
Introduction Overview of “old” results Some recent developments Conclusion

On the optimal reachability problem
in weighted timed games

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

Based on former works with Thomas Brihaye, Kim G. Larsen, Nicolas Markey, etc...

And on recent work with Samy Jaziri and Nicolas Markey

1/51

Introduction Overview of “old” results Some recent developments Conclusion

Outline

1 Introduction

2 Overview of “old” results
Weighted timed automata
Timed games
Weighted timed games

3 Some recent developments
Undecidability of the value problem
Approximation of the optimal cost

4 Conclusion

2/51

Introduction Overview of “old” results Some recent developments Conclusion

Time-dependent systems

We are interested in timed systems

... and in their analysis and control

3/51

Introduction Overview of “old” results Some recent developments Conclusion

Time-dependent systems

We are interested in timed systems

... and in their analysis and control

3/51

Introduction Overview of “old” results Some recent developments Conclusion

Time-dependent systems

We are interested in timed systems

... and in their analysis and control

3/51

Introduction Overview of “old” results Some recent developments Conclusion

An example: The task graph scheduling problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata.

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

4/51

Introduction Overview of “old” results Some recent developments Conclusion

An example: The task graph scheduling problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata.

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

4/51

Introduction Overview of “old” results Some recent developments Conclusion

An example: The task graph scheduling problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata.

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

4/51

Introduction Overview of “old” results Some recent developments Conclusion

An example: The task graph scheduling problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata.

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

4/51

Introduction Overview of “old” results Some recent developments Conclusion

The model of timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

5/51

Introduction Overview of “old” results Some recent developments Conclusion

The model of timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

5/51

Introduction Overview of “old” results Some recent developments Conclusion

Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

6/51

Introduction Overview of “old” results Some recent developments Conclusion

Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

6/51

Introduction Overview of “old” results Some recent developments Conclusion

Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

A schedule is a path in the product automaton

6/51

Introduction Overview of “old” results Some recent developments Conclusion

Analyzing timed automata

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools

Skip regions

7/51

Introduction Overview of “old” results Some recent developments Conclusion

Analyzing timed automata

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools

Skip regions

7/51

Introduction Overview of “old” results Some recent developments Conclusion

Analyzing timed automata

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools

Skip regions

7/51

Introduction Overview of “old” results Some recent developments Conclusion

Analyzing timed automata

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools

Skip regions

7/51

Introduction Overview of “old” results Some recent developments Conclusion

Analyzing timed automata

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools

Skip regions

7/51

Introduction Overview of “old” results Some recent developments Conclusion

Analyzing timed automata

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools

Skip regions

7/51

Introduction Overview of “old” results Some recent developments Conclusion

Analyzing timed automata

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools

Skip regions

7/51

Introduction Overview of “old” results Some recent developments Conclusion

Analyzing timed automata

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools

Skip regions

7/51

Introduction Overview of “old” results Some recent developments Conclusion

Analyzing timed automata

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools

Skip regions

7/51

Introduction Overview of “old” results Some recent developments Conclusion

Analyzing timed automata

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools

Skip regions

7/51

Introduction Overview of “old” results Some recent developments Conclusion

Analyzing timed automata

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools

Skip regions

7/51

Introduction Overview of “old” results Some recent developments Conclusion

Analyzing timed automata

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools

Skip regions

7/51

Introduction Overview of “old” results Some recent developments Conclusion

Analyzing timed automata

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools

Skip regions

7/51

Introduction Overview of “old” results Some recent developments Conclusion

Analyzing timed automata

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools

Skip regions

7/51

Introduction Overview of “old” results Some recent developments Conclusion

Analyzing timed automata

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools

Skip regions

7/51

Introduction Overview of “old” results Some recent developments Conclusion

Analyzing timed automata

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools

Skip regions

7/51

Introduction Overview of “old” results Some recent developments Conclusion

Technical tool: Region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}The path

x=1 y=1

- can be fired from
- cannot be fired from

; This is a finite time-abstract bisimulation!

8/51

Introduction Overview of “old” results Some recent developments Conclusion

Technical tool: Region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}

The path
x=1 y=1

- can be fired from
- cannot be fired from

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; This is a finite time-abstract bisimulation!

8/51

Introduction Overview of “old” results Some recent developments Conclusion

Technical tool: Region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}

The path
x=1 y=1

- can be fired from
- cannot be fired from

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; This is a finite time-abstract bisimulation!

8/51

Introduction Overview of “old” results Some recent developments Conclusion

Technical tool: Region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}The path

x=1 y=1

- can be fired from
- cannot be fired from

; This is a finite time-abstract bisimulation!

8/51

Introduction Overview of “old” results Some recent developments Conclusion

Technical tool: Region abstraction – An example [AD94]

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a
b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

9/51

Introduction Overview of “old” results Some recent developments Conclusion

Technical tool: Region abstraction – An example [AD94]

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a
b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

9/51

Introduction Overview of “old” results Some recent developments Conclusion

Technical tool: Region abstraction – An example [AD94]

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a
b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

9/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Outline

1 Introduction

2 Overview of “old” results
Weighted timed automata
Timed games
Weighted timed games

3 Some recent developments
Undecidability of the value problem
Approximation of the optimal cost

4 Conclusion

10/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Outline

1 Introduction

2 Overview of “old” results
Weighted timed automata
Timed games
Weighted timed games

3 Some recent developments
Undecidability of the value problem
Approximation of the optimal cost

4 Conclusion

11/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,

memory usage,

...

price to pay,

bandwidth,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

12/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,

memory usage,

...

price to pay,

bandwidth,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

12/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,

memory usage,

...

price to pay,

bandwidth,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

12/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,

memory usage,

...

price to pay,

bandwidth,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

a discrete control (the mode of the system)
+ continuous evolution of the variables within a mode

12/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,

memory usage,

...

price to pay,

bandwidth,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

The thermostat example

Off

Ṫ=−0.5T

(T≥18)

On

Ṫ=2.25−0.5T

(T≤22)

T≤19

T≥21

22

18

21

19

2 4 6 8 10 time

12/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,

memory usage,

...

price to pay,

bandwidth,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

The thermostat example

Off

Ṫ=−0.5T

(T≥18)

On

Ṫ=2.25−0.5T

(T≤22)

T≤19

T≥21

22

18

21

19

2 4 6 8 10 time

12/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Ok...

but?

Easy...

Easy...

constraint

constraint

Hard!

13/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Ok...

but?

Easy...

Easy...

constraint

constraint

Hard!

