Robustness in Timed Systems

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

Acknowledgment to Nicolas Markey and Ocan Sankur for slides

Outline

Introduction

2 Robust model-checking

- Parameterized enlarged semantics
- Automatic generation of an implementation
- Implementation by shrinking

8 Robust realisability and control

- Excess semantics
- Strict semantics

Conclusion

Time-dependent systems

• We are interested in timed systems

Time-dependent systems

• We are interested in timed systems

The model of timed automata

The model of timed automata

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
x	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

failsafe	$\xrightarrow{2.3}$	failsafe	$\xrightarrow{\text{repair}}$	repairing	$\xrightarrow{22.1}$	repairing	$\xrightarrow{\text{done}}$	safe	
 15.6		17.9		17.9		40		40	
0		2.3		0		22.1		22.1	

...because computers are digital!

...because computers are digital!

...because computers are digital!

...because computers are digital!

...because computers are digital!

...because computers are digital!

...because computers are digital!

... real-time models for real-time systems!

...real-time models for real-time systems!

...real-time models for real-time systems!

... real-time models for real-time systems!

...real-time models for real-time systems!

...real-time models for real-time systems!

... real-time models for real-time systems!

...real-time models for real-time systems!

y := 0

 $y \ge 2, y := 0$

$x \le 2, x := 0 \qquad x = 0 \land \qquad y \ge 2 \qquad y = = 0 \qquad y \ge 2 \qquad y \ge 2 \qquad y = 0 \qquad y \ge 2 \qquad y = 0 \qquad 0 \qquad y = 0 \qquad y =$

...real-time models for real-time systems!

 $\xrightarrow{} x$

...real-time models for real-time systems!

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other important properties). It is PSPACE-complete.

• Technical tool: region abstraction

...real-time models for real-time systems!

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other important properties). It is PSPACE-complete.

- Technical tool: region abstraction
- Efficient symbolic technics based on zones, implemented in tools

Technical tool: Region abstraction

 \rightsquigarrow This is a finite time-abstract bisimulation!

Technical tool: Region abstraction – An example [AD94]

Technical tool: Region abstraction – An example [AD94]

Technical tool: Region abstraction – An example [AD94]

Technical tool: Region abstraction – Another example

Technical tool: Region abstraction – Another example

 $\mathsf{DBM}=\mathsf{Difference}\;\mathsf{Bound}\;\mathsf{Matrix}$

 $\mathsf{DBM}=\mathsf{Difference}\ \mathsf{Bound}\ \mathsf{Matrix}$

Zones, or DBMs...

... are used to represent sets of states of timed automata:

 $\mathsf{DBM}=\mathsf{Difference}\ \mathsf{Bound}\ \mathsf{Matrix}$

Zones, or DBMs...

... are used to represent sets of states of timed automata:

Zone: $(x_1 \ge 3) \land (x_2 \le 5) \land (x_1 - x_2 \le 4)$

 $\mathsf{DBM}=\mathsf{Difference}\ \mathsf{Bound}\ \mathsf{Matrix}$

Zones, or DBMs...

... are used to represent sets of states of timed automata:

Zone:
$$(x_1 \ge 3) \land (x_2 \le 5) \land (x_1 - x_2 \le 4)$$

 $x_0 \quad x_1 \quad x_2$
DBM: $x_1 \begin{pmatrix} \infty & -3 & \infty \\ \infty & \infty & 4 \\ x_2 \end{pmatrix}$
 $x_2 \quad x_2 \quad$

 X_1

 $\mathsf{DBM}=\mathsf{Difference}\ \mathsf{Bound}\ \mathsf{Matrix}$

Zones, or DBMs...

... are used to represent sets of states of timed automata:

Zone:
$$(x_1 \ge 3) \land (x_2 \le 5) \land (x_1 - x_2 \le 4)$$

 $x_0 \quad x_1 \quad x_2$
DBM: $x_1 \begin{pmatrix} \infty & -3 & \infty \\ \infty & \infty & 4 \\ 5 & \infty & \infty \end{pmatrix}$
 $x_2 \begin{pmatrix} x_0 & x_1 & x_2 \\ 5 & \infty & \infty \end{pmatrix}$
 x_2
 $x_3 \quad x_1 \quad x_2$
 $x_0 \quad x_1 \quad x_2$
 $x_1 \quad x_2 \quad x_1 \quad x_2$
 $x_2 \quad x_1 \quad x_2$
 $x_2 \quad x_1 \quad x_2$
 $x_1 \quad x_2 \quad x_2 \quad x_1 \quad x_2$
 $x_2 \quad x_2 \quad x_1 \quad x_2$
 $x_2 \quad x_2 \quad x_1 \quad x_2$
 $x_2 \quad x_2 \quad x_2 \quad x_3 \quad x_4$
 $x_1 \quad x_2 \quad x_1 \quad x_2$

They can be used to compute sets of states in timed automata

The continuous-time semantics is

adequate for abstract design and high-level analysis.

25 February 1991, during Gulf war.28 soldiers died.

25 February 1991, during Gulf war.28 soldiers died.

Problem: clock drift

Internal clock incremented by $1/10 \mbox{ every } 1/10 \mbox{ s}.$

25 February 1991, during Gulf war.28 soldiers died.

Problem: clock drift

Internal clock incremented by $1/10 \mbox{ every } 1/10 \mbox{ s.}$

Clock stored in 24-bit register:

$$\frac{1}{10}-\left\langle \frac{1}{10}\right\rangle _{\text{24 bit}}\simeq 10^{-7}$$

25 February 1991, during Gulf war.28 soldiers died.

Problem: clock drift

Internal clock incremented by $1/10 \mbox{ every } 1/10 \mbox{ s}.$

Clock stored in 24-bit register:

 $\frac{1}{10} - \left\langle \frac{1}{10} \right\rangle_{\text{24 bit}} \simeq 10^{-7}$

x=0.1, x:=0clock+=0.1

After 100 hours, the total drift was 0.34 seconds. The incoming missile could not be destroyed.

The continuous-time semantics is

adequate for abstract design and high-level analysis.

The continuous-time semantics is an idealization of a physical system. It is adequate for abstract design and high-level analysis.

The continuous-time semantics is an idealization of a physical system. It is adequate for abstract design and high-level analysis.

However it suffers from multiple inaccuracies:

The continuous-time semantics is an idealization of a physical system. It is adequate for abstract design and high-level analysis.

However it suffers from multiple inaccuracies:

- It might not be proper for implementation:
 - it assumes zero-delay transitions
 - it assumes infinite precision of the clocks
 - it assumes immediate communication between systems
 - it assumes infinite frequency

The continuous-time semantics is an idealization of a physical system. It is adequate for abstract design and high-level analysis.

However it suffers from multiple inaccuracies:

- It might not be proper for implementation:
- It may generate timing anomalies

The continuous-time semantics is an idealization of a physical system. It is adequate for abstract design and high-level analysis.

However it suffers from multiple inaccuracies:

- It might not be proper for implementation:
- It may generate timing anomalies
- It does not exclude non-realizable behaviours:
 - not only Zeno behaviours
 - many convergence phenomena are hidden

 \rightsquigarrow this requires infinite precision and might not be realizable

The continuous-time semantics is an idealization of a physical system. It is adequate for abstract design and high-level analysis.

