
EPIT � Marseille - April 2004

Timed Models for Concurrent Systems

Patricia Bouyer

LSV � CNRS & ENS de Cachan

Timed Models for Concurrent Systems � p.

EPIT � Marseille - April 2004

Model-Checking

the systemDoes

Modelization

satisfy the property?

Timed Models for Concurrent Systems � p. 2

EPIT � Marseille - April 2004

Model-Checking

the systemDoes

Modelization

satisfy

j=
Model-checking

algorithm

the property?

Timed Models for Concurrent Systems � p. 2

EPIT � Marseille - April 2004

Time!

Context: veri�cation of embedded critical systems

Time

✔ naturally appears in real systems

✔ appears in properties (for ex. bounded response time)

➜ Need of models and speci�cation languages integrating timing aspects

➜ Challenge: Integrate time in concurrent models

Timed Models for Concurrent Systems � p. 3

EPIT � Marseille - April 2004

Roadmap

✔ About time semantics

✔ Timed speci�cation languages

✔ Some possible timed models

✔ Timed automata

✔ Networks of TA, discussion

✔ Veri�cation methods

✔ Conclusion remarks

Timed Models for Concurrent Systems � p. 4

EPIT � Marseille - April 2004

About Time Semantics

[Alur's PhD Thesis 1991]

Timed Models for Concurrent Systems � p. 5

EPIT � Marseille - April 2004

Adding Timing Informations

Which semantics?

✔ Untimed case: sequence of observable events

a: send message b: receive message

a b a b a b a b a b � � � = (a b)!

✔ Timed case: sequence of dated observable events

(a; d1) (b; d2) (a; d3) (b; d4) (a; d5) (b; d6) � � �

d1: date at which the �rst a occurs

d2: date at which the �rst b occurs

� � �

Process: set of such (un)timed sequences

Timed Models for Concurrent Systems � p. 6

EPIT � Marseille - April 2004

Three Propositions

✔ Discrete-time semantics:

dates are taken in N, the set of integers

Ex: (a; 1):(b;3):(c;4):(a;6)

✔ Dense-time semantics:

dates are taken in Q+, the set of positive rationals,
or in R+, the set of positive reals

Ex: (a; 1:28):(b;3:1):(c;3:98)(a;6:13)

✔ Fictitious-clock semantics:

�tick� action denoting each unit of time

Ex: tick:a:tick:tick:b:c:tick:tick:tick:a
or alternatively (a; 1):(b;3):(c;3):(a;6)

Timed Models for Concurrent Systems � p. 7

EPIT � Marseille - April 2004

Synchronization of Processes

✔ Untimed case: Synchronization on common events, interleaving of causally
independent events

Example: P = (fa; bg; (a b)!)

�

Q = (fb; cg; (b c)!)

a b c a b fa; cg b a c b

Can be represented by:

a b

c

a

b

c

a

b : : :

✔ Timed case: No interleaving possible; time orders events

Hyp: All components are driven by a common clock

Timed Models for Concurrent Systems � p. 8

EPIT � Marseille - April 2004

The Discrete-Time Semantics

✔ the simplest one

✔ equivalent to the untimed semantics (if no action, say action

�

)

Ex: the timed sequence

(a; 1) : (b;2) : (fa; bg;4) : (b;5) :::

is represented by the untimed sequence

fag : fbg :

�

: fa; bg : fbg :::

➜ no really new technique needed

Timed Models for Concurrent Systems � p. 9

EPIT � Marseille - April 2004

The Dense-Time Semantics

✔ a more realistic model: causally independent events may appear arbitrarly
close to each other

Ex: (a; 1) : (b;2) : (c;3:93) : (a;3:98) : (b;5) : (c;6:02)

✔ a system and its environment: no constraint on the timing of signals from the
environment

✔ if strange behaviours are not wished (e.g. zeno behaviours), one can simply
avoid them

➜ new techniques needed

Timed Models for Concurrent Systems � p. 10

EPIT � Marseille - April 2004

The Fictitous-Clock Model

Much different from the two previous models, more uncertainty.

Timed Models for Concurrent Systems � p. 11

EPIT � Marseille - April 2004

The Fictitous-Clock Model

Much different from the two previous models, more uncertainty.

✔ Ex: the sequence tick : a : tick : tick : b : c : tick : tick : tick : a
represents a timed sequence of events

(a; d1) : (b; d2) : (c; d3) : (a; d4)

where 1 � d1 < 2, 3 � d2 � d3 < 4 and 6 � d4 < 7 .

Timed Models for Concurrent Systems � p. 11

EPIT � Marseille - April 2004

The Fictitous-Clock Model

Much different from the two previous models, more uncertainty.

✔ Ex: the sequence tick : a : tick : tick : b : c : tick : tick : tick : a
represents a timed sequence of events

(a; d1) : (b; d2) : (c; d3) : (a; d4)

where 1 � d1 < 2, 3 � d2 � d3 < 4 and 6 � d4 < 7 .

✔ Parallel composition: almost as in the untimed case, but synchronization of
all �tick� actions (it is thus more constrained)

➜ � untimed case, use same techniques

Timed Models for Concurrent Systems � p. 11

EPIT � Marseille - April 2004

The Fictitous-Clock Model

Much different from the two previous models, more uncertainty.

✔ Ex: the sequence tick : a : tick : tick : b : c : tick : tick : tick : a
represents a timed sequence of events

(a; d1) : (b; d2) : (c; d3) : (a; d4)

where 1 � d1 < 2, 3 � d2 � d3 < 4 and 6 � d4 < 7 .

✔ Parallel composition: almost as in the untimed case, but synchronization of
all �tick� actions (it is thus more constrained)

➜ � untimed case, use same techniques

✔ Can also be viewed as an approximation of the dense-time semantics

Timed Models for Concurrent Systems � p. 11

EPIT � Marseille - April 2004

The Fictitous-Clock Model

Much different from the two previous models, more uncertainty.

✔✔ Ex: the sequence tick : a : tick : tick : b : c : tick : tick : tick : a
represents a timed sequence of events

(a; d1) : (b; d2) : (c; d3) : (a; d4)

where 1 � d1 < 2, 3 � d2 � d3 < 4 and 6 � d4 < 7 .

✔ Parallel composition: almost as in the untimed case, but synchronization of
all �tick� actions (it is thus more constrained)

➜ � untimed case, use same techniques

✔ Can also be viewed as an approximation of the dense-time semantics

✔ Pb: no precise timing informations (if k ticks in between two actions, it means that

these two actions are separated by some delay in [k � 1; k + 1[)

Timed Models for Concurrent Systems � p. 11

EPIT � Marseille - April 2004

A Case for Dense-Time [Alur 1991]

✔ Correctness: discussion in the context of reachability problems for
asynchronous digital circuits [Brzozowski, Seger 1991]

Timed Models for Concurrent Systems � p. 12

EPIT � Marseille - April 2004

A Digital Circuit [BS91]

Timed Models for Concurrent Systems � p. 13

EPIT � Marseille - April 2004

A Digital Circuit [BS91]

Start with x=0 and y=[101] (stable con�guration)

Timed Models for Concurrent Systems � p. 13

EPIT � Marseille - April 2004

A Digital Circuit [BS91]

Start with x=0 and y=[101] (stable con�guration)

The input x changes to 1. The corresponding stable state is y=[011]

Timed Models for Concurrent Systems � p. 13

EPIT � Marseille - April 2004

A Digital Circuit [BS91]

Start with x=0 and y=[101] (stable con�guration)

The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101]
y2� �
1:2

[111]
y3� �

2:5
[110]

y1� �

2:8
[010]

y3� �

4:5
[011]

Timed Models for Concurrent Systems � p. 13

EPIT � Marseille - April 2004

A Digital Circuit [BS91]

Start with x=0 and y=[101] (stable con�guration)

The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101]
y2� �
1:2

[111]
y3� �

2:5
[110]

y1� �

2:8
[010]

y3� �

4:5
[011]

Reachable con�gurations: f[101]; [111]; [110]; [010]; [011]; [001]g

Timed Models for Concurrent Systems � p. 13

EPIT � Marseille - April 2004

Discretizing is Not Suf�cient

[Brzozowski Seger 1991]

Theorem: for every k � 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time (with

granularity 1
k).

Timed Models for Concurrent Systems � p. 14

EPIT � Marseille - April 2004

Discretizing is Not Suf�cient � Example

✔ This digital circuit is not 1-discretizable.

Timed Models for Concurrent Systems � p. 15

EPIT � Marseille - April 2004

Discretizing is Not Suf�cient � Example

✔ This digital circuit is not 1-discretizable.

✔ Why that? (initially x = 0 and y = [11100000], x is set to 1)

Timed Models for Concurrent Systems � p. 15

EPIT � Marseille - April 2004

Discretizing is Not Suf�cient � Example

✔ This digital circuit is not 1-discretizable.

✔ Why that? (initially x = 0 and y = [11100000], x is set to 1)

� [11100000] y1� �

1
[01100000]

y2� �

1:5
[00100000]

y3 ;y5� �

2
[00001000]

y5 ;y7� �

3
[00000010]

y7 ;y8� �

4
[00000001]

Timed Models for Concurrent Systems � p. 15

EPIT � Marseille - April 2004

Discretizing is Not Suf�cient � Example

✔ This digital circuit is not 1-discretizable.

✔ Why that? (initially x = 0 and y = [11100000], x is set to 1)

� [11100000] y1� �

1
[01100000]

y2� �

1:5
[00100000]

y3 ;y5� �

2
[00001000]

y5 ;y7� �

3
[00000010]

y7 ;y8� �

4
[00000001]

� [11100000] y1 ;y2 ;y3� �

1
[00000000]

Timed Models for Concurrent Systems � p. 15

EPIT � Marseille - April 2004

Discretizing is Not Suf�cient � Example

✔ This digital circuit is not 1-discretizable.

✔ Why that? (initially x = 0 and y = [11100000], x is set to 1)

� [11100000] y1� �

1
[01100000]

y2� �

1:5
[00100000]

y3 ;y5� �

2
[00001000]

y5 ;y7� �

3
[00000010]

y7 ;y8� �

4
[00000001]

� [11100000] y1 ;y2 ;y3� �

1
[00000000] � [11100000] y1� �

1
[01111000]

y2 ;y3 ;y4 ;y5� �

2
[00000000]

Timed Models for Concurrent Systems � p. 15

EPIT � Marseille - April 2004

Discretizing is Not Suf�cient � Example

✔ This digital circuit is not 1-discretizable.

✔ Why that? (initially x = 0 and y = [11100000], x is set to 1)

� [11100000] y1� �

1
[01100000]

y2� �

1:5
[00100000]

y3 ;y5� �

2
[00001000]

y5 ;y7� �

3
[00000010]

y7 ;y8� �

4
[00000001]

� [11100000] y1 ;y2 ;y3� �

1
[00000000] � [11100000] y1� �

1
[01111000]

y2 ;y3 ;y4 ;y5� �

2
[00000000]

� [11100000] y1 ;y2� �

1
[00100000]

y3;y5 ;y6� �

2
[00001100]

y5 ;y6� �

3
[00000000]

Timed Models for Concurrent Systems � p. 15

EPIT � Marseille - April 2004

Discretizing is Not Suf�cient � Example

✔ This digital circuit is not 1-discretizable.

✔ Why that? (initially x = 0 and y = [11100000], x is set to 1)

� [11100000] y1� �

1
[01100000]

y2� �

1:5
[00100000]

y3 ;y5� �

2
[00001000]

y5 ;y7� �

3
[00000010]

y7 ;y8� �

4
[00000001]

� [11100000] y1 ;y2 ;y3� �

1
[00000000] � [11100000] y1� �

1
[01111000]

y2 ;y3;y4 ;y5� �

2
[00000000]

� [11100000] y1 ;y2� �

1
[00100000]

y3;y5 ;y6� �

2
[00001100]

y5 ;y6� �

3
[00000000]

Timed Models for Concurrent Systems � p. 15

EPIT � Marseille - April 2004

Discretizing is Not Suf�cient

[Brzozowski Seger 1991]

Theorem: for every k � 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time (with

granularity 1
k).

Timed Models for Concurrent Systems � p. 16

EPIT � Marseille - April 2004

Discretizing is Not Suf�cient

[Brzozowski Seger 1991]

Theorem: for every k � 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time (with

granularity 1
k).

Claim: �nding a correct granularity is as dif�cult as computing the set of
reachable states in dense-time

Timed Models for Concurrent Systems � p. 16

EPIT � Marseille - April 2004

Discretizing is Not Suf�cient

[Brzozowski Seger 1991]

Theorem: for every k � 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time (with

granularity 1
k).