13/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Ok...

but?

Easy...

Easy...

constraint

constraint

Hard!

13/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Ok...

but?

Easy... Easy...

constraint

constraint

Hard!

13/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Ok... but?

Easy... Easy...

constraint

constraint

Hard!

13/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Ok... but?

Easy... Easy...

constraint

constraint

Hard!

13/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Modelling resources in timed systems

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What’s decidable wbout hybrid automata? (SToC’95).

System resources might be relevant and even crucial information

energy consumption,

memory usage,

...

price to pay,

bandwidth,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata. Even for the

simplest, the so-called stopwatch automata (clocks can be stopped).

An alternative: weighted/priced timed automata [ALP01,BFH+01]

; hybrid variables do not constrain the system
hybrid variables are observer variables

14/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Modelling resources in timed systems

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What’s decidable wbout hybrid automata? (SToC’95).[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

System resources might be relevant and even crucial information

energy consumption,

memory usage,

...

price to pay,

bandwidth,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata. Even for the

simplest, the so-called stopwatch automata (clocks can be stopped).

An alternative: weighted/priced timed automata [ALP01,BFH+01]

; hybrid variables do not constrain the system
hybrid variables are observer variables

14/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

15/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

A good schedule is a path in the
product automaton with a low cost

15/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

16/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7 = 14.2

16/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost :

6.5 + 0 + 0 + 0.7 + 7 = 14.2

16/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5

+ 0 + 0 + 0.7 + 7 = 14.2

16/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0

+ 0 + 0.7 + 7 = 14.2

16/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0

+ 0.7 + 7 = 14.2

16/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7

+ 7 = 14.2

16/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7

= 14.2

16/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7 = 14.2

16/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

16/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

16/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

16/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

16/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

16/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

16/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Optimal-cost reachability

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).
[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem (Formal Methods in System Design).

Theorem [ALP01,BFH+01,BBBR07]

In weighted timed automata, the optimal cost is an integer and can be
computed in PSPACE.

Technical tool: a refinement of the regions, the corner-point
abstraction

3 0 0
0

0 0 3
7

7

17/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Note on the corner-point abstraction

[BBL04] Bouyer, Brinksma, Larsen. Staying Alive As Cheaply As Possible (HSCC’04).
[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).
[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).
[JT08] Judziński, Trivedi. Concavely-priced timed automata (FORMATS’08).
[BBBS11] Bertrand, Bouyer, Brihaye, Stainer. Emptiness and universality problems in timed automata with positive frequency (ICALP’11).
[Sta12] Stainer. Frequencies in forgetful timed automata (FORMATS’12).

It is a very interesting abstraction, that can be used for many
applications:

for mean-cost optimization [BBL04,BBL08]

for discounted-cost optimization [FL08]

for all concavely-priced timed automata [JT08]

for deciding frequency objectives [BBBS11,Sta12]

. . .

18/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Outline

1 Introduction

2 Overview of “old” results
Weighted timed automata
Timed games
Weighted timed games

3 Some recent developments
Undecidability of the value problem
Approximation of the optimal cost

4 Conclusion

19/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

A (good) schedule is a strategy in
the product game (with a low cost)

20/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

A (good) schedule is a strategy in
the product game (with a low cost)

20/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

A (good) schedule is a strategy in
the product game (with a low cost)

20/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

21/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

21/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

21/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

A (memoryless) winning strategy

from (`0, 0), play (0.5, c1)

; can be preempted by u2

from (`2, ?), play (1− ?, c2)

from (`3, 1), play (0, c3)

from (`1, 1), play (1, c4)

21/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

A (memoryless) winning strategy

from (`0, 0), play (0.5, c1)
; can be preempted by u2

from (`2, ?), play (1− ?, c2)

from (`3, 1), play (0, c3)

from (`1, 1), play (1, c4)

21/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

A (memoryless) winning strategy

from (`0, 0), play (0.5, c1)
; can be preempted by u2

from (`2, ?), play (1− ?, c2)

from (`3, 1), play (0, c3)

from (`1, 1), play (1, c4)

21/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

A (memoryless) winning strategy

from (`0, 0), play (0.5, c1)
; can be preempted by u2

from (`2, ?), play (1− ?, c2)

from (`3, 1), play (0, c3)

from (`1, 1), play (1, c4)

21/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

A (memoryless) winning strategy

from (`0, 0), play (0.5, c1)
; can be preempted by u2

from (`2, ?), play (1− ?, c2)

from (`3, 1), play (0, c3)

from (`1, 1), play (1, c4)

21/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

Problems to be considered

Does there exist a winning strategy?

If yes, compute one (as simple as possible).

21/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

Problems to be considered
Does there exist a winning strategy?

If yes, compute one (as simple as possible).

21/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

Problems to be considered
Does there exist a winning strategy?

If yes, compute one (as simple as possible).

21/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Decidability of timed games

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC’98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and “region-based”
strategies are sufficient.

; classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

22/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Decidability of timed games

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC’98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and “region-based”
strategies are sufficient.

; classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

22/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Decidability of timed games

[AM99] Asarin, Maler. As soon as possible: time optimal control for timed automata (HSCC’99).
[BHPR07] Brihaye, Henzinger, Prabhu, Raskin. Minimum-time reachability in timed games (ICALP’07).
[JT07] Jurdziński, Trivedi. Reachability-time games on timed automata (ICALP’07).

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and “region-based”
strategies are sufficient.

; classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

22/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Outline

1 Introduction

2 Overview of “old” results
Weighted timed automata
Timed games
Weighted timed games

3 Some recent developments
Undecidability of the value problem
Approximation of the optimal cost

4 Conclusion

23/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

A simple

weighted

timed game

`0 `1

(y=0)

`2

`3

,x≤2,c,y :=0

u

u

x=2,c

x=2,c

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

24/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

A simple weighted timed game

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

24/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

A simple weighted timed game

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

24/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

A simple weighted timed game

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

24/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

A simple weighted timed game

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

24/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

A simple weighted timed game

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

24/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

A simple weighted timed game

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

24/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

A simple weighted timed game

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1

24/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Optimal reachability in weighted timed games (1)

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
[ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP’04).
[BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS’04).
[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS’05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).
[Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (QAPL’11).
[HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (CONCUR’13).
[BGK+14] Brihaye, Geeraerts, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (CONCUR’14).

This topic has been fairly hot these last fifteen years...

[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMM02]

Tree-like weighted timed games can be solved in 2EXPTIME.

[ABM04,BCFL04]

Depth-k weighted timed games can be solved in EXPTIME. There is a
symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost.