However it suffers from multiple inaccuracies:

- It might not be proper for implementation:
- It may generate timing anomalies
- It does not exclude non-realizable behaviours:

Important questions

- Is the real system correct when it is proven correct on the model?
- Does actual work transfer to real-world systems? To what extent?

Example 1: Imprecision on clock values

Example 1: Imprecision on clock values

Example 2: Strict timing constraints

Example 2: Strict timing constraints

 When P₁ and P₂ run in parallel (sharing variable r), the state where both of them are in □ is not reachable.

Example 2: Strict timing constraints

- When P₁ and P₂ run in parallel (sharing variable r), the state where both of them are in □ is not reachable.
- This property is lost when $x_{id} > 2$ is replaced with $x_{id} \ge 2$.

- Scheduling analysis with timed automata [AAM06]
- **Goal:** analyze a *work-conserving* scheduling policy on given scenarios (no machine is idle if a task is waiting for execution)

Example of a scenario

with the dependency constraints: $A \rightarrow B$ and $C \rightarrow D, E$.

- A, D, E must be scheduled on machine M_1
- $Oldsymbol{B}$, C must be scheduled on machine M_2
- Solution C starts no sooner than 2 time units

Example of a scenario

 \rightsquigarrow Schedulable in 6 time units

Example of a scenario

- \sim Schedulable in 6 time units
 - Unexpectedly, the duration of A drops to 1.999

Example of a scenario

 \sim Schedulable in 6 time units

• Unexpectedly, the duration of A drops to 1.999

is not work-conserving

Example of a scenario

 \sim Schedulable in 6 time units

• Unexpectedly, the duration of A drops to 1.999

Example of a scenario

 \sim Schedulable in 6 time units

• Unexpectedly, the duration of A drops to 1.999

 \rightsquigarrow Standard analysis does not capture this timing anomaly

Example 4: Zeno behaviours

Example 4: Zeno behaviours

Example 4: Zeno behaviours

Example 5: More complex convergence phenomena

Add robustness to the theory of timed automata

Add robustness to the theory of timed automata

• Understand the real system behind the mathematical model

Add robustness to the theory of timed automata

- Understand the real system behind the mathematical model
- Describe frameworks and provide tools to develop robustly correct systems

Add robustness to the theory of timed automata

- Understand the real system behind the mathematical model
- Describe frameworks and provide tools to develop robustly correct systems
 - \rightsquigarrow Notion of robustness may depend on application areas

Add robustness to the theory of timed automata

- Understand the real system behind the mathematical model
- Describe frameworks and provide tools to develop robustly correct systems
 - \rightsquigarrow Notion of robustness may depend on application areas

Rest of the talk

- We present a couple of frameworks that have been developed recently
- We focus on the tolerance to slight timing perturbations, that is, to perturbations on time measurements and jitter

Outline

Introduction

2 Robust model-checking

- Parameterized enlarged semantics
- Automatic generation of an implementation
- Implementation by shrinking

8 Robust realisability and control

- Excess semantics
- Strict semantics

Conclusion

Robust model-checking approach

Idea

Capture any real (or approximate) behaviours (e.g. the implementation) in the verification process

Robust model-checking approach

Idea

Capture any real (or approximate) behaviours (e.g. the implementation) in the verification process

```
Due to imprecisions,
```

```
"standard" correctness of \mathcal{A} \not\Rightarrow correctness of \mathcal{A}_{\texttt{real}}
```

Robust model-checking approach

Idea

Capture any real (or approximate) behaviours (e.g. the implementation) in the verification process

Due to imprecisions,

```
"standard" correctness of \mathcal{A} \not\Rightarrow correctness of \mathcal{A}_{\texttt{real}}
```

 \rightsquigarrow We aim at proposing frameworks in which the correctness of the real system will be ensured once the model is verified

Robust model-checking approach

Idea

Capture any real (or approximate) behaviours (e.g. the implementation) in the verification process

Due to imprecisions,

```
"standard" correctness of \mathcal{A} \not\Rightarrow correctness of \mathcal{A}_{\texttt{real}}
```

 \rightsquigarrow We aim at proposing frameworks in which the correctness of the real system will be ensured once the model is verified

We describe two such frameworks:

() either we implement \mathcal{A} and we prove:

"robust" correctness of $\mathcal{A} \ \Rightarrow \$ correctness of $\mathcal{A}_{\texttt{real}}$

Robust model-checking approach

Idea

Capture any real (or approximate) behaviours (e.g. the implementation) in the verification process

Due to imprecisions,

```
"standard" correctness of \mathcal{A} \not\Rightarrow correctness of \mathcal{A}_{\texttt{real}}
```

 \rightsquigarrow We aim at proposing frameworks in which the correctness of the real system will be ensured once the model is verified

We describe two such frameworks:

• either we implement \mathcal{A} and we prove: "robust" correctness of $\mathcal{A} \Rightarrow$ correctness of \mathcal{A}_{real}

2 or we build \mathcal{A} and implement \mathcal{B} , and we prove:

 $\begin{array}{rcl} \text{correctness of } \mathcal{A} & \Rightarrow & \text{``robust'' correctness of } \mathcal{B} \\ & \Rightarrow & \text{correctness of } \mathcal{B}_{\texttt{real}} \end{array}$

Outline

Introduction

2 Robust model-checking

• Parameterized enlarged semantics

- Automatic generation of an implementation
- Implementation by shrinking

3 Robust realisability and control

- Excess semantics
- Strict semantics

Conclusion

Parameterized enlarged semantics for timed automata

A transition can be taken at any time in $[t - \delta; t + \delta]$

Parameterized enlarged semantics for timed automata

A transition can be taken at any time in $[t - \delta; t + \delta]$

Parameterized enlarged semantics – Discussion

What is the relevance of this semantics?

- This is a worst-case approach
- This captures approximate behaviours of the system
- One can define program semantics such that for every $\epsilon > 0$:

$$\mathcal{A} \subseteq \texttt{program}_\epsilon(\mathcal{A}) \subseteq \mathcal{A}_{f(\epsilon)}$$

 ϵ : parameters of the semantics

Parameterized enlarged semantics – Discussion

What is the relevance of this semantics?

- This is a worst-case approach
- This captures approximate behaviours of the system
- One can define program semantics such that for every $\epsilon > 0$:

$$\mathcal{A} \subseteq \texttt{program}_\epsilon(\mathcal{A}) \subseteq \mathcal{A}_{f(\epsilon)}$$

 $\epsilon:$ parameters of the semantics

Methodology

- $\bullet \ \mathsf{Design} \ \mathcal{A}$
- Verify \mathcal{A}_{δ} (better if δ is a parameter)
- $\bullet \ {\rm Implement} \ {\cal A}$

Parameterized enlarged semantics – Discussion

What is the relevance of this semantics?

- This is a worst-case approach
- This captures approximate behaviours of the system
- One can define program semantics such that for every $\epsilon > 0$:

$$\mathcal{A} \subseteq \texttt{program}_\epsilon(\mathcal{A}) \subseteq \mathcal{A}_{f(\epsilon)}$$

 ϵ : parameters of the semantics

Methodology

- Design \mathcal{A}
- Verify \mathcal{A}_{δ} (better if δ is a parameter)
- Implement \mathcal{A}

 \sim This is a good approach for designing systems with simple timing constraints (e.g. equalities).

