On the optimal reachability problem
in weighted timed automata and games

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

1/80

Time-dependent systems

@ We are interested in timed systems

2/80

Time-dependent systems

@ We are interested in timed systems

o AA

2/80

Time-dependent systems

@ We are interested in timed systems

@ ... and in their analysis and control

2/80

An example: The task graph scheduling problem

COmpUte DX (Cx(A+B))+(A+B)+(CxD) using two processors: A B c D
P, (fast): P, (slow): - -
time time c
+ | 2 picoseconds =F | 5 picoseconds \
X | 3 picoseconds 7 picoseconds T T
3 4
energy energy D\
ide [10 Watt idle [20 Watts
in use | 90 Watts in use | 30 Watts Ts Te

BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata
g
(Communication of the ACM).
3/80

An example: The task graph scheduling problem

COmpUte Dx(Cx(A+B))+(A+B)+(CxD) using two processors: A B c D
Py (fast): Py (slow): - -
time time c
+ | 2 picoseconds =F | 5 picoseconds \
@ X | 3 picoseconds 7 picoseconds A A
) energy energy D\
ide [10 Watt idle [20 Watts
in use | 90 Watts in use | 30 Watts Ts Te
0 5 10 15 20 25
I |
P- T 7 T T
T T raan
inlm Al |

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata
(Communication of the ACM).

3/80

An example: The task graph scheduling problem

Compute Dx(Cx(A+B))+(A+B)+(CxD) using two processors:

y

Py (fast): Py (slow): -
time time c
+ ‘ 2 picoseconds =F ‘ 5 picoseconds \
@ X ‘ 3 picoseconds 7 picoseconds T
3
; energy energy Dx
ide [10 Watt idle [20 Watts
in use ‘ 90 Watts in use ‘ 30 Watts Ts
0 10 15 20 25
T
P 2 || | T T B ‘
£ 1 2 3 5 6 7.3 0secy, ‘7
0 Py T T4 ‘ ‘ | Jouj,
L p—
T
Pl T ‘ T T, Ty | T I
e 3 5 4 6 1,59 ecop ‘7
Sl R TTTT] o
‘ p—

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata
(Communication of the ACM).

‘ﬁ
Ko

3/80

An example: The task graph scheduling problem

Compute Dx(Cx(A+B))+(A+B)+(CxD) using two processors:

‘ﬁ
Ko

y

Py (fast): Py (slow): - -

time time c
+ ‘ 2 picoseconds =F ‘ 5 picoseconds \
X ‘ 3 picoseconds 7 picoseconds T3 T,
- energy energy D\
ide [10 Watt idle [20 Watts
in use ‘ 90 Watts in use 30 Watts Ts Te
0 5 10 15 20 25
T
P T, ‘ ‘ T. ‘ T, i ! \
2 2 3 5 6 L3 080, ‘7
» P, T Ty ‘ ‘ ‘ [oujeg
T
=N U [B [Ts T4 | To \
o o
] .39 a::.CO"ds
e E [1111 || s
T 29 T
P: 1 T- T,
ehfm [[T [L[[[[[] " apeme, ||
S Nang;ds
< Py T2 Ts T6 | | oules

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata

(Communication of the ACM).
3/80

Timed automata

Outline

© Timed automata

4/80

Timed automata

The model of timed automata

<25
done: 0=

repairing

A .
¥ repair
2<yAx<56

problem, x:=0

y:=0

5/80

Timed automata

The model of timed automata

0%y <%

problem, x:=0

23 problen 15.6
safe — safe — alarm ——
X 0 23 0
y 0 23 23
) 2.3) repair
failsafe ~—> failsafe ~———> repairing
15.6 17.9 17.9
0 2.3 0

repairing

repair

y:=0

alarm
15.6
38.6

22.1

2<yAx<56

delayed

repairing
40
22.1

failsafe
15.6
0
ﬁf—) safe
40
22.1

5/80

Timed automata

Modelling the task graph scheduling problem

6/80

Timed automata

Modelling the task graph scheduling problem

@ Processors

Py x=2 x=3

(x=<2) x:=0 x:=0 (x<3)
Py y=5 y=T

v<5) oo =0 (<)

6/80

Timed automata

Modelling the task graph scheduling problem

° Processors @ Tasks
Ta: __tint, —~ t ::i:
done; d| done; < :1 2 !
addy die multy add; S done;
(x<2) (x<3) _
5. —
o t3 ~ ts:=1
y=b y=7 add; J done; :

Py
doney . doney

<5 o o (<7)

6/80

Timed automata

Modelling the task graph scheduling problem

° Processors @ Tasks
Ta: __tint, —~ t ::]Q:
done; done; ‘ :1 > !
add; multy add; S done;
x<2 (x<3 .
(x=2)) T5.O £ ~ tS:Zb
add; S done;
donep donep
addp multy
(y<5) (y<7)

~ build the synchronized product of all these automata
(PullP) s (Ta | T2 [-+ |l Te)

6/80

Timed automata

Modelling the task graph scheduling problem

° Processors @ Tasks
Ta: __tint, —~ t ::]Q:
done; done; ‘ :1 > !
add; multy add; S done;
x<2 (x<3 .
(x=2)) T5.O £ ~ ts:zlo
add; S done;
donep donep
addp multy
(y<5) (y<7)

~ build the synchronized product of all these automata

(PullP) s (Ta | T2 [-+ |l Te)
A schedule: a path in the global system which reaches t; A--- A tg

6/80

Timed automata

Modelling the task graph scheduling problem

° Processors @ Tasks
Ta: __tint, —~ t ::]Q:
done; done; ‘ :1 > !
add; multy add; S done;
x<2 (x<3 .
(x=2)) T5.O £ ~ ts:zlo
add; S done;
donep donep
addp multy
(y<5) (y<7)

~ build the synchronized product of all these automata

(PullP) s (Ta | T2 [-+ |l Te)
A schedule: a path in the global system which reaches t; A--- A tg

Questions one can ask
@ Can the computation be made in no more than 10 time units?
@ Is there a scheduling along which no processor is ever idle?

6/80

Timed automata

Discrete-time semantics

...because computers are digital!)

[Alur91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.
7/80

Timed automata

Discrete-time semantics

...because computers are digital!

Example [Alur91]

Og

[Alur91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.

7/80

Timed automata

Discrete-time semantics

...because computers are digital!

Example [Alur91]

Og

[Alur91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.

7/80

Timed automata

Discrete-time semantics

...because computers are digital!

Example [Alur91]

12 o
NOT

12] o
g
NOT

e under discrete-time, the output is always O:

Og

[Alur91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.

7/80

Timed automata

Discrete-time semantics

...because computers are digital!

Example [Alur91]

Og

[Alur91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.

7/80

Timed automata

Discrete-time semantics

...because computers are digital!

Example [Alur91]

1,2] 02 1]
NOT
! OR Og
172] 03
NOT

e under discrete-time, the output is always O:

[Alur91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.

7/80

Timed automata

Discrete-time semantics

...because computers are digital!

Example [Alur91]

e under continuous-time, the output can be 1:

1

OR

Og

[Alur91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.

7/80

Timed automata

Discrete-time semantics

...because computers are digital!

Example [Alur91]

12 o
NOT

12 o,

| NOT

172] 03
NOT

Finding the correct granularity (if one exists) is hard!

OR Og

[Alur91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.

7/80

Timed automata

Continuous-time semantics

...real-time models for real-time systems!)

8/80

Timed automata

Continuous-time semantics

...real-time models for real-time systems!)

Example

y>2, y:=0

8/80

Timed automata

Continuous-time semantics

...real-time models for real-time systems! J

Example

y>2, y:=0

8/80

Timed automata

Continuous-time semantics

...real-time models for real-time systems! J

Example

y>2, y:=0

8/80

Timed automata

Continuous-time semantics

...real-time models for real-time systems! J

Example

8/80

Timed automata

Continuous-time semantics

...real-time models for real-time systems! J

Example

8/80

Timed automata

Continuous-time semantics

...real-time models for real-time systems!)

Example

8/80

Timed automata

Continuous-time semantics

...real-time models for real-time systems!)

Example

8/80

Timed automata

Continuous-time semantics

...real-time models for real-time systems! J

Example

8/80

Timed automata

Continuous-time semantics

...real-time models for real-time systems! J

Example

8/80

Timed automata

Continuous-time semantics

...real-time models for real-time systems!)

Example

8/80

Timed automata

Continuous-time semantics

...real-time models for real-time systems!)

Example

8/80

Timed automata

Continuous-time semantics

...real-time models for real-time systems!)

Example

We will focus on the continuous-time semantics J

8/80

Timed automata

Analyzing timed automata

9/80

Timed automata

Analyzing timed automata

x<2, x:=0
x=1 O/—\
y>2, y:=0

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

@ Technical tool: region abstraction

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).
9/80

Timed automata

Analyzing timed automata

x<2, x:=0
x=1 (:)/—\
y>2, y:=0

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

@ Technical tool: region abstraction
o Efficient symbolic technics based on zones, implemented in tools

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).
9/80

Timed automata

Technical tool: Region abstraction

clock y

clock x

10/80

Timed automata

Technical tool: Region abstraction

clock y
only constraints: x ~ ¢ with ¢ € {0,1,2}
y ~ ¢ with c € {0,1,2}
2 ° °
1 ° °
0 clock x
0 1 2

@ “compatibility” between regions and constraints

10/80

Timed automata

Technical tool: Region abstraction

clock y
4
4
k4
4
'O
2 o ——0—
Rk
L4 '4
'\T R
’ R4
1 —'hi_ —
P2 4
4
¢ o
‘|
0
0 1 2

The path O——Q——0O

clock x

- can be fired from ®
- cannot be fired from ®

@ “compatibility” between regions and constraints

@ “compatibility” between regions and time elapsing

10/80

Timed automata

Technical tool: Region abstraction

clock y

Ndvd
ydvd

0 clock x
0 1 2

@ “compatibility” between regions and constraints
@ “compatibility” between regions and time elapsing

10/80

Timed automata

Technical tool: Region abstraction

|
Vavd

clock x

@ “compatibility” between regions and constraints

@ “compatibility” between regions and time elapsing

~» This is a finite time-abstract bisimulation!

10/80

Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

11/80

Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

a
—_—

v e
o

11/80

Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

a
V @ —m7m @
1 1
1 1
1 a 1
Q— 0

3

11/80

Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

Ve— e vd >0
I
o——— o

3

11/80

Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

a 5(d)
V @ — @ Vd >0 e ——— 0
L, s(d) !
i @ —— @ 3d’' >0 o—>0

11/80

Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

a 5(d)
V @ — @ Vd >0 e ——— 0
L, s(d) !
i @ —— @ 3d’' >0 o—>0

.. and vice-versa (swap e and e).

11/80

Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

a é(d)
V @ —m— @ VYd >0 @ —> 0
: 5 : Cooo(d)
1 @—m 0 3d’' >0 o——> 0
.. and vice-versa (swap e and e).
Consequence
di,a; dh,a, ds3,a3

Vo (b, v1) — (b2, vo) — ({3, v3) —

11/80

Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

a é(d)
V @ —m— @ VYd >0 @ —> 0
: 5 : Cooo(d)
1 @—m 0 3d’' >0 o——> 0
.. and vice-versa (swap e and e).
Consequence
di,a; dh,a, ds3,a3

Vo (b, v1) — (b2, vo) — ({3, v3) —

| l l

(51, R1) i>(£2, Rg) i(ﬁ& R3) l -+ with vy € R;

11/80

Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

a é(d)
V @ —m— @ VYd >0 @ —> 0
: 5 : Cooo(d)
1 @—m 0 3d’' >0 o——> 0
.. and vice-versa (swap e and e).
Consequence
di,a; dh,a, ds3,a3

Vo (b, v1) — (b2, vo) — ({3, v3) —

| l l

(51, R1) i>(£2, Rg) i(ﬁ& R3) l -+ with vy € R;

VV{ €R;

11/80

Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

a
V @ — @ vd >0 ()
| | |
1 a 1 1
i @— @ id’ >0 [

.. and vice-versa (swap e and e).

