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Time-dependent systems

We are interested in timed systems

... and in their analysis and control
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An example: The task graph scheduling problem

[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata
(Communication of the ACM).

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC
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D
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ch
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T1 T4
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1.37 nanojoules

P2

P1
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ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1
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T5 T6

19 picoseconds
1.32 nanojoules
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The model of timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1
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Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)y :=0

add2

y :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

; build the synchronized product of all these automata

(P1 ‖ P2) ‖s (T1 ‖ T2 ‖ · · · ‖ T6)

A schedule: a path in the global system which reaches t1 ∧ · · · ∧ t6

Questions one can ask
Can the computation be made in no more than 10 time units?

Is there a scheduling along which no processor is ever idle?

· · ·
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Discrete-time semantics

[Alur91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!

Example [Alur91]

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7
[1]

OR

[1]

o8

• under discrete-time, the output is always 0:

t

i
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Discrete-time semantics

[Alur91] Alur. Techniques for automatic verification of real-time systems. PhD thesis, 1991.

...because computers are digital!
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Finding the correct granularity (if one exists) is hard!
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Continuous-time semantics

...real-time models for real-time systems!

We will focus on the continuous-time semantics
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Analyzing timed automata

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools

9/80



Timed automata Weighted timed automata Timed games Weighted timed games Tool TiAMo Conclusion

Analyzing timed automata

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools

9/80



Timed automata Weighted timed automata Timed games Weighted timed games Tool TiAMo Conclusion

Analyzing timed automata

[AD94] Alur, Dill. A Theory of Timed Automata (Theoretical Computer Science).

x=1

y :=0

x≤2, x :=0

y≥2, y :=0

y

0
x

1

1

2

2

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

Technical tool: region abstraction

Efficient symbolic technics based on zones, implemented in tools

9/80



Timed automata Weighted timed automata Timed games Weighted timed games Tool TiAMo Conclusion

Technical tool: Region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}The path

x=1 y=1

- can be fired from
- cannot be fired from

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; This is a finite time-abstract bisimulation!

10/80
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Time-abstract bisimulation

This is a relation between • and • such that:

a
∀

∃
a

δ(d)
∀d ≥ 0

∃d ′ ≥ 0
δ(d ′)

... and vice-versa (swap • and •).

Consequence

(`1, v1)
d1,a1

(`1,R1)
a1

(`1, v
′
1)

d′1,a1

(`2, v2)
d2,a2

(`2,R2)
a2

(`2, v
′
2)

d′2,a2

(`3, v3)
d3,a3

(`3,R3)
a3

(`3, v
′
3)

d′3,a3

∀ . . .

. . . with vi ∈ Ri

∀v ′1 ∈ R1

∃

with v ′i ∈ Ri. . .
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The region automaton
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What about the practice?

the region automaton is never computed

instead, symbolic computations are performed

What do we need?
Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

set of integers, represented using semi-linear sets

sets of constraints, polyhedra, zones, regions

BDDs, DBMs (see later), CDDs, etc...

Need of abstractions, heuristics, etc...
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Zones: A symbolic representation for timed systems

[BM83] Berthomieu, Menasche. An enumerative approach for analyzing time Petri nets World Comupter Congress.
[Dill89] Dill. Timing assumptions and verification of finite-state concurrent systems (Automatic Verification Methods for Finite State Systems).

Example of a zone and its DBM representation

Z = (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x2

x13

5

x1−x2=4

x0 x1 x2

x0

x1

x2

Ñ
∞ −3 ∞
∞ ∞ 4
5 ∞ ∞

é
DBM: Difference Bound Matrice [BM83,Dill89]
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Note on the backward analysis of timed automata

` `′
g , a,Y := 0

←−−−−−−−−−−−−−−−−−−−−−
[Y ← 0]−1(Z ∩ (Y = 0)) ∩ g Z

y

x

Z

y

x

[y←0]−1(Z∩(y=0))

y

x

y

x

←−−−−−−−−−−−−−−−−
[y←0]−1(Z∩(y=0))∩g
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Note on the backward analysis (cont.)

