Robustness in Timed Systems

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

Acknowledgment to Nicolas Markey and Ocan Sankur for slides
Outline

1. Introduction

2. Robust model-checking
 - Parameterized enlarged semantics
 - Automatic generation of an implementation
 - Implementation by shrinking

3. Robust realisability and control
 - Excess semantics
 - Strict semantics

4. Conclusion
Time-dependent systems

- We are interested in timed systems
Time-dependent systems

- We are interested in timed systems
Model-checking and control

system:

property:
Model-checking and control

system:

property:

\[\text{AG}(\neg B.\text{overfull} \land \neg B.\text{dried_up}) \]
Model-checking and control

system:

property:

algorithm

\[\text{AG}(\neg B.\text{overfull} \land \neg B.\text{dried up}) \]
Model-checking and control

system:

property:

model-checking algorithm

yes/no

AG(¬B. overfull ∧ ¬B. dried up)
Model-checking and control

System:

![System Diagram]

Property:

\[\text{AG}(\neg B.\text{overfull} \land \neg B.\text{dried_up}) \]

Control/Synthesis Algorithm
The model of timed automata
The model of timed automata

Problem: x:=0

Alarm:
- 15 ≤ x ≤ 16
- y:=0

Repair:
- 2 ≤ y ∧ x ≤ 56
- y:=0

Failsafe:
- done, 22 ≤ y ≤ 25

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>safe</td>
<td>23</td>
<td>safe</td>
</tr>
<tr>
<td>problem</td>
<td>alarm</td>
<td>alarm</td>
</tr>
<tr>
<td>delayed</td>
<td>failsafe</td>
<td>failsafe</td>
</tr>
<tr>
<td>...</td>
<td>2.3</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Initial Value</th>
<th>Next Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
<td>23, 0</td>
</tr>
<tr>
<td>y</td>
<td>0</td>
<td>23, 23, 0</td>
</tr>
<tr>
<td>...</td>
<td>15.6</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>17.9</td>
<td>...</td>
</tr>
<tr>
<td>failsafe</td>
<td>repair</td>
<td>repairing</td>
</tr>
<tr>
<td>repair</td>
<td>22.1</td>
<td>repairing</td>
</tr>
<tr>
<td>done</td>
<td>40</td>
<td>safe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Initial Value</th>
<th>Next Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>17.9</td>
<td>...</td>
</tr>
<tr>
<td>failsafe</td>
<td>17.9</td>
<td>40</td>
</tr>
<tr>
<td>0</td>
<td>22.1</td>
<td>22.1</td>
</tr>
</tbody>
</table>
Discrete-time semantics

...because computers are digital!
Discrete-time semantics

...because computers are digital!

Example [Alur91]

• under discrete-time, the output is always 0:

Discrete-time semantics

...because computers are digital!

Example [Alur91]

- under discrete-time, the output is always 0:
Discrete-time semantics

...because computers are digital!

Example [Alur91]

- under discrete-time, the output is always 0:

Discrete-time semantics

...because computers are digital!

Example [Alur91]

- under discrete-time, the output is always 0:

Discrete-time semantics

...because computers are digital!

Example [Alur91]

- under discrete-time, the output is always 0:

Discrete-time semantics

...because computers are digital!

Example [Alur91]

- under continuous-time, the output can be 1:

Continuous-time semantics

...real-time models for real-time systems!
Continuous-time semantics

...real-time models for real-time systems!

Theorem [AD94] Reachability in timed automata is decidable (as well as many other important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools
Continuous-time semantics

...real-time models for real-time systems!

Theorem [AD94]
Reachability in timed automata is decidable (as well as many other important properties). It is PSPACE-complete.

Technical tool: region abstraction
Efficient symbolic technics based on zones, implemented in tools
Continuous-time semantics

...real-time models for real-time systems!

Theorem [AD94]
Reachability in timed automata is decidable (as well as many other important properties). It is PSPACE-complete.

Technical tool: region abstraction
Efficient symbolic technics based on zones, implemented in tools
Continuous-time semantics

...real-time models for real-time systems!
Continuous-time semantics

...real-time models for real-time systems!

Theorem [AD94]
Reachability in timed automata is decidable (as well as many other important properties). It is PSPACE-complete.

Technical tool: region abstraction
Efficient symbolic technics based on zones, implemented in tools
Continuous-time semantics

...real-time models for real-time systems!

\[
\begin{align*}
&x=1 \\
y:=0
\end{align*}
\]

\[
\begin{align*}
x\leq 2, & \; x:=0 \\
y\geq 2, & \; y:=0
\end{align*}
\]

\[
\begin{align*}
x=0 \land & \; y\geq 2
\end{align*}
\]
Continuous-time semantics

...real-time models for real-time systems!

Theorem [AD94] Reachability in timed automata is decidable (as well as many other important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools
Continuous-time semantics

...real-time models for real-time systems!

\[
\begin{align*}
& x = 1, y := 0 \\
& x \leq 2, x := 0 \\
& x = 0 \land y \geq 2 \\
& y \geq 2, y := 0
\end{align*}
\]
Continuous-time semantics

...real-time models for real-time systems!

Theorem [AD94]
Reachability in timed automata is decidable (as well as many other important properties). It is PSPACE-complete.

Technical tool: region abstraction
Efficient symbolic technics based on zones, implemented in tools...
Continuous-time semantics

...real-time models for real-time systems!

\[
\begin{align*}
 x &= 1 \\
 y &= 0 \\
 x &\leq 2, \quad x := 0 \\
 y &\geq 2, \quad y := 0 \\
 x &= 0 \land \quad y \geq 2 \\
 y &= 0
\end{align*}
\]
Continuous-time semantics

...real-time models for real-time systems!

Theorem [AD94] Reachability in timed automata is decidable (as well as many other important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools
Continuous-time semantics

...real-time models for real-time systems!

Theorem [AD94]
Reachability in timed automata is decidable (as well as many other important properties). It is PSPACE-complete.

Technical tool: region abstraction
Efficient symbolic technics based on zones, implemented in tools
Continuous-time semantics

...real-time models for real-time systems!

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other important properties). It is PSPACE-complete.

- Technical tool: region abstraction
Continuous-time semantics

...real-time models for real-time systems!

\[x = 1 \]
\[y := 0 \]
\[x \leq 2, \; x := 0 \]
\[y \geq 2, \; y := 0 \]

Theorem [AD94]
Reachability in timed automata is decidable (as well as many other important properties). It is PSPACE-complete.

- Technical tool: region abstraction
- Efficient symbolic technics based on zones, implemented in tools
Technical tool: Region abstraction

This is a finite time-abstract bisimulation!
Technical tool: Region abstraction – An example [AD94]
Technical tool: Region abstraction – An example [AD94]
Technical tool: Region abstraction – An example [AD94]
Technical tool: Region abstraction – Another example
Technical tool: Region abstraction – Another example

\[x = 1 \quad y = 0 \quad x \leq 2, \; x := 0 \quad y \geq 2, \; y := 0 \quad x = 0 \wedge y \geq 2 \]
Technical tool: Zones and DBMs

$DBM = \text{Difference Bound Matrix}$
Technical tool: Zones and DBMs

DBM = Difference Bound Matrix

Zones, or DBMs...

... are used to represent sets of states of timed automata:
Technical tool: Zones and DBMs

DBM = Difference Bound Matrix

Zones, or DBMs...

... are used to represent sets of states of timed automata:

Zone: \((x_1 \geq 3) \land (x_2 \leq 5) \land (x_1 - x_2 \leq 4)\)
Technical tool: Zones and DBMs

DBM = Difference Bound Matrix

Zones, or DBMs...

... are used to represent sets of states of timed automata:

Zone: \((x_1 \geq 3) \land (x_2 \leq 5) \land (x_1 - x_2 \leq 4)\)

DBM:

\[
\begin{pmatrix}
 x_0 & x_1 & x_2 \\
 x_0 & \infty & -3 & \infty \\
 x_1 & \infty & \infty & 4 \\
 x_2 & 5 & \infty & \infty
\end{pmatrix}
\]
Technical tool: Zones and DBMs

DBM = Difference Bound Matrix

Zones, or DBMs...

... are used to represent sets of states of timed automata:

Zone: \((x_1 \geq 3) \land (x_2 \leq 5) \land (x_1 - x_2 \leq 4)\)

Zone:

\[
\begin{array}{ccc}
 x_0 & x_1 & x_2 \\
 x_0 & \infty & -3 & \infty \\
 x_1 & \infty & \infty & 4 \\
 x_2 & 5 & \infty & \infty \\
\end{array}
\]

DBM:

\[
\begin{array}{ccc}
 x_0 & x_1 & x_2 \\
 x_0 & 0 & -3 & 0 \\
 x_1 & 9 & 0 & 4 \\
 x_2 & 5 & 2 & 0 \\
\end{array}
\]

Diagram:

11/69
Technical tool: Zones and DBMs

They can be used to compute sets of states in timed automata

\[\ell_0 \xrightarrow{x \geq 1 \land y \leq 2, y := 0} \ell_1 \]

\[
\begin{align*}
\text{Pre}_{\text{time}} & \left(\bigcap \text{Unreset}_y \right) \\
= & \text{Pre}_{\text{time}} \left(\bigcap \text{Unreset}_y \right)
\end{align*}
\]
Are we doing the right job?

The continuous-time semantics is adequate for abstract design and high-level analysis.
Example: The Patriot anti-ballistic-missile failure

28 soldiers died.
Example: The Patriot anti-ballistic-missile failure

28 soldiers died.

Problem: clock drift

Internal clock incremented by 1/10 every 1/10 s.

\[x = 0.1, x := 0 \]
\[\text{clock} += 0.1 \]
Example: The Patriot anti-ballistic-missile failure

28 soldiers died.

Problem: clock drift

Internal clock incremented by 1/10 every 1/10 s.

Clock stored in 24-bit register:

\[
\frac{1}{10} - \left\langle \frac{1}{10} \right\rangle_{24 \text{ bit}} \approx 10^{-7}
\]
Example: The Patriot anti-ballistic-missile failure

28 soldiers died.

Problem: clock drift

Internal clock incremented by 1/10 every 1/10 s.

Clock stored in 24-bit register:

\[
\frac{1}{10} - \left\langle \frac{1}{10} \right\rangle_{24 \text{ bit}} \approx 10^{-7}
\]

After 100 hours, the total drift was 0.34 seconds.
The incoming missile could not be destroyed.
Are we doing the right job?

The continuous-time semantics is adequate for abstract design and high-level analysis.
Are we doing the right job?

The continuous-time semantics is an \textit{idealization} of a physical system. It is adequate for abstract design and high-level analysis.
Are we doing the right job?

The continuous-time semantics is an **idealization** of a physical system. It is adequate for abstract design and high-level analysis.

However it suffers from multiple inaccuracies:
Are we doing the right job?

The continuous-time semantics is an idealization of a physical system. It is adequate for abstract design and high-level analysis.

However it suffers from multiple inaccuracies:

- It might not be proper for implementation:
 - it assumes zero-delay transitions
 - it assumes infinite precision of the clocks
 - it assumes immediate communication between systems
 - it assumes infinite frequency
Are we doing the right job?

The continuous-time semantics is an idealization of a physical system. It is adequate for abstract design and high-level analysis.

However it suffers from multiple inaccuracies:

- It might not be proper for implementation:
- It may generate timing anomalies
Are we doing the right job?

The continuous-time semantics is an *idealization* of a physical system. It is adequate for abstract design and high-level analysis.