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

Parameterized enlarged semantics – Algorithmics

 \sim It adds extra behaviours, however small may be parameter δ

The (parameterized) robust model-checking problem

It asks whether there is $\delta_0 > 0$ s.t. for every $0 \le \delta \le \delta_0$, $\mathcal{A}_{\delta} \models \varphi$.

Parameterized enlarged semantics – Algorithmics

 \sim It adds extra behaviours, however small may be parameter δ

The (parameterized) robust model-checking problem

It asks whether there is $\delta_0 > 0$ s.t. for every $0 \le \delta \le \delta_0$, $\mathcal{A}_{\delta} \models \varphi$.

• When δ is small, truth of φ is independent of δ

Parameterized enlarged semantics – Algorithmics

 \sim It adds extra behaviours, however small may be parameter δ

The (parameterized) robust model-checking problem

It asks whether there is $\delta_0 > 0$ s.t. for every $0 \le \delta \le \delta_0$, $\mathcal{A}_{\delta} \models \varphi$.

 $\bullet\,$ When δ is small, truth of φ is independent of $\delta\,$

$$\delta_1 \leq \delta_2 \quad \Rightarrow \quad \mathsf{Reach}(\mathcal{A}_{\delta_1}) \subseteq \mathsf{Reach}(\mathcal{A}_{\delta_2})$$

Parameterized enlarged semantics – Algorithmics

 \sim It adds extra behaviours, however small may be parameter δ

The (parameterized) robust model-checking problem

It asks whether there is $\delta_0 > 0$ s.t. for every $0 \le \delta \le \delta_0$, $\mathcal{A}_{\delta} \models \varphi$.

 $\bullet\,$ When δ is small, truth of φ is independent of $\delta\,$

$$egin{array}{ll} \delta_1 \leq \delta_2 & \Rightarrow & \mathsf{Reach}(\mathcal{A}_{\delta_1}) \subseteq \mathsf{Reach}(\mathcal{A}_{\delta_2}) \ & \Rightarrow & (\mathcal{A}_{\delta_2} \ \mathsf{safe} \Rightarrow \mathcal{A}_{\delta_1} \ \mathsf{safe}) \end{array}$$

Parameterized enlarged semantics – Algorithmics

 \rightsquigarrow It adds extra behaviours, however small may be parameter δ

The (parameterized) robust model-checking problem

It asks whether there is $\delta_0 > 0$ s.t. for every $0 \le \delta \le \delta_0$, $\mathcal{A}_{\delta} \models \varphi$.

- $\bullet\,$ When δ is small, truth of φ is independent of $\delta\,$
- Timed automata with parameters: undecidable in general

Parameterized enlarged semantics – Algorithmics

 \rightsquigarrow It adds extra behaviours, however small may be parameter δ

The (parameterized) robust model-checking problem

It asks whether there is $\delta_0 > 0$ s.t. for every $0 \le \delta \le \delta_0$, $\mathcal{A}_{\delta} \models \varphi$.

- $\bullet\,$ When δ is small, truth of φ is independent of $\delta\,$
- Timed automata with parameters: undecidable in general
- Here, an extension of the region automaton will do the job!

Parameterized enlarged semantics – Algorithmics

 \rightsquigarrow It adds extra behaviours, however small may be parameter δ

The (parameterized) robust model-checking problem

It asks whether there is $\delta_0 > 0$ s.t. for every $0 \le \delta \le \delta_0$, $\mathcal{A}_{\delta} \models \varphi$.

- $\bullet\,$ When δ is small, truth of φ is independent of $\delta\,$
- Timed automata with parameters: undecidable in general
- Here, an extension of the region automaton will do the job!

Theorem

Robust model-checking of safety, LTL, CoflatMTL properties is decidable. Complexities are those of standard non robust model-checking problems.

[Puri00] Puri. Dynamical properties of timed automata (Disc. Event Dyn. Syst., 2000). [DDMR08] De Wulf, Doyen, Markey, Rashin. Robust safety of timed automata (Form. Meth. Syst. Design, 2008). [BMR06] Bouyer, Markey, Reynier. Robust model-checking of timed automata (LATIN'06). [BMR08] Bouyer, Markey, Reynier. Robust analysis of timed automata via channel machines (FoSSaCS'08). [BMS11] Bouyer, Markey, Sankur. Robust Model-Checking of Timed Automata via Pumping in Channel Machines (FORMATS'11).

Parameterized enlarged semantics – Algorithmics

 \rightsquigarrow It adds extra behaviours, however small may be parameter δ

The (parameterized) robust model-checking problem

It asks whether there is $\delta_0 > 0$ s.t. for every $0 \le \delta \le \delta_0$, $\mathcal{A}_{\delta} \models \varphi$.

- $\bullet\,$ When δ is small, truth of φ is independent of $\delta\,$
- Timed automata with parameters: undecidable in general
- Here, an extension of the region automaton will do the job!

Theorem

Robust model-checking of safety, LTL, CoflatMTL properties is decidable. Complexities are those of standard non robust model-checking problems.

(An exponential bound on δ_0 is proven)

[Puri00] Puri. Dynamical properties of timed automata (Disc. Event Dyn. Syst., 2000). [DDMR08] De Wulf, Doyen, Markey, Rashin. Robust asfety of timed automata (Form. Meth. Syst. Design, 2008). [BMR06] Bouyer, Markey, Reynier. Robust model-checking of timed automata (LATIN'06). [BMR08] Bouyer, Markey, Reynier. Robust analysis of timed automata via channel machines (FoSSaCS'08). [BMS11] Bouyer, Markey, Sankur. Robust Model-Checking of Timed Automata via Pumping in Channel Machines (FORMATS'11).

Technical tool: extended region automaton

Extended region automaton

For any location ℓ and any two regions r and r', if

- $\overline{r} \cap \overline{r'} \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $\mathcal{R}(\mathcal{A})$,

then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$

(under slight technical restrictions)

Technical tool: extended region automaton

Extended region automaton

For any location ℓ and any two regions r and r', if

- $\overline{r} \cap \overline{r'} \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $\mathcal{R}(\mathcal{A})$,

then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$

(under slight technical restrictions)

Technical tool: extended region automaton

Extended region automaton

For any location ℓ and any two regions r and r', if

- $\overline{r} \cap \overline{r'} \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $\mathcal{R}(\mathcal{A})$,

then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$

(under slight technical restrictions)

Technical tool: extended region automaton

Extended region automaton

For any location ℓ and any two regions r and r', if

- $\overline{r} \cap \overline{r'} \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $\mathcal{R}(\mathcal{A})$,

then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$ (under slight technical restrictions)

Technical tool: extended region automaton

Extended region automaton

For any location ℓ and any two regions r and r', if

- $\overline{r} \cap \overline{r'} \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $\mathcal{R}(\mathcal{A})$,

then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$ (under slight technical restrictions)

Technical tool: extended region automaton

Extended region automaton

For any location ℓ and any two regions r and r', if

- $\overline{r} \cap \overline{r'} \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $\mathcal{R}(\mathcal{A})$,

then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$ (under slight technical restrictions)

Technical tool: extended region automaton

Extended region automaton

For any location ℓ and any two regions r and r', if

- $\overline{r} \cap \overline{r'} \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $\mathcal{R}(\mathcal{A})$,

then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$ (under slight technical restrictions)

Parameterized enlarged semantics – An example

Parameterized enlarged semantics - An example

Parameterized enlarged semantics - An example

Parameterized enlarged semantics – An example

Outline

Introduction

2 Robust model-checking

Parameterized enlarged semantics

Automatic generation of an implementation

Implementation by shrinking

8 Robust realisability and control

- Excess semantics
- Strict semantics

Conclusion

Automatic generation of an implementation

The (approx.) implementation synthesis problem

Given \mathcal{A} , build \mathcal{A}' such that:

- $\bullet \ {\cal A}'$ 'identical' (e.g. bisimilar) to ${\cal A}$
- \mathcal{A}' is 'robust' (that is, good enough for implementation)

Automatic generation of an implementation

The (approx.) implementation synthesis problem

Given \mathcal{A} , build \mathcal{A}' such that:

- \mathcal{A}' 'identical' (e.g. bisimilar) to \mathcal{A}
- \mathcal{A}' is 'robust' (that is, good enough for implementation)

The second condition can be (for instance) read as \mathcal{A}' is approximately the same as \mathcal{A}'_{δ} , for small enough δ .

