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Time!

Context: veri�cation of embedded critical systems

Time

✔ naturally appears in real systems

✔ appears in properties (for ex. bounded response time)

➜ Need of models and speci�cation languages integrating timing aspects

➜ Challenge: Integrate time in concurrent models
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Roadmap

✔ About time semantics

✔ Timed speci�cation languages

✔ Some possible timed models

✔ Timed automata

✔ Networks of TA, discussion

✔ Veri�cation methods

✔ Conclusion remarks
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About Time Semantics

[Alur's PhD Thesis 1991]
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Adding Timing Informations

Which semantics?

✔ Untimed case: sequence of observable events

a: send message b: receive message

a b a b a b a b a b � � � = (a b)!

✔ Timed case: sequence of dated observable events

(a; d1) (b; d2) (a; d3) (b; d4) (a; d5) (b; d6) � � �

d1: date at which the �rst a occurs

d2: date at which the �rst b occurs

� � �

Process: set of such (un)timed sequences
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Three Propositions

✔ Discrete-time semantics:

dates are taken in N, the set of integers

Ex: (a; 1):(b;3):(c;4):(a;6)

✔ Dense-time semantics:

dates are taken in Q+, the set of positive rationals,
or in R+, the set of positive reals

Ex: (a; 1:28):(b;3:1):(c;3:98)(a;6:13)

✔ Fictitious-clock semantics:

�tick� action denoting each unit of time

Ex: tick:a:tick:tick:b:c:tick:tick:tick:a
or alternatively (a; 1):(b;3):(c;3):(a;6)
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Synchronization of Processes

✔ Untimed case: Synchronization on common events, interleaving of causally
independent events

Example: P = (fa; bg; (a b)!)

�

Q = (fb; cg; (b c)!)

a b c a b fa; cg b a c b

Can be represented by:

a b

c

a

b

c

a

b : : :

✔ Timed case: No interleaving possible; time orders events

Hyp: All components are driven by a common clock
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The Discrete-Time Semantics

✔ the simplest one

✔ equivalent to the untimed semantics (if no action, say action

�

)

Ex: the timed sequence

(a; 1) : (b;2) : (fa; bg;4) : (b;5) :::

is represented by the untimed sequence

fag : fbg :

�

: fa; bg : fbg :::

➜ no really new technique needed
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The Dense-Time Semantics

✔ a more realistic model: causally independent events may appear arbitrarly
close to each other

Ex: (a; 1) : (b;2) : (c;3:93) : (a;3:98) : (b;5) : (c;6:02)

✔ a system and its environment: no constraint on the timing of signals from the
environment

✔ if strange behaviours are not wished (e.g. zeno behaviours), one can simply
avoid them

➜ new techniques needed
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The Fictitous-Clock Model

Much different from the two previous models, more uncertainty.
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The Fictitous-Clock Model

Much different from the two previous models, more uncertainty.

✔ Ex: the sequence tick : a : tick : tick : b : c : tick : tick : tick : a
represents a timed sequence of events

(a; d1) : (b; d2) : (c; d3) : (a; d4)

where 1 � d1 < 2, 3 � d2 � d3 < 4 and 6 � d4 < 7 .
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where 1 � d1 < 2, 3 � d2 � d3 < 4 and 6 � d4 < 7 .

✔ Parallel composition: almost as in the untimed case, but synchronization of
all �tick� actions (it is thus more constrained)

➜ � untimed case, use same techniques
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The Fictitous-Clock Model

Much different from the two previous models, more uncertainty.

✔✔ Ex: the sequence tick : a : tick : tick : b : c : tick : tick : tick : a
represents a timed sequence of events

(a; d1) : (b; d2) : (c; d3) : (a; d4)

where 1 � d1 < 2, 3 � d2 � d3 < 4 and 6 � d4 < 7 .

✔ Parallel composition: almost as in the untimed case, but synchronization of
all �tick� actions (it is thus more constrained)

➜ � untimed case, use same techniques

✔ Can also be viewed as an approximation of the dense-time semantics

✔ Pb: no precise timing informations (if k ticks in between two actions, it means that

these two actions are separated by some delay in [k � 1; k + 1[)

Timed Models for Concurrent Systems � p. 11



EPIT � Marseille - April 2004

A Case for Dense-Time [Alur 1991]

✔ Correctness: discussion in the context of reachability problems for
asynchronous digital circuits [Brzozowski, Seger 1991]

Timed Models for Concurrent Systems � p. 12



EPIT � Marseille - April 2004

A Digital Circuit [BS91]
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A Digital Circuit [BS91]

Start with x=0 and y=[101] (stable con�guration)

The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101]
y2� �
1:2

[111]
y3� �

2:5
[110]

y1� �

2:8
[010]

y3� �

4:5
[011]
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A Digital Circuit [BS91]

Start with x=0 and y=[101] (stable con�guration)

The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101]
y2� �
1:2

[111]
y3� �

2:5
[110]

y1� �

2:8
[010]

y3� �

4:5
[011]

Reachable con�gurations: f[101]; [111]; [110]; [010]; [011]; [001]g
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Discretizing is Not Suf�cient

[Brzozowski Seger 1991]

Theorem: for every k � 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time (with

granularity 1
k ).
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EPIT � Marseille - April 2004

Discretizing is Not Suf�cient � Example

✔ This digital circuit is not 1-discretizable.
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Discretizing is Not Suf�cient � Example

✔ This digital circuit is not 1-discretizable.

✔ Why that? (initially x = 0 and y = [11100000], x is set to 1)

� [11100000] y1� �

1
[01100000]

y2� �

1:5
[00100000]

y3 ;y5� �

2
[00001000]

y5 ;y7� �

3
[00000010]

y7 ;y8� �

4
[00000001]
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y3 ;y5� �

2
[00001000]

y5 ;y7� �
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� [11100000] y1 ;y2 ;y3� �

1
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Discretizing is Not Suf�cient � Example

✔ This digital circuit is not 1-discretizable.

✔ Why that? (initially x = 0 and y = [11100000], x is set to 1)
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[01100000]
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1:5
[00100000]

y3 ;y5� �

2
[00001000]

y5 ;y7� �

3
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� [11100000] y1 ;y2 ;y3� �

1
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1
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y2 ;y3 ;y4 ;y5� �

2
[00000000]
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[00000000]
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1
[00100000]

y3;y5 ;y6� �

2
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y5 ;y6� �

3
[00000000]
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y3;y5 ;y6� �

2
[00001100]

y5 ;y6� �

3
[00000000]

Timed Models for Concurrent Systems � p. 15



EPIT � Marseille - April 2004

Discretizing is Not Suf�cient

[Brzozowski Seger 1991]

Theorem: for every k � 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time (with

granularity 1
k ).

Timed Models for Concurrent Systems � p. 16



EPIT � Marseille - April 2004

Discretizing is Not Suf�cient

[Brzozowski Seger 1991]

Theorem: for every k � 1, there exists a digital circuit such that the reachability
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reachable states in dense-time
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Discretizing is Not Suf�cient

[Brzozowski Seger 1991]

Theorem: for every k � 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time (with

granularity 1
k ).