, All previous operations can be computed using DBMs!

intersection: take the minimum of the two constraints

inverse reset w.r.t y : relax constraints on y (on a DBM on normal

form)

past: relax lower bounds (on a DBM on normal form)

emptiness: check whether there is a negative cycle

The backward computation terminates

Because of the bisimulation property of the region abstraction:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

However the backward computation is not appropriate to manipulate
other variables (think for instance of assignment i := j .k + l)
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Init

Final

18/80



Timed automata Weighted timed automata Timed games Weighted timed games Tool TiAMo Conclusion

Forward computation

Init

Final

18/80



Timed automata Weighted timed automata Timed games Weighted timed games Tool TiAMo Conclusion

Forward computation

Init

Final

18/80



Timed automata Weighted timed automata Timed games Weighted timed games Tool TiAMo Conclusion

Forward computation

Init

Final

18/80



Timed automata Weighted timed automata Timed games Weighted timed games Tool TiAMo Conclusion

Forward computation

Init

Final

18/80



Timed automata Weighted timed automata Timed games Weighted timed games Tool TiAMo Conclusion

Forward analysis of timed automata

` `′
g , a,Y := 0

Z [Y ← 0](
−→
Z ∩ g)
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x
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y

x

−→
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−→
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Note on the forward analysis (cont.)

, All previous operations can be computed using DBMs!

intersection: take the minimum of the two constraints

reset w.r.t y : set constraint if y to 0 (on a DBM on normal form)

future: relax upper bounds (on a DBM on normal form)

emptiness: check whether there is a negative cycle

/ The forward computation may not terminate...

x ≥ 1, y = 1
y := 0

y

0 x

; an infinite number of steps...
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Forward reachability algorithm

Parameters: Abstraction abs and inclusion test �

Passed← ∅ and Waiting← {(`0,Z0)}
While Waiting 6= ∅

select (`,Z) from Waiting

If ` is final, then return “Reachable!”
If forall (`,Z ′) ∈ Passed, Z 6�Z ′, then add abs(`,Z) to Passed and
add Post(abs(`,Z)) to Waiting

Return “Not reachable!”
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Standard solution: the extrapolation operator

Extra2(Z ): “the smallest zone containing Z that is defined only with
constants no more than 2”

3

x2

x1

5

2

Z

4 9Ñ
0 −3 0
9 0 4
5 2 0

é

Ñ
0 −2 0
∞ 0 ∞
∞ 2 0

é
Extra2

; The extrapolation operator ensures termination of the computation!
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The extrapolation: correctness

[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).

[BBFL03] Behrmann, Bouyer, Fleury, Larsen. Static Guard Analysis in Timed Automata Verification (TACAS’03).
[BBLP04] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone Based Abstractions of Timed Automata (TACAS’04).
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International

Journal on Software Tools for Technology Transfer).
[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS’12).
[HSW13] Herbreteau, Srivathsan, Walukiewicz. Lazy abstractions for timed automata (CAV’13).

Theorem [Bou04]

The forward algorithm with abs = ExtraM and � = ⊆ is correct for timed
automata.

the extrapolation operator can be made coarser:

use local extrapolation constants [BBFL03];
distinguish between lower- and upper-bounded contraints

[BBLP04,BBLP06]
use non-convex (but optimal!) abstractions [HSW12]
compute constants dynamically [HSW13]
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Alternative: Improved inclusion test

[HSW12] Herbreteau, Srivathsan, Walukiewicz. Better abstractions for timed automata (LICS’12).

Develop an inclusion test vabs such that:

ZvabsZ
′ iff Z ⊆ abs(Z ′)

Advantage: only store zones (without abstractions)!

absLU : (non-convex) abstraction w.r.t. LU-constraints

Note: Optimal abstraction for LU-constrained automata!