Automatic generation of an implementation

The (approx.) implementation synthesis problem

Given \mathcal{A} , build \mathcal{A}' such that:

- \mathcal{A}' 'identical' (e.g. bisimilar) to \mathcal{A}
- \mathcal{A}' is 'robust' (that is, good enough for implementation)

The second condition can be (for instance) read as \mathcal{A}' is approximately the same as \mathcal{A}'_{δ} , for small enough δ .

Theorem

All timed automata are approximately implementable! (for approx. bisimulation)

• Technical tool: region construction

Automatic generation of an implementation

Methodology

- \bullet Design and verify ${\cal A}$
- Implement \mathcal{A}' (automatically generated)

Automatic generation of an implementation

Methodology

- \bullet Design and verify ${\cal A}$
- Implement \mathcal{A}' (automatically generated)
- ③ Separates design and implementation
- \bigcirc \mathcal{A}' is much bigger than \mathcal{A}

Outline

Introduction

2 Robust model-checking

- Parameterized enlarged semantics
- Automatic generation of an implementation
- Implementation by shrinking

8 Robust realisability and control

- Excess semantics
- Strict semantics

Conclusion

Parameterized shrunk semantics for timed automata

A constraint [a, b] is shrunk to $[a + \delta; b - \delta']$

Parameterized shrunk semantics for timed automata

A constraint [a, b] is shrunk to $[a + \delta; b - \delta']$

Parameterized shrunk semantics for timed automata

A constraint [a, b] is shrunk to $[a + \delta; b - \delta']$

Parameterized shrunk semantics for timed automata

A constraint [a, b] is shrunk to $[a + \delta; b - \delta']$

Parameterized shrunk semantics for timed automata

A constraint [a, b] is shrunk to $[a + \delta; b - \delta']$

Parameterized shrunk semantics for timed automata

A constraint [a, b] is shrunk to $[a + \delta; b - \delta']$

Parameterized shrunk semantics for timed automata

A constraint [a, b] is shrunk to $[a + \delta; b - \delta']$

Summary of the approach

 \sim Shrink the clock constraints in the model, to prevent additional behaviours in the implementation

• If
$$\mathcal{B} = \mathcal{A}_{-\mathbf{k}\delta}$$
, then

$$\mathcal{B} \subseteq \operatorname{program}_{\epsilon}(\mathcal{B}) \subseteq \mathcal{B}_{f(\epsilon)} = \mathcal{A}_{-\mathbf{k}\delta + f(\epsilon)} \subseteq \mathcal{A}$$

Parameterized shrunk semantics – Discussion

What is the relevance of that approach?

Anticipate imprecisions to prevent additional behaviours in the real-world

Parameterized shrunk semantics – Discussion

What is the relevance of that approach?

Anticipate imprecisions to prevent additional behaviours in the real-world

Methodology

- \bullet Design and verify ${\cal A}$
- Implement $\mathcal{A}_{-\mathbf{k}\delta}$ (parameters are \mathbf{k} and δ)

Parameterized shrunk semantics – Discussion

What is the relevance of that approach?

Anticipate imprecisions to prevent additional behaviours in the real-world

Methodology

- \bullet Design and verify ${\cal A}$
- Implement $\mathcal{A}_{-\mathbf{k}\delta}$ (parameters are \mathbf{k} and δ)

 \sim This is a good approach for designing systems with strong/hard timing constraints

Parameterized shrunk semantics – Discussion

What is the relevance of that approach?

Anticipate imprecisions to prevent additional behaviours in the real-world

Methodology

- \bullet Design and verify ${\cal A}$
- Implement $\mathcal{A}_{-\mathbf{k}\delta}$ (parameters are \mathbf{k} and δ)

 \sim This is a good approach for designing systems with strong/hard timing constraints

Make sure that no important behaviours are lost in $\mathcal{A}_{-k\delta}!!$

Parameterized shrunk semantics – Algorithmics

The (parameterized) shrinkability problem

Find parameters ${\bf k}$ and δ such that:

• $\mathcal{A} \sqsubseteq_{t.a.} \mathcal{A}_{-k\delta}$ (or $\mathcal{F} \sqsubseteq_{t.a.} \mathcal{A}_{-k\delta}$ for some finite automaton \mathcal{F}) [shrinkability w.r.t. untimed simulation]

• $\mathcal{A}_{-k\delta}$ is non-blocking whenever \mathcal{A} is non-blocking [shrinkability w.r.t. non-blockingness]

Parameterized shrunk semantics – Algorithmics

The (parameterized) shrinkability problem

Find parameters ${\bf k}$ and δ such that:

- $\mathcal{A} \sqsubseteq_{t.a.} \mathcal{A}_{-k\delta}$ (or $\mathcal{F} \sqsubseteq_{t.a.} \mathcal{A}_{-k\delta}$ for some finite automaton \mathcal{F}) [shrinkability w.r.t. untimed simulation]
- $\mathcal{A}_{-k\delta}$ is non-blocking whenever \mathcal{A} is non-blocking [shrinkability w.r.t. non-blockingness]

Theorem

Parameterized shrinkability can be decided (in exponential time).

- Challenge: take care of the accumulation of perturbations
- Technical tools: parameterized shrunk DBM, max-plus equations
- Tool Shrinktech developed by Ocan Sankur [San13] http://www.lsv.ens-cachan.fr/Software/shrinktech/

The case of non-blockingness

The case of non-blockingness

Fix-point characterization

Let G_{σ} denote the **guards** of the timed automaton. It is non-blocking iff,

$$\forall \sigma, \quad \llbracket G_{\sigma} \rrbracket \subseteq \bigcup_{l_1 \xrightarrow{\sigma} l_2 \xrightarrow{\sigma'} l_3} \mathsf{Unreset}_{R_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(\llbracket G_{\sigma'} \rrbracket)).$$

Technical tools: shrunk DBMs...

Technical tools: shrunk DBMs...

Technical tools: shrunk DBMs...

Technical tools: shrunk DBMs...

Technical tools: shrunk DBMs...

$$\llbracket \langle G_{\sigma} \rangle_{-\vec{k}\delta} \rrbracket \subseteq \mathsf{Unreset}_{R_{\sigma}} (\mathsf{Pre}_{\mathsf{time}} (\llbracket \langle G_{\sigma'} \rangle_{-\vec{k}\delta} \rrbracket))$$
?

