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The model of timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1
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Discrete-time semantics

[Alur91] Techniques for automatic verification of real-time systems (PhD thesis, 1991).

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i
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Continuous-time semantics

...real-time models for real-time systems!

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools
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Technical tool: Region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

; This is a finite time-abstract bisimulation!
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Technical tool: Region abstraction – An example [AD94]

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a
b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x
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Technical tool: Region abstraction – Another example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧ y≥2
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Technical tool: Zones and DBMs

DBM = Difference Bound Matrix

Zones, or DBMs...
... are used to represent sets of states of timed automata:

Zone: (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

DBM:

x0 x1 x2

x0

x1

x2

Ñ
∞ −3 ∞
∞ ∞ 4
5 ∞ ∞

é

≡

x0 x1 x2

x0

x1

x2

Ñ
0 −3 0
9 0 4
5 2 0

é

3 4

5

x2

x1
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Technical tool: Zones and DBMs

They can be used to compute sets of states in timed automata

`0 `1

x≥1∧y≤2,y :=0

= Pretime

à
∩ Unresety

à íí
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Are we doing the right job?

The continuous-time semantics is

an idealization of a physical system.

adequate for abstract design and high-level analysis.

13/69



Introduction Robust model-checking Robust realisability and control Conclusion

Example: The Patriot anti-ballistic-missile failure

25 February 1991, during Gulf war.
28 soldiers died.

Problem: clock drift

Internal clock incremented by 1/10 every 1/10 s.

Clock stored in 24-bit register:

1

10
−
≠

1

10

∑
24 bit

' 10−7

x=0.1,x :=0
clock+=0.1

After 100 hours, the total drift was 0.34 seconds.
The incoming missile could not be destroyed.
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Are we doing the right job?

The continuous-time semantics is

an idealization of a physical system.
It is

adequate for abstract design and high-level analysis.

However it suffers from multiple inaccuracies:

It might not be proper for implementation:

It may generate timing anomalies

It does not exclude non-realizable behaviours:

Important questions

Is the real system correct when it is proven correct on the model?

Does actual work transfer to real-world systems? To what extent?
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an idealization of a physical system.

It is adequate for abstract design and high-level analysis.

However it suffers from multiple inaccuracies:
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Example 1: Imprecision on clock values

[ACS10] Abdellatif, Combaz, Sifakis. Model-based implementation of real-time applications (Int. Conf. Embedded Software, 2010).

Frame capture [ACS10]

frame 0 frame 1 frame 2 frame 3 frame 4 frame 5

2 t.u.

encod. 0 encod. 1 encod. 2 encod. 3 encod. 4

2 t.u.

encod. 0 encod. 1 encod. 2 encod. 3 encod. 4

2 + ε

; A frame will eventually be skipped
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Example 2: Strict timing constraints

[KLL+97] Kristoffersen, Laroussinie, Larsen, Pettersson, Yi. A compositional proof of a real-time mutual exclusion protocol (TAPSOFT’97).

Mutual exclusion protocol [KLL+97]

Pid

xid≤2

r==0

xid:=0

r :=id

xid:=0

r :=0

xid:=0 r=id

xid>2

r :=0

When P1 and P2 run in parallel (sharing variable r), the state where
both of them are in is not reachable.

This property is lost when xid > 2 is replaced with xid ≥ 2.
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Example 3: Scheduling and timing anomaly

[AAM06] Abdeddaim, Asarin, Maler. Scheduling with timed automata (Theor. Comp. Science, 2006).

Scheduling analysis with timed automata [AAM06]

Goal: analyze a work-conserving scheduling policy on given
scenarios (no machine is idle if a task is waiting for execution)

Example of a scenario

0 1 2 3 4 5 6 7

M2

M1 A

C B

D E

with the dependency constraints: A→ B and C → D,E .