25/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Optimal reachability in weighted timed games (1)

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
[ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP’04).
[BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS’04).
[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS’05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).
[Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (QAPL’11).
[HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (CONCUR’13).
[BGK+14] Brihaye, Geeraerts, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (CONCUR’14).

This topic has been fairly hot these last fifteen years...

[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMM02]

Tree-like weighted timed games can be solved in 2EXPTIME.

[ABM04,BCFL04]

Depth-k weighted timed games can be solved in EXPTIME. There is a
symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost.

25/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Optimal reachability in weighted timed games (1)

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
[ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP’04).
[BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS’04).
[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS’05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).
[Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (QAPL’11).
[HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (CONCUR’13).
[BGK+14] Brihaye, Geeraerts, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (CONCUR’14).

This topic has been fairly hot these last fifteen years...

[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMM02]

Tree-like weighted timed games can be solved in 2EXPTIME.

[ABM04,BCFL04]

Depth-k weighted timed games can be solved in EXPTIME. There is a
symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost.

25/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Optimal reachability in weighted timed games (2)

[BBR05,BBM06]

In weighted timed games, the optimal cost cannot be computed, as soon
as games have three clocks or more.

[BLMR06,Rut11,HIM13,BGK+14]

Turn-based optimal timed games are decidable in EXPTIME (resp.
PTIME) when automata have a single clock (resp. with two rates). They
are PTIME-hard.

26/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Optimal reachability in weighted timed games (2)

[BBR05,BBM06]

In weighted timed games, the optimal cost cannot be computed, as soon
as games have three clocks or more.

[BLMR06,Rut11,HIM13,BGK+14]

Turn-based optimal timed games are decidable in EXPTIME (resp.
PTIME) when automata have a single clock (resp. with two rates). They
are PTIME-hard.

26/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

What is easier with a single clock?

[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

Memoryless strategies can be non-optimal...

`0

+2

(x≤1)

`1

+1

,x=1

x<1
x :=0 x>0

... but memoryless almost-optimal strategies will be sufficient.

Key: resetting the clock somehow resets the history...

By unfolding and removing one by one the locations,we can
synthesize memoryless almost-optimal winning strategies.

Rather involved proofs of correctness

27/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

What is easier with a single clock?

[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

Memoryless strategies can be non-optimal...

`0

+2

(x≤1)

`1

+1

,x=1

x<1
x :=0 x>0

... but memoryless almost-optimal strategies will be sufficient.

Key: resetting the clock somehow resets the history...

By unfolding and removing one by one the locations,we can
synthesize memoryless almost-optimal winning strategies.

Rather involved proofs of correctness

27/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

What is easier with a single clock?

[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

Memoryless strategies can be non-optimal...

`0

+2

(x≤1)

`1

+1

,x=1

x<1
x :=0 x>0

... but memoryless almost-optimal strategies will be sufficient.

Key: resetting the clock somehow resets the history...

By unfolding and removing one by one the locations,we can
synthesize memoryless almost-optimal winning strategies.

Rather involved proofs of correctness

27/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

What is easier with a single clock?

[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

Memoryless strategies can be non-optimal...

`0

+2

(x≤1)

`1

+1

,x=1

x<1
x :=0 x>0

... but memoryless almost-optimal strategies will be sufficient.

Key: resetting the clock somehow resets the history...

By unfolding and removing one by one the locations,we can
synthesize memoryless almost-optimal winning strategies.

Rather involved proofs of correctness

27/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

What is easier with a single clock?

[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

Memoryless strategies can be non-optimal...

`0

+2

(x≤1)

`1

+1

,x=1

x<1
x :=0 x>0

... but memoryless almost-optimal strategies will be sufficient.

Key: resetting the clock somehow resets the history...

By unfolding and removing one by one the locations,we can
synthesize memoryless almost-optimal winning strategies.

Rather involved proofs of correctness

27/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

28/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

29/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

0 1

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by x0

Add+(x)

1 0

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by 1−x0

Add−(x)

29/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

29/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

29/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

29/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3

if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

29/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3

if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

29/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

29/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

29/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

3c2

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

u:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)u=1,u:=0

Testy (x=2z)

30/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

3c2

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

u:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)u=1,u:=0

Testy (x=2z)

30/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

3c2

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

u:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)u=1,u:=0

Testy (x=2z)

30/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

3c2

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

u:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)u=1,u:=0

Testy (x=2z)

30/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

3c2

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

Ñ
x= 1

2c

y= 1

3d

z=?

éu:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)u=1,u:=0

Testy (x=2z)

30/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

3c2

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

Ñ
x= 1

2c

y= 1

3d

z=?

éu:=0 Ñ
x= 1

2c
+α

y= 1

3d
+α

z=0

éz:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)u=1,u:=0

Testy (x=2z)

30/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

3c2

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

Ñ
x= 1

2c

y= 1

3d

z=?

éu:=0 Ñ
x= 1

2c
+α

y= 1

3d
+α

z=0

éz:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)Ñ
x= 1

2c

y= 1

3d

z=α

éu=1,u:=0

Testy (x=2z)

30/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

3c2

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

Ñ
x= 1

2c

y= 1

3d

z=?

éu:=0 Ñ
x= 1

2c
+α

y= 1

3d
+α

z=0

éz:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)Ñ
x= 1

2c

y= 1

3d

z= 1
2c+1

éu=1,u:=0

Testy (x=2z)

30/51

Introduction Overview of “old” results Some recent developments Conclusion
Weighted timed automata Timed games Weighted timed games

Are we done?

31/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Outline

1 Introduction

2 Overview of “old” results
Weighted timed automata
Timed games
Weighted timed games

3 Some recent developments
Undecidability of the value problem
Approximation of the optimal cost

4 Conclusion

32/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Are we done?

No! Let’s be a bit more precise!

Given G a weighted timed game,

a strategy σ is winning whenever all its outcomes are winning;

Cost of a winning strategy σ:

cost(σ) = sup{cost(ρ) | ρ outcome of σ up to the target}

Optimal cost:
optcostG = inf

σ winning strat.
cost(σ)

(set it to +∞ if there is no winning strategy)

Two problems of interest

The value problem asks, given G and a threshold ./ c , whether
optcostG ./ c?

The existence problem asks, given G and a threshold ./ c , whether
there exists a winning strategy in G such that cost(σ) ./ c?

Note: These problems are distinct...

33/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Are we done? No! Let’s be a bit more precise!

