On the optimal reachability problem in weighted timed automata and games

Patricia Bouyer-Decitre

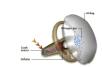
LSV, CNRS & ENS Cachan, France

Time-dependent systems

• We are interested in timed systems

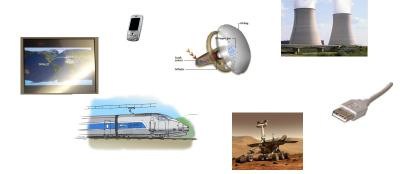
Time-dependent systems

• We are interested in timed systems



Time-dependent systems

• We are interested in timed systems



• ... and in their analysis and control

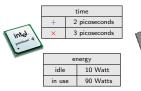
Timed automata Weighted timed automata Timed games Weighted timed games Tool TiAMo Conclusion

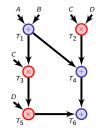
An example: The task graph scheduling problem

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

$$P_1$$
 (fast):

$$P_2$$
 (slow):



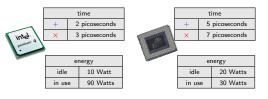


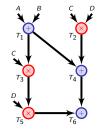
[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata (Communication of the ACM).

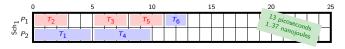
An example: The task graph scheduling problem

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:


```
P_2 (slow):
```



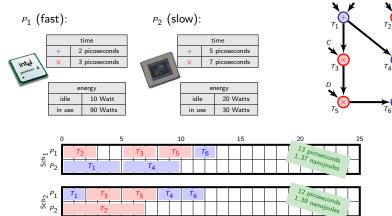




[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata (Communication of the ACM).

An example: The task graph scheduling problem

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:



[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata (Communication of the ACM).

An example: The task graph scheduling problem

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

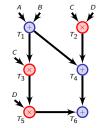
energy 10 Watt

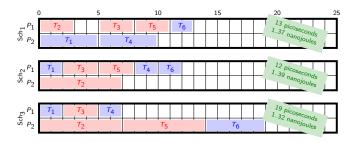
90 Watts

idle

in use

-					
	time				
	+	5	picoseconds		
	×	7	picoseconds		
(Case)	1				
	energy				
	idle		20 Watts		
	in use		30 Watts		





[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata (Communication of the ACM).

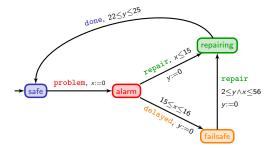
Outline

Timed automata

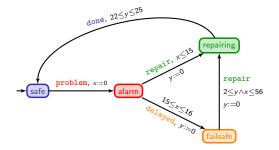
- 2 Weighted timed automata
- 3 Timed games
- Weighted timed games
- 5 Tool TiAMo

6 Conclusion

The model of timed automata



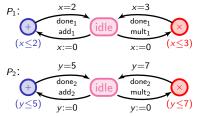
The model of timed automata

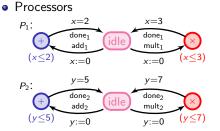


	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
x	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

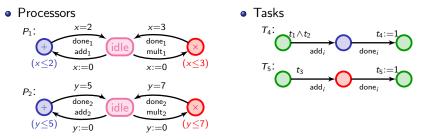
failsafe	$\xrightarrow{2.3}$	failsafe	$\xrightarrow{\text{repair}}$	repairing	$\xrightarrow{22.1}$	repairing	$\xrightarrow{\text{done}}$	safe	
 15.6		17.9		17.9		40		40	
0		2.3		0		22.1		22.1	

Processors

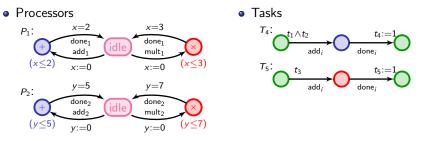




Tasks

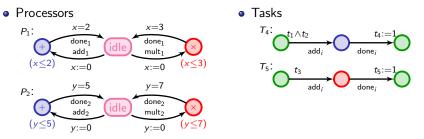


 \sim build the synchronized product of all these automata $(P_1 \parallel P_2) \parallel_s (T_1 \parallel T_2 \parallel \cdots \parallel T_6)$



 \sim build the synchronized product of all these automata $(P_1 \parallel P_2) \parallel_s (T_1 \parallel T_2 \parallel \cdots \parallel T_6)$

A schedule: a path in the global system which reaches $t_1 \wedge \cdots \wedge t_6$



 \rightsquigarrow build the synchronized product of all these automata

 $(P_1 \parallel P_2) \parallel_s (T_1 \parallel T_2 \parallel \cdots \parallel T_6)$

A schedule: a path in the global system which reaches $t_1 \wedge \cdots \wedge t_6$

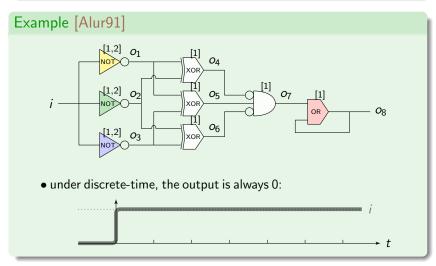
Questions one can ask

- Can the computation be made in no more than 10 time units?
- Is there a scheduling along which no processor is ever idle?

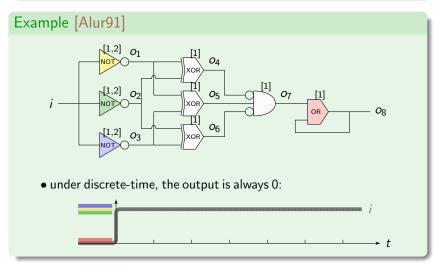
o . . .

...because computers are digital!

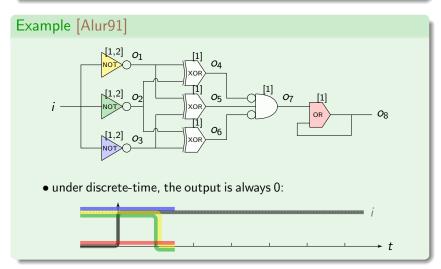
...because computers are digital!



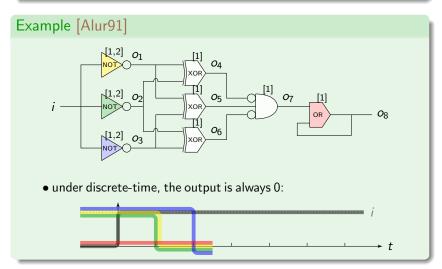
...because computers are digital!



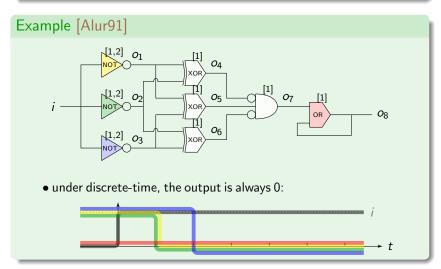
...because computers are digital!



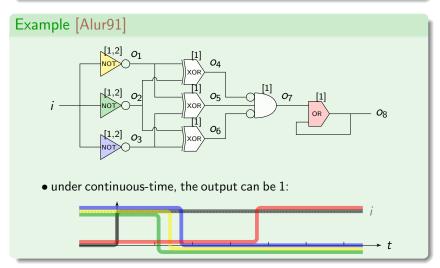
...because computers are digital!



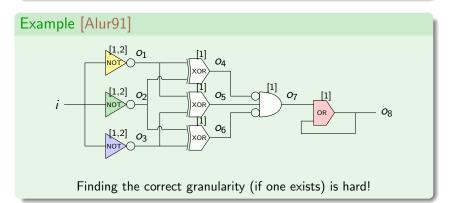
...because computers are digital!

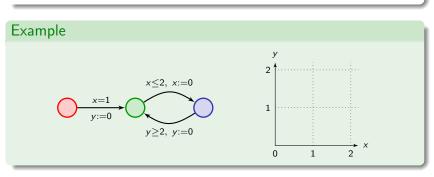


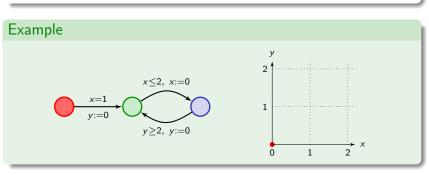
...because computers are digital!

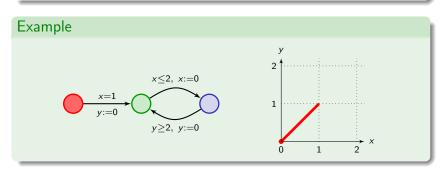


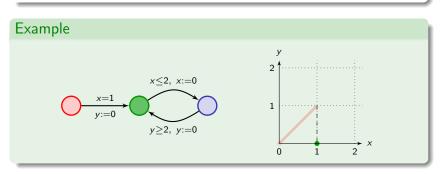
...because computers are digital!

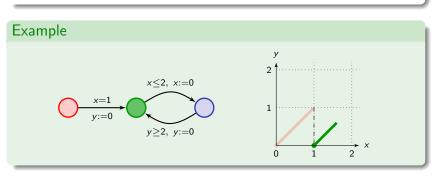


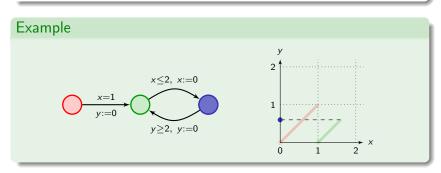


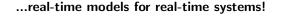


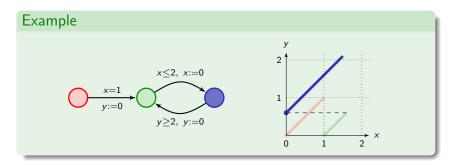


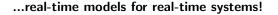


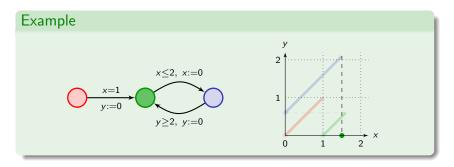


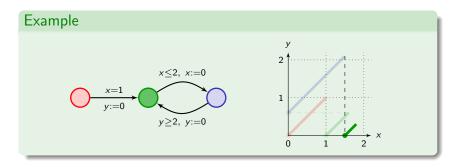


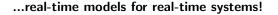


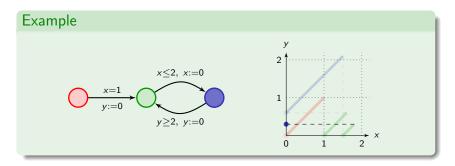




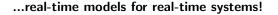


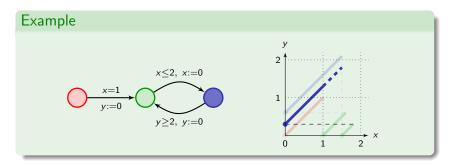






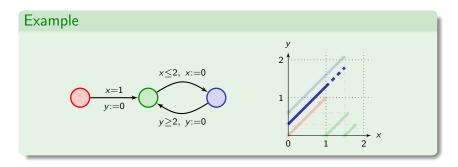
Continuous-time semantics





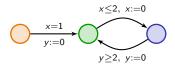
Continuous-time semantics

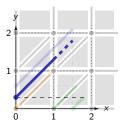
... real-time models for real-time systems!



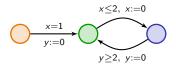
We will focus on the continuous-time semantics

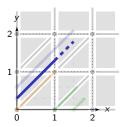
Analyzing timed automata





Analyzing timed automata



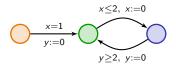


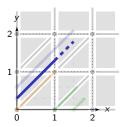
Theorem [AD94]

Reachability in timed automata is decidable (as well as many other important properties). It is PSPACE-complete.

• Technical tool: region abstraction

Analyzing timed automata



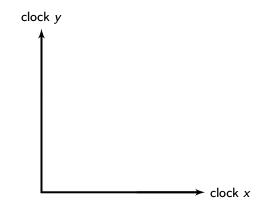


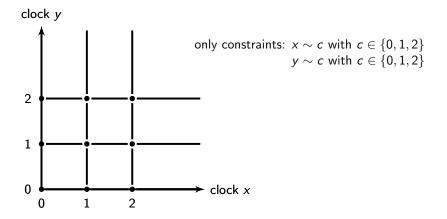
Theorem [AD94]

Reachability in timed automata is decidable (as well as many other important properties). It is PSPACE-complete.

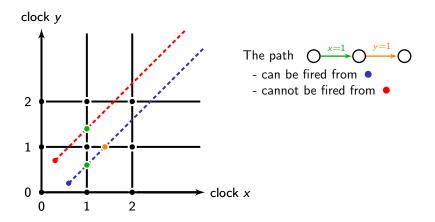
- Technical tool: region abstraction
- Efficient symbolic technics based on zones, implemented in tools

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).

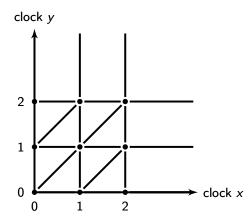




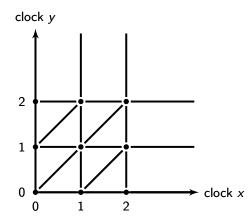
• "compatibility" between regions and constraints



- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing



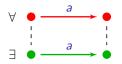
- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

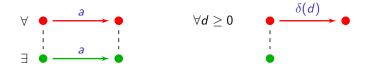


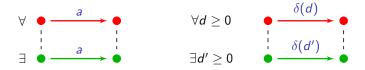
- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

 \rightsquigarrow This is a finite time-abstract bisimulation!

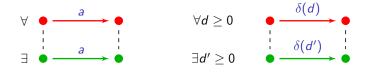






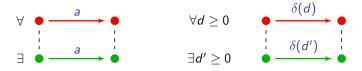


This is a relation between • and • such that:



... and vice-versa (swap • and •).

This is a relation between • and • such that:

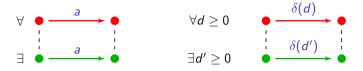


... and vice-versa (swap • and •).