Claim: �nding a correct granularity is as dif�cult as computing the set of
reachable states in dense-time

Further counter-example: there exist systems for which no granularity exists
(see later)
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Fictitious-Clock Model: Too Large

✔ Dense-time: f[11]; [00]g

✔ Fictitious-clock: f[11]; [10]; [01]; [00]g

(tick:y1)
�

(tick:y2) = ftick:y1:y2; tick:y2:y1g

➜ over-approximation of the set of reachable states

Timed Models for Concurrent Systems � p. 17
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A Case for Dense-Time

✔ Correctness

✔ Expressiveness: discrete-time and �ctitious-clock models can be expressed
by dense-time models

Timed Models for Concurrent Systems � p. 18
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A Case for Dense-Time

✔ Correctness

✔ Expressiveness

✔ Compositionality: the semantics of one component depends on the
granularity of the whole system and of the property we want to check

Ex: P: process such that a and b strictly alternate and each b is exactly one unit of
time later than a
Q process such that a and b strictly alternate, each b is exactly one unit of time later
than a, and each a is at least one unit of time later than each b

� If the granularity is 1,
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2 ,
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A Case for Dense-Time

✔ Correctness

✔ Expressiveness

✔ Compositionality: the semantics of one component depends on the
granularity of the whole system and of the property we want to check

Ex: P: process such that a and b strictly alternate and each b is exactly one unit of
time later than a
Q process such that a and b strictly alternate, each b is exactly one unit of time later
than a, and each a is at least one unit of time later than each b

� If the granularity is 1, T(P)=T(Q)

� If the granularity is 1
2 , T(P) � T(Q)

➜ Dense-time: a good alternative to have a compositional semantics.
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A Case for Dense-Time

✔ Correctness

✔ Expressiveness

✔ Compositionality

✔ Complexity: dense-time more complex than the two other semantics
(ex: inclusion)

However: re�ning the granularity increases the complexity...

Timed Models for Concurrent Systems � p. 18
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A Case for Dense-Time

✔ Correctness

✔ Expressiveness

✔ Compositionality

✔ Complexity

In the following we choose the dense-time semantics
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Timed Speci�cation Languages
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Classical Veri�cation Problems

✔ reachability of a control state

✔

� � � �: bisimulation, etc...

✔ L(

�

)

�

L(

� �

): language inclusion

✔

�

j= 	 for some formula 	: model-checking

✔

� �

AT + reachability: testing automata

✔ . . .

Timed Models for Concurrent Systems � p. 20
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Classical Temporal Logics

Path formulas:

G� « Always »

F� « Eventually »

�U�

�

« Until »

X� « Next »

State formulas:

A E 

➜ LTL: Linear Temporal Logic [Pnueli 1977],

CTL: Computation Tree Logic [Emerson, Clarke 1982]

Timed Models for Concurrent Systems � p. 21
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Adding Time to Temporal Logics

Classical temporal logics allow us to express that

�any problem is followed by an alarm�
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Adding Time to Temporal Logics

Classical temporal logics allow us to express that

�any problem is followed by an alarm�

With CTL:
AG(problem 
 AF alarm)

Timed Models for Concurrent Systems � p. 22



EPIT � Marseille - April 2004

Adding Time to Temporal Logics

Classical temporal logics allow us to express that

�any problem is followed by an alarm�

With CTL:
AG(problem 
 AF alarm)

How can we express:

�any problem is followed by an alarm in at most 20 time units�

Timed Models for Concurrent Systems � p. 22



EPIT � Marseille - April 2004

Adding Time to Temporal Logics

Classical temporal logics allow us to express that

�any problem is followed by an alarm�

With CTL:
AG(problem 
 AF alarm)

How can we express:

�any problem is followed by an alarm in at most 20 time units�

✔ Temporal logics with subscripts. ex: CTL +

�����

E 	U �k 
A 	U �k 

AG(problem 
 AF�20 alarm)
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Classical temporal logics allow us to express that

�any problem is followed by an alarm�

With CTL:
AG(problem 
 AF alarm)

How can we express:

�any problem is followed by an alarm in at most 20 time units�

✔ Temporal logics with subscripts.

AG(problem 
 AF�20 alarm)

✔ Temporal logics with clocks.

AG(problem 
 (x in AF(x � 20



alarm)))

Timed Models for Concurrent Systems � p. 22



EPIT � Marseille - April 2004

Adding Time to Temporal Logics

Classical temporal logics allow us to express that

�any problem is followed by an alarm�

With CTL:
AG(problem 
 AF alarm)

How can we express:

�any problem is followed by an alarm in at most 20 time units�

✔ Temporal logics with subscripts.

AG(problem 
 AF�20 alarm)

✔ Temporal logics with clocks.

AG(problem 
 (x in AF(x � 20



alarm)))

➜ TCTL: Timed CTL [ACD90,ACD93,HNSY94]
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An Other Speci�cation Language

Timed modal logics or timed �-calculus with clocks e.g. [LLW95]

✔ prop, boolean combinators

✔ < a > 	, [a] 	

✔

� � 	, � � 	

✔ min(X; 	), max(X; 	)
✔ x � cte, x in 	
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� � 	, � � 	
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Examples: �AG 	�: max(X; 	  �a[a]X
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An Other Speci�cation Language

Timed modal logics or timed �-calculus with clocks e.g. [LLW95]

✔ prop, boolean combinators

✔ < a > 	, [a] 	

✔

� � 	, � � 	

✔ min(X; 	), max(X; 	)
✔ x � cte, x in 	

Examples: �AG 	�: max(X; 	  �a[a]X
 � � 	)

�A( 	W )�: max(X;  

�

( 	  �a[a]X

 � �

X))

�non-zenoness (action and time)�: x in max(X; x � 1

 � �

X

 �

a[a]X)
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An Other Speci�cation Language

Timed modal logics or timed �-calculus with clocks e.g. [LLW95]

✔ prop, boolean combinators

✔ < a > 	, [a] 	

✔

� � 	, � � 	

✔ min(X; 	), max(X; 	)
✔ x � cte, x in 	

Examples: �AG 	�: max(X; 	  �a[a]X
 � � 	)

�A( 	W )�: max(X;  

�

( 	  �a[a]X

 � �

X))

�non-zenoness (action and time)�: x in max(X; x � 1

 � �

X

 �

a[a]X)

� = problem 
 x in max(Z; alarme

�

(x � 20



a

[a]Z

 � �

Z))

max(Y; �



a

[a]Y

 � �

Y)
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An Other Example

✔ the bell rings every 15 minutes
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An Other Example

✔ the bell rings every 15 minutes

bell



AG(bell 
 AF=15 bell)
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An Other Example

✔ the bell rings every 15 minutes

bell



AG0<:<15 :bell



AG(bell 
 AF=15 bell)



AG(:bell 
 AG=15 :bell)
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An Other Example

✔ the bell rings every 15 minutes

bell



AG0<:<15 :bell



AG(bell 
 AF=15 bell)



AG(:bell 
 AG=15 :bell)

bell



(0 < x < 15



:bell)

�

((x = 15
�

x = 0)



bell)
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An Other Example

✔ the bell rings every 15 minutes

bell



AG0<:<15 :bell



AG(bell 
 AF=15 bell)



AG(:bell 
 AG=15 :bell)

bell



x in max(X; x � 15 
 ((0 < x < 15



:bell)

�

((x = 15
�

x = 0)



bell



x in (

� �

X



a

[a]X))))
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Some Possible Timed Models

✔ Time Petri nets

✔ Timed process algebra

✔ Timed MSCs

✔ Graphs with durations

✔ Timed automata

✔ ...
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Some Possible Timed Models

✔ Time Petri nets

✔ Timed process algebra

✔ Timed MSCs

✔ Graphs with durations

✔ Timed automata

✔ ...
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Time Petri Nets [Merlin 1974, Berthomieu & Diaz 1991]

p1 p2

2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Only t1 can be �red: 4 � t1 � 9

➜ t1 is �red after �1
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Time Petri Nets [Merlin 1974, Berthomieu & Diaz 1991]

p1 p2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Only t1 can be �red: 4 � t1 � 9

➜ t1 is �red after �1

Marking: (p3,p4,p5)
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Time Petri Nets [Merlin 1974, Berthomieu & Diaz 1991]

p1 p2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Only t1 can be �red: 4 � t1 � 9

➜ t1 is �red after �1

Marking: (p3,p4,p5)
t2, t3, t4 and t5 can be �red:

0 � t2 � 2 1 � t3 � 3

0 � t4 � 2 0 � t5 � 3

➜ t2 is �red after �2
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Time Petri Nets [Merlin 1974, Berthomieu & Diaz 1991]

p1 p2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Only t1 can be �red: 4 � t1 � 9