However it suffers from multiple inaccuracies:

- It might not be proper for *implementation*:
- It may generate *timing anomalies*
- It does not exclude *non-realizable behaviours*:
 - not only Zeno behaviours
 - many *convergence phenomena* are hidden

 ∼ this requires infinite precision and might not be realizable
Are we doing the right job?

The continuous-time semantics is an **idealization** of a physical system. It is adequate for abstract design and high-level analysis.

However it suffers from multiple inaccuracies:

- It might not be proper for **implementation**:
- It may generate **timing anomalies**
- It does not exclude **non-realizable behaviours**:

Important questions

- Is the real system correct when it is proven correct on the model?
- Does actual work transfer to real-world systems? To what extent?
Example 1: Imprecision on clock values

Frame capture [ACS10]

2 t.u.

frame 0 frame 1 frame 2 frame 3 frame 4 frame 5

2 t.u.

encod. 0 encod. 1 encod. 2 encod. 3 encod. 4

2 + \epsilon

A frame will eventually be skipped

Example 1: Imprecision on clock values

Frame capture [ACS10]

Example 2: Strict timing constraints

Mutual exclusion protocol [KLL+97]

When P_1 and P_2 run in parallel (sharing variable r), the state where both of them are in P_{id} is not reachable. This property is lost when $x_{id} > 2$ is replaced with $x_{id} \geq 2$.

[151x266]Introduction Robust model-checking Robust realisability and control Conclusion

[9x243]Example 2: Strict timing constraints

[33x8][KLL+97] Kristoffersen, Laroussinie, Larsen, Pettersson, Yi. A compositional proof of a real-time mutual exclusion protocol (TAPSOFT’97).
Example 2: Strict timing constraints

Mutual exclusion protocol [KLL+97]

- When \mathcal{P}_1 and \mathcal{P}_2 run in parallel (sharing variable r), the state where both of them are in is not reachable.
Example 2: Strict timing constraints

Mutual exclusion protocol [KLL+97]

- When P_1 and P_2 run in parallel (sharing variable r), the state where both of them are in \square is not reachable.
- This property is lost when $x_{id} > 2$ is replaced with $x_{id} \geq 2$.

[KLL+97] Kristoffersen, Laroussinie, Larsen, Pettersson, Yi. A compositional proof of a real-time mutual exclusion protocol (*TAPSOFT’97*).
Example 3: Scheduling and timing anomaly

- Scheduling analysis with timed automata [AAM06]
- **Goal**: analyze a *work-conserving* scheduling policy on given scenarios (no machine is idle if a task is waiting for execution)

Example of a scenario

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

with the dependency constraints: $A \rightarrow B$ and $C \rightarrow D, E$.

1. A, D, E must be scheduled on machine M_1
2. B, C must be scheduled on machine M_2
3. C starts no sooner than 2 time units

Example 3: Scheduling and timing anomaly

Example of a scenario

\[
\begin{array}{cccccccc}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
M_1 & A & & D & E & & & & \\
M_2 & C & B & & & & & & \\
\end{array}
\]

Schedulable in 6 time units
Example 3: Scheduling and timing anomaly

Example of a scenario

\[\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
M_1 & A & & D & E \\
M_2 & C & B & & \\
\end{array}\]

\(\sim\) Schedulable in 6 time units

- Unexpectedly, the duration of A drops to 1.999
Example 3: Scheduling and timing anomaly

Example of a scenario

\[\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
M_1 & A & & D & E & & & \\
M_2 & C & B & & & & & \\
\end{array}\]

\[\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
M_1 & A & & D & E & & & \\
M_2 & C & B & & & & & \\
\end{array}\]

\[\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
M_1 & A & & & D & E & & \\
M_2 & & C & B & & & & \\
\end{array}\]

\[\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
M_1 & A & & & D & E & & \\
M_2 & & C & B & & & & \\
\end{array}\]

\[\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
M_1 & A & & & D & E & & \\
M_2 & & C & B & & & & \\
\end{array}\]

\[\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
M_1 & A & & & D & E & & \\
M_2 & & C & B & & & & \\
\end{array}\]

→ Schedulable in 6 time units

- Unexpectedly, the duration of A drops to 1.999

is not work-conserving
Example 3: Scheduling and timing anomaly

Example of a scenario

\[\begin{array}{ccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
M_1 & A & & D & E \\
M_2 & & C & B \\
\end{array} \]

… Schedulable in 6 time units

- Unexpectedly, the duration of A drops to 1.999

\[\begin{array}{ccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
M_1 & A & D & E \\
M_2 & C & B \\
\end{array} \]

is not work-conserving

\[\begin{array}{ccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
M_1 & A \\
M_2 & B & C \\
\end{array} \]

is work-conserving and completes in 7.999 t.u.
Example 3: Scheduling and timing anomaly

Example of a scenario

ynchronize in 6 time units

- Unexpectedly, the duration of A drops to 1.999

is not work-conserving

is work-conserving and completes in 7.999 t.u.

Standard analysis does not capture this **timing anomaly**
Example 4: Zeno behaviours

\[x < 1 \land y < 1 \]

\[x := 0 \]

\[y = 1 \]

\[x < 1 \land y < 1 \]

\[x := 0 \]

\[y = 1 \]

\[0 \]

\[1 \]

\[x \]

\[y \]
Example 4: Zeno behaviours

Those are easy to detect and can be handled;

\[x < 1 \land y < 1 \]
\[x := 0 \]
\[y = 1 \]

Example 4: Zeno behaviours

- Those are easy to detect and can be handled;
- They are easy to remove by construction.

Example 5: More complex convergence phenomena

\[x = 1 \quad \text{and} \quad y = 0 \quad \text{leads to} \quad x \leq 2, \quad x = 0 \quad \land \quad y \geq 2 \]

Value of clock \(x \) when hitting \(y = 0 \) is converging, even though global time diverges.
Example 5: More complex convergence phenomena

\[x = 1 \overset{y := 0}{\longrightarrow} x \leq 2, \ x := 0 \overset{y \geq 2}{\longrightarrow} x = 0 \land y \geq 2 \overset{y := 0}{\longrightarrow} \]

Value of clock \(x\) when hitting is converging, even though global time diverges.
Example 5: More complex convergence phenomena

\[x = 1 \quad y := 0 \]
\[x \leq 2, \ x := 0 \quad y \geq 2 \]
\[y \geq 2, \ y := 0 \]
\[x = 0 \land y \geq 2 \]

Value of clock \(x \) when hitting \(y \geq 2 \) is converging, even though global time diverges.
Example 5: More complex convergence phenomena

\[x = 1, \ y := 0 \]

\[x \leq 2, \ x := 0 \]
\[y \geq 2, \ y := 0 \]

\[x = 0 \land y \geq 2 \]

Value of clock is converging, even though global time diverges.
Example 5: More complex convergence phenomena

\begin{align*}
x &= 1 \\
y &:= 0
\end{align*}

\begin{align*}
x \leq 2, & x := 0 \\
y \geq 2, & y := 0
\end{align*}

Value of clock x when hitting is converging, even though global time diverges.
Example 5: More complex convergence phenomena

\[x = 1 \quad y := 0 \]
\[x \leq 2, \quad x := 0 \quad y \geq 2 \]
\[y \geq 2, \quad y := 0 \]

Value of clock \(x \) when hitting is converging, even though global time diverges.
Example 5: More complex convergence phenomena

\[x = 1, \ y := 0 \]
\[x \leq 2, \ x := 0 \]
\[y \geq 2, \ y := 0 \]
\[x = 0 \land y \geq 2 \]
Example 5: More complex convergence phenomena

\[
\begin{align*}
 x &= 1 \\
 y &= 0 \\

 x &\leq 2, \ x := 0 \\
 y &\geq 2, \ y := 0 \\

 x &= 0 \land \\
 y &\geq 2
\end{align*}
\]
Example 5: More complex convergence phenomena
Example 5: More complex convergence phenomena

\[x = 1 \quad y := 0 \]
\[x \leq 2, \quad x := 0 \]
\[x = 0 \land \quad y \geq 2 \]
\[y \geq 2, \quad y := 0 \]
Example 5: More complex convergence phenomena

\[x = 1 \quad y := 0 \]

\[x \leq 2, \quad x := 0 \]

\[y \geq 2, \quad y := 0 \]

Value of clock \(x \) when hitting \(y \geq 2 \).

Even though global time diverges, convergence is observed.
Example 5: More complex convergence phenomena

\[x^1 = 1, \quad y^1 = 0 \]
\[x^2 \leq 2, \quad x^2 = 0 \]
\[y^2 \geq 2, \quad y^2 = 0 \]

Value of clock x^2 when hitting is converging, even though global time diverges.
Example 5: More complex convergence phenomena

\[x = 1 \quad y := 0 \]

\[x \leq 2, \; x := 0 \]
\[y \geq 2, \; y := 0 \]

Value of clock x when hitting \bigcirc is converging, even though global time diverges
The goal

Add robustness to the theory of timed automata
The goal

Add robustness to the theory of timed automata

- Understand the real system behind the mathematical model
The goal

Add robustness to the theory of timed automata

- Understand the real system behind the mathematical model
- Describe frameworks and provide tools to develop robustly correct systems
The goal

Add robustness to the theory of timed automata

- Understand the real system behind the mathematical model
- Describe frameworks and provide tools to develop robustly correct systems
 - Notion of robustness may depend on application areas
The goal

Add robustness to the theory of timed automata

- Understand the real system behind the mathematical model
- Describe frameworks and provide tools to develop robustly correct systems
 \(\sim \) Notion of robustness may depend on application areas

Rest of the talk

- We present a couple of frameworks that have been developed recently
- We focus on the tolerance to slight timing perturbations, that is, to perturbations on time measurements and jitter
Outline

1 Introduction

2 Robust model-checking
 - Parameterized enlarged semantics
 - Automatic generation of an implementation
 - Implementation by shrinking

3 Robust realisability and control
 - Excess semantics
 - Strict semantics

4 Conclusion
Robust model-checking approach

Idea

Capture any real (or approximate) behaviours (e.g. the implementation) in the verification process
Robust model-checking approach

Idea

Capture any real (or approximate) behaviours (e.g. the implementation) in the verification process

Due to imprecisions,

“standard” correctness of $\mathcal{A} \not\Rightarrow$ correctness of $\mathcal{A}_{\text{real}}$
Robust model-checking approach

Idea

Capture any real (or approximate) behaviours (e.g. the implementation) in the verification process

Due to imprecisions,

“standard” correctness of A $\not\Rightarrow$ correctness of A_{real}

\leadsto We aim at proposing frameworks in which the correctness of the real system will be ensured once the model is verified
Robust model-checking approach

Idea

Capture any real (or approximate) behaviours (e.g. the implementation) in the verification process

Due to imprecisions,

“standard” correctness of $\mathcal{A} \not\Rightarrow$ correctness of $\mathcal{A}_{\text{real}}$

$\sim \Rightarrow$ We aim at proposing frameworks in which the correctness of the real system will be ensured once the model is verified

We describe two such frameworks:

1. either we implement \mathcal{A} and we prove:

 “robust” correctness of $\mathcal{A} \Rightarrow$ correctness of $\mathcal{A}_{\text{real}}$
Robust model-checking approach

Idea

Capture any real (or approximate) behaviours (e.g. the implementation) in the verification process

Due to imprecisions,

“standard” correctness of $A \nRightarrow$ correctness of A_{real}

\sim We aim at proposing frameworks in which the correctness of the real system will be ensured once the model is verified

We describe two such frameworks:

1. either we implement A and we prove:
 “robust” correctness of $A \Rightarrow$ correctness of A_{real}

2. or we build A and implement B, and we prove:
 correctness of $A \Rightarrow$ “robust” correctness of B
 \Rightarrow correctness of B_{real}
Outline

1. Introduction

2. Robust model-checking
 - Parameterized enlarged semantics
 - Automatic generation of an implementation
 - Implementation by shrinking

3. Robust realisability and control
 - Excess semantics
 - Strict semantics

4. Conclusion
Parameterized enlarged semantics for timed automata

A transition can be taken at any time in $[t - \delta; t + \delta]$
Parameterized enlarged semantics for timed automata

A transition can be taken at any time in $[t - \delta; t + \delta]$

Example

Given a parameter δ,

The transition $x=1 \rightarrow x=0, y:=0$ is transformed into

Parameterized model A_{δ}
Parameterized enlarged semantics – Discussion

What is the relevance of this semantics?