Consequence

di,a1 dy,a2 ds3,a3

Vo (b, v1) — (b2, vo) — ({3, v3) —

1

(01, Ry) —~ (L2, Ry) —=~ ({3, R3) —~

T

dl,al d2,32
Vvi € R 3 (€1, vi) — (b2, v3) — (63, v3) —

with v; € R;

with v/ € R;

v

11/80

Timed automata

The region automaton

y=1,b x<1,c x<1,c

x>0,a
>®> x>1,d
y:=0

y<1l,a,y:=0

12/80

Timed automata

The region automaton

y=1,b x<1,c x<1,c

x>0,a
—>@—> x>1,d
y:=0

y<l,a,y:=0

12/80

Timed automata

The region automaton

y=1,b x<1,c \ x<1,c
x>0,a
—>®—> x>1,d
y:=0

y<1l,a,y:=0 y
S0
—_—
x=y=0 [
, b b ——e
y i |/|
/ * : x
s1 s1 b s1 b s
0=y<x<1 l=y<x
C £
s3 d s3
O<y<x<1 O<y<1<x 1=y <x x>1,y>1

<

12/80

Timed automata

The region automaton

.@. _/@Q x>1d

—

-

x=y=0

x<1,c

y<1l,a,y:=0

S1

S1

S1

O=y<x<1 y=0,x=1 y=0,x>1 1=y<x

c Od
s3 S3 S3

O0<y<x<1 O0<y<l<x 1=y<x x>1,y>1

Zeno cycles

A

12/80

The region automaton

-

Timed automata

x>0,a
O y:=0

—
x=y=0

=1,b \x<1,c

%

‘&____,—a”(::::}::::::) o

y<l,a,y:=0

S1

S1

S1

O=y<x<1 y=0,x=1 y=0,x>1 1=y<x

C L)’
s3 S3 S3

O0<y<x<1 O0<y<l<x 1=y<x x>1,y>1

y

/

Cycles with
non-Zeno behaviours

12/80

Timed automata

What about the practice?

@ the region automaton is never computed J

@ instead, symbolic computations are performed

13/80

Timed automata

What about the practice?

@ the region automaton is never computed

@ instead, symbolic computations are performed

What do we need?

@ Need of a symbolic representation:

Finite representation of infinite sets of configurations J

13/80

Timed automata

What about the practice?

@ the region automaton is never computed

@ instead, symbolic computations are performed

What do we need?

@ Need of a symbolic representation:

Finite representation of infinite sets of configurations J

e in the plane, a line
represented by two points.

13/80

Timed automata

What about the practice?

@ the region automaton is never computed

@ instead, symbolic computations are performed

What do we need?

@ Need of a symbolic representation:
Finite representation of infinite sets of configurations J

e in the plane, a line
represented by two points.

o set of words aa, aaaa, aaaaaa...
. . .
represented by a rational expression aa(aa)

13/80

Timed automata

What about the practice?

@ the region automaton is never computed
@ instead, symbolic computations are performed

What do we need?
@ Need of a symbolic representation:

Finite representation of infinite sets of configurations)

e in the plane, a line
represented by two points.

o set of words aa, aaaa, aaaaaa...
. . .
represented by a rational expression aa(aa)

o set of integers, represented using semi-linear sets

13/80

Timed automata

What about the practice?

@ the region automaton is never computed
@ instead, symbolic computations are performed

What do we need?
@ Need of a symbolic representation:

Finite representation of infinite sets of configurations)

e in the plane, a line
represented by two points.

o set of words aa, aaaa, aaaaaa...
. . .
represented by a rational expression aa(aa)

o set of integers, represented using semi-linear sets

o sets of constraints, polyhedra, zones, regions

13/80

Timed automata

What about the practice?

@ the region automaton is never computed
@ instead, symbolic computations are performed

What do we need?
@ Need of a symbolic representation:

Finite representation of infinite sets of configurations)

e in the plane, a line
represented by two points.

o set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)”

o set of integers, represented using semi-linear sets
o sets of constraints, polyhedra, zones, regions

o BDDs, DBMs (see later), CDDs, etc...

13/80

Timed automata

What about the practice?

@ the region automaton is never computed

@ instead, symbolic computations are performed

What do we need?
@ Need of a symbolic representation:

Finite representation of infinite sets of configurations)

e in the plane, a line
represented by two points.

o set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)”

o set of integers, represented using semi-linear sets
o sets of constraints, polyhedra, zones, regions

o BDDs, DBMs (see later), CDDs, etc...

@ Need of abstractions, heuristics, etc...

13/80

Timed automata

Zones: A symbolic representation for timed systems

Example of a zone and its DBM representation

Z =(a>23) A (e<5) A (xx—x <4)

X2
5 Xo X1 Xo
X0 © -3 o
X1 oo oo 4
X2 5 o0 o

DBM: Difference Bound Matrice [BM83,Dill89]

[BM83] Berthomieu, Menasche. An enumerative approach for analyzing time Petri nets World Comupter Congress.

[Dillg9] Dill. Timing assumptions and verification of finite-state concurrent systems (Automatic Verification Methods for Finite State Systems).
14/80

Timed automata

Zones: A symbolic representation for timed systems

Example of a zone and its DBM representation

Z =(a>23) A (e<5) A (xx—x <4)

DBM: Difference Bound Matrice [BM83,Dill89]

[BM83] Berthomieu, Menasche. An enumerative approach for analyzing time Petri nets World Comupter Congress.
[Dillg9] Dill. Timing assumptions and verification of finite-state concurrent systems (Automatic Verification Methods for Finite State Systems).
14/80

Timed automata

Zones: A symbolic representation for timed systems

Example of a zone and its DBM representation

Z = (X123) AN (X2§5) VAN (X1—X2§4)
0 0

DBM: Difference Bound Matrice [BM83,Dill89]

[BM83] Berthomieu, Menasche. An enumerative approach for analyzing time Petri nets World Comupter Congress.
[Dillg9] Dill. Timing assumptions and verification of finite-state concurrent systems (Automatic Verification Methods for Finite State Systems).
14/80

Timed automata

Zones: A symbolic representation for timed systems

Example of a zone and its DBM representation

Z =(a>23) A (e<5) A (xx—x <4)

X2
5 Xo X1 X
X0 0 -3 0
X1 9 0 4
2| X 5 2 0

“normal form”

DBM: Difference Bound Matrice [BM83,Dill89]

[BM83] Berthomieu, Menasche. An enumerative approach for analyzing time Petri nets World Comupter Congress.
[Dillg9] Dill. Timing assumptions and verification of finite-state concurrent systems (Automatic Verification Methods for Finite State Systems).
14/80

Timed automata

Backward computation

15/80

Timed automata

Backward computation

Final

15/80

Timed automata

Backward computation

15/80

Timed automata

Backward computation

15/80

Timed automata

Backward computation

15/80

Timed automata

Note on the backward analysis of timed automata

g,a,Y =0

[Y <0 Y(Zn(Y=0)Nng Zz

16/80

Timed automata

Note on the backward analysis of timed automata

g,a,Y =0

[Y <0 Y(Zn(Y=0)Nng Zz

16/80

Timed automata

Note on the backward analysis of timed automata

g,a,Y =0

[Y<+~0HZn(Y=0)Ng Z

" 4

X X

4 [y+-01~1(ZNn(y=0))

16/80

Timed automata

Note on the backward analysis of timed automata

g,a,Y =0

X X X

z [y+-01~1(ZNn(y=0))

16/80

Timed automata

Note on the backward analysis of timed automata

g,a,Y =0

X X X X

z [y<0]~}(ZN(y=0)) [y<0]~}(Zn(y=0))Ng

16/80

Timed automata

Note on the backward analysis (cont.)

© All previous operations can be computed using DBMs!

17/80

Timed automata

Note on the backward analysis (cont.)

© All previous operations can be computed using DBMs!

@ intersection: take the minimum of the two constraints

17/80

Timed automata

Note on the backward analysis (cont.)

® All previous operations can be computed using DBMs!
@ intersection: take the minimum of the two constraints

@ inverse reset w.r.t y: relax constraints on y (on a DBM on normal
form)

17/80

Timed automata

Note on the backward analysis (cont.)

® All previous operations can be computed using DBMs!
@ intersection: take the minimum of the two constraints

@ inverse reset w.r.t y: relax constraints on y (on a DBM on normal
form)

@ past: relax lower bounds (on a DBM on normal form)

17/80

Timed automata

Note on the backward analysis (cont.)

© Al previous operations can be computed using DBMs!
@ intersection: take the minimum of the two constraints

@ inverse reset w.r.t y: relax constraints on y (on a DBM on normal
form)

@ past: relax lower bounds (on a DBM on normal form)

@ emptiness: check whether there is a negative cycle

17/80

Timed automata

Note on the backward analysis (cont.)

© Al previous operations can be computed using DBMs!
@ intersection: take the minimum of the two constraints

@ inverse reset w.r.t y: relax constraints on y (on a DBM on normal
form)

@ past: relax lower bounds (on a DBM on normal form)

@ emptiness: check whether there is a negative cycle

The backward computation terminates

Because of the bisimulation property of the region abstraction:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

17/80

Timed automata

Note on the backward analysis (cont.)

®© All previous operations can be computed using DBMs!
@ intersection: take the minimum of the two constraints

@ inverse reset w.r.t y: relax constraints on y (on a DBM on normal
form)

@ past: relax lower bounds (on a DBM on normal form)

@ emptiness: check whether there is a negative cycle

The backward computation terminates

Because of the bisimulation property of the region abstraction:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”
Let R be a region. Assume:
oveR (for ex. v+t € R)

0 v = v

There exists t’ s.t. v/ + t/ =z v+ t, which implies that v/ +t' € R and thus v/ € R.

v
17/80

Timed automata

Note on the backward analysis (cont.)

© Al previous operations can be computed using DBMs!
@ intersection: take the minimum of the two constraints

@ inverse reset w.r.t y: relax constraints on y (on a DBM on normal
form)

@ past: relax lower bounds (on a DBM on normal form)

@ emptiness: check whether there is a negative cycle

The backward computation terminates

Because of the bisimulation property of the region abstraction:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

However the backward computation is not appropriate to manipulate
other variables (think for instance of assignment i := j.k + /)

17/80

Timed automata

Forward computation

18/80

Timed automata

Forward computation

Init

18/80

Timed automata

Forward computation

18/80

Timed automata

Forward computation

18/80

Timed automata

Forward computation

18/80

Timed automata

Forward analysis of timed automata

g,a,Y =0 @
/

z Y < 0)(Zng)

19/80

Timed automata

Forward analysis of timed automata

g,a,Y =0 @
/

z Y < 0)(Zng)

19/80

Timed automata

Forward analysis of timed automata

g,a,Y =0 @
/

z Y < 0)(Zng)

19/80

Timed automata

Forward analysis of timed automata

g,a,Y =0 @
/

19/80

Timed automata

Forward analysis of timed automata

g,a,Y =0 @
/

19/80

Timed automata

Note on the forward analysis (cont.)