Claim: �nding a correct granularity is as dif�cult as computing the set of
reachable states in dense-time

Further counter-example: there exist systems for which no granularity exists
(see later)

Timed Models for Concurrent Systems � p. 16

EPIT � Marseille - April 2004

Fictitious-Clock Model: Too Large

✔ Dense-time: f[11]; [00]g

✔ Fictitious-clock: f[11]; [10]; [01]; [00]g

(tick:y1)
�

(tick:y2) = ftick:y1:y2; tick:y2:y1g

➜ over-approximation of the set of reachable states

Timed Models for Concurrent Systems � p. 17

EPIT � Marseille - April 2004

A Case for Dense-Time

✔ Correctness

✔ Expressiveness: discrete-time and �ctitious-clock models can be expressed
by dense-time models

Timed Models for Concurrent Systems � p. 18

EPIT � Marseille - April 2004

A Case for Dense-Time

✔ Correctness

✔ Expressiveness

✔ Compositionality: the semantics of one component depends on the
granularity of the whole system and of the property we want to check

Ex: P: process such that a and b strictly alternate and each b is exactly one unit of
time later than a
Q process such that a and b strictly alternate, each b is exactly one unit of time later
than a, and each a is at least one unit of time later than each b

� If the granularity is 1,

Timed Models for Concurrent Systems � p. 18

EPIT � Marseille - April 2004

A Case for Dense-Time

✔ Correctness

✔ Expressiveness

✔ Compositionality: the semantics of one component depends on the
granularity of the whole system and of the property we want to check

Ex: P: process such that a and b strictly alternate and each b is exactly one unit of
time later than a
Q process such that a and b strictly alternate, each b is exactly one unit of time later
than a, and each a is at least one unit of time later than each b

� If the granularity is 1, T(P)=T(Q)

� If the granularity is 1
2 ,

Timed Models for Concurrent Systems � p. 18

EPIT � Marseille - April 2004

A Case for Dense-Time

✔ Correctness

✔ Expressiveness

✔ Compositionality: the semantics of one component depends on the
granularity of the whole system and of the property we want to check

Ex: P: process such that a and b strictly alternate and each b is exactly one unit of
time later than a
Q process such that a and b strictly alternate, each b is exactly one unit of time later
than a, and each a is at least one unit of time later than each b

� If the granularity is 1, T(P)=T(Q)

� If the granularity is 1
2 , T(P) � T(Q)

Timed Models for Concurrent Systems � p. 18

EPIT � Marseille - April 2004

A Case for Dense-Time

✔ Correctness

✔ Expressiveness

✔ Compositionality: the semantics of one component depends on the
granularity of the whole system and of the property we want to check

Ex: P: process such that a and b strictly alternate and each b is exactly one unit of
time later than a
Q process such that a and b strictly alternate, each b is exactly one unit of time later
than a, and each a is at least one unit of time later than each b

� If the granularity is 1, T(P)=T(Q)

� If the granularity is 1
2 , T(P) � T(Q)

➜ Dense-time: a good alternative to have a compositional semantics.

Timed Models for Concurrent Systems � p. 18

EPIT � Marseille - April 2004

A Case for Dense-Time

✔ Correctness

✔ Expressiveness

✔ Compositionality

✔ Complexity: dense-time more complex than the two other semantics
(ex: inclusion)

However: re�ning the granularity increases the complexity...

Timed Models for Concurrent Systems � p. 18

EPIT � Marseille - April 2004

A Case for Dense-Time

✔ Correctness

✔ Expressiveness

✔ Compositionality

✔ Complexity

In the following we choose the dense-time semantics

Timed Models for Concurrent Systems � p. 18

EPIT � Marseille - April 2004

Timed Speci�cation Languages

Timed Models for Concurrent Systems � p. 19

EPIT � Marseille - April 2004

Classical Veri�cation Problems

✔ reachability of a control state

✔

� � � �: bisimulation, etc...

✔ L(

�

)

�

L(

� �

): language inclusion

✔

�

j= 	 for some formula 	: model-checking

✔

� �

AT + reachability: testing automata

✔ . . .

Timed Models for Concurrent Systems � p. 20

EPIT � Marseille - April 2004

Classical Temporal Logics

Path formulas:

G� « Always »

F� « Eventually »

�U�

�

« Until »

X� « Next »

State formulas:

A E

➜ LTL: Linear Temporal Logic [Pnueli 1977],

CTL: Computation Tree Logic [Emerson, Clarke 1982]

Timed Models for Concurrent Systems � p. 21

EPIT � Marseille - April 2004

Adding Time to Temporal Logics

Classical temporal logics allow us to express that

�any problem is followed by an alarm�

Timed Models for Concurrent Systems � p. 22

EPIT � Marseille - April 2004

Adding Time to Temporal Logics

Classical temporal logics allow us to express that

�any problem is followed by an alarm�

With CTL:
AG(problem
 AF alarm)

Timed Models for Concurrent Systems � p. 22

EPIT � Marseille - April 2004

Adding Time to Temporal Logics

Classical temporal logics allow us to express that

�any problem is followed by an alarm�

With CTL:
AG(problem
 AF alarm)

How can we express:

�any problem is followed by an alarm in at most 20 time units�

Timed Models for Concurrent Systems � p. 22

EPIT � Marseille - April 2004

Adding Time to Temporal Logics

Classical temporal logics allow us to express that

�any problem is followed by an alarm�

With CTL:
AG(problem
 AF alarm)

How can we express:

�any problem is followed by an alarm in at most 20 time units�

✔ Temporal logics with subscripts. ex: CTL +

�����

E 	U �k
A 	U �k

AG(problem
 AF�20 alarm)

Timed Models for Concurrent Systems � p. 22

EPIT � Marseille - April 2004

Adding Time to Temporal Logics

Classical temporal logics allow us to express that

�any problem is followed by an alarm�

With CTL:
AG(problem
 AF alarm)

How can we express:

�any problem is followed by an alarm in at most 20 time units�

✔ Temporal logics with subscripts.

AG(problem
 AF�20 alarm)

✔ Temporal logics with clocks.

AG(problem
 (x in AF(x � 20

alarm)))

Timed Models for Concurrent Systems � p. 22

EPIT � Marseille - April 2004

Adding Time to Temporal Logics

Classical temporal logics allow us to express that

�any problem is followed by an alarm�

With CTL:
AG(problem
 AF alarm)

How can we express:

�any problem is followed by an alarm in at most 20 time units�

✔ Temporal logics with subscripts.

AG(problem
 AF�20 alarm)

✔ Temporal logics with clocks.

AG(problem
 (x in AF(x � 20

alarm)))

➜ TCTL: Timed CTL [ACD90,ACD93,HNSY94]

Timed Models for Concurrent Systems � p. 22

EPIT � Marseille - April 2004

An Other Speci�cation Language

Timed modal logics or timed �-calculus with clocks e.g. [LLW95]

✔ prop, boolean combinators

✔ < a > 	, [a] 	

✔

� � 	, � � 	

✔ min(X;), max(X;)
✔ x � cte, x in 	

Timed Models for Concurrent Systems � p. 23

EPIT � Marseille - April 2004

An Other Speci�cation Language

Timed modal logics or timed �-calculus with clocks e.g. [LLW95]

✔ prop, boolean combinators

✔ < a > 	, [a] 	

✔

� � 	, � � 	

✔ min(X;), max(X;)
✔ x � cte, x in 	

Examples: �AG 	�: max(X; 	 �a[a]X
 � �)

Timed Models for Concurrent Systems � p. 23

EPIT � Marseille - April 2004

An Other Speci�cation Language

Timed modal logics or timed �-calculus with clocks e.g. [LLW95]

✔ prop, boolean combinators

✔ < a > 	, [a] 	

✔

� � 	, � � 	

✔ min(X;), max(X;)
✔ x � cte, x in 	

Examples: �AG 	�: max(X; 	 �a[a]X
 � �)

�A(W)�: max(X;

�

(�a[a]X

 � �

X))

Timed Models for Concurrent Systems � p. 23

EPIT � Marseille - April 2004

An Other Speci�cation Language

Timed modal logics or timed �-calculus with clocks e.g. [LLW95]

✔ prop, boolean combinators

✔ < a > 	, [a] 	

✔

� � 	, � � 	

✔ min(X;), max(X;)
✔ x � cte, x in 	

Examples: �AG 	�: max(X; 	 �a[a]X
 � �)

�A(W)�: max(X;

�

(�a[a]X

 � �

X))

�non-zenoness (action and time)�: x in max(X; x � 1

 � �

X

 �

a[a]X)

Timed Models for Concurrent Systems � p. 23

EPIT � Marseille - April 2004

An Other Speci�cation Language

Timed modal logics or timed �-calculus with clocks e.g. [LLW95]

✔ prop, boolean combinators

✔ < a > 	, [a] 	

✔

� � 	, � � 	

✔ min(X;), max(X;)
✔ x � cte, x in 	

Examples: �AG 	�: max(X; 	 �a[a]X
 � �)

�A(W)�: max(X;

�

(�a[a]X

 � �

X))

�non-zenoness (action and time)�: x in max(X; x � 1

 � �

X

 �

a[a]X)

� = problem
 x in max(Z; alarme

�

(x � 20

a

[a]Z

 � �

Z))

max(Y; �

a

[a]Y

 � �

Y)
Timed Models for Concurrent Systems � p. 23

EPIT � Marseille - April 2004

An Other Example

✔ the bell rings every 15 minutes

Timed Models for Concurrent Systems � p. 24

EPIT � Marseille - April 2004

An Other Example

✔ the bell rings every 15 minutes

bell

AG(bell
 AF=15 bell)

Timed Models for Concurrent Systems � p. 24

EPIT � Marseille - April 2004

An Other Example

✔ the bell rings every 15 minutes

bell

AG0<:<15 :bell

AG(bell
 AF=15 bell)

AG(:bell
 AG=15 :bell)

Timed Models for Concurrent Systems � p. 24

EPIT � Marseille - April 2004

An Other Example

✔ the bell rings every 15 minutes

bell

AG0<:<15 :bell

AG(bell
 AF=15 bell)

AG(:bell
 AG=15 :bell)

bell

(0 < x < 15

:bell)

�

((x = 15
�

x = 0)

bell)

Timed Models for Concurrent Systems � p. 24

EPIT � Marseille - April 2004

An Other Example

✔ the bell rings every 15 minutes

bell

AG0<:<15 :bell

AG(bell
 AF=15 bell)

AG(:bell
 AG=15 :bell)

bell

x in max(X; x � 15
 ((0 < x < 15

:bell)

�

((x = 15
�

x = 0)

bell

x in (

� �

X

a

[a]X))))

Timed Models for Concurrent Systems � p. 24

EPIT � Marseille - April 2004

Some Possible Timed Models

✔ Time Petri nets

✔ Timed process algebra

✔ Timed MSCs

✔ Graphs with durations

✔ Timed automata

✔ ...

Timed Models for Concurrent Systems � p. 25

EPIT � Marseille - April 2004

Some Possible Timed Models

✔ Time Petri nets

✔ Timed process algebra

✔ Timed MSCs

✔ Graphs with durations

✔ Timed automata

✔ ...

Timed Models for Concurrent Systems � p. 25

EPIT � Marseille - April 2004

Time Petri Nets [Merlin 1974, Berthomieu & Diaz 1991]

p1 p2

2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Only t1 can be �red: 4 � t1 � 9

➜ t1 is �red after �1

Timed Models for Concurrent Systems � p. 26

EPIT � Marseille - April 2004

Time Petri Nets [Merlin 1974, Berthomieu & Diaz 1991]

p1 p2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Only t1 can be �red: 4 � t1 � 9

➜ t1 is �red after �1

Marking: (p3,p4,p5)

Timed Models for Concurrent Systems � p. 26

EPIT � Marseille - April 2004

Time Petri Nets [Merlin 1974, Berthomieu & Diaz 1991]

p1 p2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Only t1 can be �red: 4 � t1 � 9

➜ t1 is �red after �1

Marking: (p3,p4,p5)
t2, t3, t4 and t5 can be �red:

0 � t2 � 2 1 � t3 � 3

0 � t4 � 2 0 � t5 � 3

➜ t2 is �red after �2

Timed Models for Concurrent Systems � p. 26

EPIT � Marseille - April 2004

Time Petri Nets [Merlin 1974, Berthomieu & Diaz 1991]

p1 p2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Only t1 can be �red: 4 � t1 � 9

➜ t1 is �red after �1

Marking: (p3,p4,p5)
t2, t3, t4 and t5 can be �red:

0 � t2 � 2 1 � t3 � 3

0 � t4 � 2 0 � t5 � 3

➜ t2 is �red after �2

Marking: (p2,p3,p5)

Timed Models for Concurrent Systems � p. 26

EPIT � Marseille - April 2004

Time Petri Nets [Merlin 1974, Berthomieu & Diaz 1991]

p1 p2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Only t1 can be �red: 4 � t1 � 9

➜ t1 is �red after �1

Marking: (p3,p4,p5)
t2, t3, t4 and t5 can be �red:

0 � t2 � 2 1 � t3 � 3

0 � t4 � 2 0 � t5 � 3

➜ t2 is �red after �2

Marking: (p2,p3,p5)
t3, t4 and t5 can be �red:

max(0; 1 � �2) � t3 � 3 � �2

0 � t4 � 2 � �2

0 � t5 � 3 � �2

Timed Models for Concurrent Systems � p. 26

EPIT � Marseille - April 2004

Time Petri Nets [Merlin 1974, Berthomieu & Diaz 1991]

p1 p2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Only t1 can be �red: 4 � t1 � 9

➜ t1 is �red after �1

Marking: (p3,p4,p5)
t2, t3, t4 and t5 can be �red:

0 � t2 � 2 1 � t3 � 3

0 � t4 � 2 0 � t5 � 3

➜ t2 is �red after �2

Marking: (p2,p3,p5)
t3, t4 and t5 can be �red:

max(0; 1 � �2) � t3 � 3 � �2

0 � t4 � 2 � �2

0 � t5 � 3 � �2

The scheduling (t1:t2; �1 = 5:�2 = 0) is realizable

Timed Models for Concurrent Systems � p. 26

EPIT � Marseille - April 2004

Time Petri Nets � Symbolic Analysis

Graph of State Classes
p1 p2

2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Initial class: 4 � t1 � 9

Timed Models for Concurrent Systems � p. 27

EPIT � Marseille - April 2004

Time Petri Nets � Symbolic Analysis

Graph of State Classes
p1 p2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Initial class: 4 � t1 � 9

Marking: (p3,p4,p5)

Timed Models for Concurrent Systems � p. 27

EPIT � Marseille - April 2004

Time Petri Nets � Symbolic Analysis

Graph of State Classes
p1 p2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Initial class: 4 � t1 � 9

Marking: (p3,p4,p5)

Class: 0 � t2 � 2 1 � t3 � 3

0 � t4 � 2 0 � t5 � 3

➜ t2 is �red after �2

Timed Models for Concurrent Systems � p. 27

EPIT � Marseille - April 2004

Time Petri Nets � Symbolic Analysis

Graph of State Classes
p1 p2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Initial class: 4 � t1 � 9

Marking: (p3,p4,p5)

Class: 0 � t2 � 2 1 � t3 � 3

0 � t4 � 2 0 � t5 � 3

➜ t2 is �red after �2

Marking: (p2,p3,p5)

max(0; 1 � �2) � t3 � 3 � �2

0 � t4 � 2 � �2

0 � t5 � 3 � �2

Class: (eliminate �2)

0 � t3 � 3 t4 � t3 � 1

0 � t4 � 2 t5 � t3 � 2

0 � t5 � 3

and so on...