➜ t1 is �red after �1

Marking: (p3,p4,p5)
t2, t3, t4 and t5 can be �red:

0 � t2 � 2 1 � t3 � 3

0 � t4 � 2 0 � t5 � 3

➜ t2 is �red after �2

Marking: (p2,p3,p5)
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Time Petri Nets [Merlin 1974, Berthomieu & Diaz 1991]

p1 p2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Only t1 can be �red: 4 � t1 � 9

➜ t1 is �red after �1

Marking: (p3,p4,p5)
t2, t3, t4 and t5 can be �red:

0 � t2 � 2 1 � t3 � 3

0 � t4 � 2 0 � t5 � 3

➜ t2 is �red after �2

Marking: (p2,p3,p5)
t3, t4 and t5 can be �red:

max(0; 1 � �2) � t3 � 3 � �2

0 � t4 � 2 � �2

0 � t5 � 3 � �2
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Time Petri Nets [Merlin 1974, Berthomieu & Diaz 1991]

p1 p2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Only t1 can be �red: 4 � t1 � 9

➜ t1 is �red after �1

Marking: (p3,p4,p5)
t2, t3, t4 and t5 can be �red:

0 � t2 � 2 1 � t3 � 3

0 � t4 � 2 0 � t5 � 3

➜ t2 is �red after �2

Marking: (p2,p3,p5)
t3, t4 and t5 can be �red:

max(0; 1 � �2) � t3 � 3 � �2

0 � t4 � 2 � �2

0 � t5 � 3 � �2

The scheduling (t1:t2; �1 = 5:�2 = 0) is realizable
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Time Petri Nets � Symbolic Analysis

Graph of State Classes
p1 p2

2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Initial class: 4 � t1 � 9
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Time Petri Nets � Symbolic Analysis

Graph of State Classes
p1 p2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Initial class: 4 � t1 � 9

Marking: (p3,p4,p5)
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Time Petri Nets � Symbolic Analysis

Graph of State Classes
p1 p2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Initial class: 4 � t1 � 9

Marking: (p3,p4,p5)

Class: 0 � t2 � 2 1 � t3 � 3

0 � t4 � 2 0 � t5 � 3

➜ t2 is �red after �2
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Time Petri Nets � Symbolic Analysis

Graph of State Classes
p1 p2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Initial class: 4 � t1 � 9

Marking: (p3,p4,p5)

Class: 0 � t2 � 2 1 � t3 � 3

0 � t4 � 2 0 � t5 � 3

➜ t2 is �red after �2

Marking: (p2,p3,p5)

max(0; 1 � �2) � t3 � 3 � �2

0 � t4 � 2 � �2

0 � t5 � 3 � �2

Class: (eliminate �2)

0 � t3 � 3 t4 � t3 � 1

0 � t4 � 2 t5 � t3 � 2

0 � t5 � 3

and so on...
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Time Petri Nets � Symbolic Analysis

Graph of State Classes
p1 p2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Initial class: 4 � t1 � 9

Marking: (p3,p4,p5)

Class: 0 � t2 � 2 1 � t3 � 3

0 � t4 � 2 0 � t5 � 3

➜ t2 is �red after �2

Marking: (p2,p3,p5)

max(0; 1 � �2) � t3 � 3 � �2

0 � t4 � 2 � �2

0 � t5 � 3 � �2

Class: (eliminate �2)

0 � t3 � 3 t4 � t3 � 1

0 � t4 � 2 t5 � t3 � 2

0 � t5 � 3

and so on...

potentially in�nite graph...
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Graph of State Classes for the Example

0

1

2

3

4

5

6

7

8

9

10

11

t1

t2

t3
t4

t5

t3

t4

t5

t4

t5

t4

t5

t3

t4

t5

t3

t2

t4

t5

t2

t4

t5

t2

t2

t3

t4

t5

t2
t3
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Time Petri Nets � Properties

[Berthomieu & Menasche 1983] [Berthomieu & Diaz 1991]

Theorem: The number of state classes of a T-safe TPN is bounded if and only if
the net is bounded.
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Time Petri Nets � Properties

[Berthomieu & Menasche 1983] [Berthomieu & Diaz 1991]

Theorem: The number of state classes of a T-safe TPN is bounded if and only if
the net is bounded.

Theorem: Boundedness and reachability of TPNs are undecidable.
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Time Petri Nets � Properties

[Berthomieu & Menasche 1983] [Berthomieu & Diaz 1991]

Theorem: The number of state classes of a T-safe TPN is bounded if and only if
the net is bounded.

Theorem: Boundedness and reachability of TPNs are undecidable.

Theorem: Reachability and LTL model-checking of bounded TPNs are decidable.
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Time Petri Nets � Properties

[Berthomieu & Menasche 1983] [Berthomieu & Diaz 1991]

Theorem: The number of state classes of a T-safe TPN is bounded if and only if
the net is bounded.

Theorem: Boundedness and reachability of TPNs are undecidable.

Theorem: Reachability and LTL model-checking of bounded TPNs are decidable.

A more involved construction is needed for branching-time model-checking
[Yoneda & Ryuba 1998]
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Time Petri Nets � Properties

[Berthomieu & Menasche 1983] [Berthomieu & Diaz 1991]

Theorem: The number of state classes of a T-safe TPN is bounded if and only if
the net is bounded.

Theorem: Boundedness and reachability of TPNs are undecidable.

Theorem: Reachability and LTL model-checking of bounded TPNs are decidable.

A more involved construction is needed for branching-time model-checking
[Yoneda & Ryuba 1998]

[Cassez & Roux 2003] Any bounded TPN can be transformed into an equivalent (for
strong bisimulation) network of timed automata. [one transition = one component]
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Time Petri Nets � Properties

[Berthomieu & Menasche 1983] [Berthomieu & Diaz 1991]

Theorem: The number of state classes of a T-safe TPN is bounded if and only if
the net is bounded.

Theorem: Boundedness and reachability of TPNs are undecidable.

Theorem: Reachability and LTL model-checking of bounded TPNs are decidable.

A more involved construction is needed for branching-time model-checking
[Yoneda & Ryuba 1998]

[Cassez & Roux 2003] Any bounded TPN can be transformed into an equivalent (for
strong bisimulation) network of timed automata. [one transition = one component]

➜ formal proof of the decidability of TCTL for bounded TPNs
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Time Petri Nets � Properties

[Berthomieu & Menasche 1983] [Berthomieu & Diaz 1991]

Theorem: The number of state classes of a T-safe TPN is bounded if and only if
the net is bounded.

Theorem: Boundedness and reachability of TPNs are undecidable.

Theorem: Reachability and LTL model-checking of bounded TPNs are decidable.

A more involved construction is needed for branching-time model-checking
[Yoneda & Ryuba 1998]

[Cassez & Roux 2003] Any bounded TPN can be transformed into an equivalent (for
strong bisimulation) network of timed automata. [one transition = one component]

➜ formal proof of the decidability of TCTL for bounded TPNs

[Gardey, Roux & Roux 2003] Zone-based algorithm for checking reachability
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Problem with Branching Time

p0 p1 p2

p3 p4

t0

[0,4]

t1

[3,4]

t2

[5,6]

CTL formula: EF(p1



p3



AF(p2


p3))
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Graphs with Durations

✔

� [n;m] � � : �moving from

�

to

� �

takes some duration d in [n;m]�
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Graphs with Durations

✔

� [n;m] � � : �moving from

�

to

� �

takes some duration d in [n;m]�

➜ reachability is NLOGSPACE-complete
[Laroussinie, Markey & Schnoebelen 2004]
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Graphs with Durations

✔

� [n;m] � � : �moving from

�

to

� �

takes some duration d in [n;m]�

➜ reachability is NLOGSPACE-complete
[Laroussinie, Markey & Schnoebelen 2004]

✔ Problem with parallel composition
a; [1]

