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LSV, CNRS & ENS Cachan, France

Based on former works with Thomas Brihaye, Kim G. Larsen, Nicolas Markey, etc...

And on recent work with Samy Jaziri and Nicolas Markey
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Time-dependent systems

We are interested in timed systems

... and in their analysis and control
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An example: The task graph scheduling problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata.

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:
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P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

4/51



Introduction Overview of “old” results Some recent developments Conclusion

An example: The task graph scheduling problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata.

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

4/51



Introduction Overview of “old” results Some recent developments Conclusion

An example: The task graph scheduling problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata.

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

4/51



Introduction Overview of “old” results Some recent developments Conclusion

An example: The task graph scheduling problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata.

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

4/51



Introduction Overview of “old” results Some recent developments Conclusion

The model of timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1
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Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0
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x :=0

mult1

x=2

done1

x=3

done1
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A schedule is a path in the product automaton
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Analyzing timed automata

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

x=0∧
y≥2

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools

Skip regions
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Technical tool: Region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}The path

x=1 y=1

- can be fired from
- cannot be fired from

; This is a finite time-abstract bisimulation!
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Technical tool: Region abstraction – An example [AD94]

s0 s1

s2

s3

x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a
b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x
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Weighted timed automata Timed games Weighted timed games

Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,

memory usage,

...

price to pay,

bandwidth,

; timed automata are not powerful enough!

A possible solution: use hybrid automata
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Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,

memory usage,

...

price to pay,

bandwidth,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

a discrete control (the mode of the system)
+ continuous evolution of the variables within a mode
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Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,

memory usage,

...

price to pay,

bandwidth,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

The thermostat example

Off

Ṫ=−0.5T

(T≥18)
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Ṫ=2.25−0.5T
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Modelling resources in timed systems

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What’s decidable wbout hybrid automata? (SToC’95).

System resources might be relevant and even crucial information

energy consumption,

memory usage,

...

price to pay,

bandwidth,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata. Even for the

simplest, the so-called stopwatch automata (clocks can be stopped).

An alternative: weighted/priced timed automata [ALP01,BFH+01]

; hybrid variables do not constrain the system
hybrid variables are observer variables
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Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2
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A good schedule is a path in the
product automaton with a low cost
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Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).
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`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7
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Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.
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Optimal-cost reachability

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).
[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem (Formal Methods in System Design).

Theorem [ALP01,BFH+01,BBBR07]

In weighted timed automata, the optimal cost is an integer and can be
computed in PSPACE.

Technical tool: a refinement of the regions, the corner-point
abstraction

3 0 0
0

0 0 3
7

7
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Note on the corner-point abstraction

[BBL04] Bouyer, Brinksma, Larsen. Staying Alive As Cheaply As Possible (HSCC’04).
[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).
[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).
[JT08] Judziński, Trivedi. Concavely-priced timed automata (FORMATS’08).
[BBBS11] Bertrand, Bouyer, Brihaye, Stainer. Emptiness and universality problems in timed automata with positive frequency (ICALP’11).
[Sta12] Stainer. Frequencies in forgetful timed automata (FORMATS’12).

It is a very interesting abstraction, that can be used for many
applications:

for mean-cost optimization [BBL04,BBL08]

for discounted-cost optimization [FL08]

for all concavely-priced timed automata [JT08]

for deciding frequency objectives [BBBS11,Sta12]

. . .
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Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

A (good) schedule is a strategy in
the product game (with a low cost)
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An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)
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Decidability of timed games

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC’98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and “region-based”
strategies are sufficient.

; classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.
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Decidability of timed games

[AM99] Asarin, Maler. As soon as possible: time optimal control for timed automata (HSCC’99).
[BHPR07] Brihaye, Henzinger, Prabhu, Raskin. Minimum-time reachability in timed games (ICALP’07).
[JT07] Jurdziński, Trivedi. Reachability-time games on timed automata (ICALP’07).
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A simple

weighted

timed game

`0 `1

(y=0)

`2

`3

,x≤2,c,y :=0

u

u

x=2,c

x=2,c

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1
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Optimal reachability in weighted timed games (1)

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
[ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP’04).
[BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS’04).
[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS’05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).
[Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (QAPL’11).
[HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (CONCUR’13).
[BGK+14] Brihaye, Geeraerts, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (CONCUR’14).

This topic has been fairly hot these last fifteen years...

[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMM02]

Tree-like weighted timed games can be solved in 2EXPTIME.

[ABM04,BCFL04]

Depth-k weighted timed games can be solved in EXPTIME. There is a
symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost.
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Optimal reachability in weighted timed games (2)

[BBR05,BBM06]

In weighted timed games, the optimal cost cannot be computed, as soon
as games have three clocks or more.

[BLMR06,Rut11,HIM13,BGK+14]

Turn-based optimal timed games are decidable in EXPTIME (resp.
PTIME) when automata have a single clock (resp. with two rates). They
are PTIME-hard.
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What is easier with a single clock?

[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

Memoryless strategies can be non-optimal...

`0

+2

(x≤1)

`1

+1

,x=1

x<1
x :=0 x>0

... but memoryless almost-optimal strategies will be sufficient.

Key: resetting the clock somehow resets the history...

By unfolding and removing one by one the locations,we can
synthesize memoryless almost-optimal winning strategies.

Rather involved proofs of correctness
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Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .
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Given two clocks x and y , we can check whether y = 2x .

0 1

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0
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Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

3c2

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

u:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)u=1,u:=0

Testy (x=2z)
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Are we done?

No! Let’s be a bit more precise!