Given G a weighted timed game,

a strategy σ is winning whenever all its outcomes are winning;

Cost of a winning strategy σ:

cost(σ) = sup{cost(ρ) | ρ outcome of σ up to the target}

Optimal cost:
optcostG = inf

σ winning strat.
cost(σ)

(set it to +∞ if there is no winning strategy)

Two problems of interest

The value problem asks, given G and a threshold ./ c , whether
optcostG ./ c?

The existence problem asks, given G and a threshold ./ c , whether
there exists a winning strategy in G such that cost(σ) ./ c?

Note: These problems are distinct...

33/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Are we done? No! Let’s be a bit more precise!

Given G a weighted timed game,

a strategy σ is winning whenever all its outcomes are winning;

Cost of a winning strategy σ:

cost(σ) = sup{cost(ρ) | ρ outcome of σ up to the target}

Optimal cost:
optcostG = inf

σ winning strat.
cost(σ)

(set it to +∞ if there is no winning strategy)

Two problems of interest

The value problem asks, given G and a threshold ./ c , whether
optcostG ./ c?

The existence problem asks, given G and a threshold ./ c , whether
there exists a winning strategy in G such that cost(σ) ./ c?

Note: These problems are distinct...

33/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Are we done? No! Let’s be a bit more precise!

Given G a weighted timed game,

a strategy σ is winning whenever all its outcomes are winning;

Cost of a winning strategy σ:

cost(σ) = sup{cost(ρ) | ρ outcome of σ up to the target}

Optimal cost:
optcostG = inf

σ winning strat.
cost(σ)

(set it to +∞ if there is no winning strategy)

Two problems of interest

The value problem asks, given G and a threshold ./ c , whether
optcostG ./ c?

The existence problem asks, given G and a threshold ./ c , whether
there exists a winning strategy in G such that cost(σ) ./ c?

Note: These problems are distinct...

33/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Are we done? No! Let’s be a bit more precise!

Given G a weighted timed game,

a strategy σ is winning whenever all its outcomes are winning;

Cost of a winning strategy σ:

cost(σ) = sup{cost(ρ) | ρ outcome of σ up to the target}

Optimal cost:
optcostG = inf

σ winning strat.
cost(σ)

(set it to +∞ if there is no winning strategy)

Two problems of interest

The value problem asks, given G and a threshold ./ c , whether
optcostG ./ c?

The existence problem asks, given G and a threshold ./ c , whether
there exists a winning strategy in G such that cost(σ) ./ c?

Note: These problems are distinct...

33/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Are we done? No! Let’s be a bit more precise!

Given G a weighted timed game,

a strategy σ is winning whenever all its outcomes are winning;

Cost of a winning strategy σ:

cost(σ) = sup{cost(ρ) | ρ outcome of σ up to the target}

Optimal cost:
optcostG = inf

σ winning strat.
cost(σ)

(set it to +∞ if there is no winning strategy)

Two problems of interest

The value problem asks, given G and a threshold ./ c , whether
optcostG ./ c?

The existence problem asks, given G and a threshold ./ c , whether
there exists a winning strategy in G such that cost(σ) ./ c?

Note: These problems are distinct...

33/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Are we done? No! Let’s be a bit more precise!

Given G a weighted timed game,

a strategy σ is winning whenever all its outcomes are winning;

Cost of a winning strategy σ:

cost(σ) = sup{cost(ρ) | ρ outcome of σ up to the target}

Optimal cost:
optcostG = inf

σ winning strat.
cost(σ)

(set it to +∞ if there is no winning strategy)

Two problems of interest

The value problem asks, given G and a threshold ./ c , whether
optcostG ./ c?

The existence problem asks, given G and a threshold ./ c , whether
there exists a winning strategy in G such that cost(σ) ./ c?

Note: These problems are distinct...

33/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Are we done? No! Let’s be a bit more precise!

Given G a weighted timed game,

a strategy σ is winning whenever all its outcomes are winning;

Cost of a winning strategy σ:

cost(σ) = sup{cost(ρ) | ρ outcome of σ up to the target}

Optimal cost:
optcostG = inf

σ winning strat.
cost(σ)

(set it to +∞ if there is no winning strategy)

Two problems of interest

The value problem asks, given G and a threshold ./ c , whether
optcostG ./ c?

The existence problem asks, given G and a threshold ./ c , whether
there exists a winning strategy in G such that cost(σ) ./ c?

Note: These problems are distinct...

33/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Weighted timed automata

In weighted timed automata, the optimal cost is an integer, and can be
computed in PSPACE.

Weighted timed games

34/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Weighted timed automata

In weighted timed automata, the optimal cost is an integer, and can be
computed in PSPACE.
The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.

Weighted timed games

34/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Weighted timed automata

In weighted timed automata, the optimal cost is an integer, and can be
computed in PSPACE.
The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.

Weighted timed games

Turn-based optimal timed games are decidable in EXPTIME when automata
have a single clock.

34/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Weighted timed automata

In weighted timed automata, the optimal cost is an integer, and can be
computed in PSPACE.
The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.

Weighted timed games

Turn-based optimal timed games are decidable in EXPTIME when automata
have a single clock.
The value problem is decidable in EXPTIME in single-clock weighted timed
games. Almost-optimal memoryless winning strategies can be computed.

34/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Weighted timed automata

In weighted timed automata, the optimal cost is an integer, and can be
computed in PSPACE.
The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.

Weighted timed games

Turn-based optimal timed games are decidable in EXPTIME when automata
have a single clock.
The value problem is decidable in EXPTIME in single-clock weighted timed
games. Almost-optimal memoryless winning strategies can be computed.

There is a symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost.

34/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Weighted timed automata

In weighted timed automata, the optimal cost is an integer, and can be
computed in PSPACE.
The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.

Weighted timed games

Turn-based optimal timed games are decidable in EXPTIME when automata
have a single clock.
The value problem is decidable in EXPTIME in single-clock weighted timed
games. Almost-optimal memoryless winning strategies can be computed.

There is a symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost.
The value problem can be decided in EXPTIME in weighted timed games with
a strongly non-Zeno cost. Almost-optimal winning strategies can be computed.

34/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Weighted timed automata

In weighted timed automata, the optimal cost is an integer, and can be
computed in PSPACE.
The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.

Weighted timed games

Turn-based optimal timed games are decidable in EXPTIME when automata
have a single clock.
The value problem is decidable in EXPTIME in single-clock weighted timed
games. Almost-optimal memoryless winning strategies can be computed.

There is a symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost.
The value problem can be decided in EXPTIME in weighted timed games with
a strongly non-Zeno cost. Almost-optimal winning strategies can be computed.

In weighted timed games, the optimal cost cannot be computed, as soon as
games have three clocks or more.