[0; +1[

b
� [5;7]

b
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Graphs with Durations

✔

� [n;m] � � : �moving from

�

to

� �

takes some duration d in [n;m]�

➜ reachability is NLOGSPACE-complete
[Laroussinie, Markey & Schnoebelen 2004]

✔ Problem with parallel composition
a; [1]

[0; +1[

b
� [5;7]

b

[1]
a

[1]
a

[1]
a

[1]
a

[1]
a

[1]
a

[1]
a

b

b

b

b

b

b

b

b

[5;7]

[4;6]

[3;5]

[2;4]

[1;3]

[0;2]

[0; 1]

[0]
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Graphs with Durations

✔

� [n;m] � � : �moving from

�

to

� �

takes some duration d in [n;m]�

➜ reachability is NLOGSPACE-complete
[Laroussinie, Markey & Schnoebelen 2004]

✔ Problem with parallel composition

➜ Even if low complexity bounds, not convenient for modelling concurrency
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Some Comments

✔ the most-accepted timed model is timed automata

✔ the techniques used for analyzing TPNs and timed automata are very similar

� state class graph � zone automaton

� strong state class graph [Berthomieu & Vernadat 2003]

� minimal graph [Bouajjani, Fernandez, Halbwachs & Raymond 1992]
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Timed Automata
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Timed Automata [Alur & Dill 90's]

✔ A �nite control structure + variables (clocks)

✔ A transition is of the form:

g; a; C := 0

Enabling condition Reset to zero

✔ An enabling condition (or guard) is:

g ::= x � c j x � y � c j g



g

where � � f<; �; =; �; >g
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Timed Automata, an Example

x; y : clocks

�

0

�

1

�

2

x � 5; a; y := 0 x � y > 3; b; x := 0

Timed Models for Concurrent Systems � p. 35



EPIT � Marseille - April 2004

Timed Automata, an Example

x; y : clocks

�

0

�

1

�

2

x � 5; a; y := 0 x � y > 3; b; x := 0

�

0
�(4:1)

�

0 a
�

1
�(1:4)

�

1 b

�

2

x 0 4:1 4:1 5:5 0

y 0 4:1 0 1:4 1:4
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Timed Automata, an Example

x; y : clocks

�

0

�

1

�

2

x � 5; a; y := 0 x � y > 3; b; x := 0

�

0
�(4:1)

�

0 a
�

1
�(1:4)

�

1 b

�

2

x 0 4:1 4:1 5:5 0

y 0 4:1 0 1:4 1:4

(clock) valuation
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Timed Automata, an Example

x; y : clocks

�

0

�

1

�

2

x � 5; a; y := 0 x � y > 3; b; x := 0

�

0
�(4:1)

�

0 a
�

1
�(1:4)

�

1 b

�

2

x 0 4:1 4:1 5:5 0

y 0 4:1 0 1:4 1:4

(clock) valuation

➜ timed word (a;4:1)(b;5:5)
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TA Semantics

✔

�

= (�; L;X; ) is a TA

✔ Con�gurations: (

�

; v)

�

L � TX where T is the time domain

✔ Timed Transition System:

� action transition: (

�

; v) a (

� �

; v

�
) if

� � g;a;r � � � � s.t. v j= g

v

�

= v[r � 0]

� delay transition: (q; v) �(d) (q; v + d) if d

�

T
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Some Exercices

What do the following TA recognize?
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Some Exercices

What do the following TA recognize?

b

x = 3; a; x := 0
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Some Exercices

What do the following TA recognize?

b

x = 3; a; x := 0

x1 = m1; t = 5

x2 = m2; t = 5

xi = mi; xj := 0; t := 0

xi = mi; xj := 0
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Composition of TA

To model concurrent systems: several communicating components
➜ n-ary synchronization function

(combine synchronization rules and interleaving rules)
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Composition of TA

To model concurrent systems: several communicating components
➜ n-ary synchronization function

(combine synchronization rules and interleaving rules)

Note: e.g. in Uppaal: binary synchronization, in HyTech: binary synchronization, in
Kronos: binary synchronization, (H)CMC: n-ary synchronization
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Composition of TA

To model concurrent systems: several communicating components
➜ n-ary synchronization function

(combine synchronization rules and interleaving rules)

Note: e.g. in Uppaal: binary synchronization, in HyTech: binary synchronization, in
Kronos: binary synchronization, (H)CMC: n-ary synchronization

Remark: concurrent timed automata [Lanotte, Maggiolo-Schettini & Tini 2003]

- notion of private/shared clocks

- relative conciseness

Timed Models for Concurrent Systems � p. 38



EPIT � Marseille - April 2004

The Train Crossing Example (1)

Traini with i = 1;2; :::

Far

Before, xi < 30

On, xi < 20

App!; xi := 0

20 < xi < 30; a; xi := 0

10 < xi < 20; Exit!
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The Train Crossing Example (2)

The gate:

Open

CloseRaising, Hg < 10

Lowering, Hg < 10
GoDown?, Hg := 0

Hg < 10, a

GoUp?, Hg := 0

Hg < 10, a

Timed Models for Concurrent Systems � p. 40



EPIT � Marseille - April 2004

The Train Crossing Example (3)

The controller:

c1, xc � 20 c2, xc � 10c0
App? Hc := 0Exit?, Hc := 0

Hc � 10, GoDown!

Exit?

App?

Exit?

Hc = 20, GoUp!

App?
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The Train Crossing Example (4)

We use the synchronization function f:

Train1 Train2 Gate Controller

App! : : App? App

: App! : App? App

Exit! : : Exit? Exit

: Exit! : Exit? Exit

a : : : a

: a : : a

: : a : a

: : GoUp? GoUp! GoUp

: : GoDown? GoDown! GoDown

to de�ne the parallel composition (Train1

�

Train2

�

Gate

�

Controller)

NB: the parallel composition does not add expressive power !
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The Train Crossing Example (5)

Some properties one could check:

✔ Is the gate closed when a train crosses the road?
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The Train Crossing Example (5)

Some properties one could check:

✔ Is the gate closed when a train crosses the road?

AG(train:On 
 gate.Close)
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The Train Crossing Example (5)

Some properties one could check:

✔ Is the gate closed when a train crosses the road?

AG(train:On 
 gate.Close)

✔ Is the gate always closed for less than 5 minutes?
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The Train Crossing Example (5)

Some properties one could check:

✔ Is the gate closed when a train crosses the road?

AG(train:On 
 gate.Close)

✔ Is the gate always closed for less than 5 minutes?

:EF(gate.Close



(gate.Close U>5 min :gate.Close))
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Discrete vs Dense-Time Semantics

x = 1; a; x := 0 b; y := 0

x = 1; a; x := 0

y < 1; b; y := 0

✔ Dense-time: Ldense = f((ab)!; �) j

�

i; �2i�1 = i and �2i � �2i�1 > �2i+2 � �2i+1g

✔ Discrete-time: Ldiscrete =

�

x = 1; a; x := 0

b; y := 0

y < 1

b

y := 0

ab

� �
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Veri�cation of TA

Problem: the set of con�gurations is in�nite
➜ classical methods can not be applied
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Veri�cation of TA

Problem: the set of con�gurations is in�nite
➜ classical methods can not be applied

Positive key point: variables (clocks) have the same speed
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Veri�cation of TA

Problem: the set of con�gurations is in�nite
➜ classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Aim: construct a �nite abstraction
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The Region Abstraction

0 1 2 3 x

1

2

y

Equivalence of �nite index
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✔ �compatibility� between regions and constraints
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The Region Abstraction

0 1 2 3 x
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2

y

Equivalence of �nite index

✔ �compatibility� between regions and constraints

✔ �compatibility� between regions and time elapsing

➜ a bisimulation property
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The Region Abstraction
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1

2

y

Equivalence of �nite index

region de�ned by

Ix =]1; 2[, Iy =]0; 1[

fxg < fyg

✔ �compatibility� between regions and constraints

✔ �compatibility� between regions and time elapsing

➜ a bisimulation property
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The Region Abstraction

0 1 2 3 x

1

2

y

Equivalence of �nite index

region de�ned by

Ix =]1; 2[, Iy =]0; 1[

fxg < fyg

successor region

Ix =]1; 2[; Iy = f1g

✔ �compatibility� between regions and constraints

✔ �compatibility� between regions and time elapsing

➜ a bisimulation property
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The Region Abstraction

0 1 2 3 x

1

2

y

Equivalence of �nite index

region de�ned by

Ix =]1; 2[, Iy =]0; 1[

fxg < fyg

successor regions

✔ �compatibility� between regions and constraints

✔ �compatibility� between regions and time elapsing

➜ a bisimulation property
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The Region Automaton

timed automaton region abstraction

� g;a;C:=0 � � is transformed into:

(

�

; R) a (

� �

; R

�

) if there exists R

� � �

Succ

�
t (R) s.t.