®© All previous operations can be computed using DBMs!
@ intersection: take the minimum of the two constraints
@ reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)

o future: relax upper bounds (on a DBM on normal form)

@ emptiness: check whether there is a negative cycle

20/80

Timed automata

Note on the forward analysis (cont.)

®© All previous operations can be computed using DBMs!
@ intersection: take the minimum of the two constraints
@ reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
o future: relax upper bounds (on a DBM on normal form)

@ emptiness: check whether there is a negative cycle

® The forward computation may not terminate...

20/80

Timed automata

Note on the forward analysis (cont.)

®© All previous operations can be computed using DBMs!
@ intersection: take the minimum of the two constraints
@ reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
o future: relax upper bounds (on a DBM on normal form)

@ emptiness: check whether there is a negative cycle

® The forward computation may not terminate...

20/80

Timed automata

Note on the forward analysis (cont.)

®© All previous operations can be computed using DBMs!
@ intersection: take the minimum of the two constraints
@ reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
o future: relax upper bounds (on a DBM on normal form)

@ emptiness: check whether there is a negative cycle

® The forward computation may not terminate...

20/80

Timed automata

Note on the forward analysis (cont.)

®© All previous operations can be computed using DBMs!
@ intersection: take the minimum of the two constraints
@ reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
o future: relax upper bounds (on a DBM on normal form)

@ emptiness: check whether there is a negative cycle

® The forward computation may not terminate...

20/80

Timed automata

Note on the forward analysis (cont.)

®© All previous operations can be computed using DBMs!
@ intersection: take the minimum of the two constraints
@ reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
o future: relax upper bounds (on a DBM on normal form)

@ emptiness: check whether there is a negative cycle

® The forward computation may not terminate...

20/80

Timed automata

Note on the forward analysis (cont.)

®© All previous operations can be computed using DBMs!
@ intersection: take the minimum of the two constraints
@ reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
o future: relax upper bounds (on a DBM on normal form)

@ emptiness: check whether there is a negative cycle

® The forward computation may not terminate...

20/80

Timed automata

Note on the forward analysis (cont.)

®© All previous operations can be computed using DBMs!
@ intersection: take the minimum of the two constraints
@ reset w.r.t y: set constraint if y to 0 (on a DBM on normal form)
o future: relax upper bounds (on a DBM on normal form)

@ emptiness: check whether there is a negative cycle

® The forward computation may not terminate...

~> an infinite number of steps...
.

20/80

Timed automata

Forward reachability algorithm

Parameters: Abstraction abs and inclusion test <

21/80

Timed automata

Forward reachability algorithm

Parameters: Abstraction abs and inclusion test <

@ Passed +) and Waiting < {({o, Z0)}
o While Waiting #)

o select (¢, Z) from Waiting

o If £ is final, then return “Reachable!”

o If forall (¢,Z') € Passed, ZAZ', then add abs(¢, Z) to Passed and
add Post(abs(¢, Z)) to Waiting

@ Return “Not reachable!”

21/80

Timed automata

Standard solution: the extrapolation operator

Extrap(Z): “the smallest zone containing Z that is defined only with
constants no more than 2"

X2

X1

1o O
N O
o B~ O

22/80

Timed automata

Standard solution: the extrapolation operator

Extrap(Z): “the smallest zone containing Z that is defined only with
constants no more than 2"

X2

0 0 Extras 0
9 0 4 0
5 2 0 0

22/80

Timed automata

Standard solution: the extrapolation operator

Extrap(Z): “the smallest zone containing Z that is defined only with
constants no more than 2"

X2

o2 i Y
Extrax(Z)
2 X1
0 -3 0 Extra, 0 -2 0
9 0 4 e ——— o 0 o
5 2 0 o 2 0

~» The extrapolation operator ensures termination of the computation!

22/80

Timed automata

The extrapolation: correctness

Theorem [Bou04]

The forward algorithm with abs = Extray, and < = C is correct for timed
automata.

[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).

23/80

Timed automata

The extrapolation: correctness

Theorem [Bou04]

The forward algorithm with abs = Extray, and < = C is correct for timed
automata.

@ the extrapolation operator can be made coarser:

o use local extrapolation constants [BBFLO3];
o distinguish between lower- and upper-bounded contraints
[BBLP04,BBLPO6]

o use non-convex (but optimal!) abstractions [HSW12]
e compute constants dynamically [HSW13]

[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).

[BBFLO3] Behrmann, Bouyer, Fleury, Larsen. Static Guard Analysis in Timed Automata Verification (TACAS'03).

[BBLPO4] Behrmann, Bouyer, Larsen, Pelanek. Lower and Upper Bounds in Zone Based Abstractions of Timed Automata (TACAS'04).

[BBLPO6] Behrmann, Bouyer, Larsen, Pelanek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International
Journal on Software Tools for Technology Transfer).

[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS'12).

[HSW13] Herbreteau, Srivathsan, Walukiewicz. Lazy abstractions for timed automata (CAV'13).
23/80

Timed automata

Alternative: Improved inclusion test

Develop an inclusion test T, such that:

7T 2 iff Z Cabs(Z')

[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS’12).

24/80

Timed automata

Alternative: Improved inclusion test

Develop an inclusion test T, such that:
707" iff Z Cabs(Z') J

@ Advantage: only store zones (without abstractions)!

[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS’12).
24/80

Timed automata

Alternative: Improved inclusion test

Develop an inclusion test C s such that:
ZC.0 2" iff Z Cabs(Z') J

e Advantage: only store zones (without abstractions)!
@ abs;y: (non-convex) abstraction w.r.t. LU-constraints
X2

Simple case:
M=L=U=4

[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS’12).
24/80

Timed automata

Alternative: Improved inclusion test

Develop an inclusion test T, such that:
707" iff Z Cabs(Z') J

@ Advantage: only store zones (without abstractions)!
@ abs;y: (non-convex) abstraction w.r.t. LU-constraints

@ Note: Optimal abstraction for LU-constrained automatal

[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS’12).
24/80

Timed automata

Alternative: Improved inclusion test

Develop an inclusion test T, such that:
707" iff Z Cabs(Z') J

@ Advantage: only store zones (without abstractions)!
@ abs;y: (non-convex) abstraction w.r.t. LU-constraints
@ Note: Optimal abstraction for LU-constrained automatal

@ Result: ZC,,,Z" can be computed efficiently

[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS’12).
24/80

Timed automata

Alternative: Improved inclusion test

Develop an inclusion test T, such that:
707" iff Z Cabs(Z') J

@ Advantage: only store zones (without abstractions)!
@ abs;y: (non-convex) abstraction w.r.t. LU-constraints
@ Note: Optimal abstraction for LU-constrained automatal

@ Result: ZC,,,Z" can be computed efficiently

Theorem

The forward algorithm with abs = Id and < = ., is correct for timed
automata.

[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS’12).
24/80

Timed automata

Tools for timed automata

e Uppaal, developed in Aalborg (Denmark) and Uppsala (Sweden)
since 1995

http://www.uppaal.org

25/80

http://www.uppaal.org
http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/
https://git.lsv.fr/colange/tiamo

Timed automata

Tools for timed automata

e Uppaal, developed in Aalborg (Denmark) and Uppsala (Sweden)
since 1995

http://www.uppaal.org

@ Kronos, developed in Grenoble (France), no more maintained
http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/

25/80

http://www.uppaal.org
http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/
https://git.lsv.fr/colange/tiamo

Timed automata

Tools for timed automata

e Uppaal, developed in Aalborg (Denmark) and Uppsala (Sweden)
since 1995

http://www.uppaal.org

@ Kronos, developed in Grenoble (France), no more maintained
http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/

@ Many other prototypes everywhere on earth...

25/80

http://www.uppaal.org
http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/
https://git.lsv.fr/colange/tiamo

Timed automata

Tools for timed automata

e Uppaal, developed in Aalborg (Denmark) and Uppsala (Sweden)
since 1995

http://www.uppaal.org

@ Kronos, developed in Grenoble (France), no more maintained
http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/

@ Many other prototypes everywhere on earth...

@ Our new tool TiAMo, developed by Maximilien Colange (LSV)
https://git.1lsv.fr/colange/tiamo

25/80

http://www.uppaal.org
http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/
https://git.lsv.fr/colange/tiamo

Timed automata

Tools for timed automata

e Uppaal, developed in Aalborg (Denmark) and Uppsala (Sweden)
since 1995

http://www.uppaal.org

@ Kronos, developed in Grenoble (France), no more maintained
http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/

@ Many other prototypes everywhere on earth...

@ Our new tool TiAMo, developed by Maximilien Colange (LSV)
https://git.1lsv.fr/colange/tiamo

~ see description and demo later

25/80

http://www.uppaal.org
http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/
https://git.lsv.fr/colange/tiamo

Weighted timed automata

Outline

© Weighted timed automata

26/80

Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

27/80

Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

@ energy consumption, .
e price to pay,

e memory usage,
y & o bandwidth,

27/80

Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

@ energy consumption, .
e price to pay,

memory usage,
° y & o bandwidth,

~» timed automata are not powerful enough!

27/80

Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

@ energy consumption, .
e price to pay,

memory usage,
° y & o bandwidth,

o ...
~» timed automata are not powerful enough!
@ A possible solution: use hybrid automata

a discrete control (the mode of the system)
+ continuous evolution of the variables within a mode

27/80

Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

@ energy consumption, .
e price to pay,

memory usage,
° y & o bandwidth,

~» timed automata are not powerful enough!

@ A possible solution: use hybrid automata

The thermostat example

T<19
Off On

T=—0.5T T=2.25—05T

(T>18) (T<22)

27/80

Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

e energy consumption, .
@ price to pay,

memory usage,
° y & o bandwidth,

~» timed automata are not powerful enough!

@ A possible solution: use hybrid automata

The thermostat example

T<19
Off On

T=—05T T=2.25—05T

(T>18) (T<22)

27/80

Ok...

Weighted timed automata

28/80

Weighted timed automata

Ok...

28/80

Weighted timed automata

Ok...

28/80

Weighted timed automata

Ok...

Easy...

28/80

Weighted timed automata

constraint

/\
~—

constraint

28/80

Weighted timed automata

constraint

/\
~—

constraint

Hard!

28/80

Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

e energy consumption, .
@ price to pay,

@ memory usage,
y usag o bandwidth,

~ timed automata are not powerful enough!
@ A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata. Even for the
simplest, the so-called stopwatch automata (clocks can be stopped).

[HKPV05] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).

29/80

Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

e energy consumption, .
@ price to pay,

@ memory usage,
y usag o bandwidth,

~ timed automata are not powerful enough!
@ A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata. Even for the
simplest, the so-called stopwatch automata (clocks can be stopped).

@ An alternative: weighted/priced timed automata [ALP01,BFH+01]
~ hybrid variables do not constrain the system
hybrid variables are observer variables

[HKPV05] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).
[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).

[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
29/80

Weighted timed automata

Modelling the task graph scheduling problem

done;

° Processors @ Tasks
Ta: __tint, —~ t ::]Q:
done; done; ‘ :1 2 :
add; Idle multy add; S done;
(x<2) (x<3) Ts:
N 53
y:5 y:7 O add; \J O

P2.

doney @ doney
addy multy

v<5) oo a2

30/80

Weighted timed automata

Modelling the task graph scheduling problem

@ Processors

P x=2 x=3
done; done;
add; multy
(x<2) -0 x=0 (x<3)
Py y=5 y=T
donep donep
addy multy
(y<5) yi=0 yi=0 (y<7)

@ Modelling energy

p,: x=2 x=3
1.
done; done;
add; multy
(x=2) x:=0 x:=0 (x<3)
=5 -7
P, y y
donep donep
addy multy
(y<5) 0 x:=0 (y<7)

@ Tasks

Tal _tiAt
O add;
t3
O add;

t4::b
done;

t5:=
done; O

Ts.