- This is a worst-case approach
- This captures approximate behaviours of the system
- One can define program semantics such that for every $\epsilon > 0$:

$$A \subseteq \text{program}_\epsilon(A) \subseteq A_{f(\epsilon)}$$

ϵ: parameters of the semantics

[DDR04] De Wulf, Doyen, Raskin. Almost ASAP semantics: From timed models to timed implementations (HSCC’04).

Parameterized enlarged semantics – Discussion

What is the relevance of this semantics?

- This is a worst-case approach
- This captures approximate behaviours of the system
- One can define program semantics such that for every $\epsilon > 0$:

$$\mathcal{A} \subseteq \text{program}_{\epsilon}(\mathcal{A}) \subseteq \mathcal{A}_{f(\epsilon)}$$

ϵ: parameters of the semantics

Methodology

- Design \mathcal{A}
- Verify \mathcal{A}_δ (better if δ is a parameter)
- Implement \mathcal{A}
Parameterized enlarged semantics – Discussion

What is the relevance of this semantics?

- This is a worst-case approach
- This captures approximate behaviours of the system
- One can define program semantics such that for every $\epsilon > 0$:
 \[A \subseteq \text{program}_\epsilon(A) \subseteq A_f(\epsilon) \]

ϵ: parameters of the semantics

Methodology

- Design A
- Verify A_δ (better if δ is a parameter)
- Implement A

\sim This is a good approach for designing systems with simple timing constraints (e.g. equalities).
Parameterized enlarged semantics – Algorithmics

\[\sim \text{ It adds extra behaviours, however small may be parameter } \delta \]
Parameterized enlarged semantics – Algorithmics

→ It adds extra behaviours, however small may be parameter δ

Example

The (parameterized) robust model-checking problem asks whether there is $\delta_0 > 0$ s.t. for every $0 \leq \delta \leq \delta_0$, $A_\delta | = \phi$.

When δ is small, truth of ϕ is independent of δ.

Timed automata with parameters: undecidable in general.

Here, an extension of the region automaton will do the job!

Theorem

Robust model-checking of safety, LTL, CoflatMTL properties is decidable.

Complexities are those of standard non robust model-checking problems.

(An exponential bound on δ_0 is proven)
It adds extra behaviours, however small may be parameter δ.

Example

Parameterized enlarged semantics – Algorithmics

The (parameterized) robust model-checking problem asks whether there is $\delta_0 > 0$ such that for every $0 \leq \delta \leq \delta_0$, $A_\delta |= \varphi$.

When δ is small, truth of φ is independent of δ.

Timed automata with parameters: undecidable in general.

Here, an extension of the region automaton will do the job!

Theorem

Robust model-checking of safety, LTL, CoflatMTL properties is decidable.

Complexities are those of standard non-robust model-checking problems.

(An exponential bound on δ_0 is proven)
Parameterized enlarged semantics – Algorithmics

\[\text{It adds extra behaviours, however small may be parameter } \delta \]

Example

![Diagram](image)
Parameterized enlarged semantics – Algorithmics

It adds extra behaviours, however small may be parameter δ

Example

The (parameterized) robust model-checking problem asks whether there is $\delta_0 > 0$ s.t. for every $0 \leq \delta \leq \delta_0$, $A_\delta |_\phi = \phi$.

When δ is small, truth of ϕ is independent of δ.

Timed automata with parameters: undecidable in general.

Here, an extension of the region automaton will do the job!

Theorem

Robust model-checking of safety, LTL, CoflatMTL properties is decidable.
Complexities are those of standard non robust model-checking problems.

(An exponential bound on δ_0 is proven)
Parameterized enlarged semantics – Algorithmics

\[\Rightarrow \text{It adds extra behaviours, however small may be parameter } \delta \]

Example

\[x = 1, y := 0 \]

\[x \leq 2, x := 0 \]

\[y \geq 2, y := 0 \]

\[x = 0 \land y \geq 2 \]
Parameterized enlarged semantics – Algorithmics

→ It adds extra behaviours, however small may be parameter δ

Example

The (parameterized) robust model-checking problem asks whether there is $\delta_0 > 0$ s.t. for every $0 \leq \delta \leq \delta_0$, $A_\delta \models \varphi$.

When δ is small, truth of φ is independent of δ.

Timed automata with parameters: undecidable in general.

Here, an extension of the region automaton will do the job!

Theorem

Robust model-checking of safety, LTL, CoflatMTL properties is decidable.

Complexities are those of standard non robust model-checking problems.

(An exponential bound on δ_0 is proven)
Parameterized enlarged semantics – Algorithmics

\[\sim \text{ It adds extra behaviours, however small may be parameter } \delta \]

Example

![Example Diagram](image)

The (parameterized) robust model-checking problem asks whether there is \(\delta_0 > 0 \) s.t. for every \(0 \leq \delta \leq \delta_0 \), \(\mathcal{A}_\delta \models \varphi \).

When \(\delta \) is small, truth of \(\varphi \) is independent of \(\delta \).

Timed automata with parameters: undecidable in general.

Theorem: Robust model-checking of safety, LTL, CoflatMTL properties is decidable. Complexities are those of standard non robust model-checking problems. (An exponential bound on \(\delta_0 \) is proven)
Parameterized enlarged semantics – Algorithmics

\[\leadsto \text{It adds extra behaviours, however small may be parameter } \delta \]

Example

The (parameterized) robust model-checking problem asks whether there is \(\delta > 0 \) s.t. for every \(0 \leq \delta \leq \delta_0 \), \(A_\delta \models \phi \).

When \(\delta \) is small, truth of \(\phi \) is independent of \(\delta \).

Timed automata with parameters: undecidable in general.

Here, an extension of the region automaton will do the job!

Theorem

Robust model-checking of safety, LTL, CoflatMTL properties is decidable. Complexities are those of standard non robust model-checking problems. (An exponential bound on \(\delta_0 \) is proven.)
Parameterized enlarged semantics – Algorithmics

It adds extra behaviours, however small may be parameter δ

Example

The (parameterized) robust model-checking problem
It asks whether there is $\delta_0 > 0$ s.t. for every $0 \leq \delta \leq \delta_0$, $A_{\delta} \models \varphi$.

When δ is small, truth of φ is independent of δ.

Timed automata with parameters: undecidable in general

Here, an extension of the region automaton will do the job!

Theorem
Robust model-checking of safety, LTL, CoflatMTL properties is decidable.

Complexities are those of standard non robust model-checking problems.

(An exponential bound on δ_0 is proven)
Parameterized enlarged semantics – Algorithmics

\[y = 0 \quad x \leq 2 + \delta, \quad x := 0 \]
\[x \leq \delta \land y \geq 2 - \delta \]

\[1 - \delta \leq x \leq 1 + \delta, \quad y := 0 \]
\[y \geq 2 - \delta, \quad y := 0 \]

\(\sim \) It adds extra behaviours, however small may be parameter \(\delta \)
Parameterized enlarged semantics – Algorithmics

〜 It adds extra behaviours, however small may be parameter δ

Example

\begin{align*}
1 - \delta &\leq x \leq 1 + \delta, \quad y := 0 \\
x &\leq 2 + \delta, \quad x := 0 \\
x &\leq \delta \land y \geq 2 - \delta \\
y &\geq 2 - \delta, \quad y := 0
\end{align*}
Parameterized enlarged semantics – Algorithmics

\[y = 0 \]

\[x \leq 2 + \delta, \; x := 0 \]

\[x \leq \delta \land y \geq 2 - \delta \]

\[y \geq 2 - \delta, \; y := 0 \]

\[1 - \delta \leq x \leq 1 + \delta \]

\[y := 0 \]

\[\sim \text{ It adds extra behaviours, however small may be parameter } \delta \]
Parameterized enlarged semantics – Algorithmics

\[\sim \text{ It adds extra behaviours, however small may be parameter } \delta \]

Example

The (parameterized) robust model-checking problem

It asks whether there is \(\delta_0 > 0 \) s.t. for every \(0 \leq \delta \leq \delta_0 \),

\[A_\delta | \phi \]

When \(\delta \) is small, truth of \(\phi \) is independent of \(\delta \)

Timed automata with parameters: undecidable in general

Here, an extension of the region automaton will do the job!

Theorem

Robust model-checking of safety, LTL, CoflatMTL properties is decidable.

Complexities are those of standard non robust model-checking problems.

(An exponential bound on \(\delta_0 \) is proven)
Parameterized enlarged semantics – Algorithmics

\[1 - \delta \leq x \leq 1 + \delta, \quad y := 0 \]

\[x \leq 2 + \delta, \quad x := 0 \]

\[x \leq \delta \land y \geq 2 - \delta \]

\[y \geq 2 - \delta, \quad y := 0 \]

It adds extra behaviours, however small may be parameter \(\delta \).
Parameterized enlarged semantics – Algorithmics

\[y := 0 \]
\[x \leq 2 + \delta, \ x := 0 \]
\[x \leq \delta \land y \geq 2 - \delta \]
\[1 - \delta \leq x \leq 1 + \delta \]
\[y \geq 2 - \delta, \ y := 0 \]

\[y \]
\[3 \]
\[2 \]
\[1 \]
\[0 \]
\[1 \]
\[2 \]
\[3 \]
\[x \]

It adds extra behaviours, however small may be parameter \(\delta \)
Parameterized enlarged semantics – Algorithmics

\[y = 0 \quad x \leq 2 + \delta, \; x := 0 \quad x \leq \delta \land y \geq 2 - \delta \]

~ It adds extra behaviours, however small may be parameter \(\delta \)

Example

\[1 - \delta \leq x \leq 1 + \delta \quad y := 0 \quad y \geq 2 - \delta, \; y := 0 \]
Parameterized enlarged semantics – Algorithmics

〜 It adds extra behaviours, however small may be parameter δ

Example

The (parameterized) robust model-checking problem
It asks whether there is δ₀ > 0 s.t. for every 0 ≤ δ ≤ δ₀,
A_δ |= ϕ.
When δ is small, truth of ϕ is independent of δ.
Timed automata with parameters: undecidable in general.
Here, an extension of the region automaton will do the job!