Result: ZvabsLUZ
′ can be computed efficiently

Theorem
The forward algorithm with abs = Id and � = vabsLU is correct for timed
automata.
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Simple case:

M=L=U=4

x2

x14

4
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Tools for timed automata

Uppaal, developed in Aalborg (Denmark) and Uppsala (Sweden)
since 1995

http://www.uppaal.org

Kronos, developed in Grenoble (France), no more maintained

http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/

Many other prototypes everywhere on earth...

Our new tool TiAMo, developed by Maximilien Colange (LSV)

https://git.lsv.fr/colange/tiamo

; see description and demo later
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Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,

memory usage,

...

price to pay,

bandwidth,

; timed automata are not powerful enough!

A possible solution: use hybrid automata
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Modelling resources in timed systems

System resources might be relevant and even crucial information

energy consumption,

memory usage,

...

price to pay,

bandwidth,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

a discrete control (the mode of the system)
+ continuous evolution of the variables within a mode
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Ṫ=2.25−0.5T

(T≤22)

T≤19

T≥21

22

18

21

19

2 4 6 8 10 time

27/80



Timed automata Weighted timed automata Timed games Weighted timed games Tool TiAMo Conclusion

Ok...

but?

Easy...

Easy...

constraint

constraint

Hard!
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Modelling resources in timed systems

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What’s decidable wbout hybrid automata? (SToC’95).

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

System resources might be relevant and even crucial information

energy consumption,

memory usage,

...

price to pay,

bandwidth,

; timed automata are not powerful enough!

A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata. Even for the

simplest, the so-called stopwatch automata (clocks can be stopped).

An alternative: weighted/priced timed automata [ALP01,BFH+01]

; hybrid variables do not constrain the system
hybrid variables are observer variables
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Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)y :=0

add2

y :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2
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A good schedule is a path in the
product automaton with a low cost
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Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7
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c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7 = 14.2
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Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.
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Optimal-cost reachability

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).
[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem (Formal Methods in System Design).

Theorem [ALP01,BFH+01,BBBR07]

In weighted timed automata, the optimal cost is an integer and can be
computed in PSPACE.

Technical tool: a refinement of the regions, the corner-point
abstraction

3 0 0
0

0 0 3
7

7

Symbolic technics based on priced zones
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Technical tool: the corner-point abstraction
y

x

Abstract time successors:

Concrete time successors:

Time elapsing

Discrete transition

Cost rate 3

Discrete cost 7
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From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1

t1

T1

t2

t2

T2

t3

t3

T3

t4

t4

T4

t5

t5

T5

···

ß

t1+t2≤2 T2≤2

t2+t3+t4≥5 T4−T1≥5

x≤2y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (T1, ...,Tn) 7→
n∑

i=1

ciTi + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]
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From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε⇒ |cost(Π)− cost(πε)| < η
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Use of the corner-point abstraction

[BBL04] Bouyer, Brinksma, Larsen. Staying Alive As Cheaply As Possible (HSCC’04).
[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).
[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).
[JT08] Judziński, Trivedi. Concavely-priced timed automata (FORMATS’08).
[BBBS11] Bertrand, Bouyer, Brihaye, Stainer. Emptiness and universality problems in timed automata with positive frequency (ICALP’11).
[Sta12] Stainer. Frequencies in forgetful timed automata (FORMATS’12).

It is a very interesting abstraction, that can be used in several other
contexts:

for mean-cost optimization [BBL04,BBL08]

for discounted-cost optimization [FL08]

for all concavely-priced timed automata [JT08]

for deciding frequency objectives [BBBS11,Sta12]

. . .
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Going further 1: mean-cost optimization

[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

Low
Ċ=p

Ṙ=g
High(x≤D)

Ċ=P

Ṙ=G
att?x :=0

x=D
att?,x :=0

Op

att!

z:=0z≥S

; compute optimal infinite schedules that minimize

mean-cost(π) = lim sup
n→+∞

cost(πn)

reward(πn)
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Going further 1: mean-cost optimization

[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).
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att?,x :=0

Op

att!

z:=0z≥S

; compute optimal infinite schedules that minimize

mean-cost(π) = lim sup
n→+∞

cost(πn)

reward(πn)

Theorem [BBL08]

In weighted timed automata, the optimal mean-cost can be compute in
PSPACE.