Timed Models for Concurrent Systems � p. 27

EPIT � Marseille - April 2004

Time Petri Nets � Symbolic Analysis

Graph of State Classes
p1 p2

p3

p4 p5

t1[4,9] t2 [0,2] t3 [1,3]

t4

[0,2]

t5[0,3]

2

Initial marking: (p1,p2(2))
Initial class: 4 � t1 � 9

Marking: (p3,p4,p5)

Class: 0 � t2 � 2 1 � t3 � 3

0 � t4 � 2 0 � t5 � 3

➜ t2 is �red after �2

Marking: (p2,p3,p5)

max(0; 1 � �2) � t3 � 3 � �2

0 � t4 � 2 � �2

0 � t5 � 3 � �2

Class: (eliminate �2)

0 � t3 � 3 t4 � t3 � 1

0 � t4 � 2 t5 � t3 � 2

0 � t5 � 3

and so on...

potentially in�nite graph...

Timed Models for Concurrent Systems � p. 27

EPIT � Marseille - April 2004

Graph of State Classes for the Example

0

1

2

3

4

5

6

7

8

9

10

11

t1

t2

t3
t4

t5

t3

t4

t5

t4

t5

t4

t5

t3

t4

t5

t3

t2

t4

t5

t2

t4

t5

t2

t2

t3

t4

t5

t2
t3

Timed Models for Concurrent Systems � p. 28

EPIT � Marseille - April 2004

Time Petri Nets � Properties

[Berthomieu & Menasche 1983] [Berthomieu & Diaz 1991]

Theorem: The number of state classes of a T-safe TPN is bounded if and only if
the net is bounded.

Timed Models for Concurrent Systems � p. 29

EPIT � Marseille - April 2004

Time Petri Nets � Properties

[Berthomieu & Menasche 1983] [Berthomieu & Diaz 1991]

Theorem: The number of state classes of a T-safe TPN is bounded if and only if
the net is bounded.

Theorem: Boundedness and reachability of TPNs are undecidable.

Timed Models for Concurrent Systems � p. 29

EPIT � Marseille - April 2004

Time Petri Nets � Properties

[Berthomieu & Menasche 1983] [Berthomieu & Diaz 1991]

Theorem: The number of state classes of a T-safe TPN is bounded if and only if
the net is bounded.

Theorem: Boundedness and reachability of TPNs are undecidable.

Theorem: Reachability and LTL model-checking of bounded TPNs are decidable.

Timed Models for Concurrent Systems � p. 29

EPIT � Marseille - April 2004

Time Petri Nets � Properties

[Berthomieu & Menasche 1983] [Berthomieu & Diaz 1991]

Theorem: The number of state classes of a T-safe TPN is bounded if and only if
the net is bounded.

Theorem: Boundedness and reachability of TPNs are undecidable.

Theorem: Reachability and LTL model-checking of bounded TPNs are decidable.

A more involved construction is needed for branching-time model-checking
[Yoneda & Ryuba 1998]

Timed Models for Concurrent Systems � p. 29

EPIT � Marseille - April 2004

Time Petri Nets � Properties

[Berthomieu & Menasche 1983] [Berthomieu & Diaz 1991]

Theorem: The number of state classes of a T-safe TPN is bounded if and only if
the net is bounded.

Theorem: Boundedness and reachability of TPNs are undecidable.

Theorem: Reachability and LTL model-checking of bounded TPNs are decidable.

A more involved construction is needed for branching-time model-checking
[Yoneda & Ryuba 1998]

[Cassez & Roux 2003] Any bounded TPN can be transformed into an equivalent (for
strong bisimulation) network of timed automata. [one transition = one component]

Timed Models for Concurrent Systems � p. 29

EPIT � Marseille - April 2004

Time Petri Nets � Properties

[Berthomieu & Menasche 1983] [Berthomieu & Diaz 1991]

Theorem: The number of state classes of a T-safe TPN is bounded if and only if
the net is bounded.

Theorem: Boundedness and reachability of TPNs are undecidable.

Theorem: Reachability and LTL model-checking of bounded TPNs are decidable.

A more involved construction is needed for branching-time model-checking
[Yoneda & Ryuba 1998]

[Cassez & Roux 2003] Any bounded TPN can be transformed into an equivalent (for
strong bisimulation) network of timed automata. [one transition = one component]

➜ formal proof of the decidability of TCTL for bounded TPNs

Timed Models for Concurrent Systems � p. 29

EPIT � Marseille - April 2004

Time Petri Nets � Properties

[Berthomieu & Menasche 1983] [Berthomieu & Diaz 1991]

Theorem: The number of state classes of a T-safe TPN is bounded if and only if
the net is bounded.

Theorem: Boundedness and reachability of TPNs are undecidable.

Theorem: Reachability and LTL model-checking of bounded TPNs are decidable.

A more involved construction is needed for branching-time model-checking
[Yoneda & Ryuba 1998]

[Cassez & Roux 2003] Any bounded TPN can be transformed into an equivalent (for
strong bisimulation) network of timed automata. [one transition = one component]

➜ formal proof of the decidability of TCTL for bounded TPNs

[Gardey, Roux & Roux 2003] Zone-based algorithm for checking reachability

Timed Models for Concurrent Systems � p. 29

EPIT � Marseille - April 2004

Problem with Branching Time

p0 p1 p2

p3 p4

t0

[0,4]

t1

[3,4]

t2

[5,6]

CTL formula: EF(p1

p3

AF(p2

p3))

Timed Models for Concurrent Systems � p. 30

EPIT � Marseille - April 2004

Graphs with Durations

✔

� [n;m] � � : �moving from

�

to

� �

takes some duration d in [n;m]�

Timed Models for Concurrent Systems � p. 31

EPIT � Marseille - April 2004

Graphs with Durations

✔

� [n;m] � � : �moving from

�

to

� �

takes some duration d in [n;m]�

➜ reachability is NLOGSPACE-complete
[Laroussinie, Markey & Schnoebelen 2004]

Timed Models for Concurrent Systems � p. 31

EPIT � Marseille - April 2004

Graphs with Durations

✔

� [n;m] � � : �moving from

�

to

� �

takes some duration d in [n;m]�

➜ reachability is NLOGSPACE-complete
[Laroussinie, Markey & Schnoebelen 2004]

✔ Problem with parallel composition
a; [1]

[0; +1[

b
� [5;7]

b

Timed Models for Concurrent Systems � p. 31

EPIT � Marseille - April 2004

Graphs with Durations

✔

� [n;m] � � : �moving from

�

to

� �

takes some duration d in [n;m]�

➜ reachability is NLOGSPACE-complete
[Laroussinie, Markey & Schnoebelen 2004]

✔ Problem with parallel composition
a; [1]

[0; +1[

b
� [5;7]

b

[1]
a

[1]
a

[1]
a

[1]
a

[1]
a

[1]
a

[1]
a

b

b

b

b

b

b

b

b

[5;7]

[4;6]

[3;5]

[2;4]

[1;3]

[0;2]

[0; 1]

[0]

Timed Models for Concurrent Systems � p. 31

EPIT � Marseille - April 2004

Graphs with Durations

✔

� [n;m] � � : �moving from

�

to

� �

takes some duration d in [n;m]�

➜ reachability is NLOGSPACE-complete
[Laroussinie, Markey & Schnoebelen 2004]

✔ Problem with parallel composition

➜ Even if low complexity bounds, not convenient for modelling concurrency

Timed Models for Concurrent Systems � p. 31

EPIT � Marseille - April 2004

Some Comments

✔ the most-accepted timed model is timed automata

✔ the techniques used for analyzing TPNs and timed automata are very similar

� state class graph � zone automaton

� strong state class graph [Berthomieu & Vernadat 2003]

� minimal graph [Bouajjani, Fernandez, Halbwachs & Raymond 1992]

Timed Models for Concurrent Systems � p. 32

EPIT � Marseille - April 2004

Timed Automata

Timed Models for Concurrent Systems � p. 33

EPIT � Marseille - April 2004

Timed Automata [Alur & Dill 90's]

✔ A �nite control structure + variables (clocks)

✔ A transition is of the form:

g; a; C := 0

Enabling condition Reset to zero

✔ An enabling condition (or guard) is:

g ::= x � c j x � y � c j g

g

where � � f<; �; =; �; >g

Timed Models for Concurrent Systems � p. 34

EPIT � Marseille - April 2004

Timed Automata, an Example

x; y : clocks

�

0

�

1

�

2

x � 5; a; y := 0 x � y > 3; b; x := 0

Timed Models for Concurrent Systems � p. 35

EPIT � Marseille - April 2004

Timed Automata, an Example

x; y : clocks

�

0

�

1

�

2

x � 5; a; y := 0 x � y > 3; b; x := 0

�

0
�(4:1)

�

0 a
�

1
�(1:4)

�

1 b

�

2

x 0 4:1 4:1 5:5 0

y 0 4:1 0 1:4 1:4

Timed Models for Concurrent Systems � p. 35

EPIT � Marseille - April 2004

Timed Automata, an Example

x; y : clocks

�

0

�

1

�

2

x � 5; a; y := 0 x � y > 3; b; x := 0

�

0
�(4:1)

�

0 a
�

1
�(1:4)

�

1 b

�

2

x 0 4:1 4:1 5:5 0

y 0 4:1 0 1:4 1:4

(clock) valuation

Timed Models for Concurrent Systems � p. 35

EPIT � Marseille - April 2004

Timed Automata, an Example

x; y : clocks

�

0

�

1

�

2

x � 5; a; y := 0 x � y > 3; b; x := 0

�

0
�(4:1)

�

0 a
�

1
�(1:4)

�

1 b

�

2

x 0 4:1 4:1 5:5 0

y 0 4:1 0 1:4 1:4

(clock) valuation

➜ timed word (a;4:1)(b;5:5)

Timed Models for Concurrent Systems � p. 35

EPIT � Marseille - April 2004

TA Semantics

✔

�

= (�; L;X;) is a TA

✔ Con�gurations: (

�

; v)

�

L � TX where T is the time domain

✔ Timed Transition System:

� action transition: (

�

; v) a (

� �

; v

�
) if

� � g;a;r � � � � s.t. v j= g

v

�

= v[r � 0]

� delay transition: (q; v) �(d) (q; v + d) if d

�

T

Timed Models for Concurrent Systems � p. 36

EPIT � Marseille - April 2004

Some Exercices

What do the following TA recognize?

Timed Models for Concurrent Systems � p. 37

EPIT � Marseille - April 2004

Some Exercices

What do the following TA recognize?

b

x = 3; a; x := 0

Timed Models for Concurrent Systems � p. 37

EPIT � Marseille - April 2004

Some Exercices

What do the following TA recognize?

b

x = 3; a; x := 0

x1 = m1; t = 5

x2 = m2; t = 5

xi = mi; xj := 0; t := 0

xi = mi; xj := 0

Timed Models for Concurrent Systems � p. 37

EPIT � Marseille - April 2004

Composition of TA

To model concurrent systems: several communicating components
➜ n-ary synchronization function

(combine synchronization rules and interleaving rules)

Timed Models for Concurrent Systems � p. 38

EPIT � Marseille - April 2004

Composition of TA

To model concurrent systems: several communicating components
➜ n-ary synchronization function

(combine synchronization rules and interleaving rules)

Note: e.g. in Uppaal: binary synchronization, in HyTech: binary synchronization, in
Kronos: binary synchronization, (H)CMC: n-ary synchronization

Timed Models for Concurrent Systems � p. 38

EPIT � Marseille - April 2004

Composition of TA

To model concurrent systems: several communicating components
➜ n-ary synchronization function

(combine synchronization rules and interleaving rules)

Note: e.g. in Uppaal: binary synchronization, in HyTech: binary synchronization, in
Kronos: binary synchronization, (H)CMC: n-ary synchronization

Remark: concurrent timed automata [Lanotte, Maggiolo-Schettini & Tini 2003]

- notion of private/shared clocks

- relative conciseness

Timed Models for Concurrent Systems � p. 38

EPIT � Marseille - April 2004

The Train Crossing Example (1)

Traini with i = 1;2; :::

Far

Before, xi < 30

On, xi < 20

App!; xi := 0

20 < xi < 30; a; xi := 0

10 < xi < 20; Exit!

Timed Models for Concurrent Systems � p. 39

EPIT � Marseille - April 2004

The Train Crossing Example (2)

The gate:

Open

CloseRaising, Hg < 10

Lowering, Hg < 10
GoDown?, Hg := 0

Hg < 10, a

GoUp?, Hg := 0

Hg < 10, a

Timed Models for Concurrent Systems � p. 40

EPIT � Marseille - April 2004

The Train Crossing Example (3)

The controller:

c1, xc � 20 c2, xc � 10c0
App? Hc := 0Exit?, Hc := 0

Hc � 10, GoDown!

Exit?

App?

Exit?

Hc = 20, GoUp!

App?