Theorem
Robust model-checking of safety, LTL, CoflatMTL properties is decidable.
Complexities are those of standard non robust model-checking problems.
(An exponential bound on δ₀ is proven)
Parameterized enlarged semantics – Algorithmics

It adds extra behaviours, however small may be parameter δ

Example

\begin{align*}
1 - \delta &\leq x \leq 1 + \delta, & y := 0 \\
 x &\leq 2 + \delta, & x := 0 \\
x &\leq \delta \land y \geq 2 - \delta, & y := 0 \\
y &\geq 2 - \delta, & y := 0
\end{align*}
Parameterized enlarged semantics – Algorithmics

It adds extra behaviours, however small may be parameter δ

Example

$1 - \delta \leq x \leq 1 + \delta$

$y := 0$

$x \leq 2 + \delta$, $x := 0$

$y \geq 2 - \delta$, $y := 0$

$x \leq \delta \land y \geq 2 - \delta$
Parameterized enlarged semantics – Algorithmics

It adds extra behaviours, however small may be parameter δ.

\sim Example

The (parameterized) robust model-checking problem asks whether there is $\delta_0 > 0$ s.t. for every $0 \leq \delta \leq \delta_0$, $A_\delta | = \phi$.

When δ is small, truth of ϕ is independent of δ.

Timed automata with parameters: undecidable in general.

Here, an extension of the region automaton will do the job!

Theorem

Robust model-checking of safety, LTL, CoflatMTL properties is decidable.

Complexities are those of standard non robust model-checking problems.

(An exponential bound on δ_0 is proven)
Parameterized enlarged semantics – Algorithmics

\[\leadsto \text{It adds extra behaviours, however small may be parameter } \delta \]

The (parameterized) robust model-checking problem

It asks whether there is \(\delta_0 > 0 \) s.t. for every \(0 \leq \delta \leq \delta_0 \), \(A_\delta \models \varphi \).
Parameterized enlarged semantics – Algorithmics

\(\leadsto \) It adds extra behaviours, however small may be parameter \(\delta \)

The (parameterized) robust model-checking problem

It asks whether there is \(\delta_0 > 0 \) s.t. for every \(0 \leq \delta \leq \delta_0 \), \(A_\delta \models \varphi \).

- When \(\delta \) is small, truth of \(\varphi \) is independent of \(\delta \)

[Mil00] Miller. Decidability and Complexity Results for Timed Automata and Semi-linear Hybrid Automata (HSCC’00).
Parameterized enlarged semantics – Algorithmics

It adds extra behaviours, however small may be parameter \(\delta \)

The (parameterized) robust model-checking problem

It asks whether there is \(\delta_0 > 0 \) s.t. for every \(0 \leq \delta \leq \delta_0 \), \(A_\delta \models \varphi \).

- When \(\delta \) is small, truth of \(\varphi \) is independent of \(\delta \)

\[
\delta_1 \leq \delta_2 \implies \text{Reach}(A_{\delta_1}) \subseteq \text{Reach}(A_{\delta_2})
\]
Parameterized enlarged semantics – Algorithmics

\[\sim \text{ It adds extra behaviours, however small may be parameter } \delta \]

The (parameterized) robust model-checking problem

It asks whether there is \(\delta_0 > 0 \) s.t. for every \(0 \leq \delta \leq \delta_0 \), \(A_\delta \models \varphi \).

- When \(\delta \) is small, truth of \(\varphi \) is independent of \(\delta \)

\[
\begin{align*}
\delta_1 \leq \delta_2 & \implies \text{Reach}(A_{\delta_1}) \subseteq \text{Reach}(A_{\delta_2}) \\
& \implies (A_{\delta_2} \text{ safe } \implies A_{\delta_1} \text{ safe})
\end{align*}
\]
Parameterized enlarged semantics – Algorithmics

→ It adds extra behaviours, however small may be parameter δ

The (parameterized) robust model-checking problem

It asks whether there is $\delta_0 > 0$ s.t. for every $0 \leq \delta \leq \delta_0$, $A_\delta \models \varphi$.

- When δ is small, truth of φ is independent of δ
- Timed automata with parameters: undecidable in general
Parameterized enlarged semantics – Algorithmics

\[\sim \text{ It adds extra behaviours, however small may be parameter } \delta \]

The (parameterized) robust model-checking problem

It asks whether there is \(\delta_0 > 0 \) s.t. for every \(0 \leq \delta \leq \delta_0 \), \(A_\delta \models \varphi \).

- When \(\delta \) is small, truth of \(\varphi \) is independent of \(\delta \)
- Timed automata with parameters: undecidable in general
- Here, an extension of the region automaton will do the job!
Parameterized enlarged semantics – Algorithmics

\[\sim \] It adds extra behaviours, however small may be parameter \(\delta \)

The (parameterized) robust model-checking problem

It asks whether there is \(\delta_0 > 0 \) s.t. for every \(0 \leq \delta \leq \delta_0 \), \(A_\delta \models \varphi \).

- When \(\delta \) is small, truth of \(\varphi \) is independent of \(\delta \)
- Timed automata with parameters: undecidable in general
- Here, an extension of the region automaton will do the job!

Theorem

Robust model-checking of safety, LTL, CoflatMTL properties is decidable. Complexities are those of standard non robust model-checking problems.

[BMR06] Bouyer, Markey, Reynier. Robust model-checking of timed automata (LATIN’06).
[BMR08] Bouyer, Markey, Reynier. Robust analysis of timed automata via channel machines (FoSSaCS’08).
Parameterized enlarged semantics – Algorithmics

\[\sim \text{It adds extra behaviours, however small may be parameter } \delta \]

The (parameterized) robust model-checking problem

It asks whether there is \(\delta_0 > 0 \) s.t. for every \(0 \leq \delta \leq \delta_0 \), \(A_\delta \models \varphi \).

- When \(\delta \) is small, truth of \(\varphi \) is independent of \(\delta \)
- Timed automata with parameters: undecidable in general
- Here, an extension of the region automaton will do the job!

Theorem

Robust model-checking of safety, LTL, CoflatMTL properties is decidable. Complexities are those of standard non robust model-checking problems.

(An exponential bound on \(\delta_0 \) is proven)

[BMR06] Bouyer, Markey, Reynier. Robust model-checking of timed automata (LATIN’06).
[BMR08] Bouyer, Markey, Reynier. Robust analysis of timed automata via channel machines (FoSSaCS’08).
Technical tool: extended region automaton

Extended region automaton

For any location ℓ and any two regions r and r', if

- $\overline{r} \cap \overline{r'} \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $\mathcal{R}(A)$,

then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$

(under slight technical restrictions)
Technical tool: extended region automaton

Extended region automaton

For any location ℓ and any two regions r and r', if

- $\overline{r} \cap \overline{r'} \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $R(A)$,

then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$

(under slight technical restrictions)
Technical tool: extended region automaton

Extended region automaton

For any location ℓ and any two regions r and r', if

- $\overline{r} \cap \overline{r'} \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $R(A)$,

then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$

(under slight technical restrictions)
Technical tool: extended region automaton

Extended region automaton

For any location \(\ell \) and any two regions \(r \) and \(r' \), if
- \(\overline{r} \cap \overline{r'} \neq \emptyset \) and
- \((\ell, r') \) belongs to an SCC of \(\mathcal{R}(A) \),

then we add a transition \((\ell, r) \xrightarrow{\gamma} (\ell, r') \)

(under slight technical restrictions)
Technical tool: extended region automaton

Extended region automaton

For any location \(\ell \) and any two regions \(r \) and \(r' \), if

1. \(\overline{r} \cap \overline{r'} \neq \emptyset \) and
2. \((\ell, r') \) belongs to an SCC of \(\mathcal{R}(\mathcal{A}) \),

then we add a transition \((\ell, r) \xrightarrow{\gamma} (\ell, r') \)

(under slight technical restrictions)
Technical tool: extended region automaton

Extended region automaton

For any location ℓ and any two regions r and r', if

1. $\overline{r} \cap \overline{r'} \neq \emptyset$ and
2. (ℓ, r') belongs to an SCC of $R(A)$,

then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$

(under slight technical restrictions)
Technical tool: extended region automaton

Extended region automaton

For any location \(\ell \) and any two regions \(r \) and \(r' \), if

1. \(\overline{r} \cap \overline{r'} \neq \emptyset \) and
2. \((\ell, r') \) belongs to an SCC of \(\mathcal{R}(A) \),

then we add a transition \((\ell, r) \xrightarrow{\gamma} (\ell, r') \)

(under slight technical restrictions)
Parameterized enlarged semantics – An example
Outline

1 Introduction

2 Robust model-checking
 - Parameterized enlarged semantics
 - **Automatic generation of an implementation**
 - Implementation by shrinking

3 Robust realisability and control
 - Excess semantics
 - Strict semantics

4 Conclusion
Automatic generation of an implementation

The (approx.) implementation synthesis problem

Given \mathcal{A}, build \mathcal{A}' such that:

- \mathcal{A}' ‘identical’ (e.g. bisimilar) to \mathcal{A}
- \mathcal{A}' is ‘robust’ (that is, good enough for implementation)

Automatic generation of an implementation

The (approx.) implementation synthesis problem

Given \mathcal{A}, build \mathcal{A}' such that:
- \mathcal{A}' ‘identical’ (e.g. bisimilar) to \mathcal{A}
- \mathcal{A}' is ‘robust’ (that is, good enough for implementation)

The second condition can be (for instance) read as \mathcal{A}' is approximately the same as \mathcal{A}'_δ, for small enough δ.

Automatic generation of an implementation

The (approx.) implementation synthesis problem

Given \mathcal{A}, build \mathcal{A}' such that:
- \mathcal{A}' ‘identical’ (e.g. bisimilar) to \mathcal{A}
- \mathcal{A}' is ‘robust’ (that is, good enough for implementation)

The second condition can be (for instance) read as \mathcal{A}' is approximately the same as \mathcal{A}'_{δ}, for small enough δ.

Theorem

All timed automata are approximately implementable!
(for approx. bisimulation)

- Technical tool: region construction

Automatic generation of an implementation

Methodology

- Design and verify \mathcal{A}
- Implement \mathcal{A}' (automatically generated)

Automatic generation of an implementation

Methodology

- Design and verify \mathcal{A}
- Implement \mathcal{A}' (automatically generated)

- 😊 Separates design and implementation
- 😞 \mathcal{A}' is much bigger than \mathcal{A}

Outline

1 Introduction

2 Robust model-checking
 - Parameterized enlarged semantics
 - Automatic generation of an implementation
 - Implementation by shrinking

3 Robust realisability and control
 - Excess semantics
 - Strict semantics

4 Conclusion
Parameterized shrunk semantics for timed automata

A constraint $[a, b]$ is shrunk to $[a + \delta; b - \delta']$

Parameterized shrunk semantics for timed automata

A constraint \([a, b]\) is shrunk to \([a + \delta; b - \delta']\)

Why should we do that?

Models

Abstract model

Impl. model

1 \leq x \leq 2

Parameterized shrunk semantics for timed automata

A constraint \([a, b]\) is shrunk to \([a + \delta; b - \delta']\)

Why should we do that?

- **Abstract model**
 - Models:
 - \(1 \leq x \leq 2\)
 - Impl. model:
 - \(1 - \Delta \leq x \leq 2 + \Delta\)

Parameterized shrunk semantics for timed automata

A constraint $[a, b]$ is shrunk to $[a + \delta; b - \delta']$

Why should we do that?

<table>
<thead>
<tr>
<th>Models</th>
<th>Abstract model</th>
<th>Impl. model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-world</td>
<td>$1 \leq x \leq 2$</td>
<td>$1 - \Delta \leq x \leq 2 + \Delta$</td>
</tr>
<tr>
<td>$1 + \delta \leq x \leq 2 - \delta'$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Why should we do that?