1 A,D,E must be scheduled on machine M1

2 B,C must be scheduled on machine M2

3 C starts no sooner than 2 time units

; Standard analysis does not capture this timing anomaly
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Example 4: Zeno behaviours

[HS11] Herbreteau, Srivathsan. Coarse abstractions make Zeno behaviours difficult to detect (Logic. Meth. Comp. Science, 2011).

x<1∧ y<1

x :=0

y=1

y

0
x

1

1

Those are easy to detect and can be handled; [HS11]

They are easy to remove by construction.
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Example 5: More complex convergence phenomena

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

; Value of clock x when hitting is converging,

even though global time diverges
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The goal

Add robustness to the theory of timed automata

Understand the real system behind the mathematical model

Describe frameworks and provide tools to develop robustly correct
systems

; Notion of robustness may depend on application areas

Rest of the talk
We present a couple of frameworks that have been developed
recently

We focus on the tolerance to slight timing perturbations, that is, to
perturbations on time measurements and jitter
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Robust model-checking approach

Idea

Capture any real (or approximate) behaviours (e.g. the implementation)
in the verification process

Due to imprecisions,

“standard” correctness of A 6⇒ correctness of Areal

; We aim at proposing frameworks in which the correctness of the real
system will be ensured once the model is verified

We describe two such frameworks:

1 either we implement A and we prove:

“robust” correctness of A ⇒ correctness of Areal

2 or we build A and implement B, and we prove:

correctness of A ⇒ “robust” correctness of B
⇒ correctness of Breal
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Parameterized enlarged semantics for timed automata

A transition can be taken at any time in [t − δ; t + δ]

Example

Given a parameter δ,

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧ y≥2

is transformed into

1−δ≤x≤1+δ

y :=0

x≤2+δ, x :=0

y≥2−δ, y :=0

x≤δ ∧ y≥2−δ

Parameterized model Aδ
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Parameterized enlarged semantics – Discussion

[DDR04] De Wulf, Doyen, Raskin. Almost ASAP semantics: From timed models to timed implementations (HSCC’04).
[SBM11] Sankur, Bouyer, Markey. Shrinking Timed Automata (FSTTCS’11).

What is the relevance of this semantics?
This is a worst-case approach

This captures approximate behaviours of the system

One can define program semantics such that for every ε > 0:

A ⊆ programε(A) ⊆ Af (ε)

ε: parameters of the semantics

Methodology

Design A
Verify Aδ (better if δ is a parameter)

Implement A

; This is a good approach for designing systems
with simple timing constraints (e.g. equalities).
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Parameterized enlarged semantics – Algorithmics
; It adds extra behaviours, however small may be parameter δ

The (parameterized) robust model-checking problem

It asks whether there is δ0 > 0 s.t. for every 0 ≤ δ ≤ δ0, Aδ |= ϕ.

When δ is small, truth of ϕ is independent of δ

Timed automata with parameters: undecidable in general

Here, an extension of the region automaton will do the job!

Theorem
Robust model-checking of safety, LTL, CoflatMTL properties is decidable.
Complexities are those of standard non robust model-checking problems.

(An exponential bound on δ0 is proven)
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Parameterized enlarged semantics – Algorithmics
; It adds extra behaviours, however small may be parameter δ

Example

y

0
x

1

1

2

2

3

3

y

0
x

1

1

2

2

3

3

x=1

y :=0

x≤2, x :=0
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Technical tool: extended region automaton

Extended region automaton

For any location ` and any two regions r and r ′, if

r ∩ r ′ 6= ∅ and

(`, r ′) belongs to an SCC of R(A),

then we add a transition (`, r)
γ−→ (`, r ′)

(under slight technical restrictions)
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Parameterized enlarged semantics – An example
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Automatic generation of an implementation

[BLM+11] Bouyer, Larsen, Markey, Sankur, Thrane. Timed automata can always be made implementable (CONCUR’11).

The (approx.) implementation synthesis problem

Given A, build A′ such that:

A′ ‘identical’ (e.g. bisimilar) to A
A′ is ‘robust’ (that is, good enough for implementation)

The second condition can be (for instance) read as A′ is approximately the

same as A′δ, for small enough δ.

Theorem
All timed automata are approximately implementable!
(for approx. bisimulation)

Technical tool: region construction

Methodology

Design and verify A
Implement A′ (automatically generated)

, Separates design and implementation
/ A′ is much bigger than A
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Parameterized shrunk semantics for timed automata

[SBM11] Sankur, Bouyer, Markey. Shrinking Timed Automata (FSTTCS’11).