Timed Models for Concurrent Systems � p. 41

EPIT � Marseille - April 2004

The Train Crossing Example (4)

We use the synchronization function f:

Train1 Train2 Gate Controller

App! : : App? App

: App! : App? App

Exit! : : Exit? Exit

: Exit! : Exit? Exit

a : : : a

: a : : a

: : a : a

: : GoUp? GoUp! GoUp

: : GoDown? GoDown! GoDown

to de�ne the parallel composition (Train1

�

Train2

�

Gate

�

Controller)

NB: the parallel composition does not add expressive power !

Timed Models for Concurrent Systems � p. 42

EPIT � Marseille - April 2004

The Train Crossing Example (5)

Some properties one could check:

✔ Is the gate closed when a train crosses the road?

Timed Models for Concurrent Systems � p. 43

EPIT � Marseille - April 2004

The Train Crossing Example (5)

Some properties one could check:

✔ Is the gate closed when a train crosses the road?

AG(train:On
 gate.Close)

Timed Models for Concurrent Systems � p. 43

EPIT � Marseille - April 2004

The Train Crossing Example (5)

Some properties one could check:

✔ Is the gate closed when a train crosses the road?

AG(train:On
 gate.Close)

✔ Is the gate always closed for less than 5 minutes?

Timed Models for Concurrent Systems � p. 43

EPIT � Marseille - April 2004

The Train Crossing Example (5)

Some properties one could check:

✔ Is the gate closed when a train crosses the road?

AG(train:On
 gate.Close)

✔ Is the gate always closed for less than 5 minutes?

:EF(gate.Close

(gate.Close U>5 min :gate.Close))

Timed Models for Concurrent Systems � p. 43

EPIT � Marseille - April 2004

Discrete vs Dense-Time Semantics

x = 1; a; x := 0 b; y := 0

x = 1; a; x := 0

y < 1; b; y := 0

✔ Dense-time: Ldense = f((ab)!; �) j

�

i; �2i�1 = i and �2i � �2i�1 > �2i+2 � �2i+1g

✔ Discrete-time: Ldiscrete =

�

x = 1; a; x := 0

b; y := 0

y < 1

b

y := 0

ab

� �

Timed Models for Concurrent Systems � p. 44

EPIT � Marseille - April 2004

Veri�cation of TA

Problem: the set of con�gurations is in�nite
➜ classical methods can not be applied

Timed Models for Concurrent Systems � p. 45

EPIT � Marseille - April 2004

Veri�cation of TA

Problem: the set of con�gurations is in�nite
➜ classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Timed Models for Concurrent Systems � p. 45

EPIT � Marseille - April 2004

Veri�cation of TA

Problem: the set of con�gurations is in�nite
➜ classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Aim: construct a �nite abstraction

Timed Models for Concurrent Systems � p. 45

EPIT � Marseille - April 2004

The Region Abstraction

0 1 2 3 x

1

2

y

Equivalence of �nite index

Timed Models for Concurrent Systems � p. 46

EPIT � Marseille - April 2004

The Region Abstraction

0 1 2 3 x

1

2

y

Equivalence of �nite index

✔ �compatibility� between regions and constraints

Timed Models for Concurrent Systems � p. 46

EPIT � Marseille - April 2004

The Region Abstraction

0 1 2 3 x

1

2

y

Equivalence of �nite index

�

�

✔ �compatibility� between regions and constraints

✔ �compatibility� between regions and time elapsing

Timed Models for Concurrent Systems � p. 46

EPIT � Marseille - April 2004

The Region Abstraction

0 1 2 3 x

1

2

y

Equivalence of �nite index

�

�

✔ �compatibility� between regions and constraints

✔ �compatibility� between regions and time elapsing

Timed Models for Concurrent Systems � p. 46

EPIT � Marseille - April 2004

The Region Abstraction

0 1 2 3 x

1

2

y

Equivalence of �nite index

✔ �compatibility� between regions and constraints

✔ �compatibility� between regions and time elapsing

➜ a bisimulation property

Timed Models for Concurrent Systems � p. 46

EPIT � Marseille - April 2004

The Region Abstraction

0 1 2 3 x

1

2

y

Equivalence of �nite index

region de�ned by

Ix =]1; 2[, Iy =]0; 1[

fxg < fyg

✔ �compatibility� between regions and constraints

✔ �compatibility� between regions and time elapsing

➜ a bisimulation property

Timed Models for Concurrent Systems � p. 46

EPIT � Marseille - April 2004

The Region Abstraction

0 1 2 3 x

1

2

y

Equivalence of �nite index

region de�ned by

Ix =]1; 2[, Iy =]0; 1[

fxg < fyg

successor region

Ix =]1; 2[; Iy = f1g

✔ �compatibility� between regions and constraints

✔ �compatibility� between regions and time elapsing

➜ a bisimulation property

Timed Models for Concurrent Systems � p. 46

EPIT � Marseille - April 2004

The Region Abstraction

0 1 2 3 x

1

2

y

Equivalence of �nite index

region de�ned by

Ix =]1; 2[, Iy =]0; 1[

fxg < fyg

successor regions

✔ �compatibility� between regions and constraints

✔ �compatibility� between regions and time elapsing

➜ a bisimulation property

Timed Models for Concurrent Systems � p. 46

EPIT � Marseille - April 2004

The Region Automaton

timed automaton region abstraction

� g;a;C:=0 � � is transformed into:

(

�

; R) a (

� �

; R

�

) if there exists R

� � �

Succ

�
t (R) s.t.

✔ R

� �

g

✔ [C ! 0]R
� �

R

�

Timed Models for Concurrent Systems � p. 47

EPIT � Marseille - April 2004

Time-Abstract Bisimulation

� a

Timed Models for Concurrent Systems � p. 48

EPIT � Marseille - April 2004

Time-Abstract Bisimulation

�
�

a

a

Timed Models for Concurrent Systems � p. 48

EPIT � Marseille - April 2004

Time-Abstract Bisimulation

�
�

a

a

�

d > 0
�(d)

Timed Models for Concurrent Systems � p. 48

EPIT � Marseille - April 2004

Time-Abstract Bisimulation

�
�

a

a

�

d > 0

�

d

�

> 0

�(d)

�(d

�

)

Timed Models for Concurrent Systems � p. 48

EPIT � Marseille - April 2004

Time-Abstract Bisimulation

�
�

a

a

�

d > 0

�

d

�

> 0

�(d)

�(d

�

)

(

�

0; v0)
a1;t1 (

�

1; v1)
a2;t2 (

�
2; v2)

a3;t3 : : :

Timed Models for Concurrent Systems � p. 48

EPIT � Marseille - April 2004

Time-Abstract Bisimulation

�
�

a

a

�

d > 0

�

d

�

> 0

�(d)

�(d

�

)

(

�

0; v0)
a1;t1 (

�

1; v1)
a2;t2 (

�
2; v2)

a3;t3 : : :" " "

(

�

0; R0)
a1 (

�

1; R1)
a2 (

�

2; R2)
a3 : : :

with vi

�

Ri for all i.

Timed Models for Concurrent Systems � p. 48

EPIT � Marseille - April 2004

Time-Abstract Bisimulation

�
�

a

a

�

d > 0

�

d

�

> 0

�(d)

�(d

�

)

(

�

0; v0)
a1;t1 (

�

1; v1)
a2;t2 (

�
2; v2)

a3;t3 : : :# # #

(

�

0; R0)
a1 (

�

1; R1)
a2 (

�

2; R2)
a3 : : :

with vi

�

Ri for all i.

Timed Models for Concurrent Systems � p. 48

EPIT � Marseille - April 2004

Time-Abstract Bisimulation

�
�

a

a

�

d > 0

�

d

�

> 0

�(d)

�(d

�

)

(

�

0; v0)
a1;t1 (

�

1; v1)
a2;t2 (

�
2; v2)

a3;t3 : : :# # #

(

�

0; R0)
a1 (

�

1; R1)
a2 (

�

2; R2)
a3 : : :

with vi

�

Ri for all i.

Remark: We can not check real-time properties with a time-abstract bisimulation.
We need to add clocks for the formula we want to check.

Timed Models for Concurrent Systems � p. 48

EPIT � Marseille - April 2004

The Region Automaton

timed automaton region abstraction

� g;a;C:=0 � � is transformed into:

(

�

; R) a (

� �

; R

�

) if there exists R

� � �

Succ
�

t (R) s.t.

✔ R

� �

g

✔ [C ! 0]R
� �

R

�

Timed Models for Concurrent Systems � p. 49

EPIT � Marseille - April 2004

The Region Automaton

timed automaton region abstraction

� g;a;C:=0 � � is transformed into:

(

�

; R) a (

� �

; R

�

) if there exists R

� � �

Succ
�

t (R) s.t.

✔ R

� �

g

✔ [C ! 0]R
� �

R

�

$

(reg. aut.) = UNTIME(

$

(timed aut.))

where UNTIME((a1; t1)(a2; t2) : : :) = a1a2 : : :

Timed Models for Concurrent Systems � p. 49

EPIT � Marseille - April 2004

An Example [Alur & Dill 90's]

Questions:

✔ Is s3 reachable?

Timed Models for Concurrent Systems � p. 50

EPIT � Marseille - April 2004

An Example [Alur & Dill 90's]

Questions:

✔ Is s3 reachable?

✔ If s2 is a repeated state (for a Büchi condition), what is the language
recognized by this automaton?

Timed Models for Concurrent Systems � p. 50

EPIT � Marseille - April 2004

An Example [Alur & Dill 90's]

Questions:

✔ Is s3 reachable?

✔ If s2 is a repeated state (for a Büchi condition), what is the language
recognized by this automaton?

✔ Is there an in�nite timed word accepted by this automaton with no d?

Timed Models for Concurrent Systems � p. 50

EPIT � Marseille - April 2004

An Example [Alur & Dill 90's]

0 1 x

1

y

Timed Models for Concurrent Systems � p. 51

EPIT � Marseille - April 2004

Main Basis Result

Theorem [Alur & Dill 90's] Reachability is decidable for TA.

Timed Models for Concurrent Systems � p. 52

EPIT � Marseille - April 2004

Main Basis Result

¡ The size of the region graph is in

%

(jXj!:2jXj) !

Theorem [Alur & Dill 90's] Reachability is decidable for TA.
It is even PSPACE-complete.

Timed Models for Concurrent Systems � p. 52

EPIT � Marseille - April 2004

PSPACE-Easyness

✔ One con�guration: a discrete location + a region

Timed Models for Concurrent Systems � p. 53

EPIT � Marseille - April 2004

PSPACE-Easyness

✔✔ One con�guration: a discrete location + a region

� a discrete location: log-space

Timed Models for Concurrent Systems � p. 53

EPIT � Marseille - April 2004

PSPACE-Easyness

✔✔ One con�guration: a discrete location + a region

� a discrete location: log-space

� a region:
� an interval for each clock
� an interval for each pair of clocks

Timed Models for Concurrent Systems � p. 53

EPIT � Marseille - April 2004

PSPACE-Easyness

✔✔ One con�guration: a discrete location + a region

� a discrete location: log-space

� a region:
� an interval for each clock
� an interval for each pair of clocks

➜ needs polynomial space

Timed Models for Concurrent Systems � p. 53

EPIT � Marseille - April 2004

PSPACE-Easyness

✔✔ One con�guration: a discrete location + a region

� a discrete location: log-space

� a region:
� an interval for each clock
� an interval for each pair of clocks

➜ needs polynomial space

✔ By guessing a path: needs only to store two con�gurations

Timed Models for Concurrent Systems � p. 53

EPIT � Marseille - April 2004

PSPACE-Easyness

✔ One con�guration: a discrete location + a region

� a discrete location: log-space

� a region:
� an interval for each clock
� an interval for each pair of clocks

➜ needs polynomial space

✔ By guessing a path: needs only to store two con�gurations

➜ in NPSPACE, thus in PSPACE

Timed Models for Concurrent Systems � p. 53

EPIT � Marseille - April 2004

PSPACE-Hardness

&

LBTM

w0

�

fa; bg

' } (A);w0
s.t.

&

accepts w0 iff the �nal state of A);w0
is reachable

Cjw0

fxj; yjg

Cj contains a �a� iff xj = yj

Cj contains a �b� iff xj < yj
(these conditions are invariant by time elapsing)

➜ proof taken in [Aceto & Laroussinie 2002]

Timed Models for Concurrent Systems � p. 54

EPIT � Marseille - April 2004

PSPACE-Hardness (cont.)

If q �;�

*

;� q

�

is a transition of

&

, then for each position i of the tape, we have a

transition

(q; i)
g;r:=0

(q

�

; i

�

)

where:

✔ g is xi = yi (resp. xi < yi) if � = a (resp. � = b)

✔ r = fxi; yig (resp. r = fxig) if � = a (resp. � = b)

✔ i

�

= i + 1 (resp. i

�

= i � 1) if � is right and i < n (resp. left)

Enforcing time elapsing: on each transition, add the condition t = 1 and clock t is reset.

Initialization: init
t=1;r0:=0 (q0; 1) where r0 = fxi j w0[i] = bg

+

ftg

Termination: (qf; i) end

Timed Models for Concurrent Systems � p. 55

EPIT � Marseille - April 2004

Tighter Results

✔ Reachability in TA is PSPACE-complete even if the time is discrete!
[Alur & Dill 90's]

✔ Reachability in TA with integer constants in f1;2g is PSPACE-complete.
[Courcoubetis & Yannakakis 1992]

✔ Reachability in TA with 3 clocks is PSPACE-complete.
[Courcoubetis & Yannakakis 1992]

✔ Reachability in TA with 1 clock is NLOGSPACE-complete.
[Laroussinie, Markey & Schnoebelen 2004]

✔ Reachability in TA with 2 clocks is NP-hard.
[Laroussinie, Markey & Schnoebelen 2004]

Timed Models for Concurrent Systems � p. 56

EPIT � Marseille - April 2004

Veri�cation of TCTL

How to check that

�

j= 	?