$[1 + \delta - \Delta; 2 - \delta' + \Delta] \subseteq [1; 2]$ which is the case when $\delta, \delta' \geq \Delta$.

Parameterized shrunk semantics for timed automata

A constraint $[a, b]$ is shrunk to $[a + \delta; b - \delta']$

Why should we do that?

<table>
<thead>
<tr>
<th>Models</th>
<th>Abstract model</th>
<th>Impl. model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-world</td>
<td>$1 \leq x \leq 2$</td>
<td>$1 - \Delta \leq x \leq 2 + \Delta$</td>
</tr>
<tr>
<td></td>
<td>$1 + \delta \leq x \leq 2 - \delta'$</td>
<td>$1 + \delta - \Delta \leq x \leq 2 - \delta' + \Delta$</td>
</tr>
</tbody>
</table>

Parameterized shrunk semantics for timed automata

A constraint \([a, b]\) is shrunk to \([a + \delta; b - \delta']\)

Why should we do that?

<table>
<thead>
<tr>
<th>Models</th>
<th>Abstract model</th>
<th>Impl. model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-world</td>
<td>1 \leq x \leq 2</td>
<td>1 - \Delta \leq x \leq 2 + \Delta</td>
</tr>
<tr>
<td></td>
<td>1 + \delta \leq x \leq 2 - \delta'</td>
<td>1 + \delta - \Delta \leq x \leq 2 - \delta' + \Delta</td>
</tr>
</tbody>
</table>

It is fine as soon as \([1 + \delta - \Delta; 2 - \delta' + \Delta] \subseteq [1; 2]\), which is the case when \(\delta, \delta' \geq \Delta\).

Parameterized shrunk semantics for timed automata

A constraint \([a, b]\) is shrunk to \([a + \delta; b - \delta']\)

Summary of the approach

\(\sim\) Shrink the clock constraints in the model, to prevent additional behaviours in the implementation

- If \(B = A_{-k\delta}\), then

\[B \subseteq \text{program}_\epsilon(B) \subseteq B_{f(\epsilon)} = A_{-k\delta + f(\epsilon)} \subseteq A\]

Parameterized shrunk semantics – Discussion

What is the relevance of that approach?

Anticipate imprecisions to prevent additional behaviours in the real-world
Parameterized shrunk semantics – Discussion

What is the relevance of that approach?
Anticipate imprecisions to prevent additional behaviours in the real-world

Methodology
- Design and verify \mathcal{A}
- Implement $\mathcal{A}_{-k\delta}$ (parameters are k and δ)
Parameterized shrunk semantics – Discussion

What is the relevance of that approach?
Anticipate imprecisions to prevent additional behaviours in the real-world

Methodology
- Design and verify \mathcal{A}
- Implement $\mathcal{A}_{-k\delta}$ (parameters are k and δ)

∽ This is a good approach for designing systems with strong/hard timing constraints
Parameterized shrunk semantics – Discussion

What is the relevance of that approach?
Anticipate imprecisions to prevent additional behaviours in the real-world

Methodology

- Design and verify \mathcal{A}
- Implement $\mathcal{A}_{-k\delta}$ (parameters are k and δ)

\rightsquigarrow This is a good approach for designing systems with strong/hard timing constraints

Make sure that no important behaviours are lost in $\mathcal{A}_{-k\delta}$!!
Parameterized shrinked semantics – Algorithmics

The (parameterized) shrinkability problem

Find parameters k and δ such that:

- $A \sqsubseteq_{t.a.} A_{-k\delta}$ (or $F \sqsubseteq_{t.a.} A_{-k\delta}$ for some finite automaton F)
 [shrinkability w.r.t. untimed simulation]

- $A_{-k\delta}$ is non-blocking whenever A is non-blocking
 [shrinkability w.r.t. non-blockingness]
Parameterized shrunk semantics – Algorithmics

The (parameterized) shrinkability problem

Find parameters k and δ such that:

- $A \subseteq_{t.a.} A_{-k\delta}$ (or $F \subseteq_{t.a.} A_{-k\delta}$ for some finite automaton F)

 [shrinkability w.r.t. untimed simulation]

- $A_{-k\delta}$ is non-blocking whenever A is non-blocking

 [shrinkability w.r.t. non-blockingness]

Theorem

Parameterized shrinkability can be decided (in exponential time).

- Challenge: take care of the accumulation of perturbations
- Technical tools: parameterized shrunk DBM, max-plus equations
- Tool Shrinktech developed by Ocan Sankur [San13]

 http://www.lsv.ens-cachan.fr/Software/shrinktech/

The case of non-blockingness

Non-blockingness

Whenever σ is taken, either σ' or σ'' is eventually firable.
The case of non-blockingness

Non-blockingness

Whenever σ is taken, either σ' or σ'' is eventually firable.

Fix-point characterization

Let G_σ denote the **guards** of the timed automaton. It is non-blocking iff,

$$\forall \sigma, \quad \begin{bmatrix} G_\sigma \end{bmatrix} \subseteq \bigcup \text{Unreset}_{R_\sigma} (\text{Pre}_{\text{time}}(\begin{bmatrix} G_{\sigma'} \end{bmatrix})).$$
Technical tools: shrunk DBMs...

\[[G_\sigma] \subseteq \text{Unreset}_{R_\sigma}(\text{Pre}_{\text{time}}([G_{\sigma'}])) \]
Technical tools: shrunk DBMs...

\[[G_\sigma] \subseteq \text{Unreset}_{R_\sigma}(\text{Pre}_{\text{time}}([G_{\sigma'}])) \]

\[\subseteq \text{Unreset}_y \text{Pre}_{\text{time}} \left(\begin{pmatrix} \text{Unreset}_y \end{pmatrix} \right) \]
Technical tools: shrunk DBMs...

\[
\begin{align*}
\sigma & \quad \sigma' \\
\begin{array}{c}
\mathcal{G}_\sigma \\
\subseteq \\
\text{Unreset}_{R_{\sigma}}(\text{Pre}_{\text{time}}(\mathcal{G}_{\sigma'}))
\end{array}
\end{align*}
\]
Technical tools: shrunk DBMs...

\[[G_{\sigma}] \subseteq \text{Unreset}_{R_{\sigma}}(\text{Pre}_{\text{time}}([G_{\sigma'}])) \]
Technical tools: shrunk DBMs...

\[
\left[\langle G_\sigma \rangle - \vec{k}\delta \right] \subseteq \text{Unreset}_{R_\sigma} (\text{Pre}_{\text{time}} (\left[\langle G_{\sigma'} \rangle - \vec{k}\delta \right]))
\]

Determine \(\vec{k} \)
Technical tools: shrunk DBMs...

\[\langle G_{\sigma} \rangle_{-k\delta} \subseteq \text{Unreset}_{R_{\sigma}}(\text{Pre}_{\text{time}}(\langle G_{\sigma'} \rangle_{-k\delta})) \]
Technical tools: shrunk DBMs...

\[
\left[\langle G_{\sigma} \rangle_{-\bar{k}\delta} \right] \subseteq \text{Unreset}_{R_{\sigma}}(\text{Pre}_{\text{time}}(\left[\langle G_{\sigma'} \rangle_{-\bar{k}\delta} \right]))
\]

\[
\subseteq \text{Unreset}_{y}
\]

\[
\begin{pmatrix}
(k_1 + k_3)\delta \\
(k_2 + k_4)\delta
\end{pmatrix}
\]
Technical tools: shrunk DBMs...

\[
\left[\left\langle G_\sigma \right\rangle - \vec{k}\delta \right] \subseteq \text{Unreset}_{R_\sigma} (\text{Pre}_{\text{time}}(\left[\left\langle G_{\sigma'} \right\rangle - \vec{k}\delta \right]))
\]

\[
\subseteq (k_1 + k_3)\delta
\]
Technical tools: shrunk DBMs...and max-plus equations

\[\left[\langle G_\sigma \rangle_{-\kappa \delta} \right] \subseteq \text{Unreset}_{R_\sigma} \left(\text{Pre}_{\text{time}} \left(\left[\langle G_{\sigma'} \rangle_{-\kappa \delta} \right] \right) \right) \]

Then, \(\vec{k} \) should satisfy

\[k_5 \geq k_1 + k_3 \quad \text{that is,} \quad k_5 = \max(k_5, k_1 + k_3) \]

In this case, the above inclusion equation holds for small enough \(\delta \)'s
\[
\left[\langle G_\sigma \rangle - \vec{k} \delta \right] \subseteq \text{Unreset}_{R_\sigma}(\text{Pre}_{\text{time}}(\left[\langle G_\sigma' \rangle - \vec{k} \delta \right])) \\
\iff \\
k_5 = \max(k_5, k_1 + k_3).
\]
\[
\left\lfloor \langle G_\sigma \rangle_{-\vec{k}\delta} \right\rfloor \subseteq \text{Unreset}_{R_\sigma}(\text{Pre}_{\text{time}}(\left\lfloor \langle G_\sigma' \rangle_{-\vec{k}\delta} \right\rfloor))
\]
\[\iff\]
\[k_5 = \max(k_5, k_1 + k_3).\]

Key Theorem

Let \(\vec{M} = f(\vec{M}) \) be a **fixpoint equation on zones**, and \(\vec{M} \) a solution.

\(f \) uses \(\text{Pre}_{\text{time}}(), \cap, \text{Unreset}(). \)

For any \(\vec{k} \in \mathbb{N}^n > 0 \),

\[
\langle \vec{M} \rangle_{-\vec{k}\delta} = f(\langle \vec{M} \rangle_{-\vec{k}\delta}) \quad \forall \text{ small } \delta > 0
\]
\[\iff\]
\[\vec{k} = \varphi(\vec{k}),\]

where \(\varphi \) is a **max-plus expression**.
Key Theorem

Let \(\vec{M} = f(\vec{M}) \) be a fixpoint equation on zones, and \(\vec{M} \) a solution.
\(f \) uses \(\text{Pre}_{\text{time}}(), \cap, \text{Unreset}(). \)
For any \(\vec{k} \in \mathbb{N}^n > 0 \),
\[
\langle \vec{M} \rangle_{-\vec{k}\delta} = f(\langle \vec{M} \rangle_{-\vec{k}\delta}) \quad \forall \text{ small } \delta > 0
\]
\[
\iff \vec{k} = \varphi(\vec{k}),
\]
where \(\varphi \) is a max-plus expression.