A constraint [a, b] is shrunk to [a + δ; b − δ′]
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A constraint [a, b] is shrunk to [a + δ; b − δ′]

Why should we do that?

Models

Real-world

Abstract model Impl. model

1≤x≤2

1+δ≤x≤2−δ′

1−∆≤x≤2+∆

1+δ−∆≤x≤2−δ′+∆

It is fine as soon as [1 + δ −∆; 2− δ′ + ∆] ⊆ [1; 2],

which is the case when δ, δ′ ≥ ∆.
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Parameterized shrunk semantics for timed automata

[SBM11] Sankur, Bouyer, Markey. Shrinking Timed Automata (FSTTCS’11).

A constraint [a, b] is shrunk to [a + δ; b − δ′]

Summary of the approach

; Shrink the clock constraints in the model, to prevent additional
behaviours in the implementation

If B = A−kδ, then

B ⊆ programε(B) ⊆ Bf (ε) = A−kδ+f (ε) ⊆ A
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Parameterized shrunk semantics – Discussion

What is the relevance of that approach?

Anticipate imprecisions to prevent additional behaviours in the real-world

Methodology

Design and verify A
Implement A−kδ (parameters are k and δ)

; This is a good approach for designing systems
with strong/hard timing constraints

Make sure that no important behaviours are lost in A−kδ!!
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Parameterized shrunk semantics – Algorithmics

[San13] Sankur. Shrinktech: A tool for the robustness analysis of timed automata (CAV’13).

The (parameterized) shrinkability problem

Find parameters k and δ such that:

A vt.a. A−kδ (or F vt.a. A−kδ for some finite automaton F)
[shrinkability w.r.t. untimed simulation]

A−kδ is non-blocking whenever A is non-blocking
[shrinkability w.r.t. non-blockingness]

Theorem

Parameterized shrinkability can be decided (in exponential time).

Challenge: take care of the accumulation of perturbations

Technical tools: parameterized shrunk DBM, max-plus equations

Tool Shrinktech developed by Ocan Sankur [San13]

http://www.lsv.ens-cachan.fr/Software/shrinktech/
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The case of non-blockingness

Non-blockingness

σ

σ′

σ′′

{
Gσ guard of σ
Rσ reset of σ

Whenever σ is taken, either σ′ or σ′′ is eventually firable.

Fix-point characterization

Let Gσ denote the guards of the timed automaton. It is non-blocking iff,

∀σ, JGσK ⊆
⋃

l1
σ−→l2

σ′−→l3

UnresetRσ (Pretime(JGσ′K)).
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Technical tools: shrunk DBMs...

σ σ′

JGσK ⊆ UnresetRσ (Pretime(JGσ′K))
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σ σ′

JGσK ⊆ UnresetRσ (Pretime(JGσ′K))

⊆ Unresety

 Pretime






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Technical tools: shrunk DBMs...

σ σ′

J〈Gσ〉−~kδK ⊆ UnresetRσ (Pretime(J〈Gσ′〉−~kδK)) ?

Determine ~k
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σ σ′

J〈Gσ〉−~kδK ⊆ UnresetRσ (Pretime(J〈Gσ′〉−~kδK)) ?

k5δ

⊆ Unresety


Pretime
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k1δ

k2δk3δ
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⊆ Unresety
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Technical tools: shrunk DBMs...and max-plus equations

σ σ′

J〈Gσ〉−~kδK ⊆ UnresetRσ (Pretime(J〈Gσ′〉−~kδK)) ?

k5δ

⊆ (k1 + k3)δ

Then, ~k should satisfy

k5 ≥ k1 + k3 that is, k5 = max(k5, k1 + k3)

In this case, the above inclusion equation holds for small enough δ’s
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J〈Gσ〉−~kδK ⊆ UnresetRσ (Pretime(J〈Gσ′〉−~kδK))

⇔
k5 = max(k5, k1 + k3).