Timed Models for Concurrent Systems � p. 57

EPIT � Marseille - April 2004

Veri�cation of TCTL

How to check that

�

j= 	?

✔ Add the clocks of 	, and consider the new bigger region automaton

�Two equivalent states satisfy the same subformulas of 	�

Timed Models for Concurrent Systems � p. 57

EPIT � Marseille - April 2004

Veri�cation of TCTL

How to check that

�

j= 	?

✔ Add the clocks of 	, and consider the new bigger region automaton

�Two equivalent states satisfy the same subformulas of 	�

✔ Label all the states of the region automaton with the subformulas of 	

Timed Models for Concurrent Systems � p. 57

EPIT � Marseille - April 2004

Veri�cation of TCTL

How to check that

�

j= 	?

✔ Add the clocks of 	, and consider the new bigger region automaton

�Two equivalent states satisfy the same subformulas of 	�

✔ Label all the states of the region automaton with the subformulas of 	

Theorem [Alur, Courcoubetis & Dill 1990]

Model-checking of TCTL is PSPACE-complete for TA.

Timed Models for Concurrent Systems � p. 57

EPIT � Marseille - April 2004

A Model Not Far From Undecidability

✔ Universality is undecidable [Alur & Dill 90's]

✔ Inclusion is undecidable [Alur & Dill 90's]

✔ Satis�ability of TCTL is undecidable [Alur & Dill 90's]

✔ Determinizability is undecidable [Tripakis 2003]

✔ ...

Timed Models for Concurrent Systems � p. 58

EPIT � Marseille - April 2004

A Model Not Far From Undecidability

✔ Universality is undecidable [Alur & Dill 90's]

✔ Inclusion is undecidable [Alur & Dill 90's]

✔ Satis�ability of TCTL is undecidable [Alur & Dill 90's]

✔ Determinizability is undecidable [Tripakis 2003]

✔ ...

An example of non-deterministic TA:

a

a; x := 0

a

x = 1; a

a

Timed Models for Concurrent Systems � p. 58

EPIT � Marseille - April 2004

A Model Not Far From Undecidability

✔ Universality is undecidable [Alur & Dill 90's]

✔ Inclusion is undecidable [Alur & Dill 90's]

✔ Satis�ability of TCTL is undecidable [Alur & Dill 90's]

✔ Determinizability is undecidable [Tripakis 2003]

✔ ...

Extending timed automata:

✔ add silent actions [Bérard, Diekert, Gastin, Petit 1998] Decidable!

Timed Models for Concurrent Systems � p. 58

EPIT � Marseille - April 2004

A Model Not Far From Undecidability

✔ Universality is undecidable [Alur & Dill 90's]

✔ Inclusion is undecidable [Alur & Dill 90's]

✔ Satis�ability of TCTL is undecidable [Alur & Dill 90's]

✔ Determinizability is undecidable [Tripakis 2003]

✔ ...

Extending timed automata:

✔ add silent actions [Bérard, Diekert, Gastin, Petit 1998] Decidable!

✔ add guards, e.g. x + y , - c [Bérard, Dufourd 2000] Undecidable!

Timed Models for Concurrent Systems � p. 58

EPIT � Marseille - April 2004

A Model Not Far From Undecidability

✔ Universality is undecidable [Alur & Dill 90's]

✔ Inclusion is undecidable [Alur & Dill 90's]

✔ Satis�ability of TCTL is undecidable [Alur & Dill 90's]

✔ Determinizability is undecidable [Tripakis 2003]

✔ ...

Extending timed automata:

✔ add silent actions [Bérard, Diekert, Gastin, Petit 1998] Decidable!

✔ add guards, e.g. x + y , - c [Bérard, Dufourd 2000] Undecidable!

✔ add operations on clocks, e.g. x := y + 1 Decidable/Undecidable
[Bouyer, Dufourd, Fleury, Petit 2000]

Timed Models for Concurrent Systems � p. 58

EPIT � Marseille - April 2004

A Model Not Far From Undecidability

✔ Universality is undecidable [Alur & Dill 90's]

✔ Inclusion is undecidable [Alur & Dill 90's]

✔ Satis�ability of TCTL is undecidable [Alur & Dill 90's]

✔ Determinizability is undecidable [Tripakis 2003]

✔ ...

Extending timed automata:

✔ add silent actions [Bérard, Diekert, Gastin, Petit 1998] Decidable!

✔ add guards, e.g. x + y , - c [Bérard, Dufourd 2000] Undecidable!

✔ add operations on clocks, e.g. x := y + 1 Decidable/Undecidable
[Bouyer, Dufourd, Fleury, Petit 2000]

✔ more general variables, e.g. hybrid systems Undecidable!
[Alur, Courcoubetis, Henzinger, Ho 1993]
[Henzinger 1996] [Henzinger, Kopke, Puri, Varaiya 1998]
...

Timed Models for Concurrent Systems � p. 58

EPIT � Marseille - April 2004

Adding Constraints of the Form x+y . c

x + y � c and x � c [Bérard,Dufourd 2000]

✔ Decidability: - for two clocks, decidable using the abstraction

0 1 2 x

1

2

y

- for four clocks (or more), undecidable!

✔ Expressiveness: more expressive! (even using two clocks)

f(an; t1 : : : tn) j n � 1 and ti = 1 � 1
2i
g

x + y = 1; a; x := 0

Timed Models for Concurrent Systems � p. 59

EPIT � Marseille - April 2004

The Two-Counter Machine

De�nition. A two-counter machine is a �nite set of instructions over two

counters (x and y):

✔ Incrementation:

(p): x := x + 1; goto (q)

✔ Decrementation:

(p): if x > 0 then x := x � 1; goto (q) else goto (r)

Theorem. [Minsky 67] The emptiness problem for two counter machines is
undecidable.

Timed Models for Concurrent Systems � p. 60

EPIT � Marseille - April 2004

Undecidability Proof

20 21 22 23 24 25 26 time

c c c c c c c c ccd ddd d dd d dd

c is unchanged c is incremented

d is decremented

➜ simulation of � decrement of d

� increment of c

We will use 4 clocks: � u, �tic� clock (each time unit)

� x0, x1, x2: reference clocks for the two counters

�xi reference for c� / �the last time xi has been reset is

the last time action c has been performed�

[Bérard,Dufourd 2000]

Timed Models for Concurrent Systems � p. 61

EPIT � Marseille - April 2004

Undecidability Proof (cont.)

✔ Increment of counter c:

u = 1; 0; u := 0

x2 := 0

x0 � 2; u + x2 = 1; c; x2 := 0

u + x2 = 1

x0 > 2; c; x2 := 0

ref for c is x0 ref for c is x2

✔ Decrement of counter c:

u = 1; 0; u := 0

x2 := 0

x0 < 2; u + x2 = 1; c; x2 := 0

u + x2 = 1

x0 = 2; c; x2 := 0

u = 1; x0 = 2; 0; u := 0; x2 := 0

Timed Models for Concurrent Systems � p. 62

EPIT � Marseille - April 2004

Adding Constraints of the Form x+y . c

✔ Two clocks: decidable! using the abstraction

0 1 2 x

1

2

y

✔ Four clocks (or more): undecidable!

Timed Models for Concurrent Systems � p. 63

EPIT � Marseille - April 2004

Adding Constraints of the Form x+y . c

✔ Two clocks: decidable! using the abstraction

0 1 2 x

1

2

y

✔ Three clocks: open question

✔ Four clocks (or more): undecidable!

Timed Models for Concurrent Systems � p. 63

EPIT � Marseille - April 2004

Networks of TA, discussion

Timed Models for Concurrent Systems � p. 64

EPIT � Marseille - April 2004

Complexity of Model-Checking

Kripke structures S Timed automata A

Reachability NLOGSPACE-complete

CTL/TCTL P-complete

AF-�-calc./L�;� P-complete

full �-calc./L+�;� UP

1

co-UP

Timed Models for Concurrent Systems � p. 65

EPIT � Marseille - April 2004

Complexity of Model-Checking

Kripke structures S Timed automata A

Reachability NLOGSPACE-complete PSPACE-complete

CTL/TCTL P-complete PSPACE-complete

AF-�-calc./L�;� P-complete EXPTIME-complete

full �-calc./L+�;� UP

1

co-UP EXPTIME-complete

Timing constraints induce a complexity blowup !

[Alur 1991, Alur Henzinger 1994,Alur Courcoubetis Dill 1993, Aceto Laroussinie 1999]

Timed Models for Concurrent Systems � p. 65

EPIT � Marseille - April 2004

Complexity of Model-Checking

Kripke structures S Timed automata A

or (S1

�
: : :

�
Sn)

Reachability NLOGSPACE-complete PSPACE-complete

CTL/TCTL P-complete PSPACE-complete

AF-�-calc./L�;� P-complete EXPTIME-complete

full �-calc./L+�;� UP

1

co-UP EXPTIME-complete

Timing constraints induce a complexity blowup !

From a complexity point of view, adding clocks = adding components !

[Alur 1991, Alur Henzinger 1994,Alur Courcoubetis Dill 1993, Aceto Laroussinie 1999]

Timed Models for Concurrent Systems � p. 65

EPIT � Marseille - April 2004

Complexity of Model-Checking

Kripke structures S Timed automata A

or (S1

�
: : :

�
Sn)

or (A1
�

: : :

�

An)

Reachability NLOGSPACE-complete PSPACE-complete

CTL/TCTL P-complete PSPACE-complete

AF-�-calc./L�;� P-complete EXPTIME-complete

full �-calc./L+�;� UP

1

co-UP EXPTIME-complete

Timing constraints induce a complexity blowup !

From a complexity point of view, adding clocks = adding components !

[Alur 1991, Alur Henzinger 1994,Alur Courcoubetis Dill 1993, Aceto Laroussinie 1999]

Timed Models for Concurrent Systems � p. 65

EPIT � Marseille - April 2004

State Explosion Problem

✔ due to parallel composition

✔ due to timing constraints

Timed Models for Concurrent Systems � p. 66

EPIT � Marseille - April 2004

State Explosion Problem

✔ due to parallel composition

✔ due to timing constraints

From a complexity point of view:

no double complexity gap!

Timed Models for Concurrent Systems � p. 66

EPIT � Marseille - April 2004

State Explosion Problem

✔ due to parallel composition

✔ due to timing constraints

From a complexity point of view:

no double complexity gap!

Timed Models for Concurrent Systems � p. 66

EPIT � Marseille - April 2004

State Explosion Problem

✔ due to parallel composition

✔ due to timing constraints

From a complexity point of view:

no double complexity gap!

In practice:

✔ BDD-like techniques try to avoid discrete state explosion problem in untimed
systems ➜ SMV veri�es very large systems

Timed Models for Concurrent Systems � p. 66

EPIT � Marseille - April 2004

State Explosion Problem

✔ due to parallel composition

✔ due to timing constraints

From a complexity point of view:

no double complexity gap!

In practice:

✔ BDD-like techniques try to avoid discrete state explosion problem in untimed
systems ➜ SMV veri�es very large systems

✔ Timed systems: problems to deal with both explosions. Much smaller
systems can be analyzed in practice.

Timed Models for Concurrent Systems � p. 66

EPIT � Marseille - April 2004

State Explosion Problem

✔ due to parallel composition

✔ due to timing constraints

From a complexity point of view:

no double complexity gap!

In practice:

✔ BDD-like techniques try to avoid discrete state explosion problem in untimed
systems ➜ SMV veri�es very large systems

✔ Timed systems: problems to deal with both explosions. Much smaller
systems can be analyzed in practice.

Timed Models for Concurrent Systems � p. 66

EPIT � Marseille - April 2004

Veri�cation Methods

✔ on-the-�y backward algorithms

✔ on-the-�y forward algorithms

✔ compositional algorithms

Timed Models for Concurrent Systems � p. 67

EPIT � Marseille - April 2004

Reachability Analysis

✔ forward analysis algorithm:

compute the successors of initial con�gurations

F

I

Timed Models for Concurrent Systems � p. 68

EPIT � Marseille - April 2004

Reachability Analysis

✔ forward analysis algorithm:

compute the successors of initial con�gurations

F

I

Timed Models for Concurrent Systems � p. 68

EPIT � Marseille - April 2004

Reachability Analysis

✔ forward analysis algorithm:

compute the successors of initial con�gurations

F

I

✔ backward analysis algorithm:

compute the predecessors of �nal con�gurations

I

F

Timed Models for Concurrent Systems � p. 68

EPIT � Marseille - April 2004

Reachability Analysis

✔ forward analysis algorithm:

compute the successors of initial con�gurations

F

I

✔ backward analysis algorithm:

compute the predecessors of �nal con�gurations

I

F

Timed Models for Concurrent Systems � p. 68

EPIT � Marseille - April 2004

Note on the Backward Analysis

� � �g; a; C := 0

[C � 0]�1(Z 1 (C = 0))

1

g Z

Timed Models for Concurrent Systems � p. 69

EPIT � Marseille - April 2004

Note on the Backward Analysis

� � �g; a; C := 0

[C � 0]�1(Z 1 (C = 0))

1

g Z

Z

Timed Models for Concurrent Systems � p. 69

EPIT � Marseille - April 2004

Note on the Backward Analysis

� � �g; a; C := 0

[C � 0]�1(Z 1 (C = 0))

1

g Z

Z [C 2 0]�1(Z 3 (C = 0))

Timed Models for Concurrent Systems � p. 69

EPIT � Marseille - April 2004

Note on the Backward Analysis

� � �g; a; C := 0

[C � 0]�1(Z 1 (C = 0))

1

g Z

Z [C 2 0]�1(Z 3 (C = 0))

Timed Models for Concurrent Systems � p. 69

EPIT � Marseille - April 2004

Note on the Backward Analysis

� � �g; a; C := 0

[C � 0]�1(Z 1 (C = 0))

1

g Z

Z [C 2 0]�1(Z 3 (C = 0)) [C 2 0]�1(Z 3 (C = 0))

3

g

Timed Models for Concurrent Systems � p. 69

EPIT � Marseille - April 2004

Note on the Backward Analysis

� � �g; a; C := 0

[C � 0]�1(Z 1 (C = 0))

1

g Z

Z [C 2 0]�1(Z 3 (C = 0)) [C 2 0]�1(Z 3 (C = 0))

3

g

The exact backward computation terminates and is correct!