O O

A good schedule is a path in the
product automaton with a low cost J

30/80

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©

+5

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
31/80

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©
+5
6o o S on 5o 2L S O
x 0 13 13 1.3 2
0 13 0 0 0.7

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
31/80

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©
+5
6o o S on 5o 2L S O
x 0 13 13 1.3 2
y 0 13 0 0 0.7
cost :

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
31/80

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-0
+5
b B o6 o Mo 2 o S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
31/80

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-0
+5
b B o6 o Mo 2 o S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
31/80

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©
+5
b B o6 o Mo 2 o S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0 + 0

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
31/80

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©
+5
b B o6 o Mo 2 o S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0 + 0 + 0.7

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
31/80

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-®
+5
b B o6 o Mo 2 o S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0 + 0 + 0.7 + 7

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
31/80

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©
+5
6o o S on 5o 2L S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0 + 0 + 0.7 + 7 = 142

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
31/80

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©

+5

Question: what is the optimal cost for reaching @?

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
31/80

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©

+5

Question: what is the optimal cost for reaching @?

5t+10(2—t)+1

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
31/80

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

+10

x<2,c,y:=0
~©

+5

+1

Question: what is the optimal cost for reaching @?

5t+10(2—t)+1,5t+(2—-t)+7

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
31/80

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

+10

x<2,c,y:=0
~©

+5

+1

Question: what is the optimal cost for reaching @?

min (5t +10(2—t)+1,5t+(2—1t)+7)

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
31/80

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

+10

x<2,c,y:=0
~©

+5

+1

Question: what is the optimal cost for reaching @?

Oéurp;z min (5t +102—¢t)+1, 5t+(2—-t)+7)=9

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
31/80

Weighted timed automata

Weighted /priced timed automata [ALPO1,BFH-+01]

+10

x<2,c,y:=0
~©

+5

+1

Question: what is the optimal cost for reaching @?

Oéurp;z min (5t +102—¢t)+1, 5t+(2—-t)+7)=9

~ strategy: leave immediately £y, go to /3, and wait there 2 t.u.
[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).

[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
31/80

Weighted timed automata

Optimal-cost reachability
Theorem [ALP01,BFH+-01,BBBR07]

In weighted timed automata, the optimal cost is an integer and can be
computed in PSPACE.

@ Technical tool: a refinement of the regions, the corner-point

abstraction

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

[BBBRO7] Bouyer, Brihaye, Bruyére, Raskin. On the optimal reachability problem (Formal Methods in System Design).
32/80

Weighted timed automata

Optimal-cost reachability
Theorem [ALP01,BFH+-01,BBBR07]

In weighted timed automata, the optimal cost is an integer and can be
computed in PSPACE.

@ Technical tool: a refinement of the regions, the corner-point

abstraction

@ Symbolic technics based on priced zones

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

[BBBRO7] Bouyer, Brihaye, Bruyére, Raskin. On the optimal reachability problem (Formal Methods in System Design).
32/80

Weighted timed automata

Technical tool: the corner-point abstraction

NN
NNE

i

33/80

Weighted timed automata

Technical tool: the corner-point abstraction

y

!

Y
A7

33/80

Weighted timed automata

Technical tool: the corner-point abstraction

y
7| Abstract time successors:

77
A7

33/80

Weighted timed automata

Technical tool: the corner-point abstraction

Abstract time successors:

A7 A

o — X

Concrete time successors:

33/80

Weighted timed automata

Technical tool: the corner-point abstraction

Abstract time successors:

AN AT

Concrete time successors:

33/80

Weighted timed automata

Technical tool: the corner-point abstraction

Abstract time successors:

AN AT

Concrete time successors:

33/80

Weighted timed automata

Technical tool: the corner-point abstraction

Abstract time successors:

AN AT

Concrete time successors:

33/80

Weighted timed automata

Technical tool: the corner-point abstraction

Abstract time successors:

AN AT

Concrete time successors:

33/80

Weighted timed automata

Technical tool: the corner-point abstraction

Time elapsing Y
Discrete transition —

33/80

Weighted timed automata

Technical tool: the corner-point abstraction

Cost rate 3 \
Discrete cost 7 —

33/80

Weighted timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem)

34/80

Weighted timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem)

t1 ty t3 ty ts

34/80

Weighted timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem)

5% t2 t3 ta ts { t+t6<2
o] o] o] o] o] (o] e

34/80

Weighted timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem)
ty t t3 ty ts { t+t<2

o o o o o o .-
y:=0 x<2 y>5 ty+t3+t3 >5

34/80

Weighted timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem

T T2 T3 T, Ts
t t t3 ty ts { i+t <2 T,<2
o] o] o] o] o] o] e
y:=0 x<2 y>5 ttt3+ta>5 Ta—T12>5

34/80

Weighted timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem)
T T T3 T, Ts
t t t3 ty ts { i+t <2 T,<2
o o o o o o .-
y=0 x<2 y>5 t+t3+t>5 Tp—T12>5

Lemma

Let Z be a bounded zone and f be a function

n
f:(Tl,.,.,Tn)HZc,T,+c

i=1

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.
v

34/80

Weighted timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem)
T T T3 Ty Ts
t t t3 ty ts { i+t <2 T,<2
o o o o o o .-
yi=0 x<2 y>5 t+ts+ta>5 Ta—T1>5

Lemma

Let Z be a bounded zone and f be a function

n
f:(T17-~~7Tn)’_>ZCi7—,‘+C

i=1

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.
v

~ for every finite path 7 in A, there exists a path [T in A, such that
cost(M) < cost(7)

[is a “corner-point projection” of =]

34/80

Weighted timed automata

From discrete to timed behaviours

Approximation of abstract paths:

"________________\\.

For any path I of A, ,

35/80

Weighted timed automata

From discrete to timed behaviours

Approximation of abstract paths:

For any path I of A, , for any € > 0,

35/80

Weighted timed automata

From discrete to timed behaviours

Approximation of abstract paths:

For any path I of A, , for any € > 0, there exists a path 7. of A s.t.

N —7]leo <&

35/80

Weighted timed automata

From discrete to timed behaviours

Approximation of abstract paths:

For any path I of A, , for any € > 0, there exists a path 7. of A s.t.

N —=mlee <€

For every n > 0, there exists € > 0 s.t.

[IN — 7|0 < & = |cost(M) — cost(n:)| <7

35/80

Weighted timed automata

Use of the corner-point abstraction

[

[
[
[
[
[

It is a very interesting abstraction, that can be used in several other

contexts:
@ for mean-cost optimization
for discounted-cost optimization
for all concavely-priced timed automata

for deciding frequency objectives

BBLO04] Bouyer, Brinksma, Larsen. Staying Alive As Cheaply As Possible (HSCC'04).

[BBLO4,BBLOS]
[FLO8]
[JT08]
[BBBS11,Stal2)]

BBLO08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

FLO8] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).
JT08] Judzinski, Trivedi. Concavely-priced timed automata (FORMATS'08).

BBBS11] Bertrand, Bouyer, Brihaye, Stainer. Emptiness and universality problems in timed automata with positive frequency (ICALP'11).

Stal2] Stainer. Frequencies in forgetful timed automata (FORMATS'12).

36/80

Weighted timed automata

Going further 1: mean-cost optimization

?
att?,x:=0 att!

z>S . z:=0

[BBLO8] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs). s7/80

Weighted timed automata

Going further 1: mean-cost optimization

att?,x:=0
x=D
(x<D) C=p
c=pP R=¢g

R=G

xX:=0 att?

att!

z>S . z:=0

~» compute optimal infinite schedules that minimize

mean-cost(7) = lim sup

cost(7,)

n—+oo reward(m,)

[BBLO8] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

37/80

Weighted timed automata

Going further 1: mean-cost optimization

att?,x:=0

x=D

(x<D)
c=p
R=G

Xi=(Q att?

att!
z>S . z:=0
C=p
R=g

~» compute optimal infinite schedules that minimize

mean-cost(7)

m, = A
- - I
m, H—— 1 £
OL T I
| 0000
Time = —5351¢

Schedule with ratio ~1.455

[BBLO8] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

, cost(7,)
= limsup ————
n—+oo reward(m,)

CY i
H —r)r)r)\

MlL
|

Hf— !
L

ES S S |
| |
M, T | |

[s
N ONONORE)
Time — %15 16
Schedule with ratio ~1.478

37/80

Weighted timed automata

Going further 1: mean-cost optimization

N
att?,x:=0 att!
. z>S ' z:=0
(x<D) C=p m
c=pP R=¢g

R=G
att7

~» compute optimal infinite schedules that minimize

t
mean-cost(7) = lim sup _cost(ma)
n—+oo reward(m,)

Theorem [BBLOS]

In weighted timed automata, the optimal mean-cost can be compute in
PSPACE.

~> the corner-point abstraction can be used

[BBLO8] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs) 37/80

Weighted timed automata

From timed to discrete behaviours
o Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function
27:1 Giti + ¢

VAR

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.

fi(t, ... ta) —

38/80

Weighted timed automata

From timed to discrete behaviours
o Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function
Zin:l Giti + ¢

VAR

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.

f: (tl, ey tn) —

~ for every finite path 7 in A, there exists a path [T in A s.t.
mean-cost(IM) < mean-cost()

38/80

Weighted timed automata

From timed to discrete behaviours

o Finite behaviours: based on the following property

Lemma
Let Z be a bounded zone and f be a function
T citi+c
Fo(tr, . tn) — %
Z,’zl riti+r

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.

~ for every finite path 7 in A, there exists a path [T in A s.t.
mean-cost(IM) < mean-cost()
@ Infinite behaviours: decompose each sufficiently long projection
into cycles:

W, e, e, ot o

The (acyclic) linear part will be negligible!

38/80

Weighted timed automata

From timed to discrete behaviours

o Finite behaviours: based on the following property

Lemma
Let Z be a bounded zone and f be a function
T citi+c
Fi(te, . tn) — 2717”
Z,’zl riti+r

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.

~ for every finite path 7 in A, there exists a path [T in A s.t.
mean-cost(IM) < mean-cost()
@ Infinite behaviours: decompose each sufficiently long projection
into cycles:

W, e, e, ot o

The (acyclic) linear part will be negligible!

~ the optimal cycle of A, is better than any infinite path of Al

38/80

Weighted timed automata

From discrete to timed behaviours

Approximation of abstract paths:

!

For any path I of A, ,

39/80

Weighted timed automata

From discrete to timed behaviours

Approximation of abstract paths:

For any path I of A, , for any € > 0,

39/80

Weighted timed automata

From discrete to timed behaviours

Approximation of abstract paths:

For any path I of A, , for any € > 0, there exists a path 7. of A s.t.

M —mellc <€

39/80

Weighted timed automata

From discrete to timed behaviours

Approximation of abstract paths:

For any path I of A, , for any € > 0, there exists a path 7. of A s.t.

M —mellc <€

For every nn > 0, there exists € > 0 s.t.

[IM = 7.]|oo < € = |mean-cost(M) — mean-cost(7.)| < n

39/80

Weighted timed automata

Going further 2: concavely-priced cost functions
~» A general abstract framework for quantitative timed systems

Theorem [JTO08]

In concavely-priced timed automata, optimal cost is computable, if we
restrict to quasi-concave cost functions. For the following cost functions,
the (decision) problem is even PSPACE-complete:

@ optimal-time and optimal-cost reachability;
@ optimal discrete discounted cost;

@ optimal mean-cost.

V.