Key Theorem

Let ~M = f ( ~M) be a fixpoint equation on zones, and ~M a solution.
f uses Pretime(), ∩, Unreset·().
For any ~k ∈ Nn

>0,

〈 ~M〉−~kδ = f (〈 ~M〉−~kδ) ∀ small δ > 0

⇔
~k = ϕ(~k),

where ϕ is a max-plus expression.

; Max-plus algebra: the above fixpoint equations can be solved in
polynomial time
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Solving max-plus equations

Max-plus graph

k1 ≥ max(1, 2 + k2) ∧ k3 ≥ k2 ∧ k2 ≥ max(4, k3)

k1 max

1

+

2

k2 max 4

k3

k8 max

k17

+

k11

max

1

k16

+

k2

max k7

k8 max + max

1

+

k2

max

; No solution!
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Summary of shrinkability

Deciding shrinkability

Apply theorem to following fix-point equations:

Non-blockingness:

∀σ, JGσK ⊆
⋃

l1
σ−→l2

σ′−→l3

UnresetRσ (Pretime(JGσ′K)).

(Do technical work to remove the union)

Time-abstract simulation (A vt.a. A−δ~k):

JMl,r K =
⋂
σ∈Σ

⋂
(l,r)

σ−→(l′,r ′)

Pretime(UnresetRσ (JMl′,r ′K) ∩ JGσK),

where Ml,r is the time-abstract simulator set of the region (l , r).
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Example

y≤1∧u≥0

u,y :=0

y≤1∧1≤x

u≥0, u,x :=0

u≥0∧y≤1

u,y :=0

u,x,y :=0

The largest shrunk automaton which is correct w.r.t. untimed simulation
and non-blockingness (for all δ ∈ [0, 1

4 ]) is:

3δ≤x∧y≤1−δ∧u≥δ

y−x≤1−4δ∧u≥δ
u,y :=0

y≤1−2δ∧1+δ≤x

u≥δ∧x−y≥3δ
u,y :=0

u≥δ∧y≤1−δ

u,y :=0

u,x,y :=0
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Counter-example

0≤x,y≤1, x :=0

δ≤x,y≤1, x :=0

is blocking

There is no shrunk automaton which is correct w.r.t. non-blockingness.
Indeed, the max-plus equations we obtain are: · · ·

k8 = max(k17, k11 + max(k16, k2 + max(k7, k8)))
k11 = max(1, k11)

which has no solution!
(remember the max-plus graph with no solution)

42/69



Introduction Robust model-checking Robust realisability and control Conclusion
Parameterized enlarged semantics Automatic generation of an implementation Implementation by shrinking

Counter-example

0≤x,y≤1, x :=0

δ≤x,y≤1, x :=0

is blocking

There is no shrunk automaton which is correct w.r.t. non-blockingness.
Indeed, the max-plus equations we obtain are: · · ·

k8 = max(k17, k11 + max(k16, k2 + max(k7, k8)))
k11 = max(1, k11)

which has no solution!
(remember the max-plus graph with no solution)

42/69



Introduction Robust model-checking Robust realisability and control Conclusion
Parameterized enlarged semantics Automatic generation of an implementation Implementation by shrinking

Counter-example

0≤x,y≤1, x :=0 δ≤x,y≤1, x :=0

is blocking

There is no shrunk automaton which is correct w.r.t. non-blockingness.
Indeed, the max-plus equations we obtain are: · · ·

k8 = max(k17, k11 + max(k16, k2 + max(k7, k8)))
k11 = max(1, k11)

which has no solution!
(remember the max-plus graph with no solution)

42/69



Introduction Robust model-checking Robust realisability and control Conclusion
Parameterized enlarged semantics Automatic generation of an implementation Implementation by shrinking

Partial conclusion

We have presented three methods for verifying robust correctness,
hence correct implementation

Same complexities as standard model-checking!