Timed Models for Concurrent Systems � p. 69

EPIT � Marseille - April 2004

Note on the Backward Analysis (cont.)

If

�

is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

�Every set of valuations which is computed along the backward
computation is a �nite union of regions�

Timed Models for Concurrent Systems � p. 70

EPIT � Marseille - April 2004

Note on the Backward Analysis (cont.)

If

�

is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

�Every set of valuations which is computed along the backward
computation is a �nite union of regions�

Let R be a region. Assume:

✔ v

�

R (for ex. v + t

�

R)

✔ v

� 4

reg. v

There exists t

�

s.t. v

�

+ t

� 4

reg. v + t, which implies that v

�

+ t

� �

R and thus v

� �

R.

Timed Models for Concurrent Systems � p. 70

EPIT � Marseille - April 2004

Note on the Backward Analysis (cont.)

If

�

is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

�Every set of valuations which is computed along the backward
computation is a �nite union of regions�

But, the backward computation is not so nice, when also dealing with integer
variables...

i := j:k +

�

:m

Timed Models for Concurrent Systems � p. 70

EPIT � Marseille - April 2004

Remark: Veri�cation of TCTL

For checking

�

j= 	:

✔ for all subformulas of 	, compute the states [] satisfying

✔ can be done using backward computations, f.ex.

Pre[]() = fv j �� s.t. v + �

�

[] �0 � �

�

� �; v + �

� �

[]g

✔ as previously, everything computed is a �nite union of regions...

[Henzinger, Nicollin, Sifakis & Yovine 1994] [Yovine 1998]

Timed Models for Concurrent Systems � p. 71

EPIT � Marseille - April 2004

Forward Analysis of TA

� � �g; a; C := 0

Z [C � 0](�
�

Z

1

g)zones

A zone is a set of valuations de�ned by a clock constraint

	 ::= x � c j x � y � c j 	 	

Timed Models for Concurrent Systems � p. 72

EPIT � Marseille - April 2004

Forward Analysis of TA

� � �g; a; C := 0

Z [C � 0](�
�

Z

1

g)zones

Z

Timed Models for Concurrent Systems � p. 72

EPIT � Marseille - April 2004

Forward Analysis of TA

� � �g; a; C := 0

Z [C � 0](�
�

Z

1

g)zones

Z � �
Z

Timed Models for Concurrent Systems � p. 72

EPIT � Marseille - April 2004

Forward Analysis of TA

� � �g; a; C := 0

Z [C � 0](�
�

Z

1

g)zones

Z � �
Z

� �

Z

1

g

Timed Models for Concurrent Systems � p. 72

EPIT � Marseille - April 2004

Forward Analysis of TA

� � �g; a; C := 0

Z [C � 0](�
�

Z

1

g)zones

Z � �
Z

� �

Z

1

g [y � 0](�

�

Z

1

g)

Timed Models for Concurrent Systems � p. 72

EPIT � Marseille - April 2004

Forward Analysis of TA

� � �g; a; C := 0

Z [C � 0](�
�

Z

1

g)zones

Z � �
Z

� �

Z

1

g [y � 0](�

�

Z

1

g)

➜ a termination problem

Timed Models for Concurrent Systems � p. 72

EPIT � Marseille - April 2004

Non Termination of the Forward Analysis

y := 0,
x := 0

x � 1

y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

➜ an in�nite number of steps...

Timed Models for Concurrent Systems � p. 73

EPIT � Marseille - April 2004

�Solutions� to this Problem

(f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws,Tripakis 1998])

✔ inclusion checking: if Z

Z

�

and Z

�

still handled, then we don't need

to handle Z

➜ correct w.r.t. reachability

: : :

Timed Models for Concurrent Systems � p. 74

EPIT � Marseille - April 2004

�Solutions� to this Problem

(f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws,Tripakis 1998])

✔ inclusion checking: if Z

Z

�

and Z

�

still handled, then we don't need

to handle Z

➜ correct w.r.t. reachability

✔ activity: eliminate redundant clocks [Daws,Yovine 1996]

➜ correct w.r.t. reachability

q
g;a;C:=0

�������������� 5 q
�

=

6

Act(q) = clocks(g)

7

(Act(q

�

) n C)

: : :

Timed Models for Concurrent Systems � p. 74

EPIT � Marseille - April 2004

�Solutions� to this Problem (cont.)

✔ convex-hull approximation: if Z and Z

�

are computed then we

overapproximate using �Z

8

Z

�

�.

➜ �semi-correct� w.r.t. reachability

Timed Models for Concurrent Systems � p. 75

EPIT � Marseille - April 2004

�Solutions� to this Problem (cont.)

✔ convex-hull approximation: if Z and Z

�

are computed then we

overapproximate using �Z

8

Z

�

�.

➜ �semi-correct� w.r.t. reachability

✔ extrapolation, a widening operator on zones

Timed Models for Concurrent Systems � p. 75

EPIT � Marseille - April 2004

The DBM Data Structure

DBM (Difference Bounded Matrice) data structure [Dill 1989]

(x1 � 3)

(x2 � 5)

(x1 � x2 � 4)

x0 x1 x2

x0

x1

x2

+1 -3 +1

+1 +1 4

5 +1 +1

Timed Models for Concurrent Systems � p. 76

EPIT � Marseille - April 2004

The DBM Data Structure

DBM (Difference Bounded Matrice) data structure [Dill 1989]

(x1 � 3)

(x2 � 5)

(x1 � x2 � 4)

x0 x1 x2

x0

x1

x2

+1 -3 +1

+1 +1 4

5 +1 +1

✔ Existence of a normal form

3 4 9

5

2

0 -3 0

9 0 4

5 2 0

Timed Models for Concurrent Systems � p. 76

EPIT � Marseille - April 2004

The DBM Data Structure

DBM (Difference Bounded Matrice) data structure [Dill 1989]

(x1 � 3)

(x2 � 5)

(x1 � x2 � 4)

x0 x1 x2

x0

x1

x2

+1 -3 +1

+1 +1 4

5 +1 +1

✔ Existence of a normal form

3 4 9

5

2

0 -3 0

9 0 4

5 2 0

✔ All previous operations on zones can be computed using DBMs

Timed Models for Concurrent Systems � p. 76

EPIT � Marseille - April 2004

The Extrapolation Operator

Fix an integer k (� 0� represents an integer between �k and +k)

9 :
;
<
=> k 9

9 9 9

:
;

<
=< �k 9 9

>

9 ?@
A
B+1 9

9 9 9

:
;
<
=�k 9 9

✔ �intuitively�, erase non-relevant constraints

➜ ensures termination

Timed Models for Concurrent Systems � p. 77

EPIT � Marseille - April 2004

The Extrapolation Operator

Fix an integer k (� 0� represents an integer between �k and +k)

9 :
;
<
=> k 9

9 9 9

:
;

<
=< �k 9 9

>

9 ?@
A
B+1 9

9 9 9

:
;
<
=�k 9 9

✔ �intuitively�, erase non-relevant constraints

2

2

➜ ensures termination

Timed Models for Concurrent Systems � p. 77

EPIT � Marseille - April 2004

The Extrapolation Operator

Fix an integer k (� 0� represents an integer between �k and +k)

9 :
;
<
=> k 9

9 9 9

:
;

<
=< �k 9 9

>

9 ?@
A
B+1 9

9 9 9

:
;
<
=�k 9 9

✔ �intuitively�, erase non-relevant constraints

2

2

➜ ensures termination

Timed Models for Concurrent Systems � p. 77

EPIT � Marseille - April 2004

Challenge

Propose a good constant for the extrapolation:

✔ keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton

✔ Several correctness proofs can be found

✔ Implemented in tools like UPPAAL, KRONOS, RT-SPIN...

✔ Successfully used on real-life examples

Timed Models for Concurrent Systems � p. 78

EPIT � Marseille - April 2004

Challenge

Propose a good constant for the extrapolation:

✔ keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton

✔ Several correctness proofs can be found

✔ Implemented in tools like UPPAAL, KRONOS, RT-SPIN...

✔ Successfully used on real-life examples

However...

Timed Models for Concurrent Systems � p. 78

EPIT � Marseille - April 2004

A Problematic Automaton

x3 � 3

x1; x3 := 0

x2 = 3

x2 := 0

x1 = 2; x1 := 0

x2 = 2; x2 := 0

x1 = 2

x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 � x1 > 2

x4 � x3 < 2
Error

The loop

Timed Models for Concurrent Systems � p. 79

EPIT � Marseille - April 2004

A Problematic Automaton

x3 � 3

x1; x3 := 0

x2 = 3

x2 := 0

x1 = 2; x1 := 0

x2 = 2; x2 := 0

x1 = 2

x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 � x1 > 2

x4 � x3 < 2
Error

The loop

v(x1) = 0

v(x2) = d

v(x3) = 2� + 5

v(x4) = 2� + 5 + d

Timed Models for Concurrent Systems � p. 79

EPIT � Marseille - April 2004

A Problematic Automaton

x3 � 3

x1; x3 := 0

x2 = 3

x2 := 0

x1 = 2; x1 := 0

x2 = 2; x2 := 0

x1 = 2

x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 � x1 > 2

x4 � x3 < 2
Error

The loop

v(x1) = 0

v(x2) = d

v(x3) = 2� + 5

v(x4) = 2� + 5 + d

x1

x2

x3 x4

[1; 3]

[1; 3]

[2� + 5]

[2� + 5]

Timed Models for Concurrent Systems � p. 79

EPIT � Marseille - April 2004

The Problematic Zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2� + 5]

[2� + 5]

[2� + 2; 2� + 4]

[2� + 6; 2� + 8]

implies x1 � x2 = x3 � x4.

Timed Models for Concurrent Systems � p. 80

EPIT � Marseille - April 2004

The Problematic Zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2� + 5]

[2� + 5]

[2� + 2; 2� + 4]

[2� + 6; 2� + 8]

implies x1 � x2 = x3 � x4.

If � is suf�ciently large, after extrapolation:

x1

x2

x3 x4

[1; 3]

[1; 3]

> k

does not imply
x1 � x2 = x3 � x4.

Timed Models for Concurrent Systems � p. 80

EPIT � Marseille - April 2004

General Abstractions

Criteria for a good abstraction operator Abs:

Timed Models for Concurrent Systems � p. 81

EPIT � Marseille - April 2004

General Abstractions

Criteria for a good abstraction operator Abs:

✔ easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

Timed Models for Concurrent Systems � p. 81

EPIT � Marseille - April 2004

General Abstractions

Criteria for a good abstraction operator Abs:

✔ easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

✔ �niteness of the abstraction [Termination]
fAbs(Z) j Z zoneg is �nite

Timed Models for Concurrent Systems � p. 81

EPIT � Marseille - April 2004

General Abstractions

Criteria for a good abstraction operator Abs:

✔ easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

✔ �niteness of the abstraction [Termination]
fAbs(Z) j Z zoneg is �nite

✔ completeness of the abstraction [Completeness]
Z

C

Abs(Z)

Timed Models for Concurrent Systems � p. 81

EPIT � Marseille - April 2004

General Abstractions

Criteria for a good abstraction operator Abs:

✔ easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

✔ �niteness of the abstraction [Termination]
fAbs(Z) j Z zoneg is �nite

✔ completeness of the abstraction [Completeness]
Z

C

Abs(Z)

✔ soundness of the abstraction [Soundness]
the computation of (Abs D Post) ' is correct w.r.t. reachability

Timed Models for Concurrent Systems � p. 81

EPIT � Marseille - April 2004

General Abstractions

Criteria for a good abstraction operator Abs:

✔ easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

✔ �niteness of the abstraction [Termination]
fAbs(Z) j Z zoneg is �nite

✔ completeness of the abstraction [Completeness]
Z

C

Abs(Z)

✔ soundness of the abstraction [Soundness]
the computation of (Abs D Post) ' is correct w.r.t. reachability

For the previous automaton,

no abstraction operator can satisfy all these criteria!

Timed Models for Concurrent Systems � p. 81

EPIT � Marseille - April 2004

Why That?

Assume there is a �nice� operator Abs.

The set fM DBM representing a zone Abs(Z)g is �nite.

➜ k the max. constant de�ning one of the previous DBMs

We get that, for every zone Z,

Z

�

Extrak(Z)
�

Abs(Z)

Timed Models for Concurrent Systems � p. 82

EPIT � Marseille - April 2004

Problem!

Open questions: - which conditions can be made weaker?

- �nd a clever termination criterium?

- use an other data structure than zones/DBMs?

- ?

Timed Models for Concurrent Systems � p. 83

EPIT � Marseille - April 2004

What Can We Cling To?

Diagonal-free: only guards x � c
(no guard x � y � c)

Theorem: the classical algorithm is correct for diagonal-free timed automata.

[Bouyer 2003]

Timed Models for Concurrent Systems � p. 84

EPIT � Marseille - April 2004

What Can We Cling To?

Diagonal-free: only guards x � c
(no guard x � y � c)

Theorem: the classical algorithm is correct for diagonal-free timed automata.

General: both guards x � c and x � y � c

Proposition: the classical algorithm is correct for timed automata that use less
than 3 clocks.

(the constant used is bigger than the maximal constant...)