✔ R

� �  

g

✔ [C ! 0]R
� �  

R

�
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Time-Abstract Bisimulation

� a
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Time-Abstract Bisimulation
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Time-Abstract Bisimulation

�
�

a

a

�

d > 0

�

d

�

> 0

�(d)

�(d

�

)
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Time-Abstract Bisimulation

�
�

a

a

�

d > 0

�

d

�

> 0

�(d)

�(d

�

)

(

�

0; v0)
a1;t1 (

�

1; v1)
a2;t2 (

�
2; v2)

a3;t3 : : :
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Time-Abstract Bisimulation

�
�

a

a

�

d > 0

�

d

�

> 0

�(d)

�(d

�

)

(

�

0; v0)
a1;t1 (

�

1; v1)
a2;t2 (

�
2; v2)

a3;t3 : : :" " "

(

�

0; R0)
a1 (

�

1; R1)
a2 (

�

2; R2)
a3 : : :

with vi

�

Ri for all i.
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Time-Abstract Bisimulation

�
�

a

a

�

d > 0

�

d

�

> 0

�(d)

�(d

�

)

(

�

0; v0)
a1;t1 (

�

1; v1)
a2;t2 (

�
2; v2)

a3;t3 : : :# # #

(

�

0; R0)
a1 (

�

1; R1)
a2 (

�

2; R2)
a3 : : :

with vi

�

Ri for all i.
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Time-Abstract Bisimulation

�
�

a

a

�

d > 0

�

d

�

> 0

�(d)

�(d

�

)

(

�

0; v0)
a1;t1 (

�

1; v1)
a2;t2 (

�
2; v2)

a3;t3 : : :# # #

(

�

0; R0)
a1 (

�

1; R1)
a2 (

�

2; R2)
a3 : : :

with vi

�

Ri for all i.

Remark: We can not check real-time properties with a time-abstract bisimulation.
We need to add clocks for the formula we want to check.

Timed Models for Concurrent Systems � p. 48



EPIT � Marseille - April 2004

The Region Automaton

timed automaton region abstraction

� g;a;C:=0 � � is transformed into:

(

�

; R) a (

� �

; R

�

) if there exists R

� � �

Succ
�

t (R) s.t.

✔ R

� �  

g

✔ [C ! 0]R
� �  

R

�
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The Region Automaton

timed automaton region abstraction

� g;a;C:=0 � � is transformed into:

(

�

; R) a (

� �

; R

�

) if there exists R

� � �

Succ
�

t (R) s.t.

✔ R

� �  

g

✔ [C ! 0]R
� �  

R

�

$

(reg. aut.) = UNTIME(

$

(timed aut.))

where UNTIME((a1; t1)(a2; t2) : : : ) = a1a2 : : :
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An Example [Alur & Dill 90's]

Questions:

✔ Is s3 reachable?
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✔ If s2 is a repeated state (for a Büchi condition), what is the language
recognized by this automaton?
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An Example [Alur & Dill 90's]

Questions:

✔ Is s3 reachable?

✔ If s2 is a repeated state (for a Büchi condition), what is the language
recognized by this automaton?

✔ Is there an in�nite timed word accepted by this automaton with no d?
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An Example [Alur & Dill 90's]

0 1 x

1

y
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Main Basis Result

Theorem [Alur & Dill 90's] Reachability is decidable for TA.
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Main Basis Result

¡ The size of the region graph is in

%

(jXj!:2jXj) !

Theorem [Alur & Dill 90's] Reachability is decidable for TA.
It is even PSPACE-complete.
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PSPACE-Easyness

✔ One con�guration: a discrete location + a region
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✔✔ One con�guration: a discrete location + a region

� a discrete location: log-space

� a region:
� an interval for each clock
� an interval for each pair of clocks

➜ needs polynomial space

✔ By guessing a path: needs only to store two con�gurations
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PSPACE-Easyness

✔ One con�guration: a discrete location + a region

� a discrete location: log-space

� a region:
� an interval for each clock
� an interval for each pair of clocks

➜ needs polynomial space

✔ By guessing a path: needs only to store two con�gurations

➜ in NPSPACE, thus in PSPACE
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PSPACE-Hardness

&

LBTM

w0

�

fa; bg

' } ( A );w0
s.t.

&

accepts w0 iff the �nal state of A );w0
is reachable

Cjw0

fxj; yjg

Cj contains a �a� iff xj = yj

Cj contains a �b� iff xj < yj
(these conditions are invariant by time elapsing)

➜ proof taken in [Aceto & Laroussinie 2002]
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PSPACE-Hardness (cont.)

If q �;�

*

;� q

�

is a transition of

&

, then for each position i of the tape, we have a

transition

(q; i)
g;r:=0

(q

�

; i

�

)

where:

✔ g is xi = yi (resp. xi < yi) if � = a (resp. � = b)

✔ r = fxi; yig (resp. r = fxig) if � = a (resp. � = b)

✔ i

�

= i + 1 (resp. i

�

= i � 1) if � is right and i < n (resp. left)

Enforcing time elapsing: on each transition, add the condition t = 1 and clock t is reset.

Initialization: init
t=1;r0:=0 (q0; 1) where r0 = fxi j w0[i] = bg

+

ftg

Termination: (qf; i) end
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Tighter Results

✔ Reachability in TA is PSPACE-complete even if the time is discrete!
[Alur & Dill 90's]

✔ Reachability in TA with integer constants in f1;2g is PSPACE-complete.
[Courcoubetis & Yannakakis 1992]

✔ Reachability in TA with 3 clocks is PSPACE-complete.
[Courcoubetis & Yannakakis 1992]

✔ Reachability in TA with 1 clock is NLOGSPACE-complete.
[Laroussinie, Markey & Schnoebelen 2004]

✔ Reachability in TA with 2 clocks is NP-hard.
[Laroussinie, Markey & Schnoebelen 2004]
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Veri�cation of TCTL

How to check that

�

j= 	?
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How to check that

�

j= 	?

✔ Add the clocks of 	, and consider the new bigger region automaton

�Two equivalent states satisfy the same subformulas of 	�
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Veri�cation of TCTL

How to check that

�

j= 	?

✔ Add the clocks of 	, and consider the new bigger region automaton

�Two equivalent states satisfy the same subformulas of 	�

✔ Label all the states of the region automaton with the subformulas of 	

Theorem [Alur, Courcoubetis & Dill 1990]

Model-checking of TCTL is PSPACE-complete for TA.
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A Model Not Far From Undecidability

✔ Universality is undecidable [Alur & Dill 90's]

✔ Inclusion is undecidable [Alur & Dill 90's]

✔ Satis�ability of TCTL is undecidable [Alur & Dill 90's]

✔ Determinizability is undecidable [Tripakis 2003]

✔ ...
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A Model Not Far From Undecidability

✔ Universality is undecidable [Alur & Dill 90's]

✔ Inclusion is undecidable [Alur & Dill 90's]

✔ Satis�ability of TCTL is undecidable [Alur & Dill 90's]

✔ Determinizability is undecidable [Tripakis 2003]

✔ ...