Technical tools:

Extended region automaton
Shrunk DBMs
And also characterization of reachability relations in timed automata
(hidden in this presentation)

What is missing:

A symbolic approach
A tool support

Shinktech is a prototype for the shrinking approach

http://www.lsv.ens-cachan.fr/Software/shrinktech/

Stochastic approach (see later)
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Robust realisability

Here, a strategy in a timed automaton is a way to resolve (time and
action) non-determinism

Idea of robust realisability

Synthesize strategies that realise some property, even under
perturbations: strategies should adapt to previous imprecisions

; develop a theory of robust strategies that tolerate
errors/imprecisions and avoid convergence
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Robust realisability

Here, a strategy in a timed automaton is a way to resolve (time and
action) non-determinism

Example

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

Strategy: in location with value x , delay 2−x
2

This strategy requires infinite precision

In practice, when x is close to 2, no additional delay is supported:
the run is theoretically infinite, but it is actually blocking

And that is unavoidable
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Game semantics of a timed automaton

Game semantics Gδ(A) of timed automaton A...

... between Controller and Perturbator:

from (`, v), Controller suggests a delay d ≥ δ and a next edge

e = (`
g ,Y−−→ `′) that is available after delay d

Perturbator then chooses a perturbation ε ∈ [−δ; +δ]

Next state is (`′, (v + d + ε)[Y ← 0])

Note: when δ = 0, this is the standard semantics of timed automata.

A δ-robust strategy for Controller is then a strategy that satisfies the
expected property, whatever plays Perturbator.
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Two possible semantics

Consider a transition with guard x ≤ 3 ∧ y ≥ 1:

strict semantics

x=3

y=1
δ

δ

d

excess semantics

x=3

y=1

d
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The excess game semantics

[BMS12] Bouyer, Markey, Sankur. Robust reachability in timed automata: A game-based approach (ICALP’12).

Constraints may not be satisfied after the perturbation
only v + d should satisfy g

Example

x=y=1

y :=0

; Allows simple design of constraints, ensures divergence of time,
avoids convergence phenomena
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The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize δ > 0 and a δ-robust strategy that achieves a given goal.
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The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize δ > 0 and a δ-robust strategy that achieves a given goal.

Two challenges
1 Accumulation of perturbations:

x≤2

y :=0

x=2

1≤x−y
x

y

x

y

2 New regions become reachable

x=y=1

y :=0
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The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize δ > 0 and a δ-robust strategy that achieves a given goal.

Theorem
The parameterized synthesis problem for reachability properties is
decidable and EXPTIME-complete. Furthermore, uniform winning
strategies (w.r.t. δ) can be computed.

Technical tool: a region-based refined game abstraction, shrunk
DBMs

, Extends to two-player games (i.e. to real control problems)

/ Only valid for reachability properties
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The excess game semantics – Algorithm overview

1 (Forward) Construct an equivalent finite turn-based game F(A)
(based on regions)

2 Solve it

3 (Backward) Construct winning states in Gδ(A), and deduce δ0

Winning states will be described by shrinkings of regions:

r − δP

One can win from a region r in F(A)
m

one can win from a shrinking of r in Gδ(A)
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Construction of the finite turn-based game

` `′
x=y=1

y :=0

r2 r3r0

r ′0

r1

Extended region automaton:

`, r0 `, r ′0

`′, r2

`′, r1

`′, r3
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y :=0

r2 r3r0

r ′0

r1

Extended region automaton:

`, r0 `, r ′0

`′, r2

`′, r1

`′, r3

Idea: We win from some shrinking of r0, if, and only if we win from
some shrinkings of r1, r2, r3.
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Assume that we win from some shrinkings of r1, r2, r3.

r2 r3r0

r ′0

r1

53/69



Introduction Robust model-checking Robust realisability and control Conclusion
Excess semantics Strict semantics

Assume that we win from some shrinkings of r1, r2, r3.

r2 r3r0

r ′0

r1

53/69



Introduction Robust model-checking Robust realisability and control Conclusion
Excess semantics Strict semantics

Assume that we win from some shrinkings of r1, r2, r3.

r2 r3r0

r ′0

r1

Can these be combined to a winning strategy from r0?

No: we don’t have a strategy for valuations around r1.
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Solution: Look for a shrinking of some regions with constraints.

A constrained region is a region with some marked facets.
A shrinking of a constrained region does not shrink from marked facets.

;
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Solution: Look for a shrinking of some regions with constraints.

A constrained region is a region with some marked facets.
A shrinking of a constrained region does not shrink from marked facets.