Determine \vec{k}

Technical tools: shrunk DBMs...

$$\llbracket \langle G_{\sigma} \rangle_{-\vec{k}\delta} \rrbracket \subseteq \mathsf{Unreset}_{R_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(\llbracket \langle G_{\sigma'} \rangle_{-\vec{k}\delta} \rrbracket))$$
?

Technical tools: shrunk DBMs...

 $\llbracket \langle G_{\sigma} \rangle_{-\vec{k}\delta} \rrbracket \subseteq \mathsf{Unreset}_{R_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(\llbracket \langle G_{\sigma'} \rangle_{-\vec{k}\delta} \rrbracket))$?

Technical tools: shrunk DBMs...

 $\llbracket \langle G_{\sigma} \rangle_{-\vec{k}\delta} \rrbracket \subseteq \mathsf{Unreset}_{R_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(\llbracket \langle G_{\sigma'} \rangle_{-\vec{k}\delta} \rrbracket))$?

Technical tools: shrunk DBMs...and max-plus equations

 $\llbracket \langle G_{\sigma} \rangle_{-\vec{k}\delta} \rrbracket \subseteq \mathsf{Unreset}_{R_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(\llbracket \langle G_{\sigma'} \rangle_{-\vec{k}\delta} \rrbracket))$?

Then, \vec{k} should satisfy

 $k_5 \ge k_1 + k_3$ that is, $k_5 = \max(k_5, k_1 + k_3)$

In this case, the above inclusion equation holds for small enough δ 's

$$\llbracket \langle G_{\sigma} \rangle_{-\vec{k}\delta} \rrbracket \subseteq \mathsf{Unreset}_{R_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(\llbracket \langle G_{\sigma'} \rangle_{-\vec{k}\delta} \rrbracket)) \\ \Leftrightarrow \\ k_{5} = \max(k_{5}, k_{1} + k_{3}).$$

$$\llbracket \langle G_{\sigma} \rangle_{-\vec{k}\delta} \rrbracket \subseteq \mathsf{Unreset}_{R_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(\llbracket \langle G_{\sigma'} \rangle_{-\vec{k}\delta} \rrbracket)) \\ \Leftrightarrow \\ k_{5} = \max(k_{5}, k_{1} + k_{3}).$$

Key Theorem

Let $\vec{M} = f(\vec{M})$ be a **fixpoint equation on zones**, and \vec{M} a solution. f uses $Pre_{time}(), \cap, Unreset.()$. For any $\vec{k} \in \mathbb{N}_{>0}^{n}$,

$$\langle \vec{M} \rangle_{-\vec{k}\delta} = f(\langle \vec{M} \rangle_{-\vec{k}\delta}) \qquad \forall \text{ small } \delta > 0 \ \Leftrightarrow \ \vec{k} = \varphi(\vec{k}),$$

where φ is a **max-plus expression**.

$$\llbracket \langle G_{\sigma} \rangle_{-\vec{k}\delta} \rrbracket \subseteq \mathsf{Unreset}_{R_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(\llbracket \langle G_{\sigma'} \rangle_{-\vec{k}\delta} \rrbracket)) \\ \Leftrightarrow \\ k_{5} = \max(k_{5}, k_{1} + k_{3}).$$

Key Theorem

Let $\vec{M} = f(\vec{M})$ be a **fixpoint equation on zones**, and \vec{M} a solution. f uses $Pre_{time}(), \cap, Unreset.()$. For any $\vec{k} \in \mathbb{N}_{>0}^{n}$,

$$egin{aligned} \langle ec{M}
angle_{-ec{k}\delta} &= f(\langle ec{M}
angle_{-ec{k}\delta}) & orall \; \delta > 0 \ &\Leftrightarrow \ &ec{k} &= arphi(ec{k}), \end{aligned}$$

where φ is a **max-plus expression**.

 \sim Max-plus algebra: the above fixpoint equations can be solved in polynomial time

Solving max-plus equations

Solving max-plus equations

Introduction Robust model-checking Robust realisability and control Conclusion Parameterized enlarged semantics Automatic generation of an implementation Implementation by shrinking

Solving max-plus equations

Introduction Robust model-checking Robust realisability and control Conclusion Parameterized enlarged semantics Automatic generation of an implementation Implementation by shrinking

Solving max-plus equations

Summary of shrinkability

Deciding shrinkability

Apply theorem to following fix-point equations:

Non-blockingness:

$$\forall \sigma, \quad \llbracket G_{\sigma} \rrbracket \subseteq \bigcup_{l_1 \xrightarrow{\sigma} l_2 \xrightarrow{\sigma'} l_3} \mathsf{Unreset}_{R_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(\llbracket G_{\sigma'} \rrbracket)).$$

(Do technical work to remove the union)

• Time-abstract simulation $(\mathcal{A} \sqsubseteq_{t.a.} \mathcal{A}_{-\delta \vec{k}})$:

$$\llbracket M_{l,r} \rrbracket = \bigcap_{\sigma \in \Sigma} \bigcap_{(l,r) \xrightarrow{\sigma} (l',r')} \mathsf{Pre}_{\mathsf{time}}(\mathsf{Unreset}_{R_{\sigma}}(\llbracket M_{l',r'} \rrbracket) \cap \llbracket G_{\sigma} \rrbracket),$$

where $M_{I,r}$ is the time-abstract simulator set of the region (I, r).

The largest shrunk automaton which is correct w.r.t. untimed simulation and non-blockingness (for all $\delta \in [0, \frac{1}{4}]$) is:

Introduction Robust model-checking Robust realisability and control Conclusion Parameterized enlarged semantics Automatic generation of an implementation Implementation by shrinking

Counter-example

 $0 \le x, y \le 1, x := 0$

 $\bigcup_{i=1}^{0\leq x,y\leq 1, x:=0}$

There is no shrunk automaton which is correct w.r.t. non-blockingness. Indeed, the max-plus equations we obtain are:

$$\begin{cases} \cdots \\ k_8 = \max(k_{17}, k_{11} + \max(k_{16}, k_2 + \max(k_7, k_8))) \\ k_{11} = \max(1, k_{11}) \end{cases}$$

which has no solution!

(remember the max-plus graph with no solution)

• We have presented three methods for verifying robust correctness, hence correct implementation

- We have presented three methods for verifying robust correctness, hence correct implementation
- Same complexities as standard model-checking!

- We have presented three methods for verifying robust correctness, hence correct implementation
- Same complexities as standard model-checking!
- Technical tools:
 - Extended region automaton
 - Shrunk DBMs
 - And also characterization of reachability relations in timed automata (hidden in this presentation)

- We have presented three methods for verifying robust correctness, hence correct implementation
- Same complexities as standard model-checking!
- Technical tools:
 - Extended region automaton
 - Shrunk DBMs
 - And also characterization of reachability relations in timed automata (hidden in this presentation)
- What is missing:
 - A symbolic approach
 - A tool support
 - Shinktech is a prototype for the shrinking approach

http://www.lsv.ens-cachan.fr/Software/shrinktech/

• Stochastic approach (see later)

Outline

Introduction

2 Robust model-checking

- Parameterized enlarged semantics
- Automatic generation of an implementation
- Implementation by shrinking

8 Robust realisability and control

- Excess semantics
- Strict semantics

Conclusion

Here, a strategy in a timed automaton is a way to resolve (time and action) non-determinism

Here, a strategy in a timed automaton is a way to resolve (time and action) non-determinism

Example

Here, a strategy in a timed automaton is a way to resolve (time and action) non-determinism