An example of non-deterministic TA:

a

a; x := 0

a

x = 1; a

a
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A Model Not Far From Undecidability

✔ Universality is undecidable [Alur & Dill 90's]

✔ Inclusion is undecidable [Alur & Dill 90's]

✔ Satis�ability of TCTL is undecidable [Alur & Dill 90's]

✔ Determinizability is undecidable [Tripakis 2003]

✔ ...

Extending timed automata:

✔ add silent actions [Bérard, Diekert, Gastin, Petit 1998] Decidable!
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✔ Determinizability is undecidable [Tripakis 2003]

✔ ...

Extending timed automata:

✔ add silent actions [Bérard, Diekert, Gastin, Petit 1998] Decidable!

✔ add guards, e.g. x + y , - c [Bérard, Dufourd 2000] Undecidable!
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A Model Not Far From Undecidability

✔ Universality is undecidable [Alur & Dill 90's]

✔ Inclusion is undecidable [Alur & Dill 90's]

✔ Satis�ability of TCTL is undecidable [Alur & Dill 90's]

✔ Determinizability is undecidable [Tripakis 2003]

✔ ...

Extending timed automata:

✔ add silent actions [Bérard, Diekert, Gastin, Petit 1998] Decidable!

✔ add guards, e.g. x + y , - c [Bérard, Dufourd 2000] Undecidable!

✔ add operations on clocks, e.g. x := y + 1 Decidable/Undecidable
[Bouyer, Dufourd, Fleury, Petit 2000]
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A Model Not Far From Undecidability

✔ Universality is undecidable [Alur & Dill 90's]

✔ Inclusion is undecidable [Alur & Dill 90's]

✔ Satis�ability of TCTL is undecidable [Alur & Dill 90's]

✔ Determinizability is undecidable [Tripakis 2003]

✔ ...

Extending timed automata:

✔ add silent actions [Bérard, Diekert, Gastin, Petit 1998] Decidable!

✔ add guards, e.g. x + y , - c [Bérard, Dufourd 2000] Undecidable!

✔ add operations on clocks, e.g. x := y + 1 Decidable/Undecidable
[Bouyer, Dufourd, Fleury, Petit 2000]

✔ more general variables, e.g. hybrid systems Undecidable!
[Alur, Courcoubetis, Henzinger, Ho 1993]
[Henzinger 1996] [Henzinger, Kopke, Puri, Varaiya 1998]
...
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Adding Constraints of the Form x+y . c

x + y � c and x � c [Bérard,Dufourd 2000]

✔ Decidability: - for two clocks, decidable using the abstraction

0 1 2 x

1

2

y

- for four clocks (or more), undecidable!

✔ Expressiveness: more expressive! (even using two clocks)

f(an; t1 : : : tn) j n � 1 and ti = 1 � 1
2i
g

x + y = 1; a; x := 0
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The Two-Counter Machine

De�nition. A two-counter machine is a �nite set of instructions over two

counters (x and y):

✔ Incrementation:

(p): x := x + 1; goto (q)

✔ Decrementation:

(p): if x > 0 then x := x � 1; goto (q) else goto (r)

Theorem. [Minsky 67] The emptiness problem for two counter machines is
undecidable.
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Undecidability Proof

20 21 22 23 24 25 26 time

c c c c c c c c ccd ddd d dd d dd

c is unchanged c is incremented

d is decremented

➜ simulation of � decrement of d

� increment of c

We will use 4 clocks: � u, �tic� clock (each time unit)

� x0, x1, x2: reference clocks for the two counters

�xi reference for c� / �the last time xi has been reset is

the last time action c has been performed�

[Bérard,Dufourd 2000]
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Undecidability Proof (cont.)

✔ Increment of counter c:

u = 1; 0; u := 0

x2 := 0

x0 � 2; u + x2 = 1; c; x2 := 0

u + x2 = 1

x0 > 2; c; x2 := 0

ref for c is x0 ref for c is x2

✔ Decrement of counter c:

u = 1; 0; u := 0

x2 := 0

x0 < 2; u + x2 = 1; c; x2 := 0

u + x2 = 1

x0 = 2; c; x2 := 0

u = 1; x0 = 2; 0; u := 0; x2 := 0
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Adding Constraints of the Form x+y . c

✔ Two clocks: decidable! using the abstraction

0 1 2 x

1

2

y

✔ Four clocks (or more): undecidable!
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Adding Constraints of the Form x+y . c

✔ Two clocks: decidable! using the abstraction

0 1 2 x

1

2

y

✔ Three clocks: open question

✔ Four clocks (or more): undecidable!
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Networks of TA, discussion
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Complexity of Model-Checking

Kripke structures S Timed automata A

Reachability NLOGSPACE-complete

CTL/TCTL P-complete

AF-�-calc./L�;� P-complete

full �-calc./L+�;� UP

1

co-UP
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Complexity of Model-Checking

Kripke structures S Timed automata A

Reachability NLOGSPACE-complete PSPACE-complete

CTL/TCTL P-complete PSPACE-complete

AF-�-calc./L�;� P-complete EXPTIME-complete

full �-calc./L+�;� UP

1

co-UP EXPTIME-complete

Timing constraints induce a complexity blowup !

[Alur 1991, Alur Henzinger 1994,Alur Courcoubetis Dill 1993, Aceto Laroussinie 1999]
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Complexity of Model-Checking

Kripke structures S Timed automata A

or (S1

�
: : :

�
Sn)

Reachability NLOGSPACE-complete PSPACE-complete

CTL/TCTL P-complete PSPACE-complete

AF-�-calc./L�;� P-complete EXPTIME-complete

full �-calc./L+�;� UP

1

co-UP EXPTIME-complete

Timing constraints induce a complexity blowup !

From a complexity point of view, adding clocks = adding components !

[Alur 1991, Alur Henzinger 1994,Alur Courcoubetis Dill 1993, Aceto Laroussinie 1999]
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Complexity of Model-Checking

Kripke structures S Timed automata A

or (S1

�
: : :

�
Sn)

or (A1
�

: : :

�

An)

Reachability NLOGSPACE-complete PSPACE-complete

CTL/TCTL P-complete PSPACE-complete

AF-�-calc./L�;� P-complete EXPTIME-complete

full �-calc./L+�;� UP

1

co-UP EXPTIME-complete

Timing constraints induce a complexity blowup !

From a complexity point of view, adding clocks = adding components !

[Alur 1991, Alur Henzinger 1994,Alur Courcoubetis Dill 1993, Aceto Laroussinie 1999]
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State Explosion Problem

✔ due to parallel composition

✔ due to timing constraints
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State Explosion Problem

✔ due to parallel composition

✔ due to timing constraints

From a complexity point of view:

no double complexity gap!
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From a complexity point of view:

no double complexity gap!

In practice:

✔ BDD-like techniques try to avoid discrete state explosion problem in untimed
systems ➜ SMV veri�es very large systems
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no double complexity gap!

In practice:

✔ BDD-like techniques try to avoid discrete state explosion problem in untimed
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✔ Timed systems: problems to deal with both explosions. Much smaller
systems can be analyzed in practice.
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State Explosion Problem

✔ due to parallel composition

✔ due to timing constraints

From a complexity point of view:

no double complexity gap!