~> the corner-point abstraction can be used

[JT08] Judzinski, Trivedi. Concavely-priced timed automata (FORMATS'08). 2050
/

Weighted timed automata

Going further 3: discounted-time cost optimization

Globally, (z<8)

x<3) x=3,x:=0 (x<3)
X
z>2,x,z:=0 z>2,z:=

[FLO8] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).

41/80

Weighted timed automata

Going further 3: discounted-time cost optimization

Globally, (z<8)

(x<3) x=3,x:=0 (x<3)

X

ow (Low) 0
z>2,x,z:=0 z>2,z:=

~» compute optimal infinite schedules that minimize
discounted cost over time

[FLO8] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).

41/80

Weighted timed automata

Going further 3: discounted-time cost optimization

Globally, (z<8)
x=3,x:=| x=3
(x<3

+9

z>2,x,z:=0 z>2,z:=0

~» compute optimal infinite schedules that minimize
Tn+1 3
discounted-cost, (7) = Z ATo / Mcost(£,) dt+A T cost(£, % £pi1)
n>0 t=0

72,32

ifm= (éo, Vo) Lal) (61, Vl) —% ... and Tn = Z,-Sn’r,'

[FLO8] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08). 41/80
/

Weighted timed automata

Going further 3: discounted-time cost optimization

Globally, (z<8)

(x<3) x=3,x:=0 (x<3)

X

ow (Low) 0
z>2,x,z:=0 z>2,z:=

~» compute optimal infinite schedules that minimize
discounted cost over time

[FLO8] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).

41/80

Weighted timed automata

Going further 3: discounted-time cost optimization

Globally, (z<8)

(x<3) x=3,x:=0 (x<3)

X

ow (Low) 0
z>2,x,z:=0 z>2,z:=

~» compute optimal infinite schedules that minimize
discounted cost over time

[FLO8] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).

I I I
I | AN
Vo if A\ = e !, the discounted cost of
| P that infinite schedule is ~ 2.16
I L I
| R
1 1 1 1
0 3 67 09

41/80

Weighted timed automata

Going further 3: discounted-time cost optimization

Globally, (z<8)

x<3) x=3,x:=0 (x<3)
X
z>2,x,z:=0 z>2,z:=

~» compute optimal infinite schedules that minimize
discounted cost over time

Theorem [FLOS]

In weighted timed automata, the optimal discounted cost is computable
in EXPTIME.

~ the corner-point abstraction can be used

[FLO8] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08). 41/80

Weighted timed automata

And symbolically?

@ Only for optimal reachability

[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV'01).
42/80

Weighted timed automata

And symbolically?

@ Only for optimal reachability

Priced zones

priced zone = zone + affine cost function

(=2—x+2y

X

[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV'01).
42/80

Weighted timed automata

And symbolically?

@ Only for optimal reachability

Priced zones

priced zone = zone + affine cost function

© efficient representation: DBM + offset cost + affine coefficient for
each clock

Represented by: zone Z
offset cost: +4
rate for x: —1
rate for y: +2

(=2—x+2y
offset

X

[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV'01).

42/80

Weighted timed automata

And symbolically?
@ Only for optimal reachability

Priced zones

priced zone = zone + affine cost function

© efficient representation: DBM + offset cost + affine coefficient for
each clock

® the successor of a priced zone is a union of priced zones

y

Represented by: zone Z
offset cost: +4
rate for x: —1
rate for y: +2

(=2—x+2y
offset

X

[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV'01).

42/80

Weighted timed automata

Computing the (time) successor of a priced zone

43/80

Weighted timed automata

Computing the (time) successor of a priced zone

Cost rate in current location: +3

We want (Z',¢’) with
(V) = ming_sez C(v/ —) + 368

43/80

Weighted timed automata

Computing the (time) successor of a priced zone

Cost rate in current location: +3

We want (Z',¢’) with

(V) = ming_sez C(v/ —) + 368
o if v eZ ('(V)={((v)

43/80

Weighted timed automata

Computing the (time) successor of a priced zone

y

¢ =x+2y —12

=4y —x—10

(=2—x+42y

X

Cost rate in current location: +3

We want (Z',¢’) with

(V) = ming_sez C(v/ —) + 368
o if v eZ ('(V)={((v)

@ otherwise, depends on the facet

43/80

Weighted timed automata

Forward optimal reachability algorithm

Parameters: Abstraction abs and inclusion test <

44/80

Weighted timed automata

Forward optimal reachability algorithm

Parameters: Abstraction abs and inclusion test <

@ cost + 400, Passed « () and Waiting < {({o, Z0)}
o While Waiting #)

o select (¢, Z) from Waiting

o If £is final and minCost(Z) < cost, then set minCost(Z) to cost

o If forall (¢, 2") € Passed, ZAZ', then add abs(¢, Z) to Passed and
add Post(abs(¢, Z)) to Waiting

@ Return cost

44/80

Weighted timed automata

Results

Theorem [LBB+01,RLS06]

The forward algorithm with abs = Id and < = C is correct and
terminates for bounded timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

[LBB-+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV'01).
[RLS06] Rasmussen, Larsen, Subramani. On using priced timed automata to achieve optimal scheduling (Formal Methods in System Design).

45/80

Weighted timed automata

Results

Theorem [LBB+01,RLS06]

The forward algorithm with abs = Id and < = C is correct and
terminates for bounded timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

@ Development of an (abstract) inclusion test Ly, on priced zones

[LBB-+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV'01).
[RLS06] Rasmussen, Larsen, Subramani. On using priced timed automata to achieve optimal scheduling (Formal Methods in System Design).

[BCM16] Bouyer, Colange, Markey. Symbolic Optimal Reachability in Weighted Timed Automata (CAV'16).
45/80

Weighted timed automata

Results

Theorem [LBB+01,RLS06]

The forward algorithm with abs = Id and < = C is correct and
terminates for bounded timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

@ Development of an (abstract) inclusion test Ly, on priced zones

@ ZL 2’ reduces to several bilevel linear optimization problems

[LBB-+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV'01).
[RLS06] Rasmussen, Larsen, Subramani. On using priced timed automata to achieve optimal scheduling (Formal Methods in System Design).

[BCM16] Bouyer, Colange, Markey. Symbolic Optimal Reachability in Weighted Timed Automata (CAV'16).
45/80

Weighted timed automata

Results

Theorem [LBB+01,RLS06]

The forward algorithm with abs = Id and < = C is correct and
terminates for bounded timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

@ Development of an (abstract) inclusion test Ly, on priced zones

@ ZL 2’ reduces to several bilevel linear optimization problems

Theorem [BCM16]

The forward algorithm with abs = Id and < = [, is correct and
terminates for timed automata with some conditions on the cost.
It is always better than < = C for bounded timed automata.

[LBB-+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV'01).
[RLS06] Rasmussen, Larsen, Subramani. On using priced timed automata to achieve optimal scheduling (Formal Methods in System Design).

[BCM16] Bouyer, Colange, Markey. Symbolic Optimal Reachability in Weighted Timed Automata (CAV'16).
45/80

Weighted timed automata

Tools

e Uppaal-Cora, developed in Aalborg (Denmark) between 2001-2005
http://people.cs.aau.dk/~adavid/cora/

~» no more maintained

46/80

http://people.cs.aau.dk/~adavid/cora/

Weighted timed automata

Tools

e Uppaal-Cora, developed in Aalborg (Denmark) between 2001-2005
http://people.cs.aau.dk/~adavid/cora/

~» no more maintained

@ Our new tool TiAMo

46/80

http://people.cs.aau.dk/~adavid/cora/

Timed games

Outline

© Timed games

47/80

Timed games

Modelling the task graph scheduling problem

° Processors @ Tasks
Ty —
add; multy add; S done;
(x<2) (x<3) Ts: ts o
O O—0
y=5 y=7 add; J done;

° Modelling energy

done; done;
add; multy

(x<2)

donep donep
addp multy
y<5 y<7

48/80

Timed games

Modelling the task graph scheduling problem

° Processors o Tasks
Ta: __tint, —~ t ::l:
done; done; ‘ :1 2 :
addy multy add; \J done;
(x<2) (x<3) Ts: e
O—0—-—-—"0
y=5b y=7 add; S done;
P,
donep donep
addy multy
=5 y—o y=0 (=7)
° Modelling energy ° Modelling uncertainty
done; done; &m—er Llonei
add; multy %1/ \miltl/;®
(x<2) (x<3)
donep donep - -
adds multy (loiie> donep
y<5 y<7 addp multy (X<3)

48/80

Timed games

Modelling the task graph scheduling problem

A (good) schedule is a strategy in
the product game (with a low cost)

48/80

Timed games

An example of a timed game

Rule of the game

49/80

Timed games

An example of a timed game

Rule of the game
o Aim: avoid & and reach ©

@ How do we play? According to a
strategy:

49/80

Timed games

An example of a timed game

Rule of the game
o Aim: avoid & and reach ©

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

49/80

Timed games

An example of a timed game

Rule of the game
(x<2) @ Aim: avoid @ and reach ©

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

A (memoryless) winning strategy

e from (/p,0), play (0.5, ¢c1)

49/80

Timed games

An example of a timed game

Rule of the game
(XQ @ @ Aim: avoid @ and reach ©
, @ How do we play? According to a
) - strategy:
! xsl,a
1
! f : history — (delay, cont. transition)

. A (memoryless) winning strategy

e from (£, 0), play (0.5, c;)

~> can be preempted by >

49/80

Timed games

An example of a timed game

Rule of the game
(x<2) @ Aim: avoid @ and reach ©

@

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

©

A (memoryless) winning strategy
(&) e from (¢o,0), play (0.5, ¢c1)
~> can be preempted by >
& o from (¢2,%), play (1 — x,)

49/80

Timed games

An example of a timed game

Rule of the game
(x<2) @ Aim: avoid @ and reach ©

@

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

©

A (memoryless) winning strategy
x<1,c5 e from (¢o,0), play (0.5, ¢c1)
~> can be preempted by >
o from ({2, %), play (1 —x, c)
e from (¢3,1), play (0, c3)

49/80

Timed games

An example of a timed game

Rule of the game
(x<2) @ Aim: avoid @ and reach ©

@

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

x>2,¢

A (memoryless) winning strategy

e from (/p,0), play (0.5, ¢c1)

~> can be preempted by >

o from (¢2,%), play (1 — x,)
e from (¢3,1), play (0, c3)

e from (¢1,1), play (1, c1)

49/80

Timed games

An example of a timed game

Rule of the game
o Aim: avoid & and reach ©

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

XS].,C;; i
Problems to be considered

49/80

Timed games

An example of a timed game

Rule of the game
o Aim: avoid & and reach ©

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

XS].,C;; i
Problems to be considered

@ Does there exist a winning strategy?

49/80

Timed games

An example of a timed game

Rule of the game
o Aim: avoid & and reach ©

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

1
x<1,up,x:=01
1

XS].,C;; i
Problems to be considered

@ Does there exist a winning strategy?

o If yes, compute one (as simple as possible).

49/80

Timed games

Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and ‘“region-based”
strategies are sufficient.

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC'98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

50/80

Timed games

Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and ‘“region-based”
strategies are sufficient.

~ classical regions are sufficient for solving such problems

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC'98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

50/80

Timed games

Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and ‘“region-based”
strategies are sufficient.

~ classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

[AM99] Asarin, Maler. As soon as possible: time optimal control for timed automata (HSCC’99).
[BHPRO7] Brihaye, Henzinger, Prabhu, Raskin. Minimum-time reachability in timed games (ICALP'07).
[JTO7] Jurdzifiski, Trivedi. Reachability-time games on timed automata (ICALP’07).
50/80

Timed games

Back to the example: computing winning states

1
x<1,up,x:=01
1

51/80

Timed games

Back to the example: computing winning states

o} : : -
0 1 2 3
1
1
1
x<1,up,x:=01 2 I } } F----
\ 0 1 2 3
\
\
Lo | | Fo---
0 1 2 3
G5 : : Fo---
0 1 2 3

51/80

Timed games

Back to the example: computing winning states

XS].,Cl

X22,C4

A s —
3

x<1,up,x:=0

£o

£3

51/80

Timed games

Back to the example: computing winning states

x<1,up,x:

0

£o

£

£o

£3

0 1 2 3
s —
0 1 2 3
k : : b ===
0 1 2 3
o) ——+F - - - -
0 1 2 3

51/80

Timed games

Back to the example: computing winning states

51/80

Timed games

Back to the example: computing winning states

Lo k + + f----
0 1 2 3

A O ——r—
0 1 2 3

6 C——p— 4 - - - -

o
=
N
w

l C—————t - - - -

o
=
N
w

51/80

Timed games

Back to the example: computing winning states

b —— - - - -

A O ——r—

6 C——p— 4 - - - -

l C—————t - - - -

51/80

Timed games

Back to the example: computing winning states
Winning states Losing states

4o O —
x<1,up,x:=0

A O ——r—

123 |

£3 (S

51/80

Timed games

Decidability via attractors

52/80

Timed games

Decidability via attractors

o Pred®(X) ={o| o2 ec X}

52/80

Timed games

Decidability via attractors
o Pred®(X) ={o| o2 ec X}
@ controllable and uncontrollable discrete predecessors:

cPred(X) = |J Pred?(X) uPred(X) = |J Pred?(X)

a cont. a uncont.

52/80

Timed games

Decidability via attractors
o Pred®(X) ={o| o2 ec X}
@ controllable and uncontrollable discrete predecessors:

cPred(X) = |J Pred?(X) uPred(X) = |J Pred?(X)
a cont. a uncont.

@ time controllable predecessors:

delay t t.u.
[e Ve Ve Ve VAN) Ve Ve Ve Va Ve VeV aVe VN J

- should be safe

52/80

Timed games

Decidability via attractors
o Pred®(X) ={o| o2 ec X}
@ controllable and uncontrollable discrete predecessors:

cPred(X) = |J Pred?(X) uPred(X) = |J Pred?(X)

a cont. a uncont.

@ time controllable predecessors:

delay t t.u.
[e Ve Ve Ve VAN) Ve Ve Ve Va Ve VeV aVe VN J

» should be safe

Preds(X, Safe) = {o |3t >0, ¢ 2

and V0 < t' < t, oﬂ)oESafe}

52/80

Timed games

Timed games with a reachability objective

We write:
7m(X) = X U Preds(cPred(X), —uPred(—X))

53/80

Timed games

Timed games with a reachability objective

We write:
w(X) = X U Preds(cPred(X), ~uPred(—X))

@ The states from which one can ensure) in no more than 1 step is:

Attr1(©) = 7(©)

53/80

Timed games

Timed games with a reachability objective

We write:
w(X) = X U Preds(cPred(X), ~uPred(—X))

@ The states from which one can ensure) in no more than 1 step is:

Attr1(©) = 7(©)

@ The states from which one can ensure ©) in no more than 2 steps is:

Attr(©) = 7(Attr1(©))

53/80

Timed games

Timed games with a reachability objective

We write:
w(X) = X U Preds(cPred(X), ~uPred(—X))

@ The states from which one can ensure) in no more than 1 step is:

Attr1(©) = 7(©)

@ The states from which one can ensure ©) in no more than 2 steps is:

Attr(©) = 7(Attr1(©))

53/80

Timed games

Timed games with a reachability objective

We write:
w(X) = X U Preds(cPred(X), ~uPred(—X))

Attri (©) = 7(©)

Attr(©) = 7(Attr1(©))

Attr, (@) = w(Attr,_1(©))

The states from which one can ensure ©) in no more than 1 step is:

The states from which one can ensure ©) in no more than 2 steps is:

The states from which one can ensure ©) in no more than n steps is:

53/80

Timed games

Timed games with a reachability objective

We write:
w(X) = X U Preds(cPred(X), ~uPred(—X))

The states from which one can ensure ©) in no more than 1 step is:

Attri (©) = 7(©)

The states from which one can ensure ©) in no more than 2 steps is:

Attr(©) = 7(Attr1(©))

The states from which one can ensure ©) in no more than n steps is:

Attr, (@) = w(Attr,_1(©))
= m(©)

53/80

Timed games

Stability w.r.t. regions

e if X is a union of regions, then:

o Pred,(X) is a union of regions,
e and so are cPred(X) and uPred(X).

54/80

Stability w.r.t. regions

e if X is a union of regions, then:

o Pred,(X) is a union of regions,

Timed games

e and so are cPred(X) and uPred(X).

@ Does 7 also preserve unions of regions?

/
/

/
/

54/80

Stability w.r.t. regions

e if X is a union of regions, then:

Timed games

o Pred,(X) is a union of regions,
e and so are cPred(X) and uPred(X).

@ Does 7 also preserve unions of regions?

/
/

/
/

cPred(X)

54/80

Stability w.r.t. regions

e if X is a union of regions, then:

Timed games

o Pred,(X) is a union of regions,
e and so are cPred(X) and uPred(X).

@ Does 7 also preserve unions of regions?

£
/

/
/

cPred(X)
uPred(—X)

54/80

Stability w.r.t. regions

e if X is a union of regions, then:

Timed games

o Pred,(X) is a union of regions,
e and so are cPred(X) and uPred(X).

@ Does 7 also preserve unions of regions?

/
[

/
/

cPred(X)
uPred(—X)

54/80

Stability w.r.t. regions

e if X is a union of regions, then:

Timed games

o Pred,(X) is a union of regions,
e and so are cPred(X) and uPred(X).

@ Does 7 also preserve unions of regions? Yes!

/
[

/
/

cPred(X)
uPred(—X)

54/80

Stability w.r.t. regions

e if X is a union of regions, then:

Timed games

o Pred,(X) is a union of regions,
e and so are cPred(X) and uPred(X).

@ Does 7 also preserve unions of regions? Yes!

/
[

/
/

(but it generates non-convex unions of regions...)

cPred(X)
uPred(—X)

54/80

Stability w.r.t. regions

e if X is a union of regions, then:

Timed games

o Pred,(X) is a union of regions,
e and so are cPred(X) and uPred(X).

@ Does 7 also preserve unions of regions? Yes!

/
[

/
/

(but it generates non-convex unions of regions...)

cPred(X)
uPred(—X)

~> the computation of 7*((©) terminates!

54/80

Stability w.r.t. regions

e if X is a union of regions, then:

Timed games

o Pred,(X) is a union of regions,
e and so are cPred(X) and uPred(X).

@ Does 7 also preserve unions of regions? Yes!

/
[

/
/

(but it generates non-convex unions of regions...)

cPred(X)
uPred(—X)

~> the computation of 7*((©) terminates!
. and is correct

54/80

Timed games

And in practice?

@ A zone-based forward algorithm with backtracking
[CDF+-05,BCD+07]

[CDF-+05] Cassez, David, Fleury, Larsen, Lime. Efficient On-the-Fly Algorithms for the Analysis of Timed Games (CONCUR'05).
[BCD-+07] Behrmann, Cougnard, David, Fleury, Larsen, Lime. UPPAAL-Tiga: Time for Playing Games! (CAV'07).
55/80

http://people.cs.aau.dk/~adavid/tiga/

Timed games

And in practice?
@ A zone-based forward algorithm with backtracking

[CDF+05,BCD+07]

@ A tool: Uppaal-TiGa, developed in Aalborg (Denmark) since 2005
http://people.cs.aau.dk/~adavid/tiga/

[CDF-+05] Cassez, David, Fleury, Larsen, Lime. Efficient On-the-Fly Algorithms for the Analysis of Timed Games (CONCUR'05).
[BCD-+07] Behrmann, Cougnard, David, Fleury, Larsen, Lime. UPPAAL-Tiga: Time for Playing Games! (CAV'07).

55/80

http://people.cs.aau.dk/~adavid/tiga/

Weighted timed games

Outline

@ Weighted timed games

56/80

Weighted timed games

A simple timed game
x<2,c,y:=0 ,”’
(y=0) °~.

57/80

Weighted timed games

A simple weighted timed game

x<2,c,y:=0 -
~@ ®

+5 (y=0) "~

57/80

Weighted timed games

A simple weighted timed game

x<2,c,y:=0 -7
~© @

+5 (y=0) "~

Question: what is the optimal cost we can ensure while reaching @?

57/80

Weighted timed games

A simple weighted timed game

x<2,c,y:=0 -7
~© @

+5 (y=0) "~

Question: what is the optimal cost we can ensure while reaching @?

5t+10(2—t) +1

57/80

Weighted timed games

A simple weighted timed game

x<2,c,y:=0 -
-®)

+5 (y=0) "~

Question: what is the optimal cost we can ensure while reaching @?

5t+102—t)+1,5t+(2—-t)+7

57/80

Weighted timed games

A simple weighted timed game

x<2,c,y:=0 -
-®)

+5 (y=0) "~

Question: what is the optimal cost we can ensure while reaching @?

max (5t +10(2—t)+ 1,5t +(2—t)+7)

57/80

Weighted timed games

A simple weighted timed game

x<2,c,y:=0 -
-®)

+5 (y=0) "~

Question: what is the optimal cost we can ensure while reaching @?

. 1
Oér:; max (5t +10(2 —¢t)+ 1, 5t+(2—t)+7)—14+§

57/80

Weighted timed games

A simple weighted timed game

x<2,c,y:=0 -
~© @

+5 (y=0) "~

Question: what is the optimal cost we can ensure while reaching @?
1

i 10(2 — 1 2 — = =

Ogur:; max (5t +10(2—t)+1,5t+(2—t)+7) =14+ 3

~ strategy: wait in {o, and when t = 3, go to {;

57/80

Weighted timed games

Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...

[LMMO02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

[ABMO4] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP'04).

[BCFLO4] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS'04).

[BBROS5] Brihaye, Bruyére, Raskin. On optimal timed strategies (FORMATS'05).

[BBMO6] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).

[BLMRO6] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS'06).

[Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (QAPL'11).

[HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (CONCUR'13).

[BGK-+14] Brihaye, Geeraerts, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (CONCUR'14). y
58/80

Weighted timed games

Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...
[LMMO02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK-+14]

[LMMO2]
Tree-like weighted timed games can be solved in 2EXPTIME. J

58/80

Weighted timed games

Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...
[LMMO02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMMO2]
Tree-like weighted timed games can be solved in 2EXPTIME.

[ABMO04,BCFL04|

Depth-k weighted timed games can be solved in EXPTIME. There is a
symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost.)

%

58/80

Weighted timed games

Optimal reachability in weighted timed games (2)

[BBR05,BBM06,BJM15]

In weighted timed games, the optimal cost (and the value) cannot be
computed, as soon as games have three clocks or more.

50/80

Weighted timed games

Optimal reachability in weighted timed games (2)

[BBR05,BBM06,BJM15]

In weighted timed games, the optimal cost (and the value) cannot be
computed, as soon as games have three clocks or more.

[BLMRO06,Rut11,HIM13,BGK+14]

Turn-based optimal timed games are decidable in EXPTIME (resp.
PTIME) when automata have a single clock (resp. with two rates). They
are PTIME-hard.

v

50/80

Weighted timed games

What is easier with a single clock?

@ Memoryless strategies can be non-optimal...