34/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Weighted timed automata

In weighted timed automata, the optimal cost is an integer, and can be
computed in PSPACE.
The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.

Weighted timed games

Turn-based optimal timed games are decidable in EXPTIME when automata
have a single clock.
The value problem is decidable in EXPTIME in single-clock weighted timed
games. Almost-optimal memoryless winning strategies can be computed.

There is a symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost.
The value problem can be decided in EXPTIME in weighted timed games with
a strongly non-Zeno cost. Almost-optimal winning strategies can be computed.

In weighted timed games, the optimal cost cannot be computed, as soon as
games have three clocks or more.
The existence problem is undecidable in weighted timed games.

34/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Outline of the rest of the talk

[BMM14] Bouyer, Markey, Matteplackel. Averaging in LTL (CONCUR’14).

1 Show that the value problem is undecidable in weighted timed
games

; This is intellectually satisfactory to not have this discrepancy in the
set of results

; An original undecidability proof, based on a diagonal construction

This method has been introduced in the context of quantitative
temporal logics [BMM14]
It might be useful in some different contexts

2 Propose an approximation algorithm for a large class of weighted
timed games (that comprises the class of games used for proving the
above undecidability)

Almost-optimality in practice should be sufficient
Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

35/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Outline of the rest of the talk

[BMM14] Bouyer, Markey, Matteplackel. Averaging in LTL (CONCUR’14).

1 Show that the value problem is undecidable in weighted timed
games

; This is intellectually satisfactory to not have this discrepancy in the
set of results

; An original undecidability proof, based on a diagonal construction

This method has been introduced in the context of quantitative
temporal logics [BMM14]
It might be useful in some different contexts

2 Propose an approximation algorithm for a large class of weighted
timed games (that comprises the class of games used for proving the
above undecidability)

Almost-optimality in practice should be sufficient
Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

35/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Outline of the rest of the talk

[BMM14] Bouyer, Markey, Matteplackel. Averaging in LTL (CONCUR’14).

1 Show that the value problem is undecidable in weighted timed
games

; This is intellectually satisfactory to not have this discrepancy in the
set of results

; An original undecidability proof, based on a diagonal construction

This method has been introduced in the context of quantitative
temporal logics [BMM14]
It might be useful in some different contexts

2 Propose an approximation algorithm for a large class of weighted
timed games (that comprises the class of games used for proving the
above undecidability)

Almost-optimality in practice should be sufficient
Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

35/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Outline of the rest of the talk

[BMM14] Bouyer, Markey, Matteplackel. Averaging in LTL (CONCUR’14).

1 Show that the value problem is undecidable in weighted timed
games

; This is intellectually satisfactory to not have this discrepancy in the
set of results

; An original undecidability proof, based on a diagonal construction

This method has been introduced in the context of quantitative
temporal logics [BMM14]
It might be useful in some different contexts

2 Propose an approximation algorithm for a large class of weighted
timed games (that comprises the class of games used for proving the
above undecidability)

Almost-optimality in practice should be sufficient
Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

35/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Outline

1 Introduction

2 Overview of “old” results
Weighted timed automata
Timed games
Weighted timed games

3 Some recent developments
Undecidability of the value problem
Approximation of the optimal cost

4 Conclusion

36/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

What about the value problem?

M ; the previous game GM

It is always the case that optcostGM ≥ 3

If M halts, then optcostGM = 3
It might be the case that M does not halt but optcostGM = 3

M does not halt but optcostGM = 3

q0 q1

q2

q3

q4

q5

q6 q7

q8

q9,

c2==0 c1+=2

c1==0c2+=2

c2−−

c2−−c1+=2

c2>0

c2==0

c1−−

c1−− c2+=2

c1>0

c1==0

c2

c1q0

•
q7

•q4

•q4

•
q7

•
q7

•
q7

37/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

What about the value problem?

M ; the previous game GM
It is always the case that optcostGM ≥ 3

If M halts, then optcostGM = 3
It might be the case that M does not halt but optcostGM = 3

M does not halt but optcostGM = 3

q0 q1

q2

q3

q4

q5

q6 q7

q8

q9,

c2==0 c1+=2

c1==0c2+=2

c2−−

c2−−c1+=2

c2>0

c2==0

c1−−

c1−− c2+=2

c1>0

c1==0

c2

c1q0

•
q7

•q4

•q4

•
q7

•
q7

•
q7

37/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

What about the value problem?

M ; the previous game GM
It is always the case that optcostGM ≥ 3

If M halts, then optcostGM = 3
It might be the case that M does not halt but optcostGM = 3

M does not halt but optcostGM = 3

q0 q1

q2

q3

q4

q5

q6 q7

q8

q9,

c2==0 c1+=2

c1==0c2+=2

c2−−

c2−−c1+=2

c2>0

c2==0

c1−−

c1−− c2+=2

c1>0

c1==0

c2

c1q0

•
q7

•q4

•q4

•
q7

•
q7

•
q7

37/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

What about the value problem?

M ; the previous game GM
It is always the case that optcostGM ≥ 3

If M halts, then optcostGM = 3
It might be the case that M does not halt but optcostGM = 3

M does not halt but optcostGM = 3

q0 q1

q2

q3

q4

q5

q6 q7

q8

q9,

c2==0 c1+=2

c1==0c2+=2

c2−−

c2−−c1+=2

c2>0

c2==0

c1−−

c1−− c2+=2

c1>0

c1==0

c2

c1q0

•
q7

•q4

•q4

•
q7

•
q7

•
q7

37/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

What about the value problem?

M ; the previous game GM
It is always the case that optcostGM ≥ 3

If M halts, then optcostGM = 3
It might be the case that M does not halt but optcostGM = 3

M does not halt but optcostGM = 3

q0 q1

q2

q3

q4

q5

q6 q7

q8

q9,

c2==0 c1+=2

c1==0c2+=2

c2−−

c2−−c1+=2

c2>0

c2==0

c1−−

c1−− c2+=2

c1>0

c1==0

c2

c1q0

•
q7

•q4

•q4

•
q7

•
q7

•
q7

37/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

What about the value problem?

M ; the previous game GM
It is always the case that optcostGM ≥ 3

If M halts, then optcostGM = 3
It might be the case that M does not halt but optcostGM = 3

M does not halt but optcostGM = 3

q0 q1

q2

q3

q4

q5

q6 q7

q8

q9,

c2==0 c1+=2

c1==0c2+=2

c2−−

c2−−c1+=2

c2>0

c2==0

c1−−

c1−− c2+=2

c1>0

c1==0

c2

c1q0

•
q7

•q4

•q4

•
q7

•
q7

•
q7

37/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

What about the value problem?