Example

• This strategy requires infinite precision

Here, a strategy in a timed automaton is a way to resolve (time and action) non-determinism

Example

- This strategy requires infinite precision
- In practice, when x is close to 2, no additional delay is supported: the run is theoretically infinite, but it is actually blocking

Here, a strategy in a timed automaton is a way to resolve (time and action) non-determinism

Example

- This strategy requires infinite precision
- In practice, when x is close to 2, no additional delay is supported: the run is theoretically infinite, but it is actually blocking
- And that is unavoidable

Here, a strategy in a timed automaton is a way to resolve (time and action) non-determinism

Idea of robust realisability

Synthesize strategies that realise some property, even under perturbations: strategies should adapt to previous imprecisions

→ develop a theory of robust strategies that tolerate errors/imprecisions and avoid convergence

Game semantics of a timed automaton

Game semantics $\mathcal{G}_{\delta}(\mathcal{A})$ of timed automaton \mathcal{A}_{\cdots}

- ... between Controller and Perturbator:
 - from (ℓ, v) , Controller suggests a delay $d \ge \delta$ and a next edge $e = (\ell \xrightarrow{g, Y} \ell')$ that is available after delay d
 - Perturbator then chooses a perturbation $\epsilon \in [-\delta; +\delta]$
 - Next state is $(\ell', (v + d + \epsilon)[Y \leftarrow 0])$

Game semantics of a timed automaton

Game semantics $\mathcal{G}_{\delta}(\mathcal{A})$ of timed automaton \mathcal{A}_{\cdots}

- ... between Controller and Perturbator:
 - from (ℓ, ν) , Controller suggests a delay $d \ge \delta$ and a next edge $e = (\ell \xrightarrow{g, Y} \ell')$ that is available after delay d
 - Perturbator then chooses a perturbation $\epsilon \in [-\delta; +\delta]$
 - Next state is $(\ell', (v + d + \epsilon)[Y \leftarrow 0])$

Note: when $\delta = 0$, this is the standard semantics of timed automata.

Game semantics of a timed automaton

Game semantics $\mathcal{G}_{\delta}(\mathcal{A})$ of timed automaton \mathcal{A}_{\cdots}

- ... between Controller and Perturbator:
 - from (ℓ, ν) , Controller suggests a delay $d \ge \delta$ and a next edge $e = (\ell \xrightarrow{g, Y} \ell')$ that is available after delay d
 - Perturbator then chooses a perturbation $\epsilon \in [-\delta; +\delta]$
 - Next state is $(\ell', (v + d + \epsilon)[Y \leftarrow 0])$

Note: when $\delta = 0$, this is the standard semantics of timed automata.

A δ -robust strategy for Controller is then a strategy that satisfies the expected property, whatever plays Perturbator.

Two possible semantics

Outline

Introduction

2 Robust model-checking

- Parameterized enlarged semantics
- Automatic generation of an implementation
- Implementation by shrinking

3 Robust realisability and control

- Excess semantics
- Strict semantics

Conclusion

Constraints may not be satisfied after the perturbation only v + d should satisfy g

→ Allows simple design of constraints, ensures divergence of time, avoids convergence phenomena

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

Two challenges

Accumulation of perturbations:

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

Two challenges

Accumulation of perturbations:

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

Two challenges

Accumulation of perturbations:

$$\underbrace{ \overset{x \leq 2}{\overbrace{y:=0}} \underbrace{ \overset{x=2}{\overbrace{1 \leq x-y}} } }_{$$

New regions become reachable

$$x=y=1$$

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

Theorem

The parameterized synthesis problem for reachability properties is decidable and EXPTIME-complete. Furthermore, uniform winning strategies (w.r.t. δ) can be computed.

The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

Theorem

The parameterized synthesis problem for reachability properties is decidable and EXPTIME-complete. Furthermore, uniform winning strategies (w.r.t. δ) can be computed.

• Technical tool: a region-based refined game abstraction, shrunk DBMs

The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

Theorem

The parameterized synthesis problem for reachability properties is decidable and EXPTIME-complete. Furthermore, uniform winning strategies (w.r.t. δ) can be computed.

- Technical tool: a region-based refined game abstraction, shrunk DBMs
- © Extends to two-player games (i.e. to real control problems)
- ② Only valid for reachability properties

The excess game semantics - Algorithm overview

- (Forward) Construct an equivalent finite turn-based game F(A) (based on regions)
- Solve it
- (Backward) Construct winning states in $\mathcal{G}_{\delta}(\mathcal{A})$, and deduce δ_{0}

The excess game semantics – Algorithm overview

- (Forward) Construct an equivalent finite turn-based game F(A) (based on regions)
- Solve it
- (Backward) Construct winning states in $\mathcal{G}_{\delta}(\mathcal{A})$, and deduce δ_0

Winning states will be described by shrinkings of regions:

 $r - \delta P$

One can win from a region r in $\mathbf{F}(\mathcal{A})$ \updownarrow one can win from a shrinking of r in $\mathcal{G}_{\delta}(\mathcal{A})$

Construction of the finite turn-based game

region automaton:

Construction of the finite turn-based game

Extended region automaton:

Idea: We win from *some* shrinking of r_0 , if, and only if we win from *some* shrinkings of r_1, r_2, r_3 .

Construction of the finite turn-based game

Extended region automaton:

Idea: We win from some shrinking of r_0 , if, and only if we win from some shrinkings of r_1 , r_2 , r_3 .

Can these be combined to a winning strategy from r_0 ?

Can these be combined to a winning strategy from r_0 ? No: we don't have a strategy for valuations around r_1 .

A constrained region is a region with some marked facets. A shrinking of a constrained region does not shrink from marked facets.

A constrained region is a region with some marked facets. A shrinking of a constrained region does not shrink from marked facets.

We win from r_0 iff we win from constrained shrinkings of r_1, r_2, r_3 .

A constrained region is a region with some marked facets. A shrinking of a constrained region does not shrink from marked facets.

We win from r_0 iff we win from constrained shrinkings of r_1, r_2, r_3 .

A constrained region is a region with some marked facets. A shrinking of a constrained region does not shrink from marked facets.

A constrained region is a region with some marked facets. A shrinking of a constrained region does not shrink from marked facets.

OK, we have a strategy for all the points in the violet area.

Finite game $\mathbf{F}(\mathcal{A})$

Shrinking constraint for region r is represented by a boolean matrix S_r .

Theorem

Controller wins in $\mathcal{G}_{\delta}(\mathcal{A})$ for all $\delta \in [0, \delta_0]$ for some $\delta_0 > 0$ \updownarrow Controller wins in $\mathbf{F}(\mathcal{A})$.

\mathbf{S}_{φ} is defined such that:

Controller wins from *some* shrinking of (φ, S_{φ}) iff Controller wins from *some* shrinking of (r_0, S_{r_0}) .

\mathbf{S}_{φ} is defined such that:

Controller wins from *some* shrinking of (φ, S_{φ}) iff Controller wins from *some* shrinking of (r_0, S_{r_0}) .

\mathbf{S}_{φ} is defined such that:

Controller wins from *some* shrinking of (φ, S_{φ}) iff Controller wins from *some* shrinking of (r_0, S_{r_0}) .

Constructing a winning strategy from F(A)

Each step of the backward propagation gives an upper bound on δ .

EXPTIME-hardness

Usual semantics in timed automata can encode reachability in linearly bounded Turing machines (PSPACE-complete).