60/80

Weighted timed games

What is easier with a single clock?

@ Memoryless strategies can be non-optimal...

... but memoryless almost-optimal strategies will be sufficient.

60/80

Weighted timed games

What is easier with a single clock?

@ Memoryless strategies can be non-optimal...

+2 .
x=
) @) - ©
x<1N
x—0 = x>0

. but memoryless almost-optimal strategies will be sufficient.

@ Key: resetting the clock somehow resets the history...

60/80

Weighted timed games

What is easier with a single clock?

@ Memoryless strategies can be non-optimal...

(x31)\ ®)

... but memoryless almost-optimal strategies will be sufficient.
@ Key: resetting the clock somehow resets the history...

@ By unfolding and removing one by one the locations,we can
synthesize memoryless almost-optimal winning strategies.

60/80

Weighted timed games

What is easier with a single clock?

@ Memoryless strategies can be non-optimal...

(x31)\ ®)

... but memoryless almost-optimal strategies will be sufficient.
@ Key: resetting the clock somehow resets the history...

@ By unfolding and removing one by one the locations,we can
synthesize memoryless almost-optimal winning strategies.

@ Rather involved proofs of correctness

60/80

Weighted timed games

c=1.1
0.7 +
0.4 +
21 4 z=1
5 2 5
8™ if0<x<2/5

oca,x) =qec2 if2/5<z<1/2
up if1/2<x<1

61/80

Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)

62/80

Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)
Add™* (x) Add™ (x)
y=1,y:=0 y=1,y:=0 y=L,y:= y=L,y:=0
z:=0 Q x=1,x:=0 Q z=1,z:=0 z:=0 Q x=1,x:=0 Q z=1,z:=0
U \J \J U
0 1 _. 1 0

The cost is increased by xy The cost is increased by 1—xg

62/80

Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)

)

2
o O
Y=Yo ;‘

=0

62/80

Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)

=0 'O_" Add " (x) ——— Add" (x) ——— Add" (y) —»@
x=x0 z.- e e ——— T +2
Y=Y [) ~‘~§A 2=0

¥=0 O—» Add ™ (x) ———> Add™ (x) ——> Add" (y) —1>©

° In@, cost =2xp + (1 — y) +2

62/80

Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)

0 O Add (1) ——— Add () ——— ‘A'aa!(;;;_><+2 D)
- O O R ——» R —— RO —— @
° In@, cost = 2xp + (1 — yp) +2

In @ cost =2(1 —xp) +yo +1

62/80

Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)

J e —
;=0 'O_> Add* (x) — > Add" (x) — > Add~(y) —>©
x=x0 z.- +2
Y=Y C ‘~~~A 2=0

<=0 O—» Add™ (x) =——> Add™ (x) > Add"(y) —1>©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +yo +1

o if yp < 2xp, player 2 chooses the first branch: cost > 3

62/80

Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.)

J e —
;=0 'O_> Add* (x) — > Add" (x) — > Add~(y) —>©
x=x0 z.- +2
Y=Y C ‘~\~L 2=0

<=0 O—» Add™ (x) =——> Add™ (x) > Add"(y) —1>©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +yo +1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3

62/80

Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. J

=0 - . o . .
=0 'O_> Add (x) ———> Add" (x) ——— Add~(y) —»@
X=Xp C: Ze-" ’ ’ E y +2
Y=o MDY z=0 4 ; "

=<0 Y Add™ (x) —— Add~ (x) Add* (y) - ©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +y+1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3
if yo = 2xp, in both branches, cost =3

62/80

Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. J

=0 - . o . .
=0 'O_> Add (x) ———> Add" (x) ——— Add~(y) —»@
X=Xp C: Ze-" ’ ’ E y +2
Y=o MDY z=0 4 ; "

=<0 Y Add™ (x) —— Add~ (x) Add* (y) - ©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +y+1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3
if yo = 2xp, in both branches, cost =3

~» player 2 can enforce cost 3 + |yo — 2xo|

62/80

Weighted timed games

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. J

z=0 =~ . ; 5 F
L0 'O_’ Add* (x) ———> Add" (x) —— Add~ (y) —(2)
X=Xp C: Ze-" ’ : ’ E y +2
Y=o PREISS z=0 4 ; "
“0(C Y——> Add™ (x) ——> Add~ (x) Add* (y) - ©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +y+1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3
if yo = 2xp, in both branches, cost =3

~» player 2 can enforce cost 3 + |yo — 2xo|

@ Player 1 has a winning strategy with cost < 3 iff yp = 2xg

62/80

Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=5a

63/80

Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=5a

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3. J

63/80

Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=5a

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3. J

Globally, (x<1,y<1,u<1)

x=1,x:=0 x=1,x:=0)
V y=1,y:=0 V y=1,y:=0 Test, (x=2z)

i :
u:=0 Q 2:=0 Q u=1,u:=0 , (u=0)
J J O

63/80

Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=5a

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3. J

x=1,x:=0 x=1,x:=0)
V y=1,y:=0 V y=1,y:=0 Test, (x=2z)

i :
u:=0 Q 2:=0 Q u=1,u:=0 , (u=0)
J J O

63/80

Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

x=1,x:=0 x=1,x:=0
V y=1,y:=0 VvV y=1,y:=0 Test, (x=2z)
A
u:=0 Q 2:=0 Q u=1,u:=0 , (u=0)
O O o
><:2%1
y=55

63/80

Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

x=1,x:=0 x=1,x:=0

V y=1,y:=0 V y=1,y:=0 Test, (x=2z)
A
u=0 Q 2=0 Q u=1,u:=0 | (u=0)
U J O
X:z%l x:2%1+a
y:z% y:2%2+oz

zZ=% z=0

63/80

Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

x=1,x:=0 x=1,x:=0

VvV y=1l,y:=0 V y=1,y:=0 Test, (x=2z)
u:=0 Q 2:=0 Q u=1,u:=0 (u=0)
O O O
X:2%1 Xzz%l-i-a x:z%1
y= E%Ef y= ngy—F(y y= 5%5

z=x% z=0 z=q

63/80

Weighted timed games

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:

@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:
1

and Y=

The two-counter machine has a halting computation iff player 1 has a J

winning strategy to ensure a cost no more than 3.

x=1,x:=0 x=1,x:=0
V y=1,y:=0 VvV y=1,y:=0 Test, (x=2z)
u:=0 Q z:=0 Q u=1,u:=0 (u=0)
O O O
x_z%l x:z%l+a x:z%l
y=55 y=55+a y=55
z=0 z:zcllA1

Z=%
63/80

Weighted timed games

Shape of the reduction

64/80

Weighted timed games

Shape of the reduction

—/ D
N A
C—D«-
--->-C)
© — \%\O
""" Instruction o

(D Test module (acyclic)

64/80

Weighted timed games

Shape of the reduction

—/ D
N A
C—D«-
--->-C)
© — \%\o
""" Instruction %

(D Test module (acyclic) Cost 0 within the core of the game

64/80

Weighted timed games

Are we done?

65/80

Weighted timed games

Are we done? No!

65/80

Weighted timed games

Are we done? No!

Optimal cost is computable...
. when cost is strongly non-zeno. [AMO04,BCFL04]

There is kK > 0 s.t. for every region cycle C, for every real run p read on C,

cost(o) > K

Optimal cost is not computable...

. when cost is almost-strongly non-zeno.

There is kK > 0 s.t. for every region cycle C, for every real run g read on C,

cost(g) > Kk or cost(p) =0

65/80

Weighted timed games

Are we done? No!

Optimal cost is computable...
. when cost is strongly non-zeno. [AMO04,BCFL04]

There is k > 0 s.t. for every region cycle C, for every real run g read on C,

cost(o) > K

Optimal cost is not computable... but is approximable!

. when cost is almost-strongly non-zeno. [BIJM15]

There is k > 0 s.t. for every region cycle C, for every real run g read on C,

cost(p) > Kk or cost(p) =0

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR'15).

65/80

Weighted timed games

Are we done? No!

Optimal cost is computable...
. when cost is strongly non-zeno. [AMO04,BCFL04]

There is k > 0 s.t. for every region cycle C, for every real run g read on C,

cost(o) > K

Optimal cost is not computable... but is approximable!

. when cost is almost-strongly non-zeno. [BIJM15]

There is k > 0 s.t. for every region cycle C, for every real run p read on C,

cost(p) > Kk or cost(p) =0

@ Almost-optimality in practice should be sufficient

@ Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR'15).
65/80

Weighted timed games

Are we done? No!

Optimal cost is computable...
. when cost is strongly non-zeno. [AMO04,BCFL04]

There is k > 0 s.t. for every region cycle C, for every real run g read on C,

cost(o) > K

Optimal cost is not computable... but is approximable!

. when cost is almost-strongly non-zeno. [BIJM15]

There is k > 0 s.t. for every region cycle C, for every real run p read on C,

cost(p) > Kk or cost(p) =0

@ Almost-optimality in practice should be sufficient
@ Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

Note: In both cases, we can assume k = 1.

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR'15).
65/80

Weighted timed games

Approximation of the optimal cost

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every € > 0, one can compute:

@ two values v, and v such that

lv.m —vo|<e and v. <opteostg < v

66,/80

Weighted timed games

Approximation of the optimal cost

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every € > 0, one can compute:

@ two values v, and v such that
lv.m —vo|<e and v. <opteostg < v
@ one strategy o such that
optcostg < cost(o.) < optcostg + €

[it is an e-optimal winning strategy]

66/80

Weighted timed games

Approximation of the optimal cost

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every € > 0, one can compute:

@ two values v, and v such that
lv.m —vo|<e and v. <opteostg < v
@ one strategy o such that
optcostg < cost(o.) < optcostg + €

[it is an e-optimal winning strategy]

66/80

Weighted timed games

Approximation of the optimal cost

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every € > 0, one can compute:

@ two values v, and v such that
lv.m —vo|<e and v. <opteostg < v
@ one strategy o, such that
optcostg < cost(o.) < optcostg + €

[it is an e-optimal winning strategy]

@ Standard technics: unfold the game to get more precision, and
compute two adjacency sequences

66/80

Weighted timed games

Approximation of the optimal cost

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every € > 0, one can compute:

@ two values v, and v such that
lv.m —vo|<e and v. <opteostg < v
@ one strategy o, such that

optcostg < cost(o.) < optcostg + €

[it is an e-optimal winning strategy]

@ Standard technics: unfold the game to get more precision, and
compute two adjacency sequences
~> This is not possible here
There might be runs with prefixes of arbitrary length and cost 0 (e.g. the
game of the undecidability proof)

66/80

Weighted timed games

|dea for approximation

Idea

Only partially unfold the game:
@ Keep components with cost 0 untouched — we call it the kernel
@ Unfold the rest of the game

67/80

Weighted timed games

|dea for approximation

Idea

Only partially unfold the game:
@ Keep components with cost 0 untouched — we call it the kernel
@ Unfold the rest of the game

First: split the game along regions!

n,Y:=0

g, Y:=0

O o ~

rs, Y =0

67/80

Weighted timed games

Semi-unfolding

Only cost 0
Kernel K

Only cost 0
Kernel K

68/80

Weighted timed games

Semi-unfolding

Only cost 0
Kernel K

Only cost 0
Kernel K

68/80

Weighted timed games

Semi-unfolding

Only cost 0
Kernel K

Only cost 0
Kernel K

68/80

Weighted timed games

Semi-unfolding

Only cost 0
Kernel K

Hypothesis:

cost > 0 implies cost > K
Only cost 0
Kernel KC

68/80

Weighted timed games

Semi-unfolding

Only cost 0
Kernel K

Hypothesis:

cost > 0 implies cost > K
Only cost 0
Kernel KC

Conclusion: we can stop unfolding the game after N steps
(e.g. N=(M+2)-|R(A)