M ; the previous game GM
It is always the case that optcostGM ≥ 3

If M halts, then optcostGM = 3
It might be the case that M does not halt but optcostGM = 3

M does not halt but optcostGM = 3

q0 q1

q2

q3

q4

q5

q6 q7

q8

q9,

c2==0 c1+=2

c1==0c2+=2

c2−−

c2−−c1+=2

c2>0

c2==0

c1−−

c1−− c2+=2

c1>0

c1==0

c2

c1q0

•
q7

•q4

•q4

•
q7

•
q7

•
q7

37/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

[BMM14] Bouyer, Markey, Matteplackel. Averaging in LTL (CONCUR’14).

We need to be able to distinguish between machines that halt and
machines that have a converging phenomenon

We will use a diagonal argument, that has been developed recently
in the context of quantitative temporal logic [BMM14]

Technical lemma
We assume two halting states: accept and reject.

If optcostGM = 3 but no strategy has cost 3

(or equivalently, the unique
valid run of M is not accepting),

then the unique valid run of M is
infinite.

big impact on the cost!

38/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

[BMM14] Bouyer, Markey, Matteplackel. Averaging in LTL (CONCUR’14).

We need to be able to distinguish between machines that halt and
machines that have a converging phenomenon

We will use a diagonal argument, that has been developed recently
in the context of quantitative temporal logic [BMM14]

Technical lemma
We assume two halting states: accept and reject.

If optcostGM = 3 but no strategy has cost 3

(or equivalently, the unique
valid run of M is not accepting),

then the unique valid run of M is
infinite.

big impact on the cost!

38/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

[BMM14] Bouyer, Markey, Matteplackel. Averaging in LTL (CONCUR’14).

We need to be able to distinguish between machines that halt and
machines that have a converging phenomenon

We will use a diagonal argument, that has been developed recently
in the context of quantitative temporal logic [BMM14]

Technical lemma
We assume two halting states: accept and reject.

If optcostGM = 3 but no strategy has cost 3

(or equivalently, the unique
valid run of M is not accepting),

then the unique valid run of M is
infinite.

big impact on the cost!

38/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

[BMM14] Bouyer, Markey, Matteplackel. Averaging in LTL (CONCUR’14).

We need to be able to distinguish between machines that halt and
machines that have a converging phenomenon

We will use a diagonal argument, that has been developed recently
in the context of quantitative temporal logic [BMM14]

Technical lemma
We assume two halting states: accept and reject.
If optcostGM = 3 but no strategy has cost 3

(or equivalently, the unique
valid run of M is not accepting),

then the unique valid run of M is
infinite.

big impact on the cost!

38/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

[BMM14] Bouyer, Markey, Matteplackel. Averaging in LTL (CONCUR’14).

We need to be able to distinguish between machines that halt and
machines that have a converging phenomenon

We will use a diagonal argument, that has been developed recently
in the context of quantitative temporal logic [BMM14]

Technical lemma
We assume two halting states: accept and reject.
If optcostGM = 3 but no strategy has cost 3 (or equivalently, the unique
valid run of M is not accepting),

then the unique valid run of M is
infinite.

big impact on the cost!

38/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

[BMM14] Bouyer, Markey, Matteplackel. Averaging in LTL (CONCUR’14).

We need to be able to distinguish between machines that halt and
machines that have a converging phenomenon

We will use a diagonal argument, that has been developed recently
in the context of quantitative temporal logic [BMM14]

Technical lemma
We assume two halting states: accept and reject.
If optcostGM = 3 but no strategy has cost 3 (or equivalently, the unique
valid run of M is not accepting), then the unique valid run of M is
infinite.

big impact on the cost!

38/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

[BMM14] Bouyer, Markey, Matteplackel. Averaging in LTL (CONCUR’14).

We need to be able to distinguish between machines that halt and
machines that have a converging phenomenon

We will use a diagonal argument, that has been developed recently
in the context of quantitative temporal logic [BMM14]

Technical lemma
We assume two halting states: accept and reject.
If optcostGM = 3 but no strategy has cost 3 (or equivalently, the unique
valid run of M is not accepting), then the unique valid run of M is
infinite.

big impact on the cost!

38/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

[BMM14] Bouyer, Markey, Matteplackel. Averaging in LTL (CONCUR’14).

We need to be able to distinguish between machines that halt and
machines that have a converging phenomenon

We will use a diagonal argument, that has been developed recently
in the context of quantitative temporal logic [BMM14]

Technical lemma
We assume two halting states: accept and reject.
If optcostGM = 3 but no strategy has cost 3 (or equivalently, the unique
valid run of M is not accepting), then the unique valid run of M is
infinite.

big impact on the cost!

38/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games.

Theorem [BJM15]

The value problem is undecidable in weighted timed games (with four
clocks or more).

Remark on the reduction:

Cost 0 within the core of the game
The rest of the game is acyclic

40/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Outline

1 Introduction

2 Overview of “old” results
Weighted timed automata
Timed games
Weighted timed games

3 Some recent developments
Undecidability of the value problem
Approximation of the optimal cost

4 Conclusion

41/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games.

Optimal cost is computable...

... when cost is strongly non-zeno. [AM04,BCFL04]

That is, there exists κ > 0 such that for every region cycle C , for every real run
% read on C ,

cost(%) ≥ κ

Optimal cost is not computable...

... when cost is almost-strongly non-zeno. [BJM15]

That is, there exists κ > 0 such that for every region cycle C , for every real run
% read on C ,

cost(%) ≥ κ or cost(%) = 0

Note: In both cases, we can assume κ = 1.

42/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games.

Optimal cost is computable...

... when cost is strongly non-zeno. [AM04,BCFL04]

That is, there exists κ > 0 such that for every region cycle C , for every real run
% read on C ,

cost(%) ≥ κ

Optimal cost is not computable... but is approximable!

... when cost is almost-strongly non-zeno. [BJM15]

That is, there exists κ > 0 such that for every region cycle C , for every real run
% read on C ,

cost(%) ≥ κ or cost(%) = 0

Note: In both cases, we can assume κ = 1.