[Bouyer 2003]

Timed Models for Concurrent Systems � p. 84

EPIT � Marseille - April 2004

How to Deal with Diagonals?

Remark:

c is positive

x � y � c

x := 0
y := 0

copy where x � y � c

x := 0
y := 0

x � c

x > c
y := 0

x := 0

y := 0

copy where x � y > c

➜ proof in [Bérard, Diekert, Gastin & Petit 1998]

Timed Models for Concurrent Systems � p. 85

EPIT � Marseille - April 2004

How to Deal with Diagonals?

Remark: diagonal can be eliminated (but blowup of the number of discrete states)

Timed Models for Concurrent Systems � p. 85

EPIT � Marseille - April 2004

How to Deal with Diagonals?

Remark: diagonal can be eliminated (but blowup of the number of discrete states)

Solution: eliminate on-the-�y diagonals

Timed Models for Concurrent Systems � p. 85

EPIT � Marseille - April 2004

How to Deal with Diagonals?

Remark: diagonal can be eliminated (but blowup of the number of discrete states)

Solution: eliminate on-the-�y diagonals

Timed Models for Concurrent Systems � p. 85

EPIT � Marseille - April 2004

How to Deal with Diagonals?

Remark: diagonal can be eliminated (but blowup of the number of discrete states)

Solution: eliminate on-the-�y diagonals

Actual work: counter-example re�nement

Timed Models for Concurrent Systems � p. 85

EPIT � Marseille - April 2004

How to Deal with Diagonals?

Remark: diagonal can be eliminated (but blowup of the number of discrete states)

Solution: eliminate on-the-�y diagonals

Actual work: counter-example re�nement hope

Timed Models for Concurrent Systems � p. 85

EPIT � Marseille - April 2004

A Note on Compositional Methods

Basic idea:
untimed: [Andersen 1995]

timed: [Laroussinie, Larsen 1995]

(A1

�

� � �

�

An) j=

	 E (A1

�

� � �

�

An�1) j=
	=An

...

E nil j= 	=An= : : : =A2=A1

Timed Models for Concurrent Systems � p. 86

EPIT � Marseille - April 2004

A Note on Compositional Methods

Basic idea:
untimed: [Andersen 1995]

timed: [Laroussinie, Larsen 1995]

(A1

�

� � �

�

An) j=

	 E (A1

�

� � �

�

An�1) j=
	=An

...

E nil j= 	=An= : : : =A2=A1

Need of:

✔ a compositional logic, e.g. L�, L+�;�...

([a])=q =

q
g;c;r
����� �q *

f(b;c)=a

(g
 [b](=q

�

))

Timed Models for Concurrent Systems � p. 86

EPIT � Marseille - April 2004

A Note on Compositional Methods

Basic idea:
untimed: [Andersen 1995]

timed: [Laroussinie, Larsen 1995]

(A1

�

� � �

�

An) j=

	 E (A1

�

� � �

�

An�1) j=
	=An

...

E nil j= 	=An= : : : =A2=A1

Need of:

✔ a compositional logic, e.g. L�, L+�;�...

([a])=q =

q
g;c;r
����� �q *

f(b;c)=a

(g
 [b](=q

�

))

✔ simpli�cation rules

Timed Models for Concurrent Systems � p. 86

EPIT � Marseille - April 2004

A Note on Compositional Methods

Basic idea:
untimed: [Andersen 1995]

timed: [Laroussinie, Larsen 1995]

(A1

�

� � �

�

An) j=

	 E (A1

�

� � �

�

An�1) j=
	=An

...

E nil j= 	=An= : : : =A2=A1

Need of:

✔ a compositional logic, e.g. L�, L+�;�...

([a])=q =

q
g;c;r
����� �q *

f(b;c)=a

(g
 [b](=q

�

))

✔ simpli�cation rules

Bad news: for those logics, nil model-checking is as dif�cult as simple m.-c.
[Aceto, Laroussinie 2002]

Timed Models for Concurrent Systems � p. 86

EPIT � Marseille - April 2004

Existing Tools

✔ Uppaal: made in Uppsala (Sweden) & Aalborg (Denmark)

� reachability, deadlock, a simple fragment of TCTL

� forward analysis

http://www.uppaal.com

Timed Models for Concurrent Systems � p. 87

http://www.uppaal.com

EPIT � Marseille - April 2004

Existing Tools

✔ Uppaal: made in Uppsala (Sweden) & Aalborg (Denmark)

� reachability, deadlock, a simple fragment of TCTL

� forward analysis

http://www.uppaal.com

✔ HyTech: made in Berkeley (USA)

� no speci�cation logic, a rich computation language, hybrid models

� forward and backward computations

http://www-cad.eecs.berkeley.edu/~tah/HyTech/

Timed Models for Concurrent Systems � p. 87

http://www.uppaal.com
http://www-cad.eecs.berkeley.edu/~tah/HyTech/

EPIT � Marseille - April 2004

Existing Tools

✔ Uppaal: made in Uppsala (Sweden) & Aalborg (Denmark)

� reachability, deadlock, a simple fragment of TCTL

� forward analysis

http://www.uppaal.com

✔ HyTech: made in Berkeley (USA)

� no speci�cation logic, a rich computation language, hybrid models

� forward and backward computations

http://www-cad.eecs.berkeley.edu/~tah/HyTech/

✔ CMC: made in Cachan (France)

� modal logic L�

� compositional method

http://www.lsv.ens-cachan.fr/~fl/cmcweb.html

Timed Models for Concurrent Systems � p. 87

http://www.uppaal.com
http://www-cad.eecs.berkeley.edu/~tah/HyTech/
http://www.lsv.ens-cachan.fr/~fl/cmcweb.html

EPIT � Marseille - April 2004

Existing Tools

✔ Uppaal: made in Uppsala (Sweden) & Aalborg (Denmark)

� reachability, deadlock, a simple fragment of TCTL

� forward analysis

http://www.uppaal.com

✔ HyTech: made in Berkeley (USA)

� no speci�cation logic, a rich computation language, hybrid models

� forward and backward computations

http://www-cad.eecs.berkeley.edu/~tah/HyTech/

✔ CMC: made in Cachan (France)

� modal logic L�

� compositional method

http://www.lsv.ens-cachan.fr/~fl/cmcweb.html

✔ Kronos: made in Grenoble (France)

� full TCTL

� forward and backward analysis

http://www-verimag.imag.fr/TEMPORISE/kronos/

Timed Models for Concurrent Systems � p. 87

http://www.uppaal.com
http://www-cad.eecs.berkeley.edu/~tah/HyTech/
http://www.lsv.ens-cachan.fr/~fl/cmcweb.html
http://www-verimag.imag.fr/TEMPORISE/kronos/

EPIT � Marseille - April 2004

Conclusion Remarks

Timed Models for Concurrent Systems � p. 88

EPIT � Marseille - April 2004

Actual Challenges

Deal with both discrete and time explosions!

untimed systems time information

BBD-like techniques more and more optimizations

static analysis of TA

[BBFL03,BBLP04...]

Some attempts for the data-structures:

✔ the CDD data-structure [Larsen, Pearson, Weise & Yi 1999]

✔ the data-structure of RED [Wang since 2000]

Some attempts for the techniques:

✔ partial-order reduction [Bengtsson, Jonsson, Lilius & Yi 1998]

✔ partial-order semantics approach [Lugiez, Niebert & Zennou 2004]

Timed Models for Concurrent Systems � p. 89

EPIT � Marseille - April 2004

Actual Challenges (cont.)

Intermediate challenges

✔ better understand geometry of reachable state spaces
(in particular, �nd a satisfactory solution for dealing with diagonals)

✔ data-structures for both discrete and dense parts
(up to now: time is not really integrated, it is only added as a feature)

✔ propose true concurrent models?

✔ and then use techniques from concurrency theory?

Other challenges

✔ controller synthesis,

✔ implementability issues (program synthesis)

Thanks to F. Laroussinie, F. Cassez, O.-H. Roux and J.-F. Raskin

Timed Models for Concurrent Systems � p. 90

EPIT � Marseille - April 2004

Bibliography

[ACD90] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for real-time

systems. In Proc. 5th IEEE Symposium on Logic in Computer Science (LICS'90), pages
414�425. IEEE Computer Society Press, 1990.

[ACD93] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in dense

real-time. Information and Computation, 104(1):2�34, 1993.

[ACHH93] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho. Hybrid

automata: an algorithmic approach to specification and verification of hybrid systems. In

Proc. Workshop on Hybrid Systems (1991 & 1992), volume 736 of Lecture Notes in

Computer Science, pages 209�229. Springer, 1993.

[AD90] Rajeev Alur and David Dill. Automata for modeling real-time systems. In Proc. 17th

International Colloquium on Automata, Languages and Programming (ICALP'90), volume 443

of Lecture Notes in Computer Science, pages 322�335. Springer, 1990.

[AD94] Rajeev Alur and David Dill. A theory of timed automata. Theoretical Computer
Science (TCS), 126(2):183�235, 1994.

[AH94] Rajeev Alur and Thomas A. Henzinger. A really temporal logic. Journal of the

Association for Computing Machinery (JACM), 41(1):181�204, 1994.

[AL99] Luca Aceto and François Laroussinie. Is your model-checker on time? In Proc. 24th

International Symposium on Mathematical Foundations of Computer Science (MFCS'99),
volume 1672 of Lecture Notes in Computer Science, pages 125�136. Springer, 1999.

Timed Models for Concurrent Systems � p. 91

EPIT � Marseille - April 2004

Bibliography

[AL02] Luca Aceto and François Laroussinie. Is your model-checker on time? on the

complexity of model-checking for timed modal logics. Journal of Logic and Algebraic

Programming (JLAP), 52�53:7�51, 2002.

[Alu91] Rajeev Alur. Techniques for Automatic Verification of Real-Time Systems. PhD

thesis, Stanford University, Stanford, CA, USA, 1991.

[And95] Henrik R. Andersen. Partial model-checking (extended abstract). In Proc. 10th

IEEE Symposium on Logic in Computer Science (LICS'95), pages 398�407. IEEE Computer

Society Press, 1995.

[BBFL03] Gerd Behrmann, Patricia Bouyer, Emmanuel Fleury, and Kim G. Larsen. Static guard

analysis in timed automata verification. In Proc. 9th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems (TACAS'2003), volume 2619

of Lecture Notes in Computer Science, pages 254�277. Springer, 2003.

[BBLP04] Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Pelánek. Lower and

upper bounds in zone based abstractions of timed automata. In Proc. 10th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS'2004), volume 2988 of Lecture Notes in Computer Science, pages 312�326.

Springer, 2004.

Timed Models for Concurrent Systems � p. 91

EPIT � Marseille - April 2004

Bibliography

[BD91] Bernard Berthomieu and Michel Diaz. Modeling and verification of time dependent

systems using time Petri nets. IEEE Transactions in Software Engineering, 17(3):259�273,

1991.

[BD00] Béatrice Bérard and Catherine Dufourd. Timed automata and additive clock

constraints. Information Processing Letters (IPL), 75(1�2):1�7, 2000.

[BDFP00a] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit. Are

timed automata updatable? In Proc. 12th International Conference on Computer Aided

Verification (CAV'2000), volume 1855 of Lecture Notes in Computer Science, pages
464�479. Springer, 2000.

[BDFP00b] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit.

Expressiveness of updatable timed automata. In Proc. 25th International Symposium on
Mathematical Foundations of Computer Science (MFCS'2000), volume 1893 of Lecture
Notes in Computer Science, pages 232�242. Springer, 2000.

[BDGP98] Béatrice Bérard, Volker Diekert, Paul Gastin, and Antoine Petit. Characterization

of the expressive power of silent transitions in timed automata. Fundamenta
Informaticae, 36(2�3):145�182, 1998.

[BFHR92] Ahmed Bouajjani, J.C. Fernandez, Nicolas Halbwachs, and Pascal Raymond. Minimal

state graph generation. Science of Computer Programming, 18(3):247�269, 1992.

Timed Models for Concurrent Systems � p. 91

EPIT � Marseille - April 2004

Bibliography

[BJLY98] Johan Bengtsson, Bengt Jonsson, Johan Lilius, and Wang Yi. Partial order

reductions for timed systems. In Proc. 9th International Conference on Concurrency

Theory (CONCUR'98), volume 1466 of Lecture Notes in Computer Science, pages 485�500.

Springer, 1998.

[BM83] Bernard Berthomieu and Miguel Menasche. An enumerative approach for analyzing

time Petri nets. In Proc. IFIP 9th World Computer Congress, volume 83 of Information

Processing, pages 41�46. North-Holland/ IFIP, 1983.

[Bou03] Patricia Bouyer. Untameable timed automata! In Proc. 20th Annual Symposium on

Theoretical Aspects of Computer Science (STACS'03), volume 2607 of Lecture Notes in
Computer Science, pages 620�631. Springer, 2003.

[Bou04] Patricia Bouyer. Forward analysis of updatable timed automata. Formal Methods in
System Design, 2004. To appear.

[BS91] Janusz A. Brzozowski and Carl-Johan H. Seger. Advances in asynchronous circuit

theory. Bulletin of the European Association of Theoretical Computer Science (EATCS),

1991.

[BV03] Bernard Berthomieu and François Vernadat. State class constructions for branching

analysis of time Petri nets. In Proc. 9th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS'03), volume 2619 of Lecture Notes
in Computer Science, pages 442�457. Springer, 2003.

Timed Models for Concurrent Systems � p. 91

EPIT � Marseille - April 2004

Bibliography

[CR03] Franck Cassez and Olivier-H. Roux. Traduction structurelle des réseaux de petri

temporels vers les automates temporisés. In Actes 4ième Colloque sur la Modélisation des
Systèmes Réactifs (MSR'2003), pages 311�326. Hermès, 2003.