Given G a weighted timed game,

a strategy σ is winning whenever all its outcomes are winning;

Cost of a winning strategy σ:

cost(σ) = sup{cost(ρ) | ρ outcome of σ up to the target}

Optimal cost:
optcostG = inf

σ winning strat.
cost(σ)

(set it to +∞ if there is no winning strategy)

Two problems of interest

The value problem asks, given G and a threshold ./ c , whether
optcostG ./ c?

The existence problem asks, given G and a threshold ./ c , whether
there exists a winning strategy in G such that cost(σ) ./ c?

Note: These problems are distinct...
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Weighted timed automata

In weighted timed automata, the optimal cost is an integer, and can be
computed in PSPACE.

Weighted timed games
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Outline of the rest of the talk

[BMM14] Bouyer, Markey, Matteplackel. Averaging in LTL (CONCUR’14).

1 Show that the value problem is undecidable in weighted timed
games

; This is intellectually satisfactory to not have this discrepancy in the
set of results

; An original undecidability proof, based on a diagonal construction

This method has been introduced in the context of quantitative
temporal logics [BMM14]
It might be useful in some different contexts

2 Propose an approximation algorithm for a large class of weighted
timed games (that comprises the class of games used for proving the
above undecidability)

Almost-optimality in practice should be sufficient
Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...
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[BMM14] Bouyer, Markey, Matteplackel. Averaging in LTL (CONCUR’14).

We need to be able to distinguish between machines that halt and
machines that have a converging phenomenon

We will use a diagonal argument, that has been developed recently
in the context of quantitative temporal logic [BMM14]

Technical lemma
We assume two halting states: accept and reject.

If optcostGM = 3 but no strategy has cost 3

(or equivalently, the unique
valid run of M is not accepting),

then the unique valid run of M is
infinite.

big impact on the cost!
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The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51



Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51



Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51



Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51



Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51



Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51



Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51



Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51



Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51



Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51



Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51



Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51



Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51



Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51



Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51



Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51



Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

The diagonal argument
B det. Turing machine can either accept, reject, or not halt

→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if optcostGM(B)

= 3

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence optcostGM(C)
> 3.

This implies M(C) does not accept, and therefore C does not accept C,
contradiction: C rejects C.

optcostGM(C)
= 3. Since C does not accept C, the unique valid computation of

M(C) is either infinite or rejecting. Applying the lemma on previous slide, it is
infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

39/51



Introduction Overview of “old” results Some recent developments Conclusion
Undecidability of the value problem Approximation of the optimal cost

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games.

Theorem [BJM15]

The value problem is undecidable in weighted timed games (with four
clocks or more).

Remark on the reduction:

Cost 0 within the core of the game
The rest of the game is acyclic
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[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games.

Optimal cost is computable...

... when cost is strongly non-zeno. [AM04,BCFL04]

That is, there exists κ > 0 such that for every region cycle C , for every real run
% read on C ,

cost(%) ≥ κ

Optimal cost is not computable...

... when cost is almost-strongly non-zeno. [BJM15]

That is, there exists κ > 0 such that for every region cycle C , for every real run
% read on C ,

cost(%) ≥ κ or cost(%) = 0

Note: In both cases, we can assume κ = 1.
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Approximation of the optimal cost

Theorem
Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every ε > 0, one can compute:

two values v−ε and v+
ε such that

|v+
ε − v−ε | < ε and v−ε ≤ optcostG ≤ v+

ε

one strategy σε such that

optcostG ≤ cost(σε) ≤ optcostG + ε

[it is an ε-optimal winning strategy]

Standard technics: unfold the game to get more precision, and
compute two adjacency sequences

; This is not possible here
There might be runs with prefixes of arbitrary length and cost 0 (e.g. the

game of the undecidability proof)
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Idea for approximation

Idea
Only partially unfold the game:

Keep components with cost 0 untouched – we call it the kernel

Unfold the rest of the game

First: split the game along regions!

g ,Y := 0
;

r1,Y := 0

r2,Y := 0
r3,Y = 0

r4,Y := 0

r5,Y := 0
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Semi-unfolding

Only cost 0
Kernel K

Only cost 0
Kernel K

Hypothesis:
cost > 0 implies cost ≥ κ

Conclusion: we can stop unfolding the game after N steps
(e.g. N = (M + 2) · |R(A)|, where M is a pre-computed bound on optcostG)
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First step: Tree-like parts

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

; Goes back to [LMM02]

c `

`′ `′′

g ′,Y ′

c′
g ′′,Y ′′

c′′

O(`, v) = inf
t′|v+t′|=g ′

max
(

(α)

,

(β)

)

(α) = t ′c + c′ + O(`′, v ′)

(β) = sup
t′′≤t′|v+t′′|=g ′′

t ′′c + c′′ + O(`′′, v ′′)

v ′=[Y ′←0](v+t′)

v ′′=[Y ′′←0](v+t′′)
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Second step: Kernels

Output cost functions f

1 Refine the regions such that f differs
of at most ε within a small region

2 Under- and over-approximate by
piecewise constant functions f −ε and
f +
ε
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Second step: Kernels

fε: constant fε: constant

3 Refine/split the kernel along the new
small regions and fix f −ε or f +

ε , write fε
4 Since cost is 0 everywhere, the

resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by fε)

5 Those can be solved using standard
technics based on attractors: small
regions are sufficient, and the local
optimal cost (for output fε) is constant
within a small region

; We have computed ε-approximations of
the optimal cost, which are constant
within small regions. Corresponding
strategies can be inferred
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Conclusion

Summary of the talk

Quick overview of results concerning the optimal reachability
problem in weighted timed games

New insight into the value problem for this model:

Undecidability of this problem
Approximability of the optimal cost
(under some conditions)

Future work

Improve the approximation scheme (2EXP(|G|) ·
(

1/ε
)|X |

), and

implement it

Extend to the whole class of weighted timed games, or understand
why it is not possible

Assume stochastic uncertainty
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