; the corner-point abstraction can be used
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From timed to discrete behaviours
Finite behaviours: based on the following property

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
∑n

i=1 ci ti + c∑n
i=1 ri ti + r

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp s.t.

mean-cost(Π) ≤ mean-cost(π)

Infinite behaviours: decompose each sufficiently long projection
into cycles:

The (acyclic) linear part will be negligible!

; the optimal cycle of Acp is better than any infinite path of A!
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From discrete to timed behaviours

Approximation of abstract paths:
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Going further 2: concavely-priced cost functions

[JT08] Judziński, Trivedi. Concavely-priced timed automata (FORMATS’08).

; A general abstract framework for quantitative timed systems

Theorem [JT08]

In concavely-priced timed automata, optimal cost is computable, if we
restrict to quasi-concave cost functions. For the following cost functions,
the (decision) problem is even PSPACE-complete:

optimal-time and optimal-cost reachability;

optimal discrete discounted cost;

optimal mean-cost.

; the corner-point abstraction can be used
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Going further 3: discounted-time cost optimization

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).

Low +9Med

(x≤3)

+5High

(x≤3)

+2

x=3,x :=0

deg

x=3

deg

z≥2,z:=0

att
+1

z≥2,x,z:=0

att
+2

Globally, (z≤8)

; compute optimal infinite schedules that minimize
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discounted-costλ(π) =
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λTn

∫ τn+1

t=0

λtcost(`n)dt+λTn+1 cost(`n
an+1−−→ `n+1)

if π = (`0, v0)
τ1,a1−−−→ (`1, v1)

τ2,a2−−−→ · · · and Tn =
∑

i≤n τi
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if λ = e−1, the discounted cost of
that infinite schedule is ≈ 2.16
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[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).
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; compute optimal infinite schedules that minimize
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Theorem [FL08]

In weighted timed automata, the optimal discounted cost is computable
in EXPTIME.

; the corner-point abstraction can be used
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And symbolically?

[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV’01).

Only for optimal reachability

Priced zones
priced zone = zone + affine cost function

, efficient representation: DBM + offset cost + affine coefficient for
each clock

/ the successor of a priced zone is a union of priced zones

x

y

Z

ζ = 2− x + 2y

offset

Represented by: zone Z
offset cost: +4
rate for x : −1
rate for y : +2
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Computing the (time) successor of a priced zone

x

y

Z

ζ = 2− x + 2y

ζ′ = 4y − x − 10

ζ′ = x + 2y − 12

Cost rate in current location: +3

We want (Z ′, ζ′) with
ζ′(v ′) = minv′−δ∈Z ζ(v ′ − δ) + 3δ

if v ′ ∈ Z , ζ′(v ′) = ζ(v)

otherwise, depends on the facet
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Forward optimal reachability algorithm

Parameters: Abstraction abs and inclusion test �

cost← +∞, Passed← ∅ and Waiting← {(`0,Z0)}
While Waiting 6= ∅

select (`,Z) from Waiting

If ` is final and minCost(Z) < cost, then set minCost(Z) to cost
If forall (`,Z ′) ∈ Passed, Z6�Z ′, then add abs(`,Z) to Passed and
add Post(abs(`,Z)) to Waiting

Return cost
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Results

[LBB+01] Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn. As cheap as possible: Efficient cost- optimal reachability for
priced timed automata (CAV’01).

[RLS06] Rasmussen, Larsen, Subramani. On using priced timed automata to achieve optimal scheduling (Formal Methods in System Design).

[BCM16] Bouyer, Colange, Markey. Symbolic Optimal Reachability in Weighted Timed Automata (CAV’16).