, where M is a pre-computed bound on optcost)

68/80

Weighted timed games

Approximation scheme

69/80

Weighted timed games

Approximation scheme

69/80

Weighted timed games

Approximation scheme

D) :iR*o . b, b

e ~"'E'>'<‘act computation-.. -

69/80

Weighted timed games

Approximation scheme

T - Exact computatiofi--

69/80

Weighted timed games

Approximation scheme

- R 7R
A S N

T -Exact COMPULALION - esssmrae

69/80

Weighted timed games

First step: Tree-like parts

~ Goes back to [LMMO02]

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
70/80

Weighted timed games

First step: Tree-like parts

~ Goes back to [LMMO02]

El O El/

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
70/80

Weighted timed games

First step: Tree-like parts

~ Goes back to [LMMO02]

Y

E’ O El/

o.v) O,

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

70/80

Weighted timed games

First step: Tree-like parts

~ Goes back to [LMMO02]

c/ N 7
O El b El/

o.v) O,

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
70/80

Weighted timed games

First step: Tree-like parts

~ Goes back to [LMMO02]

l o, v) = t'|v4irr:tf):g' max(,)

/! v 1

Y

Cc
O YA O V4

o.v) O,

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

70/80

Weighted timed games

First step: Tree-like parts

~ Goes back to [LMMO02]

Y4 O E, = i ’
(V) /Ivln/ , n ax((a))
g/, Y/ \\ " oyn

/ \ 1
C \ (o}
\

v b o (o) = tc+c + 0, V)
o,y o v

v/ =[Y'«0](v+t')

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
70/80

Weighted timed games

First step: Tree-like parts

~ Goes back to [LMMO02]

l o, v) = t’|v4i»r:.f):g’ max((a), (7))
g/, Y/ \\ g//- y//
c/ \\ c//
v b o (o) = tc+c + 0, V)

ow,vy oW, v
(B) = sup t'c+c+ 0" v")
t//St/|V+t//':g//

v/ =[Y'«0](v+t')
v =[Y" +0](v+t")

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
70/80

Weighted timed games

Second step: Kernels

/?H %l
SN

Output cost functions f

71/80

Weighted timed games

Second step: Kernels

@ Refine the regions such that f differs
of at most e within a small region

/wﬂ?&
N

Output cost functions f

71/80

Weighted timed games

Second step: Kernels

@ Refine the regions such that f differs
of at most e within a small region

/wﬂ?x
N

Output cost functions f

71/80

Weighted timed games

Second step: Kernels

@ Refine the regions such that f differs
of at most e within a small region

/wﬂ?&
N

Output cost functions f

71/80

Weighted timed games

Second step: Kernels

@ Refine the regions such that f differs
of at most e within a small region

@ Under- and over-approximate by
piecewise constant functions .~ and
fr

Output cost functions f

71/80

Weighted timed games

Second step: Kernels

@ Refine/split the kernel along the new
small regions and fix 7 or ", write f;

f.: constant f.: constant

72/80

Weighted timed games

Second step: Kernels

@ Refine/split the kernel along the new
small regions and fix 7 or ", write f;

@ Since cost is 0 everywhere, the
resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by f.)

f.: constant f.: constant

72/80

Weighted timed games

Second step: Kernels

@ Refine/split the kernel along the new
small regions and fix 7 or ", write f;

@ Since cost is 0 everywhere, the
resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by f.)

© Those can be solved using standard

O/\N/ technics based on attractors: small
/ : regions are sufficient, and the local

O—>L_YI optimal cost (for output 7.) is constant

within a small region

f.: constant f.: constant

72/80

Weighted timed games

Second step: Kernels

@ Refine/split the kernel along the new
small regions and fix 7 or ", write f;

@ Since cost is 0 everywhere, the
resulting game is nothing more than a
constant reachability timed game with an order
on target (output) edges (given by f.)

O/\A © Those can be solved using standard

7 technics based on attractors: small
/ : regions are sufficient, and the local
?—' O—’L_Yl optimal cost (for output 7.) is constant
Z & within a small region

f.: constant f.: constant

72/80

Second step: Kernels

Weighted timed games

Refine/split the kernel along the new
small regions and fix 7 or ", write f;

Since cost is 0 everywhere, the
resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by f.)
Those can be solved using standard
technics based on attractors: small
regions are sufficient, and the local
optimal cost (for output 7.) is constant
within a small region

We have computed e-approximations of
the optimal cost, which are constant
within small regions. Corresponding
strategies can be inferred

72/80

Tool TiAMo

Outline

© Tool TiAMo

73/80

Tool TiAMo

TiAMo = Timed Automata Model-checker

@ Development started in September 2015 E@Mal‘ﬁs

e Main developer: Maximilien Colange (LSV)
@ Uses some previous code by Ocan Sankur (IRISA)

74/80

https://git.lsv.fr/colange/tiamo

Tool TiAMo

TiAMo = Timed Automata Model-checker

@ Development started in September 2015 E@Mal‘ﬁs

e Main developer: Maximilien Colange (LSV)
@ Uses some previous code by Ocan Sankur (IRISA)

Why?
@ Main tool for timed systems: Uppaal, developed since 1995
~> Unfortunately, not open source

~ Often hard to know what is exactly implemented

74/80

https://git.lsv.fr/colange/tiamo

Tool TiAMo

TiAMo = Timed Automata Model-checker

@ Development started in September 2015 E@Mal‘ﬁs

e Main developer: Maximilien Colange (LSV)
@ Uses some previous code by Ocan Sankur (IRISA)

Why?
@ Main tool for timed systems: Uppaal, developed since 1995
~> Unfortunately, not open source

~ Often hard to know what is exactly implemented

What TiAMo targets

@ Be a platform for experiments (open source!)

@ Assert and compare algorithms

https://git.1lsv.fr/colange/tiamo

74/80

https://git.lsv.fr/colange/tiamo

Tool TiAMo

TiAMo architecture

DFS
Timed Automaton Exploration Order BFS
@ transition relation module —
Reachability Algorithm abstrl
. Abstraction
("]
star?dard (ur.1we|ghted) il
@ optimal (weighted) p—y
[[Cincil |
Inclusion .
module
incl3

75/80

Tool TiAMo

What is implemented

Exploration strategies
BFS, DFS

best cost first (for weighted models)
preference-based (use a special “preference” variable in the model)

("]
(]
(]
@ “smart” BFS: inspired by [HT15]

[HT15] Herbreteau, Tran. Improving Search Order for Reachability Testing in Timed Automata (FORMATS'15).
76/80

Tool TiAMo

What is implemented

Exploration strategies
BFS, DFS

best cost first (for weighted models)
preference-based (use a special “preference” variable in the model)

("]
(]
(]
@ “smart” BFS: inspired by [HT15]

Abstractions

@ identity (i.e. no abstraction), to be used with abstract inclusion tests
@ LU-abstraction [BBLP06]

[HT15] Herbreteau, Tran. Improving Search Order for Reachability Testing in Timed Automata (FORMATS'15).

76/80

Tool TiAMo

What is implemented

Exploration strategies
BFS, DFS

best cost first (for weighted models)
preference-based (use a special “preference” variable in the model)

("]
(]
(]
@ “smart” BFS: inspired by [HT15]

Abstractions

@ identity (i.e. no abstraction), to be used with abstract inclusion tests
@ LU-abstraction [BBLP06]

Inclusions
@ set inclusion @ abstract inclusion [HSW12]
@ weighted set inclusion [RLS06] @ abstract weighted inclusion [BCM16]
v

[HT15] Herbreteau, Tran. Improving Search Order for Reachability Testing in Timed Automata (FORMATS'15).

76/80

Tool TiAMo

Experiments

@ Various metrics

o wall-clock time
e number of symbolic states explored
e number of comparisons done

@ In various contexts
o with different exploration strategies

77/80

Tool TiAMo

Experiments

@ Various metrics

o wall-clock time
e number of symbolic states explored
e number of comparisons done

@ In various contexts
o with different exploration strategies

Examples taken from Uppaal-Cora
@ The Aircraft Landing System (ALS)
@ The Energy-optimal Task-graph Scheduling (ETS)
@ The Vehicle Routing Problem with Time Windows (VRPTW)

@ An unbounded-clock (ad hoc) model

77/80

Tool TiAMo

Experiments

@ Various metrics

o wall-clock time
e number of symbolic states explored
e number of comparisons done

@ In various contexts
o with different exploration strategies

Examples taken from Uppaal-Cora
@ The Aircraft Landing System (ALS)
@ The Energy-optimal Task-graph Scheduling (ETS)
@ The Vehicle Routing Problem with Time Windows (VRPTW)
@ An unbounded-clock (ad hoc) model

77/80

Experimental results

@ for mentioned weighted models

@ -P (no pruning) / +P (pruning)

Tool TiAMo

e C (standard inclusion — no guarantee of term.) / C (abstract
inclusion — guarantee of term.)

Waiting # Passed # stored # tests # succ. tests | time (s.)

o | C 11,820 4,785 9,324 3.7 x 10%® 13,676 0.3
T e 32,322 13,036 26,555 2.9 x 10% 32,263 0.7
2 06 0% 05 08 o7
<[, | E]17x10 1.5 x 10 6.9 x 10 8.1 x 10 1.2 x 10 312.7

"l C TO TO TO TO TO TO
wlao|CE 107 84 83 174 66 0.0
w | t]|c 664 606 590 17,684 455 0.0
> | e C | 6.0x10% | 48x10% | 5.6 x10%® | 6.2 x 10% 1.7 x 10% 11.3
E| T] c| 15%x10% | 1.3x10% | 1.4x10% | 9.1 x 107 7.0 x 10% 27.5
& a | T 13x10% [13x10® | 1.3x10% | 2.5x 10”7 7.0 x 10 23.9
> " | €| 5.8x10% | 58x10% | 5.4 x10% | 1.1 x 10% 1.9 x 10% 111.2
s la |E 14 13 14 135 3 0.0
= e TO TO TO TO TO TO
2. C 14 14 14 135 3 0.0
S|t C TO TO TO TO TO TO

78/80

Conclusion

Outline

© Conclusion

79/80

Conclusion

Conclusion

Summary of the talk

@ Overview of results concerning the optimal reachability problem in
weighted timed automata and games

@ Various (un)decidability + symbolic technics
@ Our new tool TiAMo

80/80

Conclusion

Conclusion

Summary of the talk

@ Overview of results concerning the optimal reachability problem in
weighted timed automata and games

@ Various (un)decidability + symbolic technics
@ Our new tool TiAMo

Future work

@ Various theoretical issues

o Apply further the idea of approximation
o Stochastic uncertainty

80/80

Conclusion

Conclusion

Summary of the talk

@ Overview of results concerning the optimal reachability problem in
weighted timed automata and games

@ Various (un)decidability + symbolic technics
@ Our new tool TiAMo

Future work

@ Various theoretical issues
o Apply further the idea of approximation
o Stochastic uncertainty

o Continue working on TiAMo

o Implementation of (weighted) timed games
o More applications (e.g. motion planning problems using the funnel
automata approach [BMPS15])

5] Bouyer, Markey, Perrin, aissier. tomata Abstraction of Switched Dynamical Systems Using Control Funnels
BMPS15] B Markey, Perrin, Schlehuber-Caissier. Timed-A Ab: ion of Switched Dynamical S Using Control Funnel
(FORMATS'15).

80/80

	Timed automata
	Weighted timed automata
	Timed games
	Weighted timed games
	Tool TiAMo
	Conclusion