;

We win from r0 iff we win from constrained shrinkings of r1, r2, r3.

r2 r3r1r0

r ′0
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Solution: Look for a shrinking of some regions with constraints.

A constrained region is a region with some marked facets.
A shrinking of a constrained region does not shrink from marked facets.

;

In fact,

r2 r3r1r0

r ′0
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Solution: Look for a shrinking of some regions with constraints.

A constrained region is a region with some marked facets.
A shrinking of a constrained region does not shrink from marked facets.

;

In fact,

r2 r3r1r0

r ′0

OK, we have a strategy for all the points in the violet area.
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Finite game F(A)

Shrinking constraint for region r is represented by a boolean matrix Sr.

`, r0 `, r ′0

`′, r2,Sr2

`′, r1,Sr1

`′, r3,Sr3

Theorem

Controller wins in Gδ(A) for all δ ∈ [0, δ0] for some δ0 > 0
m

Controller wins in F(A).
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Details on the definition of F(A)

ϕ

r0 r1 r2 r3

`, r0,Sr0

Sϕ is defined such that:

Controller wins from some shrinking of (ϕ,Sϕ) iff
Controller wins from some shrinking of (r0,Sr0 ).
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Details on the definition of F(A)

ϕ

r0 r1 r2 r3

`, r0,Sr0
`, ϕ,Sϕ

Sϕ is defined such that:

Controller wins from some shrinking of (ϕ,Sϕ) iff
Controller wins from some shrinking of (r0,Sr0 ).

Neighborhood

Given a region ϕ and constraint Sϕ, one can compute the neighborhood:
the union of those regions reached by the slightest perturbation.
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Constructing a winning strategy from F(A)

reset

r0 r1 r2 r3

`, r0,Sr0
`, ϕ,Sϕ

`′,r2,Sr2

`′,r1,Sr1

`′,r3,Sr3

I Each step of the backward propagation gives an upper bound on δ.
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EXPTIME-hardness

Usual semantics in timed automata can encode reachability in linearly
bounded Turing machines (PSPACE-complete).

Robust semantics in timed automata can encode reachability in
alternating linearly bounded Turing machines (EXPTIME-complete).

x,y :=0 x=1,y :=0
x=2,y<1

x=2,y
≥1

Perturbator has a strategy to choose between any of the two branches.

Top branch: make the first transition earlier

Bottom branch: delay the first transition
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Outline

1 Introduction

2 Robust model-checking
Parameterized enlarged semantics
Automatic generation of an implementation
Implementation by shrinking

3 Robust realisability and control
Excess semantics
Strict semantics

4 Conclusion
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The strict game semantics

[SBMR13] Sankur, Bouyer, Markey, Reynier. Robust Controller Synthesis in Timed Automata (CONCUR’13).

Constraints have to be satisfied after the perturbation:
v + d + ε should satisfy g for every ε ∈ [−δ; +δ]

Example

1<x<2

y :=0

; Strongly ensures timing constraints, ensures divergence of time,
prevents converging phenomena
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The strict game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize δ > 0 and a δ-robust strategy that achieves a given goal.

Theorem
The synthesis problem for Büchi properties is decidable and
PSPACE-complete. Furthermore, δ is at most doubly-exponential, and
uniform winning strategies (w.r.t. δ) can be computed.
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[AB11] Asarin, Basset. Thin and thick timed regular languages (FORMATS’11).

The problem consists in finding cycles that do not become blocked.

A converging phenomena:

×

No convergence:

Tools for solving the synthesis problem

Orbit graphs, forgetful cycles [AB11]

Forgetful orbit graph ⇔ no convergence phenomena
; strong relation with thick automata.
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Technical tool: the (folded) orbit graph
x≤2, x :=0

y≥2, y :=0

A region cycle:
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The corresponding (folded) orbit graph:
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; stores the reachability relation between vertices of the regions

The corresponding (folded) orbit graph:

63/69



Introduction Robust model-checking Robust realisability and control Conclusion
Excess semantics Strict semantics

Technical tool: the (folded) orbit graph
x≤2, x :=0

y≥2, y :=0
A region cycle:

y

0
x

1

1

2

2

y

0
x

1

1

2

2 delay

y

0
x

1

1

2

2

y

0
x

1

1

2

2 delay

y

0
x

1

1

2

2

The corresponding (folded) orbit graph:

63/69



Introduction Robust model-checking Robust realisability and control Conclusion
Excess semantics Strict semantics

Understanding the folded orbit graph

[Pur00] Puri. Dynamical properties of timed automata (Discrete Event Dynamic Systems, 2010).
[AB11] Asarin, Basset. Thin and thick timed regular languages (FORMATS’11).