Consequence

$$\forall \quad (\ell_1, v_1) \xrightarrow{d_1, a_1} (\ell_2, v_2) \xrightarrow{d_2, a_2} (\ell_3, v_3) \xrightarrow{d_3, a_3} \cdots$$

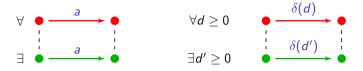
This is a relation between • and • such that:



... and vice-versa (swap • and •).

Consequence

This is a relation between • and • such that:

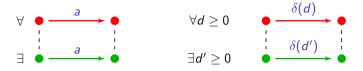


... and vice-versa (swap • and •).

Consequence

 $\forall v_1' \in R_1$

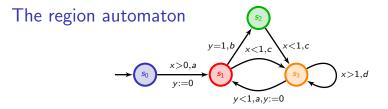
This is a relation between • and • such that:

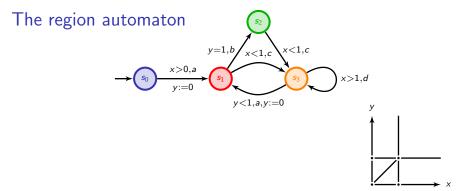


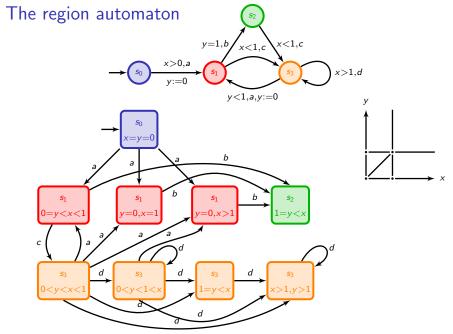
... and vice-versa (swap • and •).

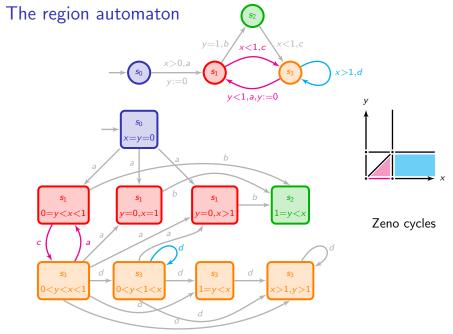
Consequence

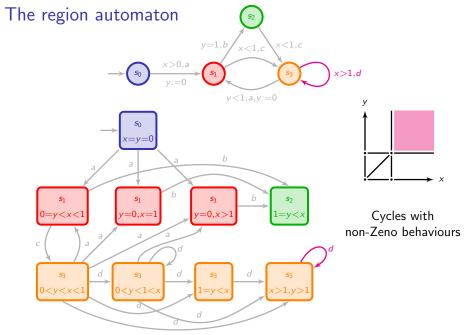
۴











- the region automaton is never computed
- instead, symbolic computations are performed

- the region automaton is never computed
- instead, symbolic computations are performed

What do we need?

• Need of a symbolic representation:

- the region automaton is never computed
- instead, symbolic computations are performed

What do we need?

• Need of a symbolic representation:

Finite representation of infinite sets of configurations

• in the plane, a line represented by two points.

- the region automaton is never computed
- instead, symbolic computations are performed

What do we need?

• Need of a symbolic representation:

- in the plane, a line represented by two points.
- set of words aa, aaaa, aaaaaa...
 represented by a rational expression aa(aa)*

- the region automaton is never computed
- instead, symbolic computations are performed

What do we need?

• Need of a symbolic representation:

- in the plane, a line represented by two points.
- set of words aa, aaaa, aaaaaa...
 represented by a rational expression aa(aa)*
- set of integers, represented using semi-linear sets

- the region automaton is never computed
- instead, symbolic computations are performed

What do we need?

• Need of a symbolic representation:

- in the plane, a line represented by two points.
- set of words aa, aaaa, aaaaaa...
 represented by a rational expression aa(aa)*
- set of integers, represented using semi-linear sets
- sets of constraints, polyhedra, zones, regions

- the region automaton is never computed
- instead, symbolic computations are performed

What do we need?

• Need of a symbolic representation:

- in the plane, a line represented by two points.
- set of words aa, aaaa, aaaaaa...
 represented by a rational expression aa(aa)*
- set of integers, represented using semi-linear sets
- sets of constraints, polyhedra, zones, regions
- BDDs, DBMs (see later), CDDs, etc...

- the region automaton is never computed
- instead, symbolic computations are performed

What do we need?

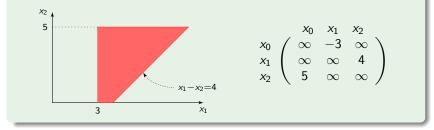
• Need of a symbolic representation:

- in the plane, a line represented by two points.
- set of words aa, aaaa, aaaaaa...
 represented by a rational expression aa(aa)*
- set of integers, represented using semi-linear sets
- sets of constraints, polyhedra, zones, regions
- BDDs, DBMs (see later), CDDs, etc...
- Need of abstractions, heuristics, etc...

Zones: A symbolic representation for timed systems

Example of a zone and its DBM representation

$$Z = (x_1 \ge 3) \land (x_2 \le 5) \land (x_1 - x_2 \le 4)$$



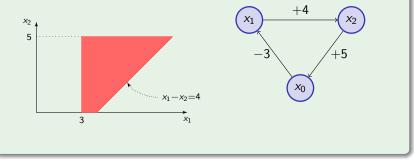
DBM: Difference Bound Matrice [BM83,Dill89]

[BM83] Berthomieu, Menasche. An enumerative approach for analyzing time Petri nets World Comupter Congress. [Dill89] Dill. Timing assumptions and verification of finite-state concurrent systems (Automatic Verification Methods for Finite State Systems).

Zones: A symbolic representation for timed systems

Example of a zone and its DBM representation

$$Z \;=\; (x_1 \geq 3) \; \land \; (x_2 \leq 5) \; \land \; (x_1 - x_2 \leq 4)$$

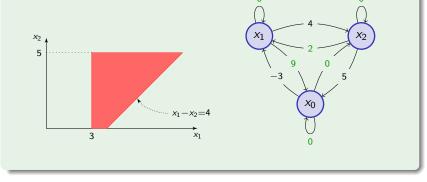


DBM: Difference Bound Matrice [BM83,Dill89]

[BM83] Berthomieu, Menasche. An enumerative approach for analyzing time Petri nets World Comupter Congress. [Dill89] Dill. Timing assumptions and verification of finite-state concurrent systems (Automatic Verification Methods for Finite State Systems).

Zones: A symbolic representation for timed systems

 $Z = (x_1 \ge 3) \land (x_2 \le 5) \land (x_1 - x_2 \le 4)$



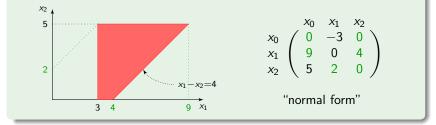
DBM: Difference Bound Matrice [BM83,Dill89]

[BM83] Berthomieu, Menasche. An enumerative approach for analyzing time Petri nets World Comupter Congress. [Dill89] Dill. Timing assumptions and verification of finite-state concurrent systems (Automatic Verification Methods for Finite State Systems).

Zones: A symbolic representation for timed systems

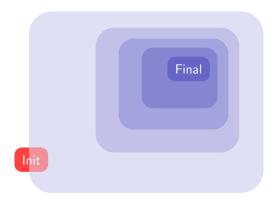
Example of a zone and its DBM representation

$$Z = (x_1 \ge 3) \land (x_2 \le 5) \land (x_1 - x_2 \le 4)$$



DBM: Difference Bound Matrice [BM83,Dill89]

[BM83] Berthomieu, Menasche. An enumerative approach for analyzing time Petri nets World Comupter Congress. [Dill89] Dill. Timing assumptions and verification of finite-state concurrent systems (Automatic Verification Methods for Finite State Systems).



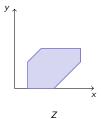
$$(p, a, Y) := 0$$

$$(p') \to (p')$$

$$(f' \leftarrow 0]^{-1}(Z \cap (Y = 0)) \cap g$$

$$Z$$

$$\begin{array}{c} \ell & g, a, Y := 0 \\ \hline & \ell' \\ \hline & & f' \\ \hline & & f' \\ \hline & & f' \\ \hline & & & f' \\ \hline & & & f' \\ \hline & & & & f' \\ \hline & & & & f' \\ \hline & & & & & f' \\ \hline & & & & & f' \\ \hline & & & & & & f' \\ \hline & & & & & & f' \\ \hline & & & & & & f' \\ \hline & & & & & & f' \\ \hline & & & & & & f' \\ \hline & & & & & & f' \\ \hline & & & & & & & f' \\ \hline & & & & & & & f' \\ \hline & & & & & & & f' \\ \hline & & & & & & & f' \\ \hline & & & & & & & f' \\ \hline & & & & & & & f' \\ \hline & & & & & & & f' \\ \hline & & & & & & & f' \\ \hline & & & & & & & f' \\ \hline & & & & & & & f' \\ \hline & & & & & & & f' \\ \hline & & & & & & & f' \\ \hline & & & & & & & f' \\ \hline & & & & & & & f' \\ \hline & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & f' \\ \hline & & & & & & & & f' \\ \hline & & & & & & & & f' \\ \hline & & & & & & & & f' \\ \hline & & & & & & & & f' \\ \hline & & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & & f' \\ \hline & & & & & & & & & & f' \\ \hline & & & & & & & & & & & & & & & f' \\ \hline \end{array} \end{array} \end{array}$$

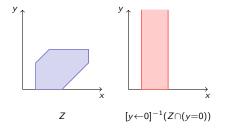


$$(p, a, Y) := 0$$

$$(p')$$

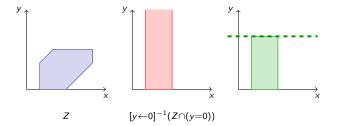
$$(Y \leftarrow 0]^{-1}(Z \cap (Y = 0)) \cap g$$

$$Z$$

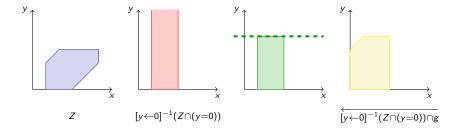


$$(\ell) \xrightarrow{g, a, Y := 0} \ell'$$

$$(f \to 0)^{-1} (Z \cap (Y = 0)) \cap g \qquad Z$$



$$\overleftarrow{[Y \leftarrow 0]^{-1}(Z \cap (Y = 0)) \cap g}$$



\bigcirc All previous operations can be computed using DBMs!

• intersection: take the minimum of the two constraints

- intersection: take the minimum of the two constraints
- inverse reset w.r.t y: relax constraints on y (on a DBM on normal form)

- ☺ All previous operations can be computed using DBMs!
 - intersection: take the minimum of the two constraints
 - inverse reset w.r.t y: relax constraints on y (on a DBM on normal form)
 - past: relax lower bounds (on a DBM on normal form)

- ☺ All previous operations can be computed using DBMs!
 - intersection: take the minimum of the two constraints
 - inverse reset w.r.t y: relax constraints on y (on a DBM on normal form)
 - past: relax lower bounds (on a DBM on normal form)
 - emptiness: check whether there is a negative cycle

- © All previous operations can be computed using DBMs!
 - intersection: take the minimum of the two constraints
 - inverse reset w.r.t y: relax constraints on y (on a DBM on normal form)
 - past: relax lower bounds (on a DBM on normal form)
 - emptiness: check whether there is a negative cycle

The backward computation terminates

Because of the bisimulation property of the region abstraction:

"Every set of valuations which is computed along the backward computation is a finite union of regions"

- © All previous operations can be computed using DBMs!
 - intersection: take the minimum of the two constraints
 - inverse reset w.r.t y: relax constraints on y (on a DBM on normal form)
 - past: relax lower bounds (on a DBM on normal form)
 - emptiness: check whether there is a negative cycle

The backward computation terminates

Because of the bisimulation property of the region abstraction:

"Every set of valuations which is computed along the backward computation is a finite union of regions"

Let R be a region. Assume:

• $v \in \overleftarrow{R}$ (for ex. $v + t \in R$)

•
$$v' \equiv_{reg.} v$$

There exists t' s.t. $v' + t' \equiv_{reg.} v + t$, which implies that $v' + t' \in R$ and thus $v' \in \overleftarrow{R}$.

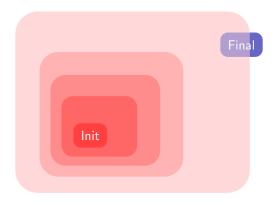
- © All previous operations can be computed using DBMs!
 - intersection: take the minimum of the two constraints
 - inverse reset w.r.t y: relax constraints on y (on a DBM on normal form)
 - past: relax lower bounds (on a DBM on normal form)
 - emptiness: check whether there is a negative cycle

The backward computation terminates

Because of the bisimulation property of the region abstraction:

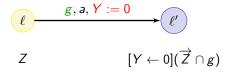
"Every set of valuations which is computed along the backward computation is a finite union of regions"

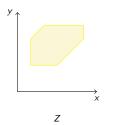
However the backward computation is not appropriate to manipulate other variables (think for instance of assignment i := j.k + l)

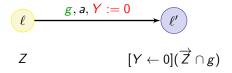


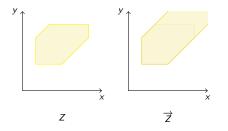
$$\ell \xrightarrow{g, a, Y := 0} \ell'$$

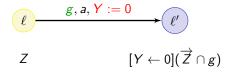
$$Z \qquad [Y \leftarrow 0](\overrightarrow{Z} \cap g)$$

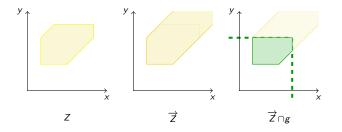


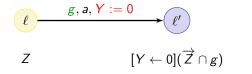


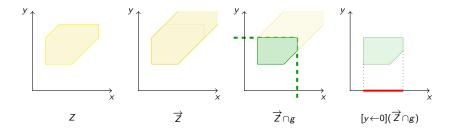






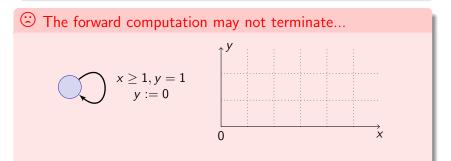




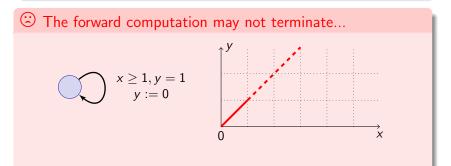


- intersection: take the minimum of the two constraints
- reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
- future: relax upper bounds (on a DBM on normal form)
- emptiness: check whether there is a negative cycle

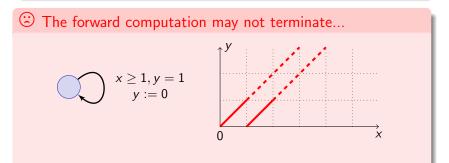
- intersection: take the minimum of the two constraints
- reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
- future: relax upper bounds (on a DBM on normal form)
- emptiness: check whether there is a negative cycle



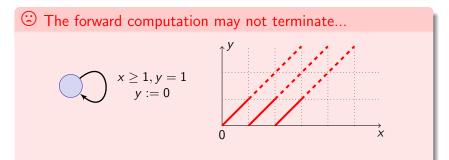
- intersection: take the minimum of the two constraints
- reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
- future: relax upper bounds (on a DBM on normal form)
- emptiness: check whether there is a negative cycle



- intersection: take the minimum of the two constraints
- reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
- future: relax upper bounds (on a DBM on normal form)
- emptiness: check whether there is a negative cycle



- intersection: take the minimum of the two constraints
- reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
- future: relax upper bounds (on a DBM on normal form)
- emptiness: check whether there is a negative cycle

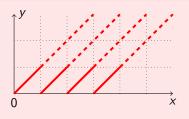


© All previous operations can be computed using DBMs!