42/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Approximation of the optimal cost

Theorem
Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every ε > 0, one can compute:

two values v−ε and v+
ε such that

|v+
ε − v−ε | < ε and v−ε ≤ optcostG ≤ v+

ε

one strategy σε such that

optcostG ≤ cost(σε) ≤ optcostG + ε

[it is an ε-optimal winning strategy]

Standard technics: unfold the game to get more precision, and
compute two adjacency sequences

; This is not possible here
There might be runs with prefixes of arbitrary length and cost 0 (e.g. the

game of the undecidability proof)

43/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Approximation of the optimal cost

Theorem
Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every ε > 0, one can compute:

two values v−ε and v+
ε such that

|v+
ε − v−ε | < ε and v−ε ≤ optcostG ≤ v+

ε

one strategy σε such that

optcostG ≤ cost(σε) ≤ optcostG + ε

[it is an ε-optimal winning strategy]

Standard technics: unfold the game to get more precision, and
compute two adjacency sequences

; This is not possible here
There might be runs with prefixes of arbitrary length and cost 0 (e.g. the

game of the undecidability proof)

43/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Approximation of the optimal cost

Theorem
Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every ε > 0, one can compute:

two values v−ε and v+
ε such that

|v+
ε − v−ε | < ε and v−ε ≤ optcostG ≤ v+

ε

one strategy σε such that

optcostG ≤ cost(σε) ≤ optcostG + ε

[it is an ε-optimal winning strategy]

Standard technics: unfold the game to get more precision, and
compute two adjacency sequences

; This is not possible here
There might be runs with prefixes of arbitrary length and cost 0 (e.g. the

game of the undecidability proof)

43/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Approximation of the optimal cost

Theorem
Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every ε > 0, one can compute:

two values v−ε and v+
ε such that

|v+
ε − v−ε | < ε and v−ε ≤ optcostG ≤ v+

ε

one strategy σε such that

optcostG ≤ cost(σε) ≤ optcostG + ε

[it is an ε-optimal winning strategy]

Standard technics: unfold the game to get more precision, and
compute two adjacency sequences

; This is not possible here
There might be runs with prefixes of arbitrary length and cost 0 (e.g. the

game of the undecidability proof)

43/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Idea for approximation

Idea
Only partially unfold the game:

Keep components with cost 0 untouched – we call it the kernel

Unfold the rest of the game

First: split the game along regions!

g ,Y := 0
;

r1,Y := 0

r2,Y := 0
r3,Y = 0

r4,Y := 0

r5,Y := 0

44/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Idea for approximation

Idea
Only partially unfold the game:

Keep components with cost 0 untouched – we call it the kernel

Unfold the rest of the game

First: split the game along regions!

g ,Y := 0
;

r1,Y := 0

r2,Y := 0
r3,Y = 0

r4,Y := 0

r5,Y := 0

44/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Semi-unfolding

Only cost 0
Kernel K

Only cost 0
Kernel K

Hypothesis:
cost > 0 implies cost ≥ κ

Conclusion: we can stop unfolding the game after N steps
(e.g. N = (M + 2) · |R(A)|, where M is a pre-computed bound on optcostG)

45/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Semi-unfolding

(`,r)

Only cost 0
Kernel K

Only cost 0
Kernel K

(`,r)

Hypothesis:
cost > 0 implies cost ≥ κ

Conclusion: we can stop unfolding the game after N steps
(e.g. N = (M + 2) · |R(A)|, where M is a pre-computed bound on optcostG)

45/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Semi-unfolding

(`,r)

Only cost 0
Kernel K

Only cost 0
Kernel K

(`,r)

Hypothesis:
cost > 0 implies cost ≥ κ

Conclusion: we can stop unfolding the game after N steps
(e.g. N = (M + 2) · |R(A)|, where M is a pre-computed bound on optcostG)

45/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Semi-unfolding

(`,r)

Only cost 0
Kernel K

Only cost 0
Kernel K

(`,r)

Hypothesis:
cost > 0 implies cost ≥ κ

Conclusion: we can stop unfolding the game after N steps
(e.g. N = (M + 2) · |R(A)|, where M is a pre-computed bound on optcostG)

45/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Semi-unfolding

(`,r)

Only cost 0
Kernel K

Only cost 0
Kernel K

(`,r)

Hypothesis:
cost > 0 implies cost ≥ κ

Conclusion: we can stop unfolding the game after N steps
(e.g. N = (M + 2) · |R(A)|, where M is a pre-computed bound on optcostG)

45/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Approximation scheme

Exact computation

Approximation

46/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Approximation scheme

Exact computation

Approximation

46/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Approximation scheme

Exact computation

Approximation

46/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Approximation scheme

Exact computation

Approximation

46/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Approximation scheme

Exact computation

Approximation

46/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

First step: Tree-like parts

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

; Goes back to [LMM02]

c `

`′ `′′

g ′,Y ′

c′
g ′′,Y ′′

c′′

O(`, v) = inf
t′|v+t′|=g ′

max
(

(α)

,

(β)

)

(α) = t ′c + c′ + O(`′, v ′)

(β) = sup
t′′≤t′|v+t′′|=g ′′

t ′′c + c′′ + O(`′′, v ′′)

v ′=[Y ′←0](v+t′)

v ′′=[Y ′′←0](v+t′′)

47/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

First step: Tree-like parts

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

; Goes back to [LMM02]

c `

`′ `′′

g ′,Y ′

c′
g ′′,Y ′′

c′′

O(`, v) = inf
t′|v+t′|=g ′

max
(

(α)

,

(β)

)

(α) = t ′c + c′ + O(`′, v ′)

(β) = sup
t′′≤t′|v+t′′|=g ′′

t ′′c + c′′ + O(`′′, v ′′)

v ′=[Y ′←0](v+t′)

v ′′=[Y ′′←0](v+t′′)

47/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

First step: Tree-like parts

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

; Goes back to [LMM02]

c `

`′

O(`′, v ′)

`′′

O(`′′, v ′′)

g ′,Y ′

c′
g ′′,Y ′′

c′′

O(`, v) =

inf
t′|v+t′|=g ′

max
(

(α)

,

(β)

)

(α) = t ′c + c′ + O(`′, v ′)

(β) = sup
t′′≤t′|v+t′′|=g ′′

t ′′c + c′′ + O(`′′, v ′′)

v ′=[Y ′←0](v+t′)

v ′′=[Y ′′←0](v+t′′)

47/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

First step: Tree-like parts

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

; Goes back to [LMM02]

c `

`′

O(`′, v ′)

`′′

O(`′′, v ′′)

g ′,Y ′

c′
g ′′,Y ′′

c′′

O(`, v) = inf
t′|v+t′|=g ′

max
(

(α)

,

(β)

)

(α) = t ′c + c′ + O(`′, v ′)

(β) = sup
t′′≤t′|v+t′′|=g ′′

t ′′c + c′′ + O(`′′, v ′′)

v ′=[Y ′←0](v+t′)

v ′′=[Y ′′←0](v+t′′)