ν = ~λ · ~v (convex combination of the vertices)


λ′

1 = pλ1

λ′
2 = (1− p − q)λ1 + λ2

λ′
3 = qλ1 + λ3

λ1

λ2

λ3

ν
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Reachability relation [Pur00]

Given a region cycle ρ, and valuation ν = ~λ · ~v ,

~λ · ~v ρ−→ ~λ′~v ⇔
~λ′ is computed by distributing
each λv to its successors
following a probability distribution
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λ1 + λ2 is non-increasing and λ3 is non-decreasing
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Generalization
The reachability relation along one cycle is complete iff its folded
orbit graph is complete. [Pur00]

If the folded orbit graph is connected but not strongly connected,
then there is some convergence phenomenon in the direction of the
hyperplane

∑
v∈I λv [AB11]
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Classification of cycles

A cycle is aperiodic if all its iterations are strongly connected.

Then:

aperiodic cycle: no convergence phenomenon
(some iterate is complete)

non-aperiodic cycle: convergence phenomenon
(convergence phenomenon from the non strongly connected iterate)
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Back to robustness

Characterization
There exists δ > 0 such that Controller has a δ-robust strategy ensuring
a Büchi condition in Gδ(A) if, and only if there is a reachable aperiodic
cycle in A which satisfies the Büchi condition.

Non aperiodic cycle: Perturbator can enforce rapid decrease of∑
v∈I λv ,

Aperiodic cycle π: Controller can target the middle of the regions
and stay far from the borders.

s

rpreimage by π

Remember shrunk DBMs: preimage of s by π under δ-perturbations
is r − δQ (Q fixed) for small δ’s
; from r − δQ, Controller has a strategy to ensure s
Property of s: s ⊆ r − δQ for small δ’s
; we can repeat the above strategy

⇒ Robust strategy: enforce s at each cycle
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Going further [ORS14]

[ORS14] Oualhadj, Reynier, Sankur. Probabilistic robust timed games (CONCUR’14).

Extension to two-player games

New rules: Controller chooses a delay and an action, and Perturbator
perturbs the delay and resolves the non-determinism, if any

Robustness under strict semantics can be solved in this case as well
(EXPTIME)

Beyond worst-case robustness

Assume perturbations are randomized!
(uniform distributions over [d − δ; d + δ])

Existence of an almost-sure winning strategy for Controller can be
decided in EXPTIME. Furthermore there is a dichotomy:

either Controller wins almost-surely
or Perturbator wins almost-surely
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Partial conclusion

We have presented a possible approach to the robust realizability
and control problems

There are two natural semantics (excess or strict)
Interesting relation between non-convergent cycles and robust cycles
Interesting complexities as well!

Teachnical tools:

Regions
Shrunk DBMs
Orbit graphs

What is missing:

A symbolic approach
A tool support
Stochastic approach at the beginning only
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Conclusion

Timed automata: a nice mathematical model for real-time systems
with interesting decidability properties and algorithmics solutions.
Not always easy to transfer correctness proven in this model to real
behaviours of the system.
We have shown several frameworks for robustness that can be used
to ensure correctness in the real-world.
We have seen several tools that are useful in this context (eg, shrunk
DBMs, orbit graphs)

Extension of these works to richer models seems unfortunately hard
[BMS13]
Probabilistic perturbations [ORS14]: compute/give lower bound
average-time to failure?
Symbolic algorithms?

This list of possible approaches is not exhaustive:
tube acceptance [GHJ97]
sampling approach [KP05,BLM+11]
probabilistic approach [BBB+08,BBJM12]
. . .
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