- intersection: take the minimum of the two constraints
- reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
- future: relax upper bounds (on a DBM on normal form)
- emptiness: check whether there is a negative cycle

[©] The forward computation may not terminate...

$$x \ge 1, y = 1$$
$$y := 0$$

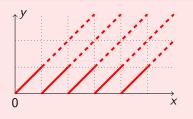


© All previous operations can be computed using DBMs!

- intersection: take the minimum of the two constraints
- reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
- future: relax upper bounds (on a DBM on normal form)
- emptiness: check whether there is a negative cycle

☺ The forward computation may not terminate...

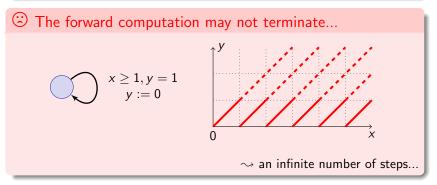
$$x \ge 1, y = 1$$
$$y := 0$$



Note on the forward analysis (cont.)

© All previous operations can be computed using DBMs!

- intersection: take the minimum of the two constraints
- reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
- future: relax upper bounds (on a DBM on normal form)
- emptiness: check whether there is a negative cycle



Forward reachability algorithm

Parameters: Abstraction abs and inclusion test \preceq

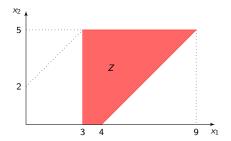
Forward reachability algorithm

Parameters: Abstraction abs and inclusion test \preceq

- Passed $\leftarrow \emptyset$ and Waiting $\leftarrow \{(\ell_0, Z_0)\}$
- While Waiting $eq \emptyset$
 - select (ℓ, Z) from Waiting
 - If ℓ is final, then return "Reachable!"
 - If forall $(\ell, Z') \in Passed$, $Z \not\preceq Z'$, then add $abs(\ell, Z)$ to Passed and add Post $(abs(\ell, Z))$ to Waiting
- Return "Not reachable!"

Standard solution: the extrapolation operator

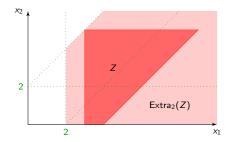
Extra₂(Z): "the smallest zone containing Z that is defined only with constants no more than 2"



$$\left(\begin{array}{rrrr} 0 & -3 & 0 \\ 9 & 0 & 4 \\ 5 & 2 & 0 \end{array}\right)$$

Standard solution: the extrapolation operator

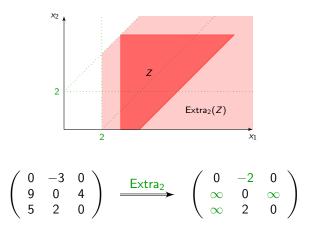
Extra₂(Z): "the smallest zone containing Z that is defined only with constants no more than 2"



$$\left(\begin{array}{ccc} 0 & -3 & 0 \\ 9 & 0 & 4 \\ 5 & 2 & 0 \end{array}\right) \xrightarrow{\mathsf{Extra}_2} \left(\begin{array}{ccc} 0 & -2 & 0 \\ \infty & 0 & \infty \\ \infty & 2 & 0 \end{array}\right)$$

Standard solution: the extrapolation operator

 $Extra_2(Z)$: "the smallest zone containing Z that is defined only with constants no more than 2"



 \rightsquigarrow The extrapolation operator ensures termination of the computation!

The extrapolation: correctness

Theorem [Bou04]

The forward algorithm with $abs = Extra_M$ and $\leq = \subseteq$ is correct for timed automata.

[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).

The extrapolation: correctness

Theorem [Bou04]

The forward algorithm with $abs = Extra_M$ and $\leq = \subseteq$ is correct for timed automata.

- the extrapolation operator can be made coarser:
 - use local extrapolation constants [BBFL03];
 - distinguish between lower- and upper-bounded contraints

[BBLP04,BBLP06]

- use non-convex (but optimal!) abstractions [HSW12]
- compute constants dynamically [HSW13]

[[]Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).

[[]BBFL03] Behrmann, Bouyer, Fleury, Larsen. Static Guard Analysis in Timed Automata Verification (TACAS'03).

[[]BBLP04] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone Based Abstractions of Timed Automata (TACAS'04).

[[]BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International Journal on Software Tools for Technology Transfer).

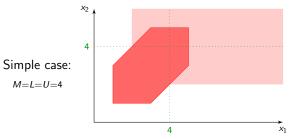
[[]HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS'12).

[[]HSW13] Herbreteau, Srivathsan, Walukiewicz. Lazy abstractions for timed automata (CAV'13).

Develop an inclusion test \sqsubseteq_{abs} such that: $Z \sqsubseteq_{abs} Z'$ iff $Z \subseteq abs(Z')$

• Advantage: only store zones (without abstractions)!

- Advantage: only store zones (without abstractions)!
- abs_{LU}: (non-convex) abstraction w.r.t. LU-constraints



- Advantage: only store zones (without abstractions)!
- abs_{LU}: (non-convex) abstraction w.r.t. LU-constraints
- Note: Optimal abstraction for LU-constrained automata!

- Advantage: only store zones (without abstractions)!
- abs_{LU}: (non-convex) abstraction w.r.t. LU-constraints
- Note: Optimal abstraction for LU-constrained automata!
- Result: $Z \sqsubseteq_{abs_{LU}} Z'$ can be computed efficiently

Develop an inclusion test \sqsubseteq_{abs} such that: $Z \sqsubseteq_{abs} Z'$ iff $Z \subseteq abs(Z')$

- Advantage: only store zones (without abstractions)!
- abs_{LU}: (non-convex) abstraction w.r.t. LU-constraints
- Note: Optimal abstraction for LU-constrained automata!
- Result: $Z \sqsubseteq_{abs_{LU}} Z'$ can be computed efficiently

Theorem

The forward algorithm with abs = Id and $\leq = \Box_{abs_{LU}}$ is correct for timed automata.

• Uppaal, developed in Aalborg (Denmark) and Uppsala (Sweden) since 1995

http://www.uppaal.org

• Uppaal, developed in Aalborg (Denmark) and Uppsala (Sweden) since 1995

```
http://www.uppaal.org
```

 Kronos, developed in Grenoble (France), no more maintained http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/

• Uppaal, developed in Aalborg (Denmark) and Uppsala (Sweden) since 1995

```
http://www.uppaal.org
```

- Kronos, developed in Grenoble (France), no more maintained http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/
- Many other prototypes everywhere on earth...

• Uppaal, developed in Aalborg (Denmark) and Uppsala (Sweden) since 1995

```
http://www.uppaal.org
```

- Kronos, developed in Grenoble (France), no more maintained http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/
- Many other prototypes everywhere on earth...
- Our new tool TiAMo, developed by Maximilien Colange (LSV) https://git.lsv.fr/colange/tiamo

• Uppaal, developed in Aalborg (Denmark) and Uppsala (Sweden) since 1995

```
http://www.uppaal.org
```

- Kronos, developed in Grenoble (France), no more maintained http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/
- Many other prototypes everywhere on earth...
- Our new tool TiAMo, developed by Maximilien Colange (LSV) https://git.lsv.fr/colange/tiamo

 \rightsquigarrow see description and demo later

Outline

Timed automata

- 2 Weighted timed automata
- 3 Timed games
- Weighted timed games

5 Tool TiAMo

6 Conclusion

• System resources might be relevant and even crucial information

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,

- price to pay,
- bandwidth,

• ...

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,

- price to pay,
- bandwidth,

• ...

 \rightsquigarrow timed automata are not powerful enough!

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,

- price to pay,
- bandwidth,

• ...

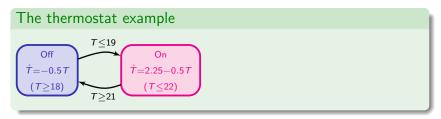
 \rightsquigarrow timed automata are not powerful enough!

- A possible solution: use hybrid automata
 - a discrete control (the mode of the system)
 - $+ \quad$ continuous evolution of the variables within a mode

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,

• ...

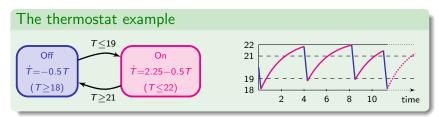
- price to pay,
- bandwidth,
- → timed automata are not powerful enough!
- A possible solution: use hybrid automata

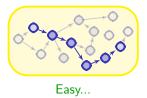


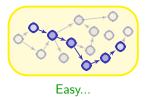
- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,

• ...

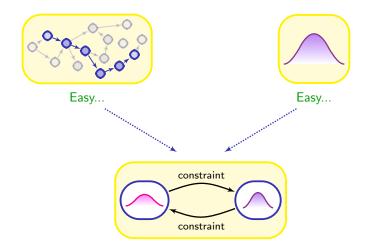
- price to pay,
- bandwidth,
- \sim timed automata are not powerful enough!
- A possible solution: use hybrid automata



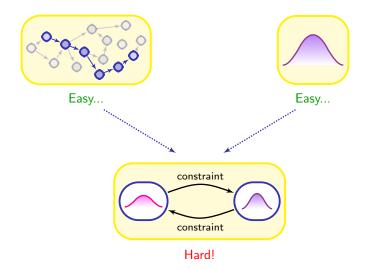




Ok... but?



Ok... but?



- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,

- price to pay,
- bandwidth,

- ...
- \rightsquigarrow timed automata are not powerful enough!
- A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is **undecidable** in hybrid automata. Even for the simplest, the so-called stopwatch automata (clocks can be stopped).

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,

- price to pay,
- bandwidth,

- ...
- \rightsquigarrow timed automata are not powerful enough!
- A possible solution: use hybrid automata

Theorem [HKPV95]

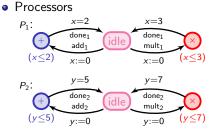
The reachability problem is **undecidable** in hybrid automata. Even for the simplest, the so-called stopwatch automata (clocks can be stopped).

 An alternative: weighted/priced timed automata [ALP01,BFH+01]

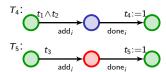
 hybrid variables do not constrain the system hybrid variables are observer variables

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95). [ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01). [BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01). 29/80

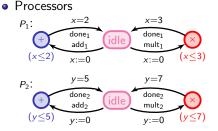
Modelling the task graph scheduling problem



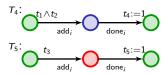
Tasks



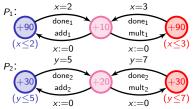
Modelling the task graph scheduling problem



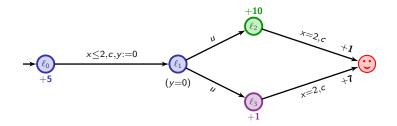
• Tasks

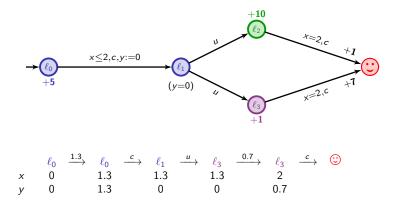


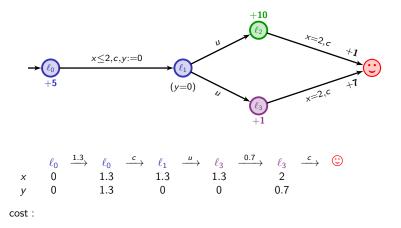
Modelling energy

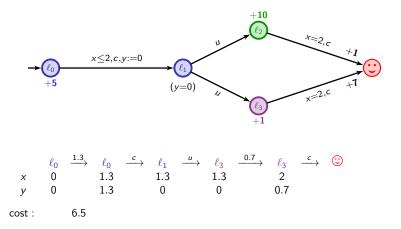


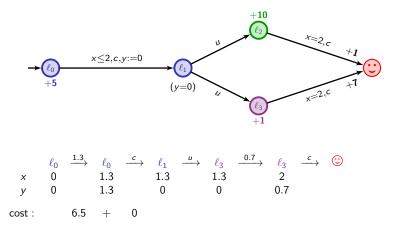
A good schedule is a path in the product automaton with a low cost

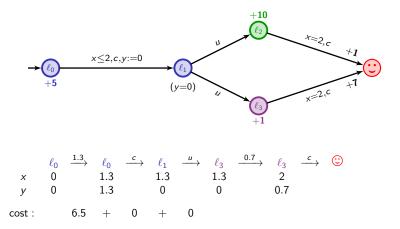


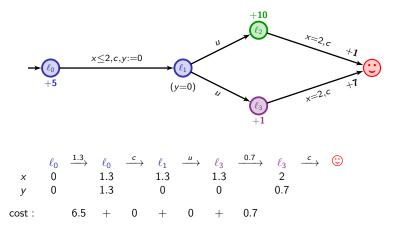


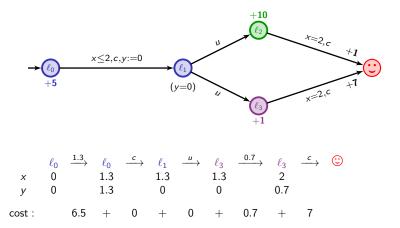


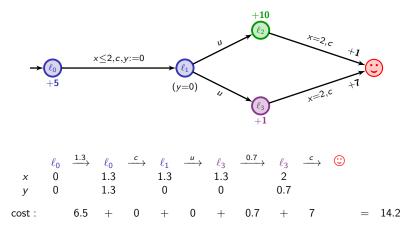


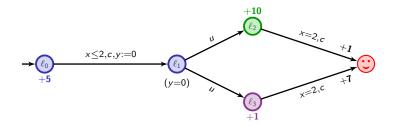




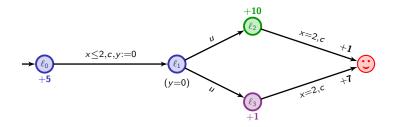






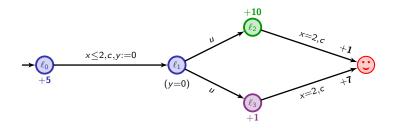


Question: what is the optimal cost for reaching \bigcirc ?