47/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

First step: Tree-like parts

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

; Goes back to [LMM02]

c `

`′

O(`′, v ′)

`′′

O(`′′, v ′′)

g ′,Y ′

c′
g ′′,Y ′′

c′′

O(`, v) = inf
t′|v+t′|=g ′

max
(

(α)

,

(β)

)

(α) = t ′c + c′ + O(`′, v ′)

(β) = sup
t′′≤t′|v+t′′|=g ′′

t ′′c + c′′ + O(`′′, v ′′)

v ′=[Y ′←0](v+t′)

v ′′=[Y ′′←0](v+t′′)

47/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

First step: Tree-like parts

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

; Goes back to [LMM02]

c `

`′

O(`′, v ′)

`′′

O(`′′, v ′′)

g ′,Y ′

c′
g ′′,Y ′′

c′′

O(`, v) = inf
t′|v+t′|=g ′

max
(
(α),

(β)

)

(α) = t ′c + c′ + O(`′, v ′)

(β) = sup
t′′≤t′|v+t′′|=g ′′

t ′′c + c′′ + O(`′′, v ′′)

v ′=[Y ′←0](v+t′)

v ′′=[Y ′′←0](v+t′′)

47/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

First step: Tree-like parts

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

; Goes back to [LMM02]

c `

`′

O(`′, v ′)

`′′

O(`′′, v ′′)

g ′,Y ′

c′
g ′′,Y ′′

c′′

O(`, v) = inf
t′|v+t′|=g ′

max
(
(α), (β)

)

(α) = t ′c + c′ + O(`′, v ′)

(β) = sup
t′′≤t′|v+t′′|=g ′′

t ′′c + c′′ + O(`′′, v ′′)

v ′=[Y ′←0](v+t′)

v ′′=[Y ′′←0](v+t′′)

47/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Second step: Kernels

Output cost functions f

1 Refine the regions such that f differs
of at most ε within a small region

2 Under- and over-approximate by
piecewise constant functions f −ε and
f +
ε

48/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Second step: Kernels

Output cost functions f

1 Refine the regions such that f differs
of at most ε within a small region

2 Under- and over-approximate by
piecewise constant functions f −ε and
f +
ε

48/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Second step: Kernels

Output cost functions f

1 Refine the regions such that f differs
of at most ε within a small region

2 Under- and over-approximate by
piecewise constant functions f −ε and
f +
ε

48/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Second step: Kernels

Output cost functions f

1 Refine the regions such that f differs
of at most ε within a small region

2 Under- and over-approximate by
piecewise constant functions f −ε and
f +
ε

48/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Second step: Kernels

Output cost functions f

1 Refine the regions such that f differs
of at most ε within a small region

2 Under- and over-approximate by
piecewise constant functions f −ε and
f +
ε

48/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Second step: Kernels

fε: constant fε: constant

3 Refine/split the kernel along the new
small regions and fix f −ε or f +

ε , write fε
4 Since cost is 0 everywhere, the

resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by fε)

5 Those can be solved using standard
technics based on attractors: small
regions are sufficient, and the local
optimal cost (for output fε) is constant
within a small region

; We have computed ε-approximations of
the optimal cost, which are constant
within small regions. Corresponding
strategies can be inferred

49/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Second step: Kernels

fε: constant fε: constant

3 Refine/split the kernel along the new
small regions and fix f −ε or f +

ε , write fε
4 Since cost is 0 everywhere, the

resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by fε)

5 Those can be solved using standard
technics based on attractors: small
regions are sufficient, and the local
optimal cost (for output fε) is constant
within a small region

; We have computed ε-approximations of
the optimal cost, which are constant
within small regions. Corresponding
strategies can be inferred

49/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Second step: Kernels

fε: constant fε: constant

3 Refine/split the kernel along the new
small regions and fix f −ε or f +

ε , write fε
4 Since cost is 0 everywhere, the

resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by fε)

5 Those can be solved using standard
technics based on attractors: small
regions are sufficient, and the local
optimal cost (for output fε) is constant
within a small region

; We have computed ε-approximations of
the optimal cost, which are constant
within small regions. Corresponding
strategies can be inferred

49/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Second step: Kernels

fε: constant fε: constant

constant

3 Refine/split the kernel along the new
small regions and fix f −ε or f +

ε , write fε
4 Since cost is 0 everywhere, the

resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by fε)

5 Those can be solved using standard
technics based on attractors: small
regions are sufficient, and the local
optimal cost (for output fε) is constant
within a small region

; We have computed ε-approximations of
the optimal cost, which are constant
within small regions. Corresponding
strategies can be inferred

49/51

Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

Second step: Kernels

3 Refine/split the kernel along the new
small regions and fix f −ε or f +

ε , write fε
4 Since cost is 0 everywhere, the

resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by fε)

5 Those can be solved using standard
technics based on attractors: small
regions are sufficient, and the local
optimal cost (for output fε) is constant
within a small region

; We have computed ε-approximations of
the optimal cost, which are constant
within small regions. Corresponding
strategies can be inferred

49/51

Introduction Overview of “old” results Some recent developments Conclusion

Outline

1 Introduction

2 Overview of “old” results
Weighted timed automata
Timed games
Weighted timed games

3 Some recent developments
Undecidability of the value problem
Approximation of the optimal cost

4 Conclusion

50/51

Introduction Overview of “old” results Some recent developments Conclusion

Conclusion

Summary of the talk

Quick overview of results concerning the optimal reachability
problem in weighted timed games

New insight into the value problem for this model:

Undecidability of this problem
Approximability of the optimal cost
(under some conditions)

Future work

Improve the approximation scheme (2EXP(|G|) ·
(

1/ε
)|X |

), and

implement it

Extend to the whole class of weighted timed games, or understand
why it is not possible

Assume stochastic uncertainty

51/51

Introduction Overview of “old” results Some recent developments Conclusion

Conclusion

Summary of the talk

Quick overview of results concerning the optimal reachability
problem in weighted timed games

New insight into the value problem for this model:

Undecidability of this problem
Approximability of the optimal cost
(under some conditions)

Future work

Improve the approximation scheme (2EXP(|G|) ·
(

1/ε
)|X |

), and

implement it

Extend to the whole class of weighted timed games, or understand
why it is not possible

Assume stochastic uncertainty

51/51

	Introduction
	Overview of ``old'' results
	Weighted timed automata
	Timed games
	Weighted timed games

	Some recent developments
	Undecidability of the value problem
	Approximation of the optimal cost

	Conclusion