Theorem [LBB+01,RLS06]

The forward algorithm with abs = Id and � = ⊆ is correct and
terminates for bounded timed automata with non-negative costs.

Termination: well-quasi-order on priced zones

Development of an (abstract) inclusion test vM on priced zones

ZvMZ ′ reduces to several bilevel linear optimization problems

Theorem [BCM16]

The forward algorithm with abs = Id and � = vM is correct and
terminates for timed automata with some conditions on the cost.
It is always better than � = ⊆ for bounded timed automata.
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Tools

Uppaal-Cora, developed in Aalborg (Denmark) between 2001-2005

http://people.cs.aau.dk/~adavid/cora/

; no more maintained

Our new tool TiAMo
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Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)y :=0

add2

y :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2

A (good) schedule is a strategy in
the product game (with a low cost)
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An example of a timed game

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,
How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)

49/80
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Decidability of timed games

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC’98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and “region-based”
strategies are sufficient.

; classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.
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Decidability of timed games

[AM99] Asarin, Maler. As soon as possible: time optimal control for timed automata (HSCC’99).
[BHPR07] Brihaye, Henzinger, Prabhu, Raskin. Minimum-time reachability in timed games (ICALP’07).
[JT07] Jurdziński, Trivedi. Reachability-time games on timed automata (ICALP’07).
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Back to the example: computing winning states

`0

(x≤2)

`1

`2

`3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Attrac1

`0

0 1 2 3

`1

0 1 2 3

`2

0 1 2 3

`3

0 1 2 3

Winning states Losing states
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Decidability via attractors
Skip attractors

Preda(X ) = {• | • a−→ • ∈ X}

controllable and uncontrollable discrete predecessors:

cPred(X ) =
⋃

a cont.
Preda(X ) uPred(X ) =

⋃
a uncont.

Preda(X )

time controllable predecessors:

• •
delay t t.u.

•

should be safe

Predδ(X ,Safe) = {• | ∃t ≥ 0, • δ(t)−−→ •

and ∀0 ≤ t ′ ≤ t, • δ(t′)−−−→ • ∈ Safe}
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Predδ(X ,Safe) = {• | ∃t ≥ 0, • δ(t)−−→ •

and ∀0 ≤ t ′ ≤ t, • δ(t′)−−−→ • ∈ Safe}
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Timed games with a reachability objective

We write:
π(X ) = X ∪ Predδ(cPred(X ),¬uPred(¬X ))

The states from which one can ensure , in no more than 1 step is:

Attr1(,) = π(,)

The states from which one can ensure , in no more than 2 steps is:

Attr2(,) = π(Attr1(,))

. . .

The states from which one can ensure , in no more than n steps is:

Attrn(,) = π(Attrn−1(,))

= πn(,)
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Stability w.r.t. regions

if X is a union of regions, then:

Preda(X ) is a union of regions,
and so are cPred(X ) and uPred(X ).

Does π also preserve unions of regions?

Yes!

cPred(X )

uPred(¬X )

Predδ(cPred(X ),¬uPred(¬X ))

(but it generates non-convex unions of regions...)

; the computation of π∗(,) terminates!

... and is correct
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And in practice?

[CDF+05] Cassez, David, Fleury, Larsen, Lime. Efficient On-the-Fly Algorithms for the Analysis of Timed Games (CONCUR’05).
[BCD+07] Behrmann, Cougnard, David, Fleury, Larsen, Lime. UPPAAL-Tiga: Time for Playing Games! (CAV’07).

A zone-based forward algorithm with backtracking
[CDF+05,BCD+07]

A tool: Uppaal-TiGa, developed in Aalborg (Denmark) since 2005

http://people.cs.aau.dk/~adavid/tiga/
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A simple

weighted

timed game

`0 `1

(y=0)

`2

`3

,x≤2,c,y :=0

u

u

x=2,c

x=2,c

Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1
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Optimal reachability in weighted timed games (1)

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
[ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP’04).
[BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS’04).
[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS’05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).
[Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (QAPL’11).
[HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (CONCUR’13).
[BGK+14] Brihaye, Geeraerts, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (CONCUR’14).