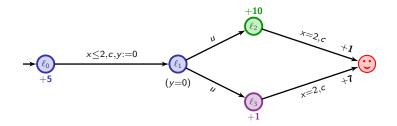
Question: what is the optimal cost for reaching \bigcirc ?

5t + 10(2 - t) + 1



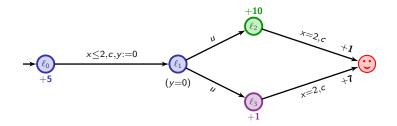
Question: what is the optimal cost for reaching \bigcirc ?

5t + 10(2 - t) + 1, 5t + (2 - t) + 7



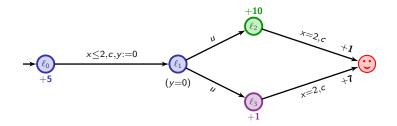
Question: what is the optimal cost for reaching \bigcirc ?

min (5t + 10(2 - t) + 1 , 5t + (2 - t) + 7)



Question: what is the optimal cost for reaching \bigcirc ?

$$\inf_{0 \le t \le 2} \min \left(5t + 10(2-t) + 1 , 5t + (2-t) + 7 \right) = 9$$



Question: what is the optimal cost for reaching \bigcirc ?

$$\inf_{0 \le t \le 2} \min \left(5t + 10(2-t) + 1 , 5t + (2-t) + 7 \right) = 9$$

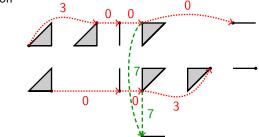
 \sim strategy: leave immediately ℓ_0 , go to ℓ_3 , and wait there 2 t.u.

Optimal-cost reachability

Theorem [ALP01,BFH+01,BBBR07]

In weighted timed automata, the optimal cost is an integer and can be computed in PSPACE.

• Technical tool: a refinement of the regions, the corner-point abstraction



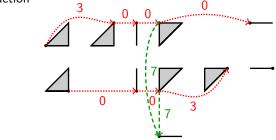
[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (*HSCC'01*). [BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (*HSCC'01*). [BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem (*Formal Methods in System Design*).

Optimal-cost reachability

Theorem [ALP01,BFH+01,BBBR07]

In weighted timed automata, the optimal cost is an integer and can be computed in PSPACE.

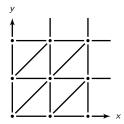
• Technical tool: a refinement of the regions, the corner-point abstraction

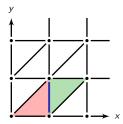


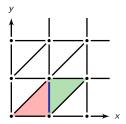
• Symbolic technics based on priced zones

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).

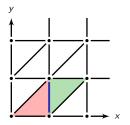
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01). [BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem (Formal Methods in System Design).



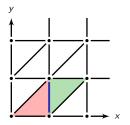




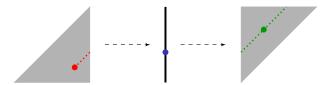
Abstract time successors:

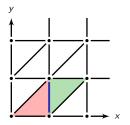


Abstract time successors:

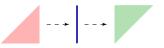


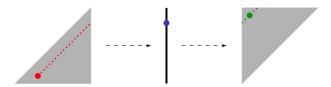
Abstract time successors:

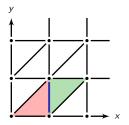




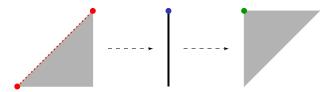
Abstract time successors:

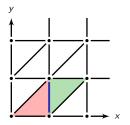




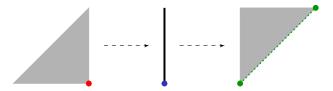


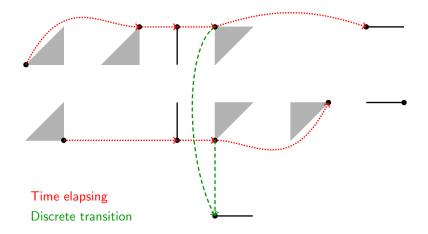
Abstract time successors:

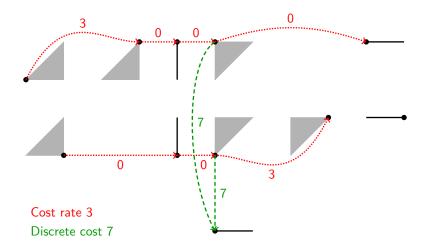




Abstract time successors:



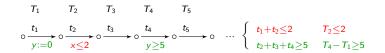




$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \cdots$$

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \cdots \begin{cases} t_1 + t_2 \le 2 \\ t_1 + t_2 \le 2 \end{cases}$$

$$\circ \underbrace{t_1}_{y:=0} \circ \underbrace{t_2}_{\mathbf{x} \le 2} \circ \underbrace{t_3}_{\mathbf{y} \ge 5} \circ \underbrace{t_5}_{y \ge 5} \circ \cdots \begin{cases} t_1 + t_2 \le 2\\ t_2 + t_3 + t_4 \ge 5 \end{cases}$$



Optimal reachability as a linear programming problem

$$T_1 \qquad T_2 \qquad T_3 \qquad T_4 \qquad T_5$$

$$\circ \underbrace{t_1}_{y:=0} \circ \underbrace{t_2}_{x \le 2} \circ \underbrace{t_3}_{y \ge 5} \circ \underbrace{t_4}_{y \ge 5} \circ \underbrace{t_5}_{y \ge 5} \circ \cdots \begin{cases} t_1 + t_2 \le 2 \qquad T_2 \le 2 \\ t_2 + t_3 + t_4 \ge 5 \qquad T_4 - T_1 \ge 5 \end{cases}$$

Lemma

Let Z be a bounded zone and f be a function

$$f:(T_1,...,T_n)\mapsto \sum_{i=1}^n c_i T_i + c$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

Optimal reachability as a linear programming problem

$$T_1 \qquad T_2 \qquad T_3 \qquad T_4 \qquad T_5$$

$$\circ \underbrace{t_1}_{y:=0} \circ \underbrace{t_2}_{x \le 2} \circ \underbrace{t_3}_{y \ge 5} \circ \underbrace{t_4}_{y \ge 5} \circ \underbrace{t_5}_{y \ge 5} \circ \cdots \begin{cases} t_1 + t_2 \le 2 \qquad T_2 \le 2 \\ t_2 + t_3 + t_4 \ge 5 \qquad T_4 - T_1 \ge 5 \end{cases}$$

Lemma

Let Z be a bounded zone and f be a function

$$f:(T_1,...,T_n)\mapsto \sum_{i=1}^n c_i T_i + c$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

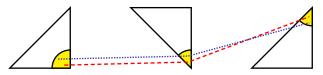
 \rightsquigarrow for every finite path π in $\mathcal A,$ there exists a path Π in $\mathcal A_{\rm cp}$ such that

 $cost(\Pi) \leq cost(\pi)$

[Π is a "corner-point projection" of π]

From discrete to timed behaviours

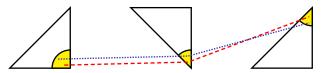
Approximation of abstract paths:



For any path Π of $\mathcal{A}_{\mathsf{cp}}$,

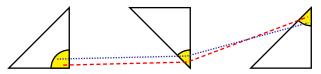
From discrete to timed behaviours

Approximation of abstract paths:



For any path Π of $\mathcal{A}_{\sf cp}$, for any $\varepsilon > 0,$

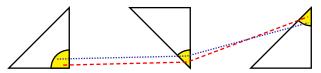
Approximation of abstract paths:



For any path Π of \mathcal{A}_{cp} , for any $\varepsilon>0$, there exists a path π_{ε} of \mathcal{A} s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$

Approximation of abstract paths:



For any path Π of \mathcal{A}_{cp} , for any $\varepsilon>0$, there exists a path π_{ε} of $\mathcal A$ s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$

For every $\eta > 0$, there exists $\varepsilon > 0$ s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon \Rightarrow |\mathsf{cost}(\Pi) - \mathsf{cost}(\pi_{\varepsilon})| < \eta$$

Use of the corner-point abstraction

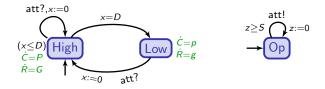
It is a very interesting abstraction, that can be used in several other contexts:

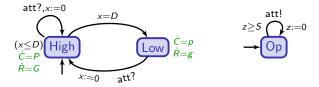
- for mean-cost optimization
- for discounted-cost optimization
- for all concavely-priced timed automata
- for deciding frequency objectives

[BBL04,BBL08] [FL08] [JT08] [BBBS11,Sta12]

• . . .

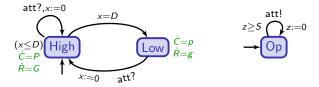
[BBL08] Bouyer, Brinksma, Larsen. Staying Alive As Cheaply As Possible (HSCC'04).
[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).
[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).
[JT08] Judziński, Trivedi. Concavely-priced timed automata (FORMATS'08).
[BBS511] Bertrand, Bouyer, Brihaye, Stainer. Emptiness and universality problems in timed automata with positive frequency (ICALP'11).
[Sta12] Stainer. Frequencies in forgetful timed automata (FORMATS'12).



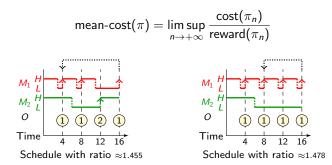


 \rightsquigarrow compute optimal infinite schedules that minimize

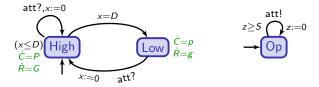
mean-cost
$$(\pi) = \limsup_{n \to +\infty} \frac{\operatorname{cost}(\pi_n)}{\operatorname{reward}(\pi_n)}$$



 \rightsquigarrow compute optimal infinite schedules that minimize



[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).



 \rightsquigarrow compute optimal infinite schedules that minimize

$$\operatorname{mean-cost}(\pi) = \limsup_{n \to +\infty} \frac{\operatorname{cost}(\pi_n)}{\operatorname{reward}(\pi_n)}$$

Theorem [BBL08]

In weighted timed automata, the optimal mean-cost can be compute in PSPACE.

 \rightsquigarrow the corner-point abstraction can be used

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

 \sim for every finite path π in A, there exists a path Π in A_{cp} s.t. mean-cost(Π) ≤ mean-cost(π)

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

 \sim for every finite path π in A, there exists a path Π in A_{cp} s.t. mean-cost(Π) ≤ mean-cost(π)

• Infinite behaviours: decompose each sufficiently long projection into cycles:

The (acyclic) linear part will be negligible!

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

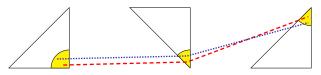
 \sim → for every finite path π in A, there exists a path Π in A_{cp} s.t. mean-cost(Π) ≤ mean-cost(π)

• Infinite behaviours: decompose each sufficiently long projection into cycles:

The (acyclic) linear part will be negligible!

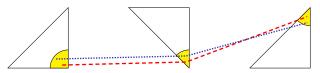
 \rightsquigarrow the optimal cycle of $\mathcal{A}_{\sf cp}$ is better than any infinite path of $\mathcal{A}!$

Approximation of abstract paths:



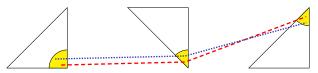
For any path Π of $\mathcal{A}_{\mathsf{cp}}$,

Approximation of abstract paths:



For any path Π of $\mathcal{A}_{\mathsf{cp}}$, for any $\varepsilon > \mathsf{0},$

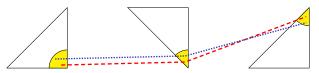
Approximation of abstract paths:



For any path Π of \mathcal{A}_{cp} , for any $\varepsilon > 0$, there exists a path π_{ε} of \mathcal{A} s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$

Approximation of abstract paths:



For any path Π of $\mathcal{A}_{\rm cp}$, for any $\varepsilon>$ 0, there exists a path π_ε of $\mathcal A$ s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$

For every $\eta > 0$, there exists $\varepsilon > 0$ s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon \Rightarrow |\mathsf{mean-cost}(\Pi) - \mathsf{mean-cost}(\pi_{\varepsilon})| < \eta$$

Going further 2: concavely-priced cost functions

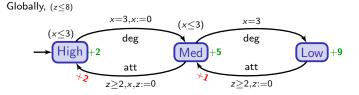
 \rightsquigarrow A general abstract framework for quantitative timed systems

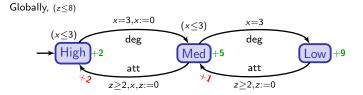
Theorem [JT08]

In concavely-priced timed automata, optimal cost is computable, if we restrict to quasi-concave cost functions. For the following cost functions, the (decision) problem is even PSPACE-complete:

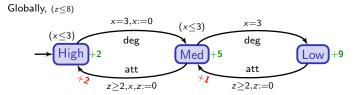
- optimal-time and optimal-cost reachability;
- optimal discrete discounted cost;
- optimal mean-cost.