Robust semantics in timed automata can encode reachability in alternating linearly bounded Turing machines (EXPTIME-complete).

EXPTIME-hardness

Usual semantics in timed automata can encode reachability in linearly bounded Turing machines (PSPACE-complete).

Robust semantics in timed automata can encode reachability in alternating linearly bounded Turing machines (EXPTIME-complete).

Perturbator has a strategy to choose between any of the two branches.

- Top branch: make the first transition earlier
- Bottom branch: delay the first transition

Outline

Introduction

2 Robust model-checking

- Parameterized enlarged semantics
- Automatic generation of an implementation
- Implementation by shrinking

8 Robust realisability and control

- Excess semantics
- Strict semantics

4 Conclusion

The strict game semantics

Constraints have to be satisfied after the perturbation: $v + d + \epsilon$ should satisfy g for every $\epsilon \in [-\delta; +\delta]$

The strict game semantics

Constraints have to be satisfied after the perturbation: $v + d + \epsilon$ should satisfy g for every $\epsilon \in [-\delta; +\delta]$

Constraints have to be satisfied after the perturbation: $v + d + \epsilon$ should satisfy g for every $\epsilon \in [-\delta; +\delta]$

→ Strongly ensures timing constraints, ensures divergence of time, prevents converging phenomena

The strict game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

The strict game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

Theorem

The synthesis problem for Büchi properties is decidable and PSPACE-complete. Furthermore, δ is at most doubly-exponential, and uniform winning strategies (w.r.t. δ) can be computed.

• A converging phenomena:

• A converging phenomena:

• No convergence:

• A converging phenomena:

Tools for solving the synthesis problem

- Orbit graphs, forgetful cycles [AB11]
- Forgetful orbit graph ⇔ no convergence phenomena
 → strong relation with thick automata.

Technical tool: the (folded) orbit graph

Technical tool: the (folded) orbit graph

A region cycle:

Technical tool: the (folded) orbit graph

A region cycle:

The corresponding orbit graph:

 \rightsquigarrow stores the reachability relation between vertices of the regions

Technical tool: the (folded) orbit graph

A region cycle:

The corresponding (folded) orbit graph:

 $\nu = \vec{\lambda} \cdot \vec{v}$ (convex combination of the vertices)

 $\nu = \vec{\lambda} \cdot \vec{v}$ (convex combination of the vertices)

Reachability relation [Pur00]

Given a region cycle ρ , and valuation $\nu = \vec{\lambda} \cdot \vec{v}$,

 $\vec{\lambda} \cdot \vec{v} \xrightarrow{\rho} \vec{\lambda'} \vec{v} \quad \Leftrightarrow \quad \begin{aligned} \vec{\lambda'} \text{ is computed by distributing} \\ \text{ each } \lambda_v \text{ to its successors} \\ \text{ following a probability distribution} \end{aligned}$

Reachability relation [Pur00]

Given a region cycle ρ , and valuation $\nu = \vec{\lambda} \cdot \vec{v}$,

 $\vec{\lambda} \cdot \vec{v} \xrightarrow{\rho} \vec{\lambda'} \vec{v} \quad \Leftrightarrow \qquad \begin{array}{c} \vec{\lambda'} \text{ is computed by distributing} \\ \text{ each } \lambda_v \text{ to its successors} \\ \text{ following a probability distribution} \end{array}$

Reachability relation [Pur00]

Given a region cycle ρ , and valuation $\nu = \vec{\lambda} \cdot \vec{v}$,

 $\vec{\lambda} \cdot \vec{v} \xrightarrow{\rho} \vec{\lambda'} \vec{v} \quad \Leftrightarrow \qquad \begin{array}{c} \vec{\lambda'} \text{ is computed by distributing} \\ \text{each } \lambda_v \text{ to its successors} \\ \text{following a probability distribution} \end{array}$

$$\lambda'_1 = p\lambda_1$$

 $\lambda'_2 = (1 - p - q)\lambda_1 + \lambda_2$

Reachability relation [Pur00]

Given a region cycle ρ , and valuation $\nu = \vec{\lambda} \cdot \vec{v}$,

 $\vec{\lambda} \cdot \vec{v} \xrightarrow{\rho} \vec{\lambda'} \vec{v} \quad \Leftrightarrow \qquad \vec{\lambda'} \text{ is computed by distributing} \\ \text{each } \lambda_{v} \text{ to its successors} \\ \text{following a probability distribution} \end{cases}$

$$egin{aligned} \lambda_1' &= p\lambda_1 \ \lambda_2' &= (1-p-q)\lambda_1 + \lambda_2 \ \lambda_3' &= q\lambda_1 + \lambda_3 \end{aligned}$$

Reachability relation [Pur00]

Given a region cycle ρ , and valuation $\nu = \vec{\lambda} \cdot \vec{v}$,

 $\vec{\lambda} \cdot \vec{v} \xrightarrow{\rho} \vec{\lambda'} \vec{v} \quad \Leftrightarrow \qquad \begin{array}{c} \vec{\lambda'} \text{ is computed by distributing} \\ \text{ each } \lambda_v \text{ to its successors} \\ \text{ following a probability distribution} \end{array}$

$$egin{aligned} \lambda_1' &= p\lambda_1 \ \lambda_2' &= (1-p-q)\lambda_1 + \lambda_2 \ \lambda_3' &= q\lambda_1 + \lambda_3 \end{aligned}$$

Reachability relation [Pur00]

Given a region cycle ρ , and valuation $\nu = \vec{\lambda} \cdot \vec{v}$,

 $\vec{\lambda} \cdot \vec{v} \xrightarrow{\rho} \vec{\lambda'} \vec{v} \quad \Leftrightarrow \quad \vec{\lambda'} \text{ is computed by distributing} \\ \text{each } \lambda_v \text{ to its successors} \\ \text{following a probability distribution}$

$\lambda_1 + \lambda_2$ is non-increasing and λ_3 is non-decreasing

Generalization

• The reachability relation along one cycle is complete iff its folded orbit graph is complete. [Pur00]

Generalization

- The reachability relation along one cycle is complete iff its folded orbit graph is complete. [Pur00]
- If the folded orbit graph is connected but not strongly connected, then there is some convergence phenomenon in the direction of the hyperplane $\sum_{v \in I} \lambda_v$ [AB11]

Classification of cycles

A cycle is aperiodic if all its iterations are strongly connected.

Classification of cycles

A cycle is aperiodic if all its iterations are strongly connected. Then:

• aperiodic cycle: no convergence phenomenon (some iterate is complete)

non-aperiodic cycle: convergence phenomenon

(convergence phenomenon from the non strongly connected iterate)

Characterization

There exists $\delta > 0$ such that Controller has a δ -robust strategy ensuring a Büchi condition in $\mathcal{G}_{\delta}(\mathcal{A})$ if, and only if there is a reachable aperiodic cycle in \mathcal{A} which satisfies the Büchi condition.

Characterization

There exists $\delta > 0$ such that Controller has a δ -robust strategy ensuring a Büchi condition in $\mathcal{G}_{\delta}(\mathcal{A})$ if, and only if there is a reachable aperiodic cycle in \mathcal{A} which satisfies the Büchi condition.

• Non aperiodic cycle: Perturbator can enforce rapid decrease of $\sum_{v \in I} \lambda_v$,

Characterization

There exists $\delta > 0$ such that Controller has a δ -robust strategy ensuring a Büchi condition in $\mathcal{G}_{\delta}(\mathcal{A})$ if, and only if there is a reachable aperiodic cycle in \mathcal{A} which satisfies the Büchi condition.