In practice:

✔ BDD-like techniques try to avoid discrete state explosion problem in untimed
systems ➜ SMV veri�es very large systems

✔ Timed systems: problems to deal with both explosions. Much smaller
systems can be analyzed in practice.
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Veri�cation Methods

✔ on-the-�y backward algorithms

✔ on-the-�y forward algorithms

✔ compositional algorithms
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Reachability Analysis

✔ forward analysis algorithm:

compute the successors of initial con�gurations

F

I
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Reachability Analysis

✔ forward analysis algorithm:

compute the successors of initial con�gurations

F

I

✔ backward analysis algorithm:

compute the predecessors of �nal con�gurations

I

F
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Note on the Backward Analysis

� � �g; a; C := 0

[C � 0]�1(Z 1 (C = 0))

1

g Z
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Note on the Backward Analysis

� � �g; a; C := 0

[C � 0]�1(Z 1 (C = 0))

1

g Z

Z
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Note on the Backward Analysis

� � �g; a; C := 0

[C � 0]�1(Z 1 (C = 0))

1

g Z

Z [C 2 0]�1(Z 3 (C = 0))
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g Z
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Note on the Backward Analysis

� � �g; a; C := 0

[C � 0]�1(Z 1 (C = 0))

1

g Z

Z [C 2 0]�1(Z 3 (C = 0)) [C 2 0]�1(Z 3 (C = 0))

3

g
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Note on the Backward Analysis

� � �g; a; C := 0

[C � 0]�1(Z 1 (C = 0))

1

g Z

Z [C 2 0]�1(Z 3 (C = 0)) [C 2 0]�1(Z 3 (C = 0))

3

g

The exact backward computation terminates and is correct!
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Note on the Backward Analysis (cont.)

If

�

is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

�Every set of valuations which is computed along the backward
computation is a �nite union of regions�
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Note on the Backward Analysis (cont.)

If

�

is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

�Every set of valuations which is computed along the backward
computation is a �nite union of regions�

Let R be a region. Assume:

✔ v

�

R (for ex. v + t

�

R)

✔ v

� 4

reg. v

There exists t

�

s.t. v

�

+ t

� 4

reg. v + t, which implies that v

�

+ t

� �

R and thus v

� �

R.
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Note on the Backward Analysis (cont.)

If

�

is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

�Every set of valuations which is computed along the backward
computation is a �nite union of regions�

But, the backward computation is not so nice, when also dealing with integer
variables...

i := j:k +

�

:m
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Remark: Veri�cation of TCTL

For checking

�

j= 	:

✔ for all subformulas  of 	, compute the states [ ] satisfying  

✔ can be done using backward computations, f.ex.

Pre[ ]( 	) = fv j �� s.t. v + �

�

[ 	]  �0 � �

�

� �; v + �

� �

[ ]g

✔ as previously, everything computed is a �nite union of regions...

[Henzinger, Nicollin, Sifakis & Yovine 1994] [Yovine 1998]
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Forward Analysis of TA

� � �g; a; C := 0

Z [C � 0](�
�

Z

1

g)zones

A zone is a set of valuations de�ned by a clock constraint

	 ::= x � c j x � y � c j 	  	
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Forward Analysis of TA

� � �g; a; C := 0

Z [C � 0](�
�

Z

1

g)zones

Z
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Forward Analysis of TA

� � �g; a; C := 0

Z [C � 0](�
�

Z

1

g)zones

Z � �
Z
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Forward Analysis of TA

� � �g; a; C := 0

Z [C � 0](�
�

Z

1

g)zones

Z � �
Z

� �

Z

1

g
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Forward Analysis of TA

� � �g; a; C := 0

Z [C � 0](�
�

Z

1

g)zones

Z � �
Z

� �

Z

1

g [y � 0](�

�

Z

1

g)
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Forward Analysis of TA

� � �g; a; C := 0

Z [C � 0](�
�

Z

1

g)zones

Z � �
Z

� �

Z

1

g [y � 0](�

�

Z

1

g)

➜ a termination problem
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Non Termination of the Forward Analysis

y := 0,
x := 0

x � 1



y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

➜ an in�nite number of steps...
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�Solutions� to this Problem

(f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws,Tripakis 1998])

✔ inclusion checking: if Z

 

Z

�

and Z

�

still handled, then we don't need

to handle Z

➜ correct w.r.t. reachability

: : :
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�Solutions� to this Problem

(f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws,Tripakis 1998])

✔ inclusion checking: if Z

 

Z

�

and Z

�

still handled, then we don't need

to handle Z

➜ correct w.r.t. reachability

✔ activity: eliminate redundant clocks [Daws,Yovine 1996]

➜ correct w.r.t. reachability

q
g;a;C:=0

�������������� 5 q
�

=

6

Act(q) = clocks(g)

7

(Act(q

�

) n C)

: : :
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�Solutions� to this Problem (cont.)

✔ convex-hull approximation: if Z and Z

�

are computed then we

overapproximate using �Z

8

Z

�

�.

➜ �semi-correct� w.r.t. reachability
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�Solutions� to this Problem (cont.)

✔ convex-hull approximation: if Z and Z

�

are computed then we

overapproximate using �Z

8

Z

�

�.

➜ �semi-correct� w.r.t. reachability

✔ extrapolation, a widening operator on zones
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The DBM Data Structure

DBM (Difference Bounded Matrice) data structure [Dill 1989]

(x1 � 3)



(x2 � 5)



(x1 � x2 � 4)

x0 x1 x2

x0

x1

x2

+1 -3 +1

+1 +1 4

5 +1 +1
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The DBM Data Structure

DBM (Difference Bounded Matrice) data structure [Dill 1989]

(x1 � 3)



(x2 � 5)



(x1 � x2 � 4)

x0 x1 x2

x0

x1

x2

+1 -3 +1

+1 +1 4

5 +1 +1

✔ Existence of a normal form

3 4 9

5

2

0 -3 0

9 0 4

5 2 0
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The DBM Data Structure

DBM (Difference Bounded Matrice) data structure [Dill 1989]

(x1 � 3)



(x2 � 5)



(x1 � x2 � 4)

x0 x1 x2

x0

x1

x2

+1 -3 +1

+1 +1 4

5 +1 +1

✔ Existence of a normal form

3 4 9

5

2

0 -3 0

9 0 4

5 2 0

✔ All previous operations on zones can be computed using DBMs
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The Extrapolation Operator

Fix an integer k (� 0� represents an integer between �k and +k)

9 :
;
<
=> k 9

9 9 9

:
;

<
=< �k 9 9

>

9 ?@
A
B+1 9

9 9 9

:
;
<
=�k 9 9

✔ �intuitively�, erase non-relevant constraints

➜ ensures termination
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9 :
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<
=> k 9

9 9 9

:
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<
=< �k 9 9

>
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;
<
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The Extrapolation Operator

Fix an integer k (� 0� represents an integer between �k and +k)

9 :
;
<
=> k 9

9 9 9

:
;

<
=< �k 9 9

>

9 ?@
A
B+1 9

9 9 9

:
;
<
=�k 9 9

✔ �intuitively�, erase non-relevant constraints

2

2

➜ ensures termination
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Challenge

Propose a good constant for the extrapolation:

✔ keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton

✔ Several correctness proofs can be found

✔ Implemented in tools like UPPAAL, KRONOS, RT-SPIN...

✔ Successfully used on real-life examples
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Challenge

Propose a good constant for the extrapolation:

✔ keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton

✔ Several correctness proofs can be found

✔ Implemented in tools like UPPAAL, KRONOS, RT-SPIN...

✔ Successfully used on real-life examples

However...
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A Problematic Automaton

x3 � 3

x1; x3 := 0

x2 = 3

x2 := 0

x1 = 2; x1 := 0

x2 = 2; x2 := 0

x1 = 2

x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 � x1 > 2

x4 � x3 < 2
Error

The loop
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A Problematic Automaton

x3 � 3

x1; x3 := 0

x2 = 3

x2 := 0

x1 = 2; x1 := 0

x2 = 2; x2 := 0

x1 = 2

x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 � x1 > 2

x4 � x3 < 2
Error

The loop

v(x1) = 0

v(x2) = d

v(x3) = 2� + 5

v(x4) = 2� + 5 + d
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A Problematic Automaton

x3 � 3

x1; x3 := 0

x2 = 3

x2 := 0

x1 = 2; x1 := 0

x2 = 2; x2 := 0

x1 = 2

x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 � x1 > 2

x4 � x3 < 2
Error

The loop

v(x1) = 0

v(x2) = d

v(x3) = 2� + 5

v(x4) = 2� + 5 + d

x1

x2

x3 x4

[1; 3]

[1; 3]

[2� + 5]

[2� + 5]
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The Problematic Zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2� + 5]

[2� + 5]

[2� + 2; 2� + 4]

[2� + 6; 2� + 8]

implies x1 � x2 = x3 � x4.
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The Problematic Zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2� + 5]

[2� + 5]

[2� + 2; 2� + 4]

[2� + 6; 2� + 8]

implies x1 � x2 = x3 � x4.