 \rightsquigarrow the corner-point abstraction can be used





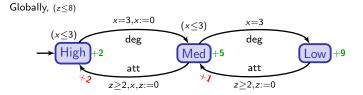
 \rightsquigarrow compute optimal infinite schedules that minimize discounted cost over time



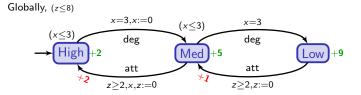
 \rightsquigarrow compute optimal infinite schedules that minimize

discounted-cost_{$$\lambda$$}(π) = $\sum_{n\geq 0} \lambda^{T_n} \int_{t=0}^{\tau_{n+1}} \lambda^t \operatorname{cost}(\ell_n) dt + \lambda^{T_{n+1}} \operatorname{cost}(\ell_n \xrightarrow{a_{n+1}} \ell_{n+1})$

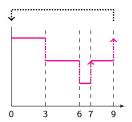
if
$$\pi = (\ell_0, \nu_0) \xrightarrow{\tau_1, a_1} (\ell_1, \nu_1) \xrightarrow{\tau_2, a_2} \cdots$$
 and $T_n = \sum_{i \le n} \tau_i$



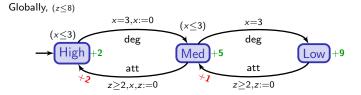
 \rightsquigarrow compute optimal infinite schedules that minimize discounted cost over time



 \rightsquigarrow compute optimal infinite schedules that minimize discounted cost over time



if $\lambda = e^{-1}$, the discounted cost of that infinite schedule is ≈ 2.16



 \rightsquigarrow compute optimal infinite schedules that minimize discounted cost over time

Theorem [FL08]

In weighted timed automata, the optimal discounted cost is computable in EXPTIME.

 \rightsquigarrow the corner-point abstraction can be used

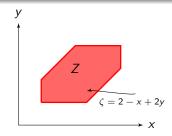
• Only for optimal reachability

[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for priced timed automata (CAV'01).

• Only for optimal reachability

Priced zones

priced zone = zone + affine cost function



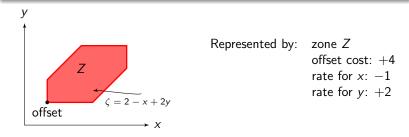
[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for priced timed automata (CAV'01).

• Only for optimal reachability

Priced zones

priced zone = zone + affine cost function

 $\ensuremath{\textcircled{}}$ efficient representation: DBM + offset cost + affine coefficient for each clock



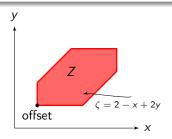
[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for priced timed automata (CAV'01).

• Only for optimal reachability

Priced zones

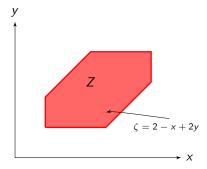
priced zone = zone + affine cost function

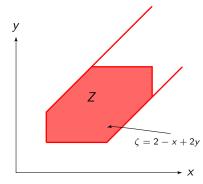
- $\ensuremath{\textcircled{}^\circ}$ efficient representation: DBM + offset cost + affine coefficient for each clock
- © the successor of a priced zone is a union of priced zones



Represented by: zone Z offset cost: +4 rate for x: -1 rate for y: +2

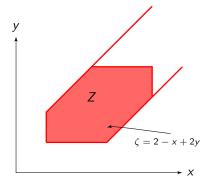
[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for priced timed automata (CAV'01).





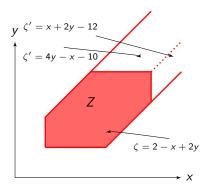
Cost rate in current location: +3

We want
$$(Z', \zeta')$$
 with $\zeta'(\nu') = \min_{\nu'-\delta \in Z} \zeta(\nu'-\delta) + 3\delta$



Cost rate in current location: +3

We want
$$(Z', \zeta')$$
 with
 $\zeta'(v') = \min_{v'-\delta \in Z} \zeta(v'-\delta) + 3\delta$
• if $v' \in Z$, $\zeta'(v') = \zeta(v)$



Cost rate in current location: +3

We want
$$(Z', \zeta')$$
 with
 $\zeta'(v') = \min_{v'-\delta \in Z} \zeta(v'-\delta) + 3\delta$

• if
$$v' \in Z$$
, $\zeta'(v') = \zeta(v)$

• otherwise, depends on the facet

Forward optimal reachability algorithm

Parameters: Abstraction abs and inclusion test \preceq

Forward optimal reachability algorithm

Parameters: Abstraction abs and inclusion test \preceq

- cost $\leftarrow +\infty$, Passed $\leftarrow \emptyset$ and Waiting $\leftarrow \{(\ell_0, \mathcal{Z}_0)\}$
- While Waiting $\neq \emptyset$
 - select (ℓ, \mathcal{Z}) from Waiting
 - If ℓ is final and $\textit{minCost}(\mathcal{Z}) < \text{cost},$ then set $\textit{minCost}(\mathcal{Z})$ to cost
 - If forall $(\ell, Z') \in$ Passed, $Z \not\preceq Z'$, then add $abs(\ell, Z)$ to Passed and add Post $(abs(\ell, Z))$ to Waiting

Return cost

Theorem [LBB+01,RLS06]

The forward algorithm with abs = Id and $\leq = \subseteq$ is correct and terminates for **bounded** timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for priced timed automata (CAV'01).

[RLS06] Rasmussen, Larsen, Subramani. On using priced timed automata to achieve optimal scheduling (Formal Methods in System Design).

Theorem [LBB+01,RLS06]

The forward algorithm with abs = Id and $\leq = \subseteq$ is correct and terminates for **bounded** timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

• Development of an (abstract) inclusion test \sqsubseteq_M on priced zones

[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for priced timed automata (CAV'01).

[RLS06] Rasmussen, Larsen, Subramani. On using priced timed automata to achieve optimal scheduling (Formal Methods in System Design). [BCM16] Bouyer, Colange, Markey. Symbolic Optimal Reachability in Weighted Timed Automata (CAV'16).

Theorem [LBB+01,RLS06]

The forward algorithm with abs = Id and $\leq = \subseteq$ is correct and terminates for **bounded** timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

- Development of an (abstract) inclusion test \sqsubseteq_M on priced zones
- $\mathcal{Z} \sqsubseteq_M \mathcal{Z}'$ reduces to several bilevel linear optimization problems

[[]LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for priced timed automata (CAV'01).

[[]RLS06] Rasmussen, Larsen, Subramani. On using priced timed automata to achieve optimal scheduling (Formal Methods in System Design). [BCM16] Bouyer, Colange, Markey. Symbolic Optimal Reachability in Weighted Timed Automata (CAV'16).

Theorem [LBB+01,RLS06]

The forward algorithm with abs = Id and $\leq = \subseteq$ is correct and terminates for **bounded** timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

- Development of an (abstract) inclusion test \sqsubseteq_M on priced zones
- $\mathcal{Z} \sqsubseteq_M \mathcal{Z}'$ reduces to several bilevel linear optimization problems

Theorem [BCM16]

The forward algorithm with abs = Id and $\leq = \sqsubseteq_M$ is correct and terminates for timed automata with some conditions on the cost. It is always better than $\leq = \subseteq$ for bounded timed automata.

[RLS06] Rasmussen, Larsen, Subramani. On using priced timed automata to achieve optimal scheduling (Formal Methods in System Design). [BCM16] Bouyer, Colange, Markey. Symbolic Optimal Reachability in Weighted Timed Automata (CAV'16).

[[]LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for priced timed automata (CAV'01).

Tools

 Uppaal-Cora, developed in Aalborg (Denmark) between 2001-2005 http://people.cs.aau.dk/~adavid/cora/
 → no more maintained

Tools

- Uppaal-Cora, developed in Aalborg (Denmark) between 2001-2005 http://people.cs.aau.dk/~adavid/cora/
 → no more maintained
- Our new tool TiAMo

Outline

Timed automata

2 Weighted timed automata

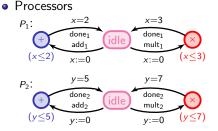
3 Timed games

Weighted timed games

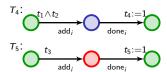
5 Tool TiAMo

6 Conclusion

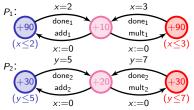
Modelling the task graph scheduling problem



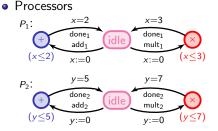
Tasks



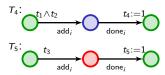
Modelling energy



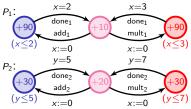
Modelling the task graph scheduling problem



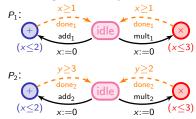
Tasks



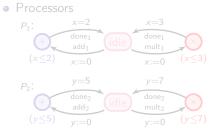
Modelling energy



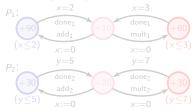
• Modelling uncertainty



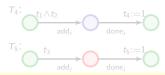
Modelling the task graph scheduling problem

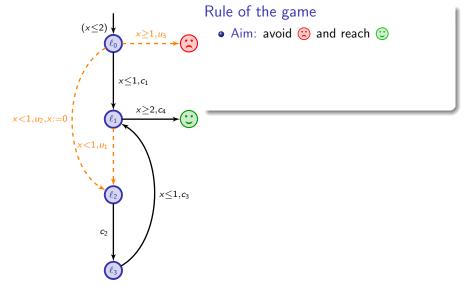


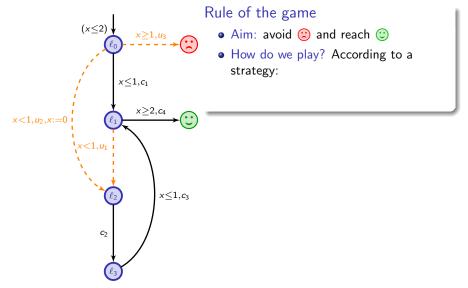
Modelling energy

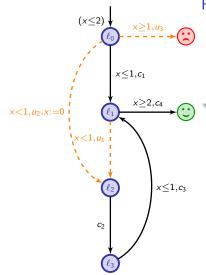


• Tasks





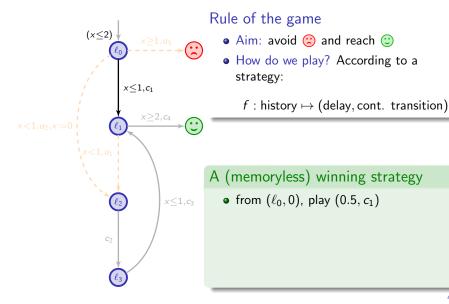


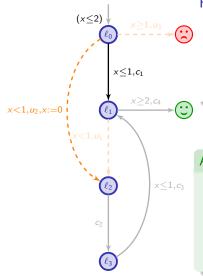


Rule of the game

- Aim: avoid 🙁 and reach 🙂
- How do we play? According to a strategy:

f: history \mapsto (delay, cont. transition)





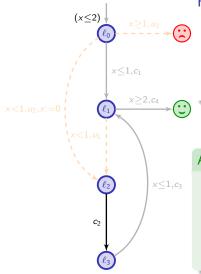
Rule of the game

- Aim: avoid 🙁 and reach 🙂
- How do we play? According to a strategy:

f: history \mapsto (delay, cont. transition)

A (memoryless) winning strategy

• from ($\ell_0, 0$), play (0.5, c_1) \sim can be preempted by u_2



Rule of the game

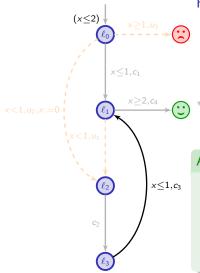
- Aim: avoid 🙁 and reach 🙂
- How do we play? According to a strategy:

f: history \mapsto (delay, cont. transition)

A (memoryless) winning strategy

• from $(\ell_0, 0)$, play $(0.5, c_1)$ \sim can be preempted by u_2

• from
$$(\ell_2, \star)$$
, play $(1 - \star, c_2)$



Rule of the game

- Aim: avoid 🙁 and reach 🙂
- How do we play? According to a strategy:

f: history \mapsto (delay, cont. transition)

A (memoryless) winning strategy

- from $(\ell_0, 0)$, play $(0.5, c_1)$ \sim can be preempted by u_2
- from (ℓ_2, \star) , play $(1 \star, c_2)$
- from $(\ell_3, 1)$, play $(0, c_3)$

 $(x \leq 2)$ $x \ge 2, c_4$ ℓ_2

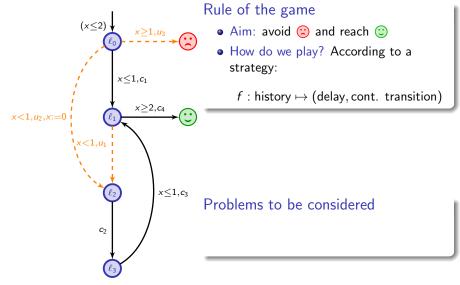
Rule of the game

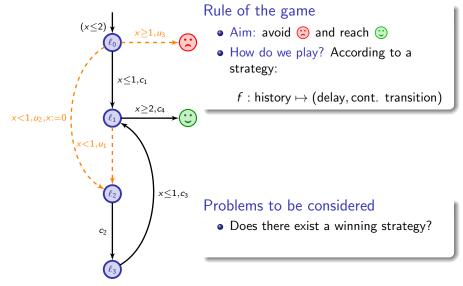
- Aim: avoid 🙁 and reach 🙂
- How do we play? According to a strategy:

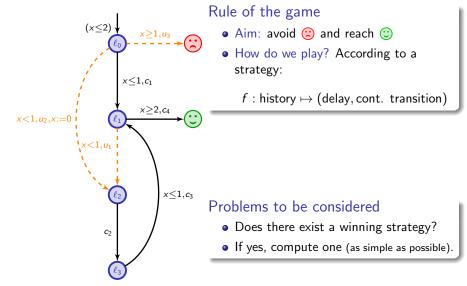
f: history \mapsto (delay, cont. transition)

A (memoryless) winning strategy

- from ($\ell_0, 0$), play (0.5, c_1) \sim can be preempted by u_2
- from (ℓ_2, \star) , play $(1 \star, c_2)$
- from $(\ell_3, 1)$, play $(0, c_3)$
- from $(\ell_1, 1)$, play $(1, c_4)$







Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and EXPTIME-complete. Furthermore memoryless and "region-based" strategies are sufficient.

Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and EXPTIME-complete. Furthermore memoryless and "region-based" strategies are sufficient.

 \rightsquigarrow classical regions are sufficient for solving such problems

Decidability of timed games

Theorem [AMPS98,HK99]

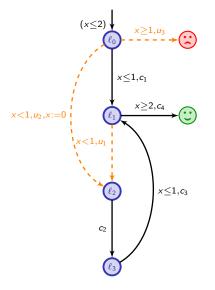
Reachability and safety timed games are decidable and EXPTIME-complete. Furthermore memoryless and "region-based" strategies are sufficient.

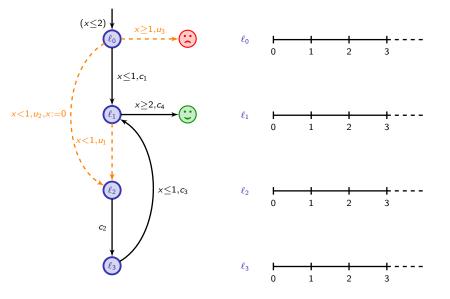
 \rightsquigarrow classical regions are sufficient for solving such problems

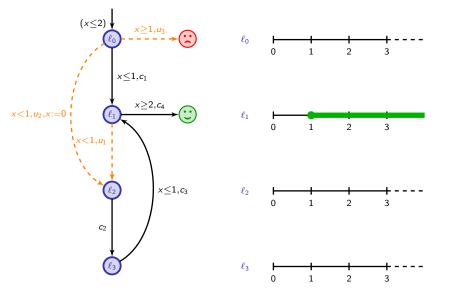
Theorem [AM99,BHPR07,JT07]

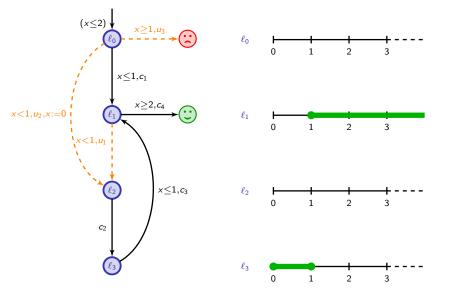
Optimal-time reachability timed games are decidable and EXPTIME-complete.

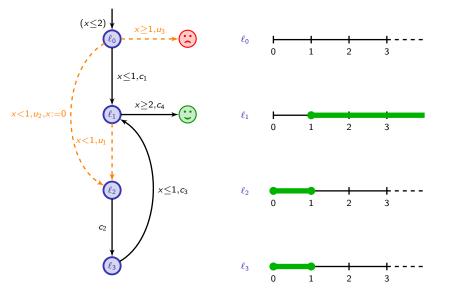
[AM99] Asarin, Maler. As soon as possible: time optimal control for timed automata (*HSC2*(9), [BHPR07] Brihaye, Henzinger, Prabhu, Raskin. Minimum-time reachability in timed games (*ICALP'07*). [JT07] Jurdziński, Trivedi. Reachability-time games on timed automata (*ICALP'07*).

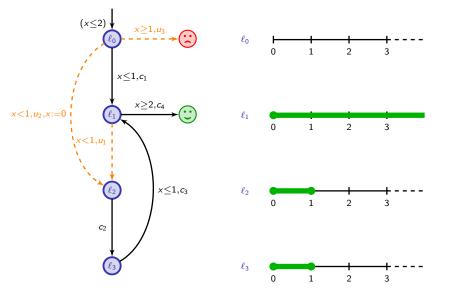


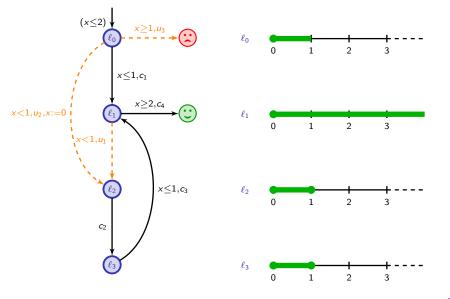


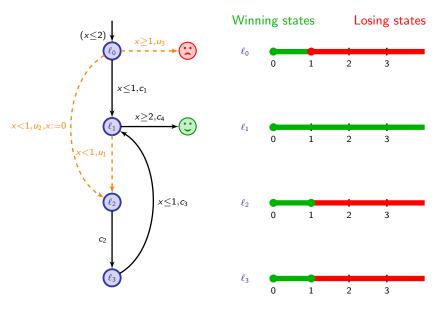










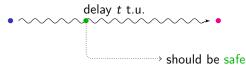


Skip attractors

• $\operatorname{Pred}^{a}(X) = \{ \bullet \mid \bullet \xrightarrow{a} \bullet \in X \}$

- $\mathsf{Pred}^{\mathsf{a}}(\mathsf{X}) = \{\bullet \mid \bullet \xrightarrow{\mathsf{a}} \bullet \in \mathsf{X}\}$
- controllable and uncontrollable discrete predecessors:
- $\operatorname{cPred}(X) = \bigcup_{a \text{ cont.}} \operatorname{Pred}^{a}(X)$ $\operatorname{uPred}(X) = \bigcup_{a \text{ uncont.}} \operatorname{Pred}^{a}(X)$

- $\mathsf{Pred}^{\mathsf{a}}(\mathsf{X}) = \{\bullet \mid \bullet \xrightarrow{\mathsf{a}} \bullet \in \mathsf{X}\}$
- controllable and uncontrollable discrete predecessors:
- $\operatorname{cPred}(X) = \bigcup_{a \text{ cont.}} \operatorname{Pred}^{a}(X)$ $\operatorname{uPred}(X) = \bigcup_{a \text{ uncont.}} \operatorname{Pred}^{a}(X)$ • time controllable predecessors:



- $\mathsf{Pred}^{\mathsf{a}}(\mathsf{X}) = \{\bullet \mid \bullet \xrightarrow{\mathsf{a}} \bullet \in \mathsf{X}\}$
- controllable and uncontrollable discrete predecessors:

$$\mathsf{Pred}_{\delta}(X,\mathsf{Safe}) = \{\bullet \mid \exists t \ge 0, \bullet \xrightarrow{\delta(t)} \bullet \\ \mathsf{and} \ \forall 0 \le t' \le t, \bullet \xrightarrow{\delta(t')} \bullet \in \mathsf{Safe}\}$$

Timed games with a reachability objective

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

Timed games with a reachability objective

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure 🙂 in no more than 1 step is:

 $\operatorname{Attr}_1(\bigcirc) = \pi(\bigcirc)$

Timed games with a reachability objective

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure 🙂 in no more than 1 step is:

$$\mathsf{Attr}_1(\bigcirc) = \pi(\bigcirc)$$

• The states from which one can ensure 🙄 in no more than 2 steps is:

$$\operatorname{Attr}_2(\bigcirc) = \pi(\operatorname{Attr}_1(\bigcirc))$$

Timed games with a reachability objective

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure 🙂 in no more than 1 step is:

$$\mathsf{Attr}_1(\bigcirc) = \pi(\bigcirc)$$

• The states from which one can ensure \bigcirc in no more than 2 steps is:

$$\operatorname{Attr}_2(\bigcirc) = \pi(\operatorname{Attr}_1(\bigcirc))$$

• . . .

Timed games with a reachability objective

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure \bigcirc in no more than 1 step is:

$$\mathsf{Attr}_1(\bigcirc) = \pi(\bigcirc)$$

• The states from which one can ensure 🙂 in no more than 2 steps is:

$$\operatorname{Attr}_2(\bigcirc) = \pi(\operatorname{Attr}_1(\bigcirc))$$

• . . .

• The states from which one can ensure 🙄 in no more than *n* steps is:

$$\operatorname{Attr}_n(\bigcirc) = \pi(\operatorname{Attr}_{n-1}(\bigcirc))$$

Timed games with a reachability objective

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure \bigcirc in no more than 1 step is:

$$\mathsf{Attr}_1(\bigcirc) = \pi(\bigcirc)$$

• The states from which one can ensure \bigcirc in no more than 2 steps is:

$$\operatorname{Attr}_2(\bigcirc) = \pi(\operatorname{Attr}_1(\bigcirc))$$

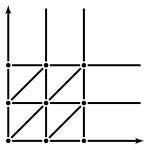
• . . .

• The states from which one can ensure 🙄 in no more than *n* steps is:

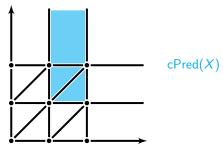
$$\operatorname{Attr}_{n}(\textcircled{c}) = \pi(\operatorname{Attr}_{n-1}(\textcircled{c})) \\ = \pi^{n}(\textcircled{c})$$

- if X is a union of regions, then:
 - $Pred_a(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).

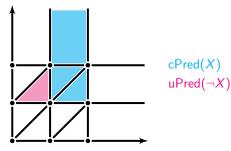
- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions?



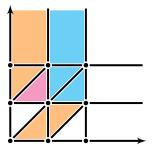
- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions?



- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions?

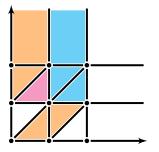


- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions?



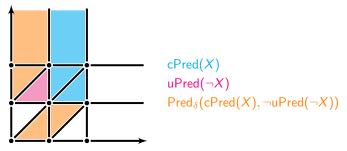
cPred(X) $uPred(\neg X)$ $Pred_{\delta}(cPred(X), \neg uPred(\neg X))$

- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions? Yes!



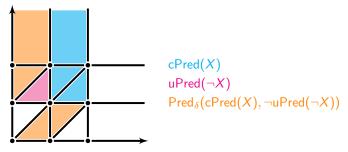
cPred(X)uPred($\neg X$) Pred_{δ}(cPred(X), \neg uPred($\neg X$))

- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions? Yes!



(but it generates non-convex unions of regions...)

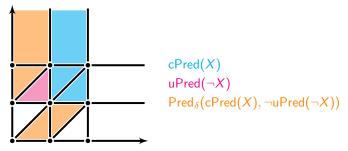
- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions? Yes!



(but it generates non-convex unions of regions...)

 \rightsquigarrow the computation of $\pi^*(\bigcirc)$ terminates!

- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions? Yes!



(but it generates non-convex unions of regions...)

 \sim the computation of $\pi^*(\textcircled{O})$ terminates! ... and is correct

And in practice?

• A zone-based forward algorithm with backtracking [CDF+05,BCD+07]

[CDF+05] Cassez, David, Fleury, Larsen, Lime. Efficient On-the-Fly Algorithms for the Analysis of Timed Games (CONCUR'05). [BCD+07] Behrmann, Cougnard, David, Fleury, Larsen, Lime. UPPAAL-Tiga: Time for Playing Games! (CAV'07).

And in practice?

- A zone-based forward algorithm with backtracking [CDF+05,BCD+07]
- A tool: Uppaal-TiGa, developed in Aalborg (Denmark) since 2005 http://people.cs.aau.dk/~adavid/tiga/

Outline

Timed automata

2 Weighted timed automata

3 Timed games

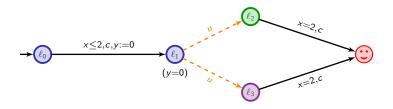
Weighted timed games

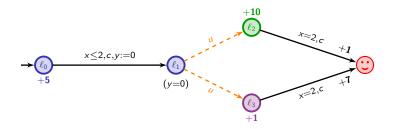
5 Tool TiAMo

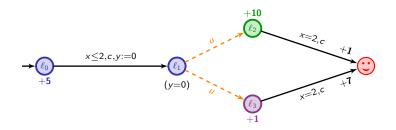
6 Conclusion

A simple

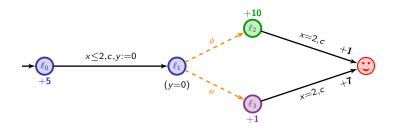
timed game





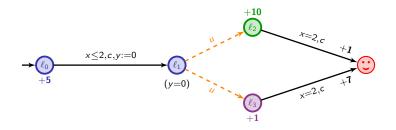


Question: what is the optimal cost we can ensure while reaching \bigcirc ?



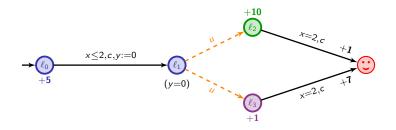
Question: what is the optimal cost we can ensure while reaching \bigcirc ?

5t + 10(2 - t) + 1



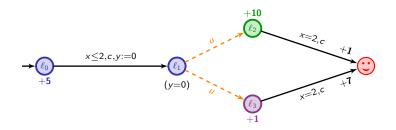
Question: what is the optimal cost we can ensure while reaching \bigcirc ?

5t + 10(2 - t) + 1, 5t + (2 - t) + 7



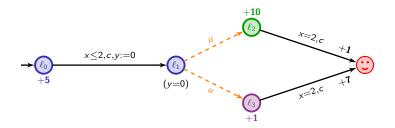
Question: what is the optimal cost we can ensure while reaching \bigcirc ?

max (5t + 10(2 - t) + 1 , 5t + (2 - t) + 7)



Question: what is the optimal cost we can ensure while reaching \bigcirc ?

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1 , 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$



Question: what is the optimal cost we can ensure while reaching \bigcirc ? $\inf_{0 \le t \le 2} \max (5t + 10(2 - t) + 1, 5t + (2 - t) + 7) = 14 + \frac{1}{3}$ \rightsquigarrow strategy: wait in ℓ_0 , and when $t = \frac{4}{3}$, go to ℓ_1

Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...