• Non aperiodic cycle: Perturbator can enforce rapid decrease of $\sum_{v \in I} \lambda_v$, hence he can enforce convergence, and Controller gets stuck

Characterization

There exists $\delta > 0$ such that Controller has a δ -robust strategy ensuring a Büchi condition in $\mathcal{G}_{\delta}(\mathcal{A})$ if, and only if there is a reachable aperiodic cycle in \mathcal{A} which satisfies the Büchi condition.

- Non aperiodic cycle: Perturbator can enforce rapid decrease of $\sum_{v \in I} \lambda_v$,
- Aperiodic cycle π : Controller can target the middle of the regions and stay far from the borders.

Characterization

There exists $\delta > 0$ such that Controller has a δ -robust strategy ensuring a Büchi condition in $\mathcal{G}_{\delta}(\mathcal{A})$ if, and only if there is a reachable aperiodic cycle in \mathcal{A} which satisfies the Büchi condition.

- Non aperiodic cycle: Perturbator can enforce rapid decrease of $\sum_{v \in I} \lambda_v$,
- Aperiodic cycle π : Controller can target the middle of the regions and stay far from the borders.

Characterization

There exists $\delta > 0$ such that Controller has a δ -robust strategy ensuring a Büchi condition in $\mathcal{G}_{\delta}(\mathcal{A})$ if, and only if there is a reachable aperiodic cycle in \mathcal{A} which satisfies the Büchi condition.

- Non aperiodic cycle: Perturbator can enforce rapid decrease of $\sum_{v \in I} \lambda_v$,
- Aperiodic cycle π : Controller can target the middle of the regions and stay far from the borders.

Characterization

There exists $\delta > 0$ such that Controller has a δ -robust strategy ensuring a Büchi condition in $\mathcal{G}_{\delta}(\mathcal{A})$ if, and only if there is a reachable aperiodic cycle in \mathcal{A} which satisfies the Büchi condition.

- Non aperiodic cycle: Perturbator can enforce rapid decrease of $\sum_{v \in I} \lambda_v$,
- Aperiodic cycle π : Controller can target the middle of the regions and stay far from the borders.

• Remember shrunk DBMs: preimage of s by π under δ -perturbations is $r - \delta Q$ (Q fixed) for small δ 's

 \rightsquigarrow from $r-\delta Q$, Controller has a strategy to ensure s

Property of s: s ⊆ r − δQ for small δ's
 → we can repeat the above strategy

Characterization

There exists $\delta > 0$ such that Controller has a δ -robust strategy ensuring a Büchi condition in $\mathcal{G}_{\delta}(\mathcal{A})$ if, and only if there is a reachable aperiodic cycle in \mathcal{A} which satisfies the Büchi condition.

- Non aperiodic cycle: Perturbator can enforce rapid decrease of $\sum_{v \in I} \lambda_v$,
- Aperiodic cycle π : Controller can target the middle of the regions and stay far from the borders.

• Remember shrunk DBMs: preimage of s by π under δ -perturbations is $r - \delta Q$ (Q fixed) for small δ 's

 \sim from $r - \delta Q$, Controller has a strategy to ensure s

- Property of s: s ⊆ r − δQ for small δ's
 → we can repeat the above strategy
- \Rightarrow Robust strategy: enforce s at each cycle

Going further [ORS14]

Extension to two-player games

- New rules: Controller chooses a delay and an action, and Perturbator perturbs the delay and resolves the non-determinism, if any
- Robustness under strict semantics can be solved in this case as well (EXPTIME)

Going further [ORS14]

Extension to two-player games

- New rules: Controller chooses a delay and an action, and Perturbator perturbs the delay and resolves the non-determinism, if any
- Robustness under strict semantics can be solved in this case as well (EXPTIME)

Beyond worst-case robustness

Assume perturbations are randomized!
 (uniform distributions over [d - δ; d + δ])

Going further [ORS14]

Extension to two-player games

- New rules: Controller chooses a delay and an action, and Perturbator perturbs the delay and resolves the non-determinism, if any
- Robustness under strict semantics can be solved in this case as well (EXPTIME)

Beyond worst-case robustness

- Assume perturbations are randomized! (uniform distributions over [d - δ; d + δ])
- Existence of an almost-sure winning strategy for Controller can be decided in EXPTIME. Furthermore there is a dichotomy:
 - either Controller wins almost-surely
 - or Perturbator wins almost-surely

Partial conclusion

- We have presented a possible approach to the robust realizability and control problems
 - There are two natural semantics (excess or strict)
 - Interesting relation between non-convergent cycles and robust cycles
 - Interesting complexities as well!

Partial conclusion

- We have presented a possible approach to the robust realizability and control problems
 - There are two natural semantics (excess or strict)
 - Interesting relation between non-convergent cycles and robust cycles
 - Interesting complexities as well!
- Teachnical tools:
 - Regions
 - Shrunk DBMs
 - Orbit graphs

Partial conclusion

- We have presented a possible approach to the robust realizability and control problems
 - There are two natural semantics (excess or strict)
 - Interesting relation between non-convergent cycles and robust cycles
 - Interesting complexities as well!
- Teachnical tools:
 - Regions
 - Shrunk DBMs
 - Orbit graphs
- What is missing:
 - A symbolic approach
 - A tool support
 - Stochastic approach at the beginning only

Outline

Introduction

2 Robust model-checking

- Parameterized enlarged semantics
- Automatic generation of an implementation
- Implementation by shrinking

8 Robust realisability and control

- Excess semantics
- Strict semantics

• Timed automata: a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.

- Timed automata: a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.
- Not always easy to transfer correctness proven in this model to real behaviours of the system.

- Timed automata: a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.
- Not always easy to transfer correctness proven in this model to real behaviours of the system.
- We have shown several frameworks for robustness that can be used to ensure correctness in the real-world.

- Timed automata: a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.
- Not always easy to transfer correctness proven in this model to real behaviours of the system.
- We have shown several frameworks for robustness that can be used to ensure correctness in the real-world.
- We have seen several tools that are useful in this context (*eg*, shrunk DBMs, orbit graphs)

- Timed automata: a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.
- Not always easy to transfer correctness proven in this model to real behaviours of the system.
- We have shown several frameworks for robustness that can be used to ensure correctness in the real-world.
- We have seen several tools that are useful in this context (*eg*, shrunk DBMs, orbit graphs)
- Extension of these works to richer models seems unfortunately hard [BMS13]
- Probabilistic perturbations [ORS14]: compute/give lower bound average-time to failure?
- Symbolic algorithms?

- Timed automata: a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.
- Not always easy to transfer correctness proven in this model to real behaviours of the system.
- We have shown several frameworks for robustness that can be used to ensure correctness in the real-world.
- We have seen several tools that are useful in this context (*eg*, shrunk DBMs, orbit graphs)
- Extension of these works to richer models seems unfortunately hard [BMS13]
- Probabilistic perturbations [ORS14]: compute/give lower bound average-time to failure?
- Symbolic algorithms?
- This list of possible approaches is not exhaustive:
 - tube acceptance [GHJ97]
 - sampling approach [KP05,BLM⁺11]
 - probabilistic approach [BBB⁺08,BBJM12]
 - . . .