\(\bowtie \) Max-plus algebra: the above fixpoint equations can be solved in polynomial time
Solving max-plus equations

Max-plus graph

\[k_1 \geq \max(1, 2 + k_2) \land k_3 \geq k_2 \land k_2 \geq \max(4, k_3) \]
Solving max-plus equations

Max-plus graph

\[k_1 \geq \max(1, 2 + k_2) \land k_3 \geq k_2 \land k_2 \geq \max(4, k_3) \]
Solving max-plus equations

Max-plus graph

\[
\begin{align*}
6 \quad & k_1 \quad \text{max} \quad 6 \\
& + \quad 6 \quad k_2 \quad \text{max} \quad 4 \\
& + \quad 4 \quad k_3 \\
& + \quad 4 \\
\end{align*}
\]
Solving max-plus equations

Max-plus graph

No solution!
Summary of shrinkability

Deciding shrinkability

Apply theorem to following fix-point equations:

- **Non-blockingness:**

 \[\forall \sigma, \quad [G_\sigma] \subseteq \bigcup_{l_1 \xrightarrow{\sigma} l_2 \xrightarrow{\sigma'} l_3} \text{Unreset}_{R_\sigma} (\text{Pre}_{\text{time}}([G_{\sigma'}])). \]

 (Do technical work to remove the union)

- **Time-abstract simulation** (\(\mathcal{A} \subseteq \text{t.a. } \mathcal{A}_{-\delta_k}\)):

 \[[M_{l,r}] = \bigcap_{\sigma \in \Sigma} \bigcap_{(l,r) \xrightarrow{\sigma} (l',r')} \text{Pre}_{\text{time}}(\text{Unreset}_{R_\sigma} ([M_{l',r'}]) \cap [G_\sigma]), \]

 where \(M_{l,r}\) is the time-abstract simulator set of the region \((l, r)\).
Example

The largest shrunk automaton which is correct w.r.t. untimed simulation and non-blockingness (for all $\delta \in [0, 1/4]$) is:

- $y \leq 1 \land u \geq 0$
- $y \leq 1 \land 1 \leq x$
- $u \geq 0 \land y \leq 1$

$u, y := 0$

$y \leq 1 \land u \geq 0$

$y \leq 1 \land 1 \leq x$

$u \geq 0 \land y \leq 1$

$u, y := 0$

$u, x, y := 0$

$u, y := 0$

$u, x := 0$

$u, x := 0$

$u, x := 0$

$u, x := 0$
Example

The largest shrunk automaton which is correct w.r.t. untimed simulation and non-blockingness (for all $\delta \in [0, \frac{1}{4}]$) is:

\[u \geq \delta \wedge y \leq 1 - \delta \wedge u \geq \delta \]
\[y - x \leq 1 - 4\delta \wedge u \geq \delta \]
\[u, y := 0 \]
Counter-example

\[0 \leq x, y \leq 1, \ x := 0 \]
Counter-example

\[0 \leq x, y \leq 1, \ x := 0 \]

There is no shrunk automaton which is correct w.r.t. non-blockingness. Indeed, the max-plus equations we obtain are:

\[
\begin{align*}
\cdots \\
k_8 &= \max(k_{17}, k_{11} + \max(k_{16}, k_2 + \max(k_7, k_8)))) \\
k_{11} &= \max(1, k_{11})
\end{align*}
\]

which has no solution!

(remember the max-plus graph with no solution)
Counter-example

\[
\begin{align*}
0 \leq x, y &\leq 1, \ x := 0 \\
\delta \leq x, y &\leq 1, \ x := 0
\end{align*}
\]

There is no shrunk automaton which is correct w.r.t. non-blockingness. Indeed, the max-plus equations we obtain are:

\[
\begin{aligned}
\cdots \\
k_8 &= \max(k_{17}, k_{11} + \max(k_{16}, k_2 + \max(k_7, k_8))) \\
k_{11} &= \max(1, k_{11})
\end{aligned}
\]

which has no solution!

(remember the max-plus graph with no solution)
Partial conclusion

- We have presented three methods for verifying robust correctness, hence correct implementation
Partial conclusion

- We have presented three methods for verifying robust correctness, hence correct implementation
- Same complexities as standard model-checking!
Partial conclusion

- We have presented three methods for verifying robust correctness, hence correct implementation.

- **Same complexities** as standard model-checking!

- **Technical tools:**
 - Extended region automaton
 - Shrunk DBMs
 - And also characterization of reachability relations in timed automata
 (hidden in this presentation)
Partial conclusion

- We have presented three methods for verifying robust correctness, hence correct implementation

- **Same complexities** as standard model-checking!

- Technical tools:
 - Extended region automaton
 - Shrunk DBMs
 - And also characterization of reachability relations in timed automata
 (hidden in this presentation)

- What is missing:
 - A symbolic approach
 - A tool support
 - Shinktech is a prototype for the shrinking approach
 - Stochastic approach (see later)
Outline

1 Introduction

2 Robust model-checking
 - Parameterized enlarged semantics
 - Automatic generation of an implementation
 - Implementation by shrinking

3 Robust realisability and control
 - Excess semantics
 - Strict semantics

4 Conclusion
Robust realisability

Here, a strategy in a timed automaton is a way to resolve (time and action) non-determinism
Robust realisability

Here, a strategy in a timed automaton is a way to resolve (time and action) non-determinism

Example

Strategy: in location \bigcirc with value x, delay $\frac{2-x}{2}$
Robust realisability

Here, a strategy in a timed automaton is a way to resolve (time and action) non-determinism

Example

Strategy: in location \bigcirc with value x, delay $\frac{2-x}{2}$

- This strategy requires infinite precision
Robust realisability

Here, a strategy in a timed automaton is a way to resolve (time and action) non-determinism

Example

Strategy: in location \(\bigcirc \) with value \(x \), delay \(\frac{2-x}{2} \)

- This strategy requires infinite precision
- In practice, when \(x \) is close to 2, no additional delay is supported: the run is theoretically infinite, but it is actually blocking
Robust realisability

Here, a strategy in a timed automaton is a way to resolve (time and action) non-determinism.

Example

Strategy: in location \bigcirc with value x, delay $\frac{2-x}{2}$

- This strategy requires infinite precision.
- In practice, when x is close to 2, no additional delay is supported: the run is theoretically infinite, but it is actually blocking.
- And that is unavoidable.
Robust realisability

Here, a strategy in a timed automaton is a way to resolve (time and action) non-determinism

Idea of robust realisability

Synthesize strategies that realise some property, even under perturbations: strategies should adapt to previous imprecisions

\[\sim \text{ develop a theory of robust strategies that tolerate errors/imprecisions and avoid convergence} \]
Game semantics of a timed automaton

Game semantics $G_\delta(A)$ of timed automaton A...

... between Controller and Perturbator:
- from (ℓ, v), Controller suggests a delay $d \geq \delta$ and a next edge $e = (\ell \xrightarrow{g,Y} \ell')$ that is available after delay d
- Perturbator then chooses a perturbation $\epsilon \in [-\delta; +\delta]$
- Next state is $(\ell', (v + d + \epsilon)[Y \leftarrow 0])$
Game semantics of a timed automaton

Game semantics $G_\delta(A)$ of timed automaton A...

... between Controller and Perturbator:

- from (ℓ, v), Controller suggests a delay $d \geq \delta$ and a next edge $e = (\ell \xrightarrow{g,Y} \ell')$ that is available after delay d
- Perturbator then chooses a perturbation $\epsilon \in [-\delta; +\delta]$
- Next state is $(\ell', (v + d + \epsilon)[Y \leftarrow 0])$

Note: when $\delta = 0$, this is the standard semantics of timed automata.
Game semantics of a timed automaton

Game semantics $G_\delta(A)$ of timed automaton A...

... between Controller and Perturbator:
- from (ℓ, v), Controller suggests a delay $d \geq \delta$ and a next edge $e = (\ell \xrightarrow{g,Y} \ell')$ that is available after delay d.
- Perturbator then chooses a perturbation $\epsilon \in [-\delta; +\delta]$.
- Next state is $(\ell', (v + d + \epsilon)[Y \leftarrow 0])$.

Note: when $\delta = 0$, this is the standard semantics of timed automata.

A δ-robust strategy for Controller is then a strategy that satisfies the expected property, whatever plays Perturbator.
Two possible semantics

Consider a transition with guard $x \leq 3 \land y \geq 1$:

excess semantics

$y = 1$

$x = 3$

strict semantics

$y = 1$

$x = 3$
Outline

1 Introduction

2 Robust model-checking
 - Parameterized enlarged semantics
 - Automatic generation of an implementation
 - Implementation by shrinking

3 Robust realisability and control
 - Excess semantics
 - Strict semantics

4 Conclusion
The excess game semantics

Constraints may not be satisfied after the perturbation
only $v + d$ should satisfy g

The excess game semantics

Constraints may not be satisfied after the perturbation
only $\nu + d$ should satisfy g

Example

The excess game semantics

Constraints may not be satisfied after the perturbation
only $v + d$ should satisfy g

Example

The excess game semantics

Constraints may not be satisfied after the perturbation
only $v + d$ should satisfy g

Example

The excess game semantics

Constraints may not be satisfied after the perturbation
only $v + d$ should satisfy g

Example

\[x = y = 1\]
\[y := 0\]

The excess game semantics

Constraints may not be satisfied after the perturbation
only $v + d$ should satisfy g

Example

Example diagram with variables $x = y = 1$, $y := 0$.

The excess game semantics

Constraints may not be satisfied after the perturbation
only $v + d$ should satisfy g

Example

\Rightarrow Allows simple design of constraints, ensures divergence of time, avoids convergence phenomena

The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ-robust strategy that achieves a given goal.
The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ-robust strategy that achieves a given goal.

Two challenges

1. Accumulation of perturbations:

$$x \leq 2 \quad y := 0 \quad x = 2 \quad 1 \leq x - y$$
The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ-robust strategy that achieves a given goal.

Two challenges

Accumulation of perturbations:

$x \leq 2$

$y := 0$

$x = 2$

$1 \leq x - y$

δ
The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ-robust strategy that achieves a given goal.

Two challenges

1. Accumulation of perturbations:

 $x \leq 2$
 $y := 0$
 $1 \leq x - y$

2. New regions become reachable

 $x = y = 1$
 $y := 0$
The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ-robust strategy that achieves a given goal.

Theorem

The parameterized synthesis problem for reachability properties is decidable and EXPTIME-complete. Furthermore, uniform winning strategies (w.r.t. δ) can be computed.
The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ-robust strategy that achieves a given goal.

Theorem

The parameterized synthesis problem for reachability properties is decidable and EXPTIME-complete. Furthermore, uniform winning strategies (w.r.t. δ) can be computed.

- Technical tool: a region-based refined game abstraction, shrunk DBMs
The excess game semantics – Algorithmics

The (parameterized) synthesis problem
Synthesize $\delta > 0$ and a δ-robust strategy that achieves a given goal.

Theorem
The parameterized synthesis problem for reachability properties is decidable and EXPTIME-complete. Furthermore, uniform winning strategies (w.r.t. δ) can be computed.

- Technical tool: a region-based refined game abstraction, shrunk DBMs
- 🌟 Extends to two-player games (i.e. to real control problems)
- 😞 Only valid for reachability properties
The excess game semantics – Algorithm overview

1. (Forward) Construct an equivalent finite turn-based game $F(A)$ (based on regions)
2. Solve it
3. (Backward) Construct winning states in $G_\delta(A)$, and deduce δ_0
The excess game semantics – Algorithm overview

1. (Forward) Construct an equivalent finite turn-based game $\mathbf{F}(\mathcal{A})$ (based on regions)
2. Solve it
3. (Backward) Construct winning states in $\mathcal{G}_\delta(\mathcal{A})$, and deduce δ_0

Winning states will be described by shrinkings of regions:

$$r - \delta P$$

One can win from a region r in $\mathbf{F}(\mathcal{A})$ $$\iff$$ one can win from a shrinking of r in $\mathcal{G}_\delta(\mathcal{A})$
Construction of the finite turn-based game

\[x = y = 1 \quad y := 0 \]

\[\ell, r_0 \rightarrow \ell', r_0' \rightarrow \ell', r_1 \]

region automaton:
Construction of the finite turn-based game

Extended region automaton:

Idea: We win from some shrinking of \(r_0 \), if, and only if we win from some shrinkings of \(r_1, r_2, r_3 \).
Construction of the finite turn-based game

Extended region automaton:

Idea: We win from some shrinking of r_0, if, and only if we win from some shrinkings of r_1, r_2, r_3.

\[
x = y = 1 \\
y := 0
\]
Assume that we win from \textbf{some} shrinkings of r_1, r_2, r_3.
Assume that we win from some shrinkings of r_1, r_2, r_3.
Assume that we win from some shrinkings of r_1, r_2, r_3.

