachability timed game with an order
‘ on target (output) edges (given by f.)
! © Those can be solved using standard
O/\N/ technics based on attractors: small
/ : regions are sufficient, and the local
?—» O—>L_YI optimal cost (for output 7.) is constant
Z within a small region
~» We have computed e-approximations of
™ ™ the optimal cost, which are constant

within small regions. Corresponding
strategies can be inferred

24/25

Conclusion

Summary of the talk

@ Very quick overview of results concerning the optimal reachability
problem in weighted timed games
@ Some new insight into the value problem for this model:

e Undecidability of this problem
o Approximability of the optimal cost
(under some conditions)

25/25

Conclusion

Summary of the talk
@ Very quick overview of results concerning the optimal reachability
problem in weighted timed games
@ Some new insight into the value problem for this model:

e Undecidability of this problem
o Approximability of the optimal cost
(under some conditions)

Future work

IX|
@ Improve the approximation scheme (2EXP(|G|) - (1/6))

@ Extend to the whole class of weighted timed games, or understand
why it is not possible
@ Assume stochastic uncertainty?

25/25