If � is suf�ciently large, after extrapolation:

x1

x2

x3 x4

[1; 3]

[1; 3]

> k

does not imply
x1 � x2 = x3 � x4.
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General Abstractions

Criteria for a good abstraction operator Abs:
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General Abstractions

Criteria for a good abstraction operator Abs:

✔ easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone
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General Abstractions

Criteria for a good abstraction operator Abs:

✔ easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

✔ �niteness of the abstraction [Termination]
fAbs(Z) j Z zoneg is �nite
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Criteria for a good abstraction operator Abs:

✔ easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

✔ �niteness of the abstraction [Termination]
fAbs(Z) j Z zoneg is �nite

✔ completeness of the abstraction [Completeness]
Z

C

Abs(Z)

✔ soundness of the abstraction [Soundness]
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General Abstractions

Criteria for a good abstraction operator Abs:

✔ easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

✔ �niteness of the abstraction [Termination]
fAbs(Z) j Z zoneg is �nite

✔ completeness of the abstraction [Completeness]
Z

C

Abs(Z)

✔ soundness of the abstraction [Soundness]
the computation of (Abs D Post) ' is correct w.r.t. reachability

For the previous automaton,

no abstraction operator can satisfy all these criteria!
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Why That?

Assume there is a �nice� operator Abs.

The set fM DBM representing a zone Abs(Z)g is �nite.

➜ k the max. constant de�ning one of the previous DBMs

We get that, for every zone Z,

Z

�

Extrak(Z)
�

Abs(Z)

Timed Models for Concurrent Systems � p. 82



EPIT � Marseille - April 2004

Problem!

Open questions: - which conditions can be made weaker?

- �nd a clever termination criterium?

- use an other data structure than zones/DBMs?

- ?
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What Can We Cling To?

Diagonal-free: only guards x � c
(no guard x � y � c)

Theorem: the classical algorithm is correct for diagonal-free timed automata.

[Bouyer 2003]
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What Can We Cling To?

Diagonal-free: only guards x � c
(no guard x � y � c)

Theorem: the classical algorithm is correct for diagonal-free timed automata.

General: both guards x � c and x � y � c

Proposition: the classical algorithm is correct for timed automata that use less
than 3 clocks.

(the constant used is bigger than the maximal constant...)

[Bouyer 2003]
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How to Deal with Diagonals?

Remark:

c is positive

x � y � c

x := 0
y := 0

copy where x � y � c

x := 0
y := 0

x � c

x > c
y := 0

x := 0

y := 0

copy where x � y > c

➜ proof in [Bérard, Diekert, Gastin & Petit 1998]
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How to Deal with Diagonals?

Remark: diagonal can be eliminated (but blowup of the number of discrete states)
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Remark: diagonal can be eliminated (but blowup of the number of discrete states)

Solution: eliminate on-the-�y diagonals
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How to Deal with Diagonals?

Remark: diagonal can be eliminated (but blowup of the number of discrete states)

Solution: eliminate on-the-�y diagonals

Actual work: counter-example re�nement
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How to Deal with Diagonals?

Remark: diagonal can be eliminated (but blowup of the number of discrete states)

Solution: eliminate on-the-�y diagonals

Actual work: counter-example re�nement hope
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A Note on Compositional Methods

Basic idea:
untimed: [Andersen 1995]

timed: [Laroussinie, Larsen 1995]

(A1

�

� � �

�

An) j=

	 E (A1

�

� � �

�

An�1) j=
	=An

...

E nil j= 	=An= : : : =A2=A1
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A Note on Compositional Methods

Basic idea:
untimed: [Andersen 1995]

timed: [Laroussinie, Larsen 1995]

(A1

�

� � �

�

An) j=

	 E (A1

�

� � �

�

An�1) j=
	=An

...

E nil j= 	=An= : : : =A2=A1

Need of:

✔ a compositional logic, e.g. L�, L+�;�...

([a] 	)=q =

q
g;c;r
����� �q *

f(b;c)=a

(g 
 [b]( 	=q

�

))
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A Note on Compositional Methods

Basic idea:
untimed: [Andersen 1995]

timed: [Laroussinie, Larsen 1995]

(A1

�

� � �

�

An) j=

	 E (A1

�

� � �

�

An�1) j=
	=An

...

E nil j= 	=An= : : : =A2=A1

Need of:

✔ a compositional logic, e.g. L�, L+�;�...

([a] 	)=q =

q
g;c;r
����� �q *

f(b;c)=a

(g 
 [b]( 	=q

�

))

✔ simpli�cation rules
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A Note on Compositional Methods

Basic idea:
untimed: [Andersen 1995]

timed: [Laroussinie, Larsen 1995]

(A1

�

� � �

�

An) j=

	 E (A1

�

� � �

�

An�1) j=
	=An

...

E nil j= 	=An= : : : =A2=A1

Need of:

✔ a compositional logic, e.g. L�, L+�;�...

([a] 	)=q =

q
g;c;r
����� �q *

f(b;c)=a

(g 
 [b]( 	=q

�

))

✔ simpli�cation rules

Bad news: for those logics, nil model-checking is as dif�cult as simple m.-c.
[Aceto, Laroussinie 2002]
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Existing Tools

✔ Uppaal: made in Uppsala (Sweden) & Aalborg (Denmark)

� reachability, deadlock, a simple fragment of TCTL

� forward analysis

http://www.uppaal.com
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Existing Tools

✔ Uppaal: made in Uppsala (Sweden) & Aalborg (Denmark)

� reachability, deadlock, a simple fragment of TCTL

� forward analysis

http://www.uppaal.com

✔ HyTech: made in Berkeley (USA)

� no speci�cation logic, a rich computation language, hybrid models

� forward and backward computations

http://www-cad.eecs.berkeley.edu/~tah/HyTech/

✔ CMC: made in Cachan (France)

� modal logic L�

� compositional method

http://www.lsv.ens-cachan.fr/~fl/cmcweb.html

✔ Kronos: made in Grenoble (France)

� full TCTL

� forward and backward analysis

http://www-verimag.imag.fr/TEMPORISE/kronos/
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Conclusion Remarks
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Actual Challenges

Deal with both discrete and time explosions!

untimed systems time information

BBD-like techniques more and more optimizations

static analysis of TA

[BBFL03,BBLP04...]

Some attempts for the data-structures:

✔ the CDD data-structure [Larsen, Pearson, Weise & Yi 1999]

✔ the data-structure of RED [Wang since 2000]

Some attempts for the techniques:

✔ partial-order reduction [Bengtsson, Jonsson, Lilius & Yi 1998]

✔ partial-order semantics approach [Lugiez, Niebert & Zennou 2004]
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Actual Challenges (cont.)

Intermediate challenges

✔ better understand geometry of reachable state spaces
(in particular, �nd a satisfactory solution for dealing with diagonals)

✔ data-structures for both discrete and dense parts
(up to now: time is not really integrated, it is only added as a feature)

✔ propose true concurrent models?

✔ and then use techniques from concurrency theory?

Other challenges

✔ controller synthesis,

✔ implementability issues (program synthesis)

Thanks to F. Laroussinie, F. Cassez, O.-H. Roux and J.-F. Raskin
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Don't forget to have a look at the posters!!!!
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