[CY92] Costas Courcoubetis and Mihalis Yannakakis. Minimum and maximum delay problems

in real-time systems. Formal Methods in System Design, 1(4):385�415, 1992.

[Dil89] David Dill. Timing assumptions and verification of finite-state concurrent systems.

In Proc. of the Workshop on Automatic Verification Methods for Finite State Systems,

volume 407 of Lecture Notes in Computer Science, pages 197�212. Springer, 1989.

[DT98] Conrado Daws and Stavros Tripakis. Model-checking of real-time reachability

properties using abstractions. In Proc. 4th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS'98), volume 1384 of

Lecture Notes in Computer Science, pages 313�329. Springer, 1998.

[DY96] Conrado Daws and Sergio Yovine. Reducing the number of clock variables of timed

automata. In Proc. 17th IEEE Real-Time Systems Symposium (RTSS'96), pages 73�81.

IEEE Computer Society Press, 1996.

[EC82] E. Allen Emerson and Edmund M. Clarke. Using branching time temporal logic to

synthesize synchronization skeletons. Science of Computer Programming, 2(3):241�266,

1982.

Timed Models for Concurrent Systems � p. 91

EPIT � Marseille - April 2004

Bibliography

[GRR03] Guillaume Gardey, Olivier H. Roux, and Olivier F. Roux. A zone-based method for

computing the state space of a time Petri net. In Proc. 1st International Workshop on

Formal Modeling and Analysis of Timed Systems (FORMATS'03), Lecture Notes in

Computer Science. Springer, 2003. To appear.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proc. 11th IEEE Annual

Symposim on Logic in Computer Science (LICS'96), pages 278�292. IEEE Computer

Society Press, 1996.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What's

decidable about hybrid automata? Journal of Computer and System Sciences,

57(1):94�124, 1998.

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.

Symbolic model-checking for real-time systems. Information and Computation,

111(2):193�244, 1994.

[LL95] François Laroussinie and Kim G. Larsen. Compositional model-checking of real-time

systems. In Proc. 6th International Conference on Concurrency Theory (CONCUR'95),
volume 962 of Lecture Notes in Computer Science, pages 27�41. Springer, 1995.

Timed Models for Concurrent Systems � p. 91

EPIT � Marseille - April 2004

Bibliography

[LLW95] François Laroussinie, Kim G. Larsen, and Carsten Weise. From timed automata to

logic � and back. In Proc. 20th International Symposium on Mathematical Foundations of

Computer Science (MFCS'95), volume 969 of Lecture Notes in Computer Science, pages
529�539. Springer, 1995.

[LMS04] François Laroussinie, Nicolas Markey, and Philippe Schnoebelen. Model-checking

"real-time automata" and other simple timed automata. In submission, 2004.

[LMST03] Ruggero Lanotte, Andrea Maggiolo-Schettini, and Simone Tini. Concurrency in

timed automata. Theoretical Computer Science, 309(1�3):503�527, 2003.

[LNZ04] Denis Lugiez, Peter Niebert, and Sarah Zennou. A partial order semantics approach

to the clock explosion problem of timed automata. In Proc. 10th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems (TACAS'2004),
volume 2988 of Lecture Notes in Computer Science, pages 296�311. Springer, 2004.

[LPWY99] Kim G. Larsen, Justin Pearson, Carsten Weise, and Wang Yi. Clock difference

diagrams. Nordic Journal of Computing, 6(3):271�298, 1999.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. Journal of

Software Tools for Technology Transfer (STTT), 1(1�2):134�152, 1997.

Timed Models for Concurrent Systems � p. 91

EPIT � Marseille - April 2004

Bibliography

[Mer74] Philip M. Merlin. A Study of the Recoverability of Computing Systems. PhD thesis,

University of California, Irvine, CA, USA, 1974.

[Min67] Marvin Minsky. Computation: Finite and Infinite Machines. Prentice Hall

International, 1967.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symposium on

Foundations of Computer Science (FOCS'77), pages 46�57. IEEE Computer Society Press,

1977.

[Tri03] Stavros Tripakis. Folk theorems on the determinization and minimization of timed

automata. In Proc. 1st International Workshop on Formal Modeling and Analysis of Timed

Systems (FORMATS'03), Lecture Notes in Computer Science. Springer, 2003. To appear.

[Wang03] Farn Wang. Efficient verification of timed automata with BDD-like

data-structures. In Proc. 4th Internationsl Conference on Verification, Model-Checking

and Abstract Interpretation (VMCAI'03), volume 2575 of Lecture Notes in Computer
Science, pages 189�205. Springer, 2003.

[Yov98] Sergio Yovine. Model-checking timed automata. In School on Embedded Systems,
volume 1494 of Lecture Notes in Computer Science, pages 114�152. Springer, 1998.

[YR98] Tomohiro Yoneda and Hikaru Ryuba. CTL model-checking of time petri nets using

geometric regions. IEICE Transactions Information and Systems, E81-D(3), 1998.

Timed Models for Concurrent Systems � p. 91

EPIT � Marseille - April 2004

Advertisement!

Don't forget to have a look at the posters!!!!

Timed Models for Concurrent Systems � p. 92

	Model-Checking
	Model-Checking

	Time!
	Roadmap
	Adding Timing Informations
	Three Propositions
	Synchronization of Processes
	The Discrete-Time Semantics
	The Dense-Time Semantics
	The Fictitous-Clock Model
	The Fictitous-Clock Model
	The Fictitous-Clock Model
	The Fictitous-Clock Model
	The Fictitous-Clock Model

	A Case for Dense-Time hfill 	extcolor {Maroon}{{�f small [Alur 1991]}}
	A Digital Circuit hfill 	extcolor {Maroon}{{
ormalsize [BS91]}}
	A Digital Circuit hfill 	extcolor {Maroon}{{
ormalsize [BS91]}}
	A Digital Circuit hfill 	extcolor {Maroon}{{
ormalsize [BS91]}}
	A Digital Circuit hfill 	extcolor {Maroon}{{
ormalsize [BS91]}}
	A Digital Circuit hfill 	extcolor {Maroon}{{
ormalsize [BS91]}}

	Discretizing is Not Sufficient
	Discretizing is Not Sufficient -- Example
	Discretizing is Not Sufficient -- Example
	Discretizing is Not Sufficient -- Example
	Discretizing is Not Sufficient -- Example
	Discretizing is Not Sufficient -- Example
	Discretizing is Not Sufficient -- Example
	Discretizing is Not Sufficient -- Example

	Discretizing is Not Sufficient
	Discretizing is Not Sufficient
	Discretizing is Not Sufficient

	Fictitious-Clock Model: Too Large
	A Case for Dense-Time
	A Case for Dense-Time
	A Case for Dense-Time
	A Case for Dense-Time
	A Case for Dense-Time
	A Case for Dense-Time
	A Case for Dense-Time

	Classical Verification Problems
	Classical Temporal Logics
	Adding Time to Temporal Logics
	Adding Time to Temporal Logics
	Adding Time to Temporal Logics
	Adding Time to Temporal Logics
	Adding Time to Temporal Logics
	Adding Time to Temporal Logics

	An Other Specification Language
	An Other Specification Language
	An Other Specification Language
	An Other Specification Language
	An Other Specification Language

	An Other Example
	An Other Example
	An Other Example
	An Other Example
	An Other Example

	Time Petri Nets hfill 	extcolor {Maroon}{{	iny [Merlin 1974, Berthomieu & Diaz 1991]}}
	Time Petri Nets hfill 	extcolor {Maroon}{{	iny [Merlin 1974, Berthomieu & Diaz 1991]}}
	Time Petri Nets hfill 	extcolor {Maroon}{{	iny [Merlin 1974, Berthomieu & Diaz 1991]}}
	Time Petri Nets hfill 	extcolor {Maroon}{{	iny [Merlin 1974, Berthomieu & Diaz 1991]}}
	Time Petri Nets hfill 	extcolor {Maroon}{{	iny [Merlin 1974, Berthomieu & Diaz 1991]}}
	Time Petri Nets hfill 	extcolor {Maroon}{{	iny [Merlin 1974, Berthomieu & Diaz 1991]}}

	Time Petri Nets -- Symbolic Analysis
	Time Petri Nets -- Symbolic Analysis
	Time Petri Nets -- Symbolic Analysis
	Time Petri Nets -- Symbolic Analysis
	Time Petri Nets -- Symbolic Analysis

	Graph of State Classes for the Example
	Time Petri Nets -- Properties
	Time Petri Nets -- Properties
	Time Petri Nets -- Properties
	Time Petri Nets -- Properties
	Time Petri Nets -- Properties
	Time Petri Nets -- Properties
	Time Petri Nets -- Properties

	Problem with Branching Time
	Graphs with Durations
	Graphs with Durations
	Graphs with Durations
	Graphs with Durations
	Graphs with Durations

	Some Comments
	Timed Automata hfill {
ormalsize 	extcolor {Maroon}{[Alur & Dill 90's]}}
	Timed Automata, an Example
	Timed Automata, an Example
	Timed Automata, an Example
	Timed Automata, an Example

	TA Semantics
	Some Exercices
	Some Exercices
	Some Exercices

	Composition of TA
	Composition of TA
	Composition of TA

	The Train Crossing Example hfill (1)
	The Train Crossing Example hfill (2)
	The Train Crossing Example hfill (3)
	The Train Crossing Example hfill (4)
	The Train Crossing Example hfill (5)
	The Train Crossing Example hfill (5)
	The Train Crossing Example hfill (5)
	The Train Crossing Example hfill (5)

	Discrete vs Dense-Time Semantics
	Verification of TA
	Verification of TA
	Verification of TA

	The Region Abstraction
	The Region Abstraction
	The Region Abstraction
	The Region Abstraction
	The Region Abstraction
	The Region Abstraction
	The Region Abstraction
	The Region Abstraction

	The Region Automaton
	Time-Abstract Bisimulation
	Time-Abstract Bisimulation
	Time-Abstract Bisimulation
	Time-Abstract Bisimulation
	Time-Abstract Bisimulation
	Time-Abstract Bisimulation
	Time-Abstract Bisimulation
	Time-Abstract Bisimulation

	The Region Automaton
	The Region Automaton

	An Example 	extcolor {Maroon}{{
ormalsize [Alur & Dill 90's]}}
	An Example 	extcolor {Maroon}{{
ormalsize [Alur & Dill 90's]}}
	An Example 	extcolor {Maroon}{{
ormalsize [Alur & Dill 90's]}}

	An Example 	extcolor {Maroon}{{
ormalsize [Alur & Dill 90's]}}
	Main Basis Result
	Main Basis Result

	P{
ormalsize SPACE}-Easyness
	P{
ormalsize SPACE}-Easyness
	P{
ormalsize SPACE}-Easyness
	P{
ormalsize SPACE}-Easyness
	P{
ormalsize SPACE}-Easyness
	P{
ormalsize SPACE}-Easyness

	P{
ormalsize SPACE}-Hardness
	P{
ormalsize SPACE}-Hardness (cont.)
	Tighter Results
	Verification of TCTL
	Verification of TCTL
	Verification of TCTL
	Verification of TCTL

	A Model Not Far From Undecidability
	A Model Not Far From Undecidability
	A Model Not Far From Undecidability
	A Model Not Far From Undecidability
	A Model Not Far From Undecidability
	A Model Not Far From Undecidability

	Adding Constraints of the Form $x+y sim c$
	The Two-Counter Machine
	Undecidability Proof
	Undecidability Proof (cont.)
	Adding Constraints of the Form $x+y sim c$
	Adding Constraints of the Form $x+y sim c$

	Complexity of Model-Checking
	Complexity of Model-Checking
	Complexity of Model-Checking
	Complexity of Model-Checking

	State Explosion Problem
	State Explosion Problem
	State Explosion Problem
	State Explosion Problem
	State Explosion Problem
	State Explosion Problem

	Reachability Analysis
	Reachability Analysis
	Reachability Analysis
	Reachability Analysis

	Note on the Backward Analysis
	Note on the Backward Analysis
	Note on the Backward Analysis
	Note on the Backward Analysis
	Note on the Backward Analysis
	Note on the Backward Analysis

	Note on the Backward Analysis (cont.)
	Note on the Backward Analysis (cont.)
	Note on the Backward Analysis (cont.)

	Remark: Verification of TCTL
	Forward Analysis of TA
	Forward Analysis of TA
	Forward Analysis of TA
	Forward Analysis of TA
	Forward Analysis of TA
	Forward Analysis of TA

	{large Non Termination of the Forward Analysis}
	``Solutions'' to this Problem
	``Solutions'' to this Problem

	``Solutions'' to this Problem (cont.)
	``Solutions'' to this Problem (cont.)

	The DBM Data Structure
	The DBM Data Structure
	The DBM Data Structure

	The Extrapolation Operator
	The Extrapolation Operator
	The Extrapolation Operator

	Challenge
	Challenge

	A Problematic Automaton
	A Problematic Automaton
	A Problematic Automaton

	The Problematic Zone
	The Problematic Zone

	General Abstractions
	General Abstractions
	General Abstractions
	General Abstractions
	General Abstractions
	General Abstractions

	Why That?
	Problem!
	What Can We Cling To?
	What Can We Cling To?

	How to Deal with Diagonals?
	How to Deal with Diagonals?
	How to Deal with Diagonals?
	How to Deal with Diagonals?
	How to Deal with Diagonals?
	How to Deal with Diagonals?

	A Note on Compositional Methods
	A Note on Compositional Methods
	A Note on Compositional Methods
	A Note on Compositional Methods

	Existing Tools
	Existing Tools
	Existing Tools
	Existing Tools

	Actual Challenges
	Actual Challenges (cont.)
	Bibliography
	Bibliography
	Bibliography
	Bibliography
	Bibliography
	Bibliography
	Bibliography
	Bibliography

	Advertisement!