Can these be combined to a winning strategy from r_0?
Assume that we win from some shrinkings of r_1, r_2, r_3.

Can these be combined to a winning strategy from r_0? No: we don’t have a strategy for valuations around r_1.
Solution: Look for a shrinking of some regions with constraints.

A constrained region is a region with some marked facets. A shrinking of a constrained region does not shrink from marked facets.
Solution: Look for a shrinking of some regions with constraints.

A constrained region is a region with some marked facets. A shrinking of a constrained region does not shrink from marked facets.

We win from r_0 iff we win from constrained shrinkings of r_1, r_2, r_3.
Solution: Look for a shrinking of some regions with constraints.

A constrained region is a region with some marked facets.
A shrinking of a constrained region does not shrink from marked facets.

We win from r_0 iff we win from constrained shrinkings of r_1, r_2, r_3.
Solution: Look for a shrinking of some regions with *constraints*.

A **constrained region** is a region with some marked facets.

A shrinking of a constrained region **does not shrink** from marked facets.

In fact,

\[r_0 \rightarrow r'_0 \]

\[r_2 \rightarrow r_1 \rightarrow r_3 \]
Solution: Look for a shrinking of some regions with constraints.

A constrained region is a region with some marked facets. A shrinking of a constrained region does not shrink from marked facets.

In fact,

OK, we have a strategy for all the points in the violet area.
Finite game $F(\mathcal{A})$

Shrinking constraint for region r is represented by a boolean matrix S_r.

Controller wins in $G_\delta(\mathcal{A})$ for all $\delta \in [0, \delta_0]$ for some $\delta_0 > 0$

\iff

Controller wins in $F(\mathcal{A})$.
Details on the definition of $F(\mathcal{A})$

\[
\ell, r_0, S_{r_0}
\]
Details on the definition of $F(\mathcal{A})$

S_φ is defined such that:

Controller wins from some shrinking of (φ, S_φ) iff
Controller wins from some shrinking of (r_0, S_{r_0}).

$l, r_0, S_{r_0} \rightarrow l, \varphi, S_\varphi$
Details on the definition of $F(\mathcal{A})$

S_φ is defined such that:

Controller wins from *some* shrinking of (φ, S_φ) *iff*
Controller wins from *some* shrinking of (r_0, S_{r_0}).
Details on the definition of $F(\mathcal{A})$

S_φ is defined such that:

Controller wins from some shrinking of (φ, S_φ) iff
Controller wins from some shrinking of (r_0, S_{r_0}).

\[F(\mathcal{A}) \text{ is defined such that:} \]

\[\text{Controller wins from some shrinking of } (\varphi, S_\varphi) \iff \text{Controller wins from some shrinking of } (r_0, S_{r_0}). \]
Details on the definition of $F(\mathcal{A})$
Details on the definition of $F(\mathcal{A})$

Controller wins from some shrinking of $(\varphi, S\varphi)$ iff Controller wins from some shrinking of (r_0, S_{r_0}).
Details on the definition of $F(A)$

$F(A)$ is defined such that:

Controller wins from some shrinking of $(\varphi, S\varphi)$ iff Controller wins from some shrinking of (r_0, S_{r_0}).
Details on the definition of $F(\mathcal{A})$
Details on the definition of $F(\mathcal{A})$

$F(\mathcal{A})$ is defined such that:

Controller wins from some shrinking of (φ, S_{φ}) iff Controller wins from some shrinking of (r_0, S_{r_0}).
Constructing a winning strategy from $F(\mathcal{A})$
Constructing a winning strategy from $F(A)$
Constructing a winning strategy from $F(A)$

Each step of the backward propagation gives an upper bound on δ.

$\ell, r_0, S_{r_0} \rightarrow \ell, \varphi, S_\varphi \rightarrow \ell', r_1, S_{r_1} \rightarrow \ell', r_2, S_{r_2} \rightarrow \ell', r_3, S_{r_3}$

reset
Constructing a winning strategy from $F(A)$
Constructing a winning strategy from $F(A)$

▶ Each step of the backward propagation gives an upper bound on δ.
Usual semantics in timed automata can encode reachability in linearly bounded Turing machines (PSPACE-complete).

Robust semantics in timed automata can encode reachability in **alternating** linearly bounded Turing machines (EXPTIME-complete).
EXPTIME-hardness

Usual semantics in timed automata can encode reachability in linearly bounded Turing machines (PSPACE-complete).

Robust semantics in timed automata can encode reachability in \textbf{alternating} linearly bounded Turing machines (EXPTIME-complete).

Perturbator has a strategy to choose between any of the two branches.
- Top branch: make the first transition earlier
- Bottom branch: delay the first transition
Outline

1 Introduction

2 Robust model-checking
 - Parameterized enlarged semantics
 - Automatic generation of an implementation
 - Implementation by shrinking

3 Robust realisability and control
 - Excess semantics
 - Strict semantics

4 Conclusion
The strict game semantics

Constraints have to be satisfied after the perturbation:
\[v + d + \epsilon \text{ should satisfy } g \text{ for every } \epsilon \in [-\delta; +\delta] \]
The strict game semantics

Constraints have to be satisfied after the perturbation:
\[v + d + \epsilon \text{ should satisfy } g \text{ for every } \epsilon \in [-\delta; +\delta] \]

Example

The strict game semantics

Constraints have to be satisfied after the perturbation:

\[v + d + \epsilon \text{ should satisfy } g \text{ for every } \epsilon \in [-\delta; +\delta] \]

Example

\[1 < x < 2 \]
\[y := 0 \]
The strict game semantics

Constraints have to be satisfied after the perturbation:
\[v + d + \epsilon \text{ should satisfy } g \text{ for every } \epsilon \in [-\delta; +\delta] \]

Example

The strict game semantics

Constraints have to be satisfied after the perturbation:
\[v + d + \epsilon \text{ should satisfy } g \text{ for every } \epsilon \in [-\delta; +\delta] \]

Example
The strict game semantics

Constraints have to be satisfied after the perturbation:
\[v + d + \epsilon \text{ should satisfy } g \text{ for every } \epsilon \in [-\delta; +\delta] \]

Example

The strict game semantics

Constraints have to be satisfied after the perturbation:
\[v + d + \epsilon \text{ should satisfy } g \text{ for every } \epsilon \in [-\delta; +\delta] \]

Example

The strict game semantics

Constraints have to be satisfied after the perturbation:
\[v + d + \epsilon \text{ should satisfy } g \text{ for every } \epsilon \in [-\delta; +\delta] \]

Example

Strongly ensures timing constraints, ensures divergence of time, prevents converging phenomena

The strict game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ-robust strategy that achieves a given goal.
The strict game semantics – Algorithmics

The (parameterized) synthesis problem
Synthesize $\delta > 0$ and a δ-robust strategy that achieves a given goal.

Theorem
The synthesis problem for Büchi properties is decidable and PSPACE-complete. Furthermore, δ is at most doubly-exponential, and uniform winning strategies (w.r.t. δ) can be computed.
The problem consists in finding cycles that do not become blocked.
The problem consists in finding cycles that do not become blocked.

- A converging phenomena:
The problem consists in finding cycles that do not become blocked.

- A converging phenomena:

- No convergence:
The problem consists in finding cycles that do not become blocked.

- A converging phenomena:

- No convergence:

Tools for solving the synthesis problem

- Orbit graphs, forgetful cycles [AB11]
- Forgetful orbit graph ⇔ no convergence phenomena
 ∼ strong relation with thick automata.

Technical tool: the (folded) orbit graph

\[x \leq 2, \ x := 0 \]

\[y \geq 2, \ y := 0 \]
Technical tool: the (folded) orbit graph

A region cycle:

\[
x \leq 2, \ x := 0
\]

\[
y \geq 2, \ y := 0
\]

The corresponding (folded) orbit graph:
Technical tool: the (folded) orbit graph

\[x \leq 2, \ x := 0 \]
\[y \geq 2, \ y := 0 \]

A region cycle:

The corresponding orbit graph:

\[\sim \] stores the reachability relation between vertices of the regions
Technical tool: the (folded) orbit graph

\[x \leq 2, \ x := 0 \]
\[y \geq 2, \ y := 0 \]

A region cycle:

The corresponding (folded) orbit graph:
Understanding the folded orbit graph

\[\nu = \vec{\lambda} \cdot \vec{v} \text{ (convex combination of the vertices)} \]

Understanding the folded orbit graph

\[\nu = \vec{\lambda} \cdot \vec{v} \] (convex combination of the vertices)

Reachability relation [Pur00]

Given a region cycle \(\rho \), and valuation \(\nu = \vec{\lambda} \cdot \vec{v} \),

\[\vec{\lambda} \cdot \vec{v} \xrightarrow{\rho} \vec{\lambda}' \vec{v} \iff \vec{\lambda}' \text{ is computed by distributing each } \lambda_v \text{ to its successors following a probability distribution} \]

64/69
Understanding the folded orbit graph

Reachability relation [Pur00]

Given a region cycle ρ, and valuation $\nu = \vec{\lambda} \cdot \vec{v}$,

\[
\vec{\lambda} \cdot \vec{v} \xrightarrow{\rho} \vec{\lambda}' \vec{v} \iff \vec{\lambda}' \text{ is computed by distributing each } \lambda_v \text{ to its successors following a probability distribution}
\]

Understanding the folded orbit graph

\[\lambda' = p \lambda_1 \]

Reachability relation [Pur00]

Given a region cycle \(\rho \), and valuation \(\nu = \lambda \cdot \vec{v} \),

\[\lambda' \cdot \vec{v} \stackrel{\rho}{\rightarrow} \lambda' \nu \quad \Leftrightarrow \quad \lambda' \text{ is computed by distributing each } \lambda_v \text{ to its successors following a probability distribution} \]

Understanding the folded orbit graph

Reachability relation \[\text{[Pur00]}\]

Given a region cycle \(\rho\), and valuation \(\nu = \vec{\lambda} \cdot \vec{v}\),

\[
\vec{\lambda} \cdot \vec{v} \xrightarrow{\rho} \vec{\lambda'} \vec{v} \iff \vec{\lambda'} \text{ is computed by distributing}
\]

each \(\lambda_v\) to its successors

following a probability distribution

\[\begin{cases}
\lambda'_1 = p\lambda_1 \\
\lambda'_2 = (1 - p - q)\lambda_1 + \lambda_2
\end{cases}\]

\[\nu = \vec{\lambda} \cdot \vec{v}
\]

\[\begin{array}{c}
\lambda'_1 = p\lambda_1 \\
\lambda'_2 = (1 - p - q)\lambda_1 + \lambda_2
\end{array}\]

\[\text{[Pur00]}\] Puri. Dynamical properties of timed automata \(\text{(Discrete Event Dynamic Systems, 2010)}\).

\[\text{[AB11]}\] Asarin, Basset. Thin and thick timed regular languages \(\text{(FORMATS’11)}\).
Understanding the folded orbit graph

Reachability relation \([\text{Pur00}]\)

Given a region cycle \(\rho\), and valuation \(\nu = \vec{\lambda} \cdot \vec{v}\),

\[
\begin{align*}
\vec{\lambda} \cdot \vec{v} \xrightarrow{\rho} \vec{\lambda}' \vec{v} & \iff \vec{\lambda}' \text{ is computed by distributing} \\
& \text{each } \lambda_v \text{ to its successors} \\
& \text{following a probability distribution}
\end{align*}
\]

\[\begin{align*}
\lambda_1' &= p \lambda_1 \\
\lambda_2' &= (1 - p - q) \lambda_1 + \lambda_2 \\
\lambda_3' &= q \lambda_1 + \lambda_3
\end{align*}\]

\[\nu = \vec{\lambda} \cdot \vec{v}\]

\([\text{Pur00}]\) Puri. Dynamical properties of timed automata (\textit{Discrete Event Dynamic Systems, 2010}).