[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS002). [ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed game automata (*FCTTCS'04*). [BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (*FSTTCS'04*). [BBM06] Bouyer, Cassez, Fleury, Larsen. Optimal strategies (*FORMATS'05*). [BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (*Information Processing Letters*). [BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (*FSTTCS'06*). [Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (*QAPL'11*). [HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (*CONCUR'13*). [BCK+14] Brihaye, Geeraets, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (*CONCUR'14*).

Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...

[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMM02]

Tree-like weighted timed games can be solved in 2EXPTIME.

Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...

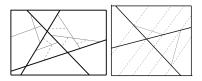
[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMM02]

Tree-like weighted timed games can be solved in 2EXPTIME.

[ABM04,BCFL04]

Depth-*k* weighted timed games can be solved in EXPTIME. There is a symbolic algorithm to solve weighted timed games **with a strongly non-Zeno cost**.



Optimal reachability in weighted timed games (2)

[BBR05,BBM06,BJM15]

In weighted timed games, the optimal cost (and the value) cannot be computed, as soon as games have three clocks or more.

Optimal reachability in weighted timed games (2)

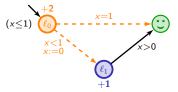
[BBR05,BBM06,BJM15]

In weighted timed games, the optimal cost (and the value) cannot be computed, as soon as games have three clocks or more.

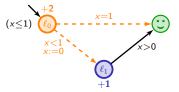
[BLMR06,Rut11,HIM13,BGK+14]

Turn-based optimal timed games are decidable in EXPTIME (resp. PTIME) when automata have a single clock (resp. with two rates). They are PTIME-hard.

• Memoryless strategies can be non-optimal...

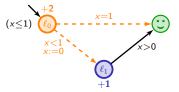


• Memoryless strategies can be non-optimal...



... but memoryless almost-optimal strategies will be sufficient.

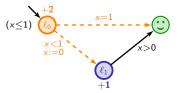
• Memoryless strategies can be non-optimal...



... but memoryless almost-optimal strategies will be sufficient.

• Key: resetting the clock somehow resets the history...

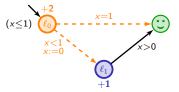
• Memoryless strategies can be non-optimal...



... but memoryless almost-optimal strategies will be sufficient.

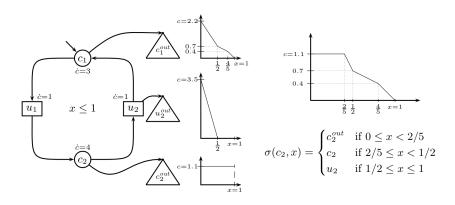
- Key: resetting the clock somehow resets the history...
- By unfolding and removing one by one the locations, we can synthesize memoryless almost-optimal winning strategies.

• Memoryless strategies can be non-optimal...



... but memoryless almost-optimal strategies will be sufficient.

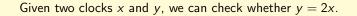
- Key: resetting the clock somehow resets the history...
- By unfolding and removing one by one the locations, we can synthesize memoryless almost-optimal winning strategies.
- Rather involved proofs of correctness

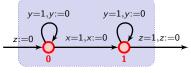


Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.

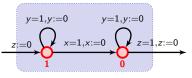
Computing the optimal cost: why is that hard?





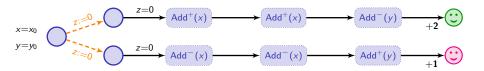
The cost is increased by x_0

 $Add^{-}(x)$

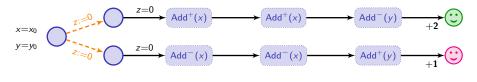


The cost is increased by $1-x_0$

Given two clocks x and y, we can check whether y = 2x.

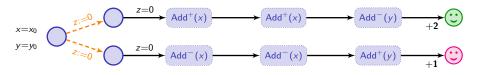


Given two clocks x and y, we can check whether y = 2x.

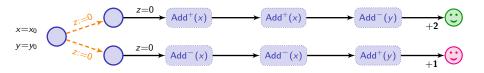


• In
$$\bigcirc$$
, cost = $2x_0 + (1 - y_0) + 2$

Given two clocks x and y, we can check whether y = 2x.



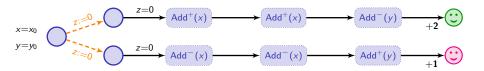
Given two clocks x and y, we can check whether y = 2x.



• In
$$\textcircled{\begin{subarray}{c} \mbox{.}}$$
, $\mbox{cost} = 2x_0 + (1 - y_0) + 2$
In $\textcircled{\begin{subarray}{c} \mbox{.}}$, $\mbox{cost} = 2(1 - x_0) + y_0 + 1$

• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3

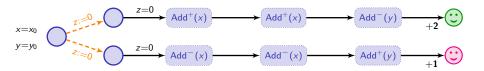
Given two clocks x and y, we can check whether y = 2x.



• In
$$\textcircled{\begin{subarray}{c} \mbox{...}}$$
, $\mbox{cost} = 2x_0 + (1 - y_0) + 2$
In $\textcircled{\begin{subarray}{c} \mbox{...}}$, $\mbox{cost} = 2(1 - x_0) + y_0 + 1$

• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3

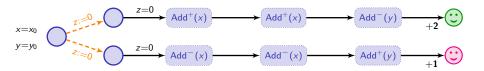
Given two clocks x and y, we can check whether y = 2x.



• In
$$\textcircled{\begin{subarray}{c} \mbox{.}}$$
, $\mbox{cost} = 2x_0 + (1 - y_0) + 2$
In $\textcircled{\begin{subarray}{c} \mbox{.}}$, $\mbox{cost} = 2(1 - x_0) + y_0 + 1$

• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3 if $y_0 = 2x_0$, in both branches, cost = 3

Given two clocks x and y, we can check whether y = 2x.

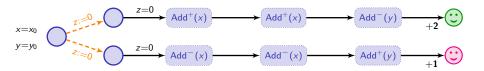


• In
$$\textcircled{\begin{subarray}{c} \mbox{.}}$$
, $\mbox{cost} = 2x_0 + (1 - y_0) + 2$
In $\textcircled{\begin{subarray}{c} \mbox{.}}$, $\mbox{cost} = 2(1 - x_0) + y_0 + 1$

• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3 if $y_0 = 2x_0$, in both branches, cost = 3

 \rightarrow player 2 can enforce cost $3 + |y_0 - 2x_0|$

Given two clocks x and y, we can check whether y = 2x.



• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3 if $y_0 = 2x_0$, in both branches, cost = 3

 \sim player 2 can enforce cost $3 + |y_0 - 2x_0|$

• Player 1 has a winning strategy with cost ≤ 3 iff $y_0 = 2x_0$

Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$

Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$

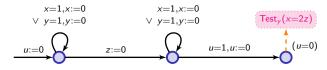
Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$

The two-counter machine has a halting computation iff player 1 has a winning strategy to ensure a cost no more than 3.

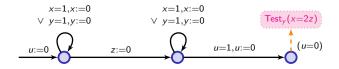
Globally, $(x \le 1, y \le 1, u \le 1)$



Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

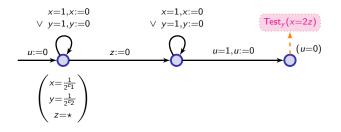
$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$



Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

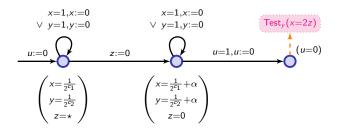
$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$



Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

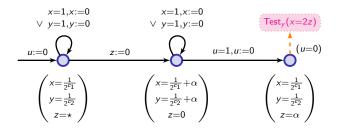
$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$



Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

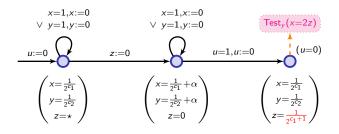
$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$



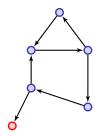
Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

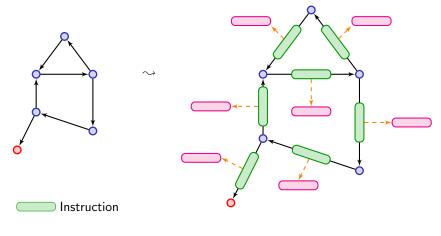
$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$



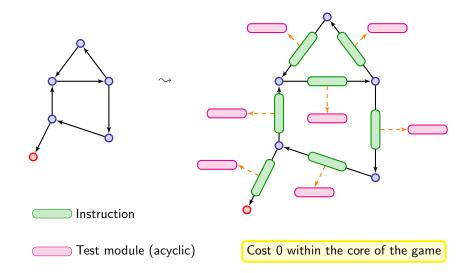
Shape of the reduction



Shape of the reduction



Shape of the reduction



Are we done?

Optimal cost is computable... ... when cost is strongly non-zeno. [AM04,BCFL04] There is $\kappa > 0$ s.t. for every region cycle C, for every real run ϱ read on C, $cost(\varrho) \ge \kappa$

Optimal cost is not computable...

... when cost is almost-strongly non-zeno.

There is $\kappa > 0$ s.t. for every region cycle C, for every real run ϱ read on C,

 $cost(\varrho) \ge \kappa$ or $cost(\varrho) = 0$

Optimal cost is computable. ... when cost is strongly non-zeno. [AM04, BCFL04] There is $\kappa > 0$ s.t. for every region cycle C, for every real run ρ read on C, $cost(\rho) > \kappa$ Optimal cost is not computable... but is approximable! [BJM15] ... when cost is almost-strongly non-zeno. There is $\kappa > 0$ s.t. for every region cycle C, for every real run ρ read on C, $cost(\varrho) \ge \kappa$ or $cost(\varrho) = 0$

Optimal cost is computable. ... when cost is strongly non-zeno. [AM04, BCFL04] There is $\kappa > 0$ s.t. for every region cycle C, for every real run ρ read on C, $cost(\rho) > \kappa$ Optimal cost is not computable... but is approximable! [BJM15] ... when cost is almost-strongly non-zeno. There is $\kappa > 0$ s.t. for every region cycle C, for every real run ρ read on C, $cost(\varrho) \ge \kappa$ or $cost(\varrho) = 0$

- Almost-optimality in practice should be sufficient
- Even when we know how to compute the value, we are only able to synthesize almost-optimal strategies...

Optimal cost is computable...[AM04,BCFL04]... when cost is strongly non-zeno.[AM04,BCFL04]There is $\kappa > 0$ s.t. for every region cycle C, for every real run ϱ read on C,
 $cost(\varrho) \ge \kappa$ $cost(\varrho) \ge \kappa$ Optimal cost is not computable... but is approximable!
... when cost is almost-strongly non-zeno.[BJM15]

There is $\kappa > 0$ s.t. for every region cycle C, for every real run ϱ read on C,

 $cost(\varrho) \ge \kappa$ or $cost(\varrho) = 0$

- Almost-optimality in practice should be sufficient
- Even when we know how to compute the value, we are only able to synthesize almost-optimal strategies...

Note: In both cases, we can assume $\kappa = 1$.

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR'15).

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly non-zeno. For every $\epsilon > 0$, one can compute:

• two values v_{ϵ}^{-} and v_{ϵ}^{+} such that

$$|v_{\epsilon}^+ - v_{\epsilon}^-| < \epsilon \quad ext{and} \quad v_{\epsilon}^- \leq ext{optcost}_\mathcal{G} \leq v_{\epsilon}^+$$

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly non-zeno. For every $\epsilon > 0$, one can compute:

• two values v_{ϵ}^{-} and v_{ϵ}^{+} such that

$$|v_{\epsilon}^+ - v_{\epsilon}^-| < \epsilon \quad ext{and} \quad v_{\epsilon}^- \leq ext{optcost}_\mathcal{G} \leq v_{\epsilon}^+$$

• one strategy σ_{ϵ} such that

$$\mathsf{optcost}_{\mathcal{G}} \leq \mathsf{cost}(\sigma_{\epsilon}) \leq \mathsf{optcost}_{\mathcal{G}} + \epsilon$$

[it is an ϵ -optimal winning strategy]

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly non-zeno. For every $\epsilon > 0$, one can compute:

• two values v_{ϵ}^{-} and v_{ϵ}^{+} such that

$$|v_{\epsilon}^+ - v_{\epsilon}^-| < \epsilon$$
 and $v_{\epsilon}^- \leq \mathsf{optcost}_\mathcal{G} \leq v_{\epsilon}^+$

• one strategy σ_{ϵ} such that

$$\operatorname{optcost}_{\mathcal{G}} \leq \operatorname{cost}(\sigma_{\epsilon}) \leq \operatorname{optcost}_{\mathcal{G}} + \epsilon$$

[it is an ϵ -optimal winning strategy]

Skip approximation scheme

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly non-zeno. For every $\epsilon > 0$, one can compute:

• two values v_{ϵ}^{-} and v_{ϵ}^{+} such that

$$|v_{\epsilon}^+ - v_{\epsilon}^-| < \epsilon \quad ext{and} \quad v_{\epsilon}^- \leq ext{optcost}_\mathcal{G} \leq v_{\epsilon}^+$$

• one strategy σ_{ϵ} such that

$$\operatorname{optcost}_{\mathcal{G}} \leq \operatorname{cost}(\sigma_{\epsilon}) \leq \operatorname{optcost}_{\mathcal{G}} + \epsilon$$

[it is an ϵ -optimal winning strategy]

• Standard technics: unfold the game to get more precision, and compute two adjacency sequences

Theorem

Let ${\cal G}$ be a weighted timed game, in which the cost is almost-strongly non-zeno. For every $\epsilon>$ 0, one can compute:

• two values v_{ϵ}^{-} and v_{ϵ}^{+} such that

$$|v_{\epsilon}^+ - v_{\epsilon}^-| < \epsilon \quad ext{and} \quad v_{\epsilon}^- \leq ext{optcost}_\mathcal{G} \leq v_{\epsilon}^+$$

• one strategy σ_{ϵ} such that

$$\operatorname{optcost}_{\mathcal{G}} \leq \operatorname{cost}(\sigma_{\epsilon}) \leq \operatorname{optcost}_{\mathcal{G}} + \epsilon$$

[it is an ϵ -optimal winning strategy]

- Standard technics: unfold the game to get more precision, and compute two adjacency sequences
- → This is not possible here There might be runs with prefixes of arbitrary length and cost 0 (e.g. the game of the undecidability proof)

Idea for approximation

Idea

Only partially unfold the game:

- Keep components with cost 0 untouched we call it the kernel
- Unfold the rest of the game

Idea for approximation

Idea

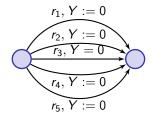
Only partially unfold the game:

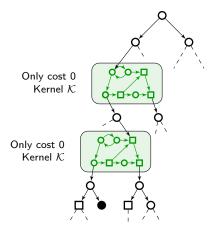
- Keep components with cost 0 untouched we call it the kernel
- Unfold the rest of the game

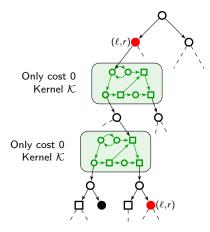
First: split the game along regions!