\([\text{AB11}]\) Asarin, Basset. Thin and thick timed regular languages (\textit{FORMATS’11}).
Understanding the folded orbit graph

\[\nu = \lambda \cdot \bar{v} \] (convex combination of the vertices)

\[\begin{align*}
\lambda'_1 &= p \lambda_1 \\
\lambda'_2 &= (1 - p - q) \lambda_1 + \lambda_2 \\
\lambda'_3 &= q \lambda_1 + \lambda_3
\end{align*} \]

Reachability relation [Pur00]

Given a region cycle \(\rho \), and valuation \(\nu = \lambda' \cdot \bar{v}, \)

\[\lambda' \cdot \bar{v} \xrightarrow{\rho} \lambda' \bar{v} \iff \lambda' \text{ is computed by distributing each } \lambda_v \text{ to its successors following a probability distribution} \]

Understanding the folded orbit graph

\[\nu = \vec{\lambda} \cdot \vec{v} \] (convex combination of the vertices)

\[\begin{align*}
\lambda_1' &= p \lambda_1 \\
\lambda_2' &= (1 - p - q) \lambda_1 + \lambda_2 \\
\lambda_3' &= q \lambda_1 + \lambda_3
\end{align*} \]

\(\lambda_1 + \lambda_2 \) is non-increasing and \(\lambda_3 \) is non-decreasing

Understanding the folded orbit graph

The reachability relation along one cycle is complete iff its folded orbit graph is complete.

Understanding the folded orbit graph

Generalization

- The reachability relation along one cycle is complete iff its folded orbit graph is complete. [Pur00]
- If the folded orbit graph is connected but not strongly connected, then there is some convergence phenomenon in the direction of the hyperplane $\sum_{v \in I} \lambda_v$. [AB11]

Understanding the folded orbit graph

Classification of cycles

A cycle is **aperiodic** if all its iterations are strongly connected.

[AB11] Asarin, Basset. Thin and thick timed regular languages (*FORMATS’11*).
Understanding the folded orbit graph

Classification of cycles

A cycle is \textbf{aperiodic} if all its iterations are strongly connected. Then:

- aperiodic cycle: no convergence phenomenon
 (some iterate is complete)

- non-aperiodic cycle: convergence phenomenon
 (convergence phenomenon from the non strongly connected iterate)

[AB11] Asarin, Basset. Thin and thick timed regular languages (\textit{FORMATS’11}).
Back to robustness

Characterization

There exists $\delta > 0$ such that **Controller** has a δ-robust strategy ensuring a Büchi condition in $G_\delta(\mathcal{A})$ if, and only if there is a reachable aperiodic cycle in \mathcal{A} which satisfies the Büchi condition.
Characterization

There exists $\delta > 0$ such that **Controller** has a δ-robust strategy ensuring a Büchi condition in $G_\delta(A)$ if, and only if there is a reachable aperiodic cycle in A which satisfies the Büchi condition.

- Non aperiodic cycle: **Perturbator** can enforce rapid decrease of $\sum_{v \in I} \lambda_v$.

\[\sum_{v \in I} \lambda_v \geq \epsilon \]
Back to robustness

Characterization

There exists $\delta > 0$ such that Controller has a δ-robust strategy ensuring a Büchi condition in $G_\delta(\mathcal{A})$ if, and only if there is a reachable aperiodic cycle in \mathcal{A} which satisfies the Büchi condition.

- Non aperiodic cycle: Perturbator can enforce rapid decrease of $\sum_{v \in I} \lambda_v$, hence he can enforce convergence, and Controller gets stuck.
Back to robustness

Characterization

There exists $\delta > 0$ such that Controller has a δ-robust strategy ensuring a Büchi condition in $G_\delta(A)$ if, and only if there is a reachable aperiodic cycle in A which satisfies the Büchi condition.

- Non aperiodic cycle: Perturbator can enforce rapid decrease of $\sum_{v \in I} \lambda_v$.
- Aperiodic cycle π: Controller can target the middle of the regions and stay far from the borders.
Back to robustness

Characterization

There exists $\delta > 0$ such that Controller has a δ-robust strategy ensuring a Büchi condition in $G_\delta(A)$ if, and only if there is a reachable aperiodic cycle in A which satisfies the Büchi condition.

- Non aperiodic cycle: Perturbator can enforce rapid decrease of $\sum_{v \in I} \lambda_v$.
- Aperiodic cycle π: Controller can target the middle of the regions and stay far from the borders.
Back to robustness

Characterization

There exists $\delta > 0$ such that Controller has a δ-robust strategy ensuring a Büchi condition in $G_\delta(\mathcal{A})$ if, and only if there is a reachable aperiodic cycle in \mathcal{A} which satisfies the Büchi condition.

- Non aperiodic cycle: Perturbator can enforce rapid decrease of $\sum_{\nu \in I} \lambda_{\nu}$.
- Aperiodic cycle π: Controller can target the middle of the regions and stay far from the borders.

Remember shrunk DBMs: preimage of s by π under δ-perturbations is $r - \delta Q$ (Q fixed) for small δ’s.

\leadsto from $r - \delta Q$, Controller has a strategy to ensure s.
Back to robustness

Characterization

There exists $\delta > 0$ such that Controller has a δ-robust strategy ensuring a Büchi condition in $G_\delta(A)$ if, and only if there is a reachable aperiodic cycle in A which satisfies the Büchi condition.

- Non aperiodic cycle: Perturbator can enforce rapid decrease of $\sum_{v \in I} \lambda_v$.
- Aperiodic cycle π: Controller can target the middle of the regions and stay far from the borders.

\Rightarrow Remember shrunk DBMs: preimage of s by π under δ-perturbations is $r - \delta Q$ (Q fixed) for small δ’s

\Rightarrow from $r - \delta Q$, Controller has a strategy to ensure s

\Rightarrow Property of s: $s \subseteq r - \delta Q$ for small δ’s

\Rightarrow we can repeat the above strategy
Characterization

There exists $\delta > 0$ such that Controller has a δ-robust strategy ensuring a Büchi condition in $G_\delta(A)$ if, and only if there is a reachable aperiodic cycle in A which satisfies the Büchi condition.

- Non aperiodic cycle: Perturbator can enforce rapid decrease of $\sum_{v \in I} \lambda_v$.
- Aperiodic cycle π: Controller can target the middle of the regions and stay far from the borders.

- Remember shrunk DBMs: preimage of s by π under δ-perturbations is $r - \delta Q$ (Q fixed) for small δ’s.
- \sim from $r - \delta Q$, Controller has a strategy to ensure s.
- Property of s: $s \subseteq r - \delta Q$ for small δ’s.
- \sim we can repeat the above strategy.
 \Rightarrow Robust strategy: enforce s at each cycle.
Going further [ORS14]

Extension to two-player games

- New rules: **Controller** chooses a delay and an action, and **Perturbator** perturbs the delay and resolves the non-determinism, if any.
- Robustness under strict semantics can be solved in this case as well (EXPTIME)

Going further [ORS14]

Extension to two-player games
- New rules: Controller chooses a delay and an action, and Perturbator perturbs the delay and resolves the non-determinism, if any
- Robustness under strict semantics can be solved in this case as well (EXPTIME)

Beyond worst-case robustness
- Assume perturbations are randomized!
 (uniform distributions over $[d - \delta; d + \delta]$)

Going further [ORS14]

Extension to two-player games
- New rules: Controller chooses a delay and an action, and Perturbator perturbs the delay and resolves the non-determinism, if any.
- Robustness under strict semantics can be solved in this case as well (EXPTIME).

Beyond worst-case robustness
- Assume perturbations are randomized! (uniform distributions over \([d - \delta; d + \delta]\))
- Existence of an almost-sure winning strategy for Controller can be decided in EXPTIME. Furthermore there is a dichotomy:
 - either Controller wins almost-surely
 - or Perturbator wins almost-surely

We have presented a possible approach to the robust realizability and control problems.

- There are two natural semantics (excess or strict).
- Interesting relation between non-convergent cycles and robust cycles.
- Interesting complexities as well!
We have presented a possible approach to the robust realizability and control problems.

- There are two natural semantics (excess or strict)
- Interesting relation between non-convergent cycles and robust cycles
- Interesting complexities as well!

Technical tools:

- Regions
- Shrunken DBMs
- Orbit graphs
Partial conclusion

- We have presented a possible approach to the robust realizability and control problems
 - There are two natural semantics (excess or strict)
 - Interesting relation between non-convergent cycles and robust cycles
 - Interesting complexities as well!

- Technical tools:
 - Regions
 - Shrunk DBMs
 - Orbit graphs

- What is missing:
 - A symbolic approach
 - A tool support
 - Stochastic approach at the beginning only
Outline

1. Introduction

2. Robust model-checking
 - Parameterized enlarged semantics
 - Automatic generation of an implementation
 - Implementation by shrinking

3. Robust realisability and control
 - Excess semantics
 - Strict semantics

4. Conclusion
Conclusion

- **Timed automata**: a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.
Conclusion

- **Timed automata**: a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.
- Not always easy to transfer correctness proven in this model to real behaviours of the system.
Conclusion

- **Timed automata**: a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.
- Not always easy to transfer correctness proven in this model to real behaviours of the system.
- We have shown several frameworks for robustness that can be used to ensure correctness in the real-world.
Conclusion

- **Timed automata**: a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.
- Not always easy to transfer correctness proven in this model to real behaviours of the system.
- We have shown several frameworks for **robustness** that can be used to ensure correctness in the real-world.
- We have seen several tools that are useful in this context (*eg*, shrunk DBMs, orbit graphs)
Conclusion

- **Timed automata**: a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.
- Not always easy to transfer correctness proven in this model to real behaviours of the system.
- We have shown several frameworks for **robustness** that can be used to ensure correctness in the real-world.
- We have seen several tools that are useful in this context (*eg*, shrunk DBMs, orbit graphs)
- Extension of these works to richer models seems unfortunately hard [*BMS13*]
- Probabilistic perturbations [*ORS14*]: compute/give lower bound average-time to failure?
- Symbolic algorithms?
Conclusion

- **Timed automata**: a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.
- Not always easy to transfer correctness proven in this model to real behaviours of the system.
- We have shown several frameworks for robustness that can be used to ensure correctness in the real-world.
- We have seen several tools that are useful in this context (e.g., shrunk DBMs, orbit graphs)

- Extension of these works to richer models seems unfortunately hard [BMS13]
- Probabilistic perturbations [ORS14]: compute/give lower bound average-time to failure?
- Symbolic algorithms?

- This list of possible approaches is not exhaustive:
 - tube acceptance [GHJ97]
 - sampling approach [KP05, BLM⁺11]
 - probabilistic approach [BBB⁺08, BBJM12]
 - …