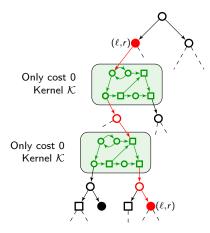
$$\bigcirc g, Y := 0 \\ \longrightarrow \bigcirc$$

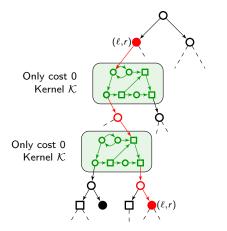
 \sim





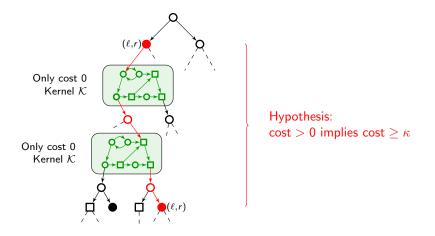




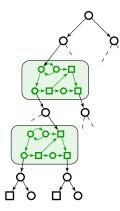


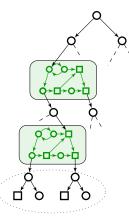
Hypothesis: $\cos t > 0$ implies $\cos t \ge \kappa$

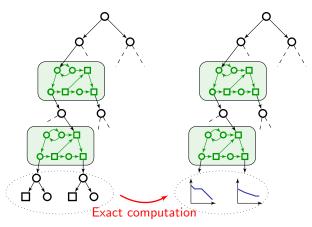
Semi-unfolding

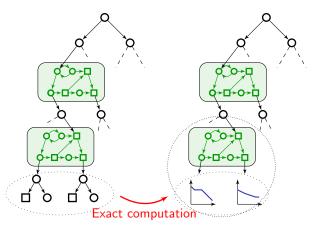


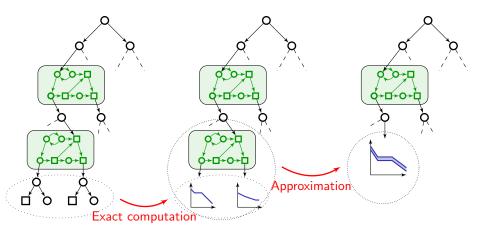
Conclusion: we can stop unfolding the game after N steps (e.g. $N = (M + 2) \cdot |\mathcal{R}(\mathcal{A})|$, where M is a pre-computed bound on $optcost_{\mathcal{G}}$)

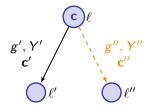


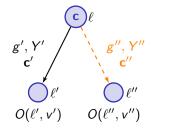




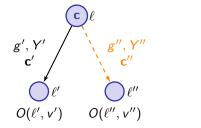




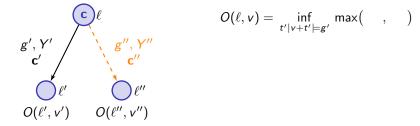




$$O(\ell, v) =$$



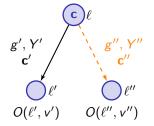
$$O(\ell, v) = \inf_{t' \mid v+t' \models g'}$$



 \sim Goes back to [LMM02]

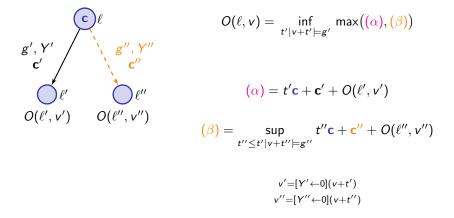
1.

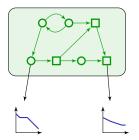
1

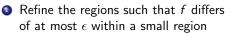


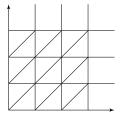
$$O(\ell, \mathbf{v}) = \inf_{t' \mid \mathbf{v} + t' \models g'} \max((\alpha), \quad)$$
$$(\alpha) = t'\mathbf{c} + \mathbf{c}' + O(\ell', \mathbf{v}')$$

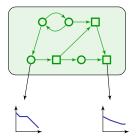
 $v' = [Y' \leftarrow 0](v+t')$

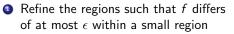


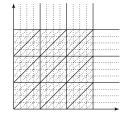


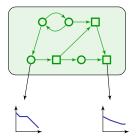


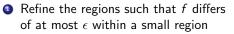


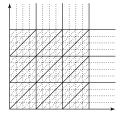


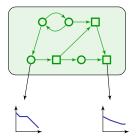


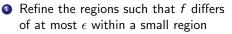


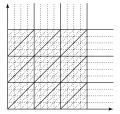




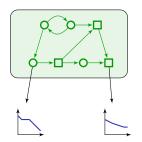




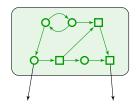




Output Under- and over-approximate by piecewise constant functions f_{ϵ}^{-} and f_{ϵ}^{+}

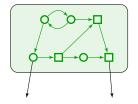


Refine/split the kernel along the new small regions and fix f_e⁻ or f_e⁺, write f_e

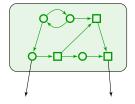


 f_{ϵ} : constant f_{ϵ} : constant

- Refine/split the kernel along the new small regions and fix f_e⁻ or f_e⁺, write f_e
- Since cost is 0 everywhere, the resulting game is nothing more than a reachability timed game with an order on target (output) edges (given by f_e)

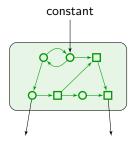


 f_{ϵ} : constant f_{ϵ} : constant



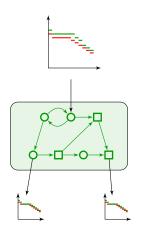
 f_{ϵ} : constant f_{ϵ} : constant

- Refine/split the kernel along the new small regions and fix f⁻_e or f⁺_e, write f_e
- Since cost is 0 everywhere, the resulting game is nothing more than a reachability timed game with an order on target (output) edges (given by f_e)
- Those can be solved using standard technics based on attractors: small regions are sufficient, and the local optimal cost (for output f_e) is constant within a small region



 f_{ϵ} : constant f_{ϵ} : constant

- Refine/split the kernel along the new small regions and fix f⁻_e or f⁺_e, write f_e
- Since cost is 0 everywhere, the resulting game is nothing more than a reachability timed game with an order on target (output) edges (given by f_e)
- Those can be solved using standard technics based on attractors: small regions are sufficient, and the local optimal cost (for output f_e) is constant within a small region



- Refine/split the kernel along the new small regions and fix f_{ϵ}^{-} or f_{ϵ}^{+} , write f_{ϵ}
- Since cost is 0 everywhere, the resulting game is nothing more than a reachability timed game with an order on target (output) edges (given by f_e)
- Those can be solved using standard technics based on attractors: small regions are sufficient, and the local optimal cost (for output f_e) is constant within a small region
- ✓ We have computed *ϵ*-approximations of the optimal cost, which are constant within small regions. Corresponding strategies can be inferred

Outline

Timed automata

- 2 Weighted timed automata
- 3 Timed games
- Weighted timed games

5 Tool TiAMo

6 Conclusion

TiAMo = Timed Automata Model-checker

- Development started in September 2015
- Main developer: Maximilien Colange (LSV)
- Uses some previous code by Ocan Sankur (IRISA)

TiAMo = Timed Automata Model-checker

- Development started in September 2015
- Main developer: Maximilien Colange (LSV)
- Uses some previous code by Ocan Sankur (IRISA)

Why?

- Main tool for timed systems: Uppaal, developed since 1995
- \rightsquigarrow Unfortunately, not open source
- $\rightsquigarrow\,$ Often hard to know what is exactly implemented

TiAMo = Timed Automata Model-checker

- Development started in September 2015
- Main developer: Maximilien Colange (LSV)
- Uses some previous code by Ocan Sankur (IRISA)

Why?

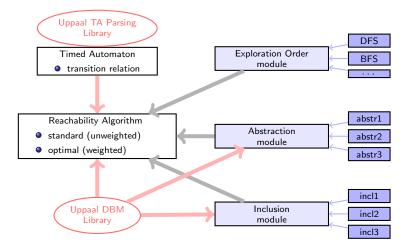
- Main tool for timed systems: Uppaal, developed since 1995
- \rightsquigarrow Unfortunately, not open source
- $\rightsquigarrow\,$ Often hard to know what is exactly implemented

What TiAMo targets

- Be a platform for experiments (open source!)
- Assert and compare algorithms

https://git.lsv.fr/colange/tiamo

TiAMo architecture



What is implemented

Exploration strategies

- BFS, DFS
- best cost first (for weighted models)
- preference-based (use a special "preference" variable in the model)
- "smart" BFS: inspired by [HT15]

What is implemented

Exploration strategies

- BFS, DFS
- best cost first (for weighted models)
- preference-based (use a special "preference" variable in the model)
- "smart" BFS: inspired by [HT15]

Abstractions

- identity (i.e. no abstraction), to be used with abstract inclusion tests
- LU-abstraction [BBLP06]

What is implemented

Exploration strategies

- BFS, DFS
- best cost first (for weighted models)
- preference-based (use a special "preference" variable in the model)
- "smart" BFS: inspired by [HT15]

Abstractions

- identity (i.e. no abstraction), to be used with abstract inclusion tests
- LU-abstraction [BBLP06]

Inclusions

- set inclusion
- weighted set inclusion [RLS06]

- abstract inclusion [HSW12]
- abstract weighted inclusion [BCM16]

Experiments

- Various metrics
 - wall-clock time
 - number of symbolic states explored
 - number of comparisons done
- In various contexts
 - with different exploration strategies

Experiments

- Various metrics
 - wall-clock time
 - number of symbolic states explored
 - number of comparisons done
- In various contexts
 - with different exploration strategies

Examples taken from Uppaal-Cora

- The Aircraft Landing System (ALS)
- The Energy-optimal Task-graph Scheduling (ETS)
- The Vehicle Routing Problem with Time Windows (VRPTW)
- An unbounded-clock (ad hoc) model

Experiments

- Various metrics
 - wall-clock time
 - number of symbolic states explored
 - number of comparisons done
- In various contexts
 - with different exploration strategies

Examples taken from Uppaal-Cora

- The Aircraft Landing System (ALS)
- The Energy-optimal Task-graph Scheduling (ETS)
- The Vehicle Routing Problem with Time Windows (VRPTW)
- An unbounded-clock (ad hoc) model

Experimental results

- for mentioned weighted models
- -P (no pruning) / +P (pruning)
- ⊆ (standard inclusion no guarantee of term.) / ⊑ (abstract inclusion guarantee of term.)

			# Waiting	# Passed	# stored	# tests	# succ. tests	time (s.)
ASL	Ч +		11,820	4,785	9,324	$3.7 imes 10^{05}$	13,676	0.3
		\subseteq	32,322	13,036	26,555	$2.9 imes10^{06}$	32,263	0.7
	<u>م</u>		$1.7 imes10^{06}$	$1.5 imes10^{06}$	$6.9 imes10^{05}$	$8.1 imes10^{08}$	$1.2 imes 10^{07}$	312.7
		\subseteq	то	то	то	то	то	то
ETS	<u>е</u> +		107	84	83	174	66	0.0
		\subseteq	664	606	590	17,684	455	0.0
VRPTW	4 +		$6.0 imes10^{05}$	$4.8 imes10^{05}$	$5.6 imes10^{05}$	$6.2 imes10^{06}$	$1.7 imes10^{05}$	11.3
		\subseteq	$1.5 imes10^{06}$	$1.3 imes10^{06}$	$1.4 imes10^{06}$	$9.1 imes10^{07}$	$7.0 imes10^{05}$	27.5
	4		$1.3 imes10^{06}$	$1.3 imes10^{06}$	$1.3 imes10^{06}$	$2.5 imes10^{07}$	$7.0 imes10^{05}$	23.9
		\subseteq	$5.8 imes10^{06}$	$5.8 imes10^{06}$	$5.4 imes10^{06}$	$1.1 imes10^{09}$	$1.9 imes10^{06}$	111.2
unbound.	HP+		14	13	14	135	3	0.0
		\subseteq	то	то	то	то	то	то
	Р		14	14	14	135	3	0.0
	1	\subseteq	то	то	то	то	то	то

Outline

Timed automata

- 2 Weighted timed automata
- 3 Timed games
- Weighted timed games

5 Tool TiAMo

Conclusion

Summary of the talk

- Overview of results concerning the optimal reachability problem in weighted timed automata and games
- Various (un)decidability + symbolic technics
- Our new tool TiAMo

Conclusion

Summary of the talk

- Overview of results concerning the optimal reachability problem in weighted timed automata and games
- Various (un)decidability + symbolic technics
- Our new tool TiAMo

Future work

- Various theoretical issues
 - Apply further the idea of approximation
 - Stochastic uncertainty

Conclusion

Summary of the talk

- Overview of results concerning the optimal reachability problem in weighted timed automata and games
- Various (un)decidability + symbolic technics
- Our new tool TiAMo

Future work

- Various theoretical issues
 - Apply further the idea of approximation
 - Stochastic uncertainty
- Continue working on TiAMo
 - Implementation of (weighted) timed games
 - More applications (e.g. motion planning problems using the funnel automata approach [BMPS15])

[BMPS15] Bouyer, Markey, Perrin, Schlehuber-Caissier. Timed-Automata Abstraction of Switched Dynamical Systems Using Control Funnels (FORMATS'15).