This topic has been fairly hot these last fifteen years...

[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMM02]

Tree-like weighted timed games can be solved in 2EXPTIME.

[ABM04,BCFL04]

Depth-k weighted timed games can be solved in EXPTIME. There is a
symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost.
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Optimal reachability in weighted timed games (2)

[BBR05,BBM06,BJM15]

In weighted timed games, the optimal cost (and the value) cannot be
computed, as soon as games have three clocks or more.

[BLMR06,Rut11,HIM13,BGK+14]

Turn-based optimal timed games are decidable in EXPTIME (resp.
PTIME) when automata have a single clock (resp. with two rates). They
are PTIME-hard.
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What is easier with a single clock?

[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

Memoryless strategies can be non-optimal...

`0

+2

(x≤1)

`1

+1

,x=1

x<1
x :=0 x>0

... but memoryless almost-optimal strategies will be sufficient.

Key: resetting the clock somehow resets the history...

By unfolding and removing one by one the locations,we can
synthesize memoryless almost-optimal winning strategies.

Rather involved proofs of correctness
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Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .
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Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

0 1

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by x0

Add+(x)

1 0

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by 1−x0

Add−(x)
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Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2x=x0

y=y0 z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

; player 2 can enforce cost 3 + |y0 − 2x0|

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0
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Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

2c2

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

u:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)u=1,u:=0

Testy (x=2z)
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Shape of the reduction

;

Instruction

Test module (acyclic) Cost 0 within the core of the game
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Are we done?

No!

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR’15).

Optimal cost is computable...

... when cost is strongly non-zeno. [AM04,BCFL04]

There is κ > 0 s.t. for every region cycle C , for every real run % read on C ,

cost(%) ≥ κ

Almost-optimality in practice should be sufficient

Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

Note: In both cases, we can assume κ = 1.

65/80



Timed automata Weighted timed automata Timed games Weighted timed games Tool TiAMo Conclusion

Are we done? No!

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR’15).

Optimal cost is computable...

... when cost is strongly non-zeno. [AM04,BCFL04]

There is κ > 0 s.t. for every region cycle C , for every real run % read on C ,

cost(%) ≥ κ

Almost-optimality in practice should be sufficient

Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

Note: In both cases, we can assume κ = 1.

65/80



Timed automata Weighted timed automata Timed games Weighted timed games Tool TiAMo Conclusion

Are we done? No!

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR’15).

Optimal cost is computable...

... when cost is strongly non-zeno. [AM04,BCFL04]

There is κ > 0 s.t. for every region cycle C , for every real run % read on C ,

cost(%) ≥ κ

Optimal cost is not computable...

... when cost is almost-strongly non-zeno.

There is κ > 0 s.t. for every region cycle C , for every real run % read on C ,

cost(%) ≥ κ or cost(%) = 0

Almost-optimality in practice should be sufficient

Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

Note: In both cases, we can assume κ = 1.

65/80



Timed automata Weighted timed automata Timed games Weighted timed games Tool TiAMo Conclusion

Are we done? No!

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR’15).

Optimal cost is computable...

... when cost is strongly non-zeno. [AM04,BCFL04]

There is κ > 0 s.t. for every region cycle C , for every real run % read on C ,

cost(%) ≥ κ

Optimal cost is not computable... but is approximable!

... when cost is almost-strongly non-zeno. [BJM15]

There is κ > 0 s.t. for every region cycle C , for every real run % read on C ,

cost(%) ≥ κ or cost(%) = 0

Almost-optimality in practice should be sufficient

Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

Note: In both cases, we can assume κ = 1.

65/80



Timed automata Weighted timed automata Timed games Weighted timed games Tool TiAMo Conclusion

Are we done? No!

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR’15).

Optimal cost is computable...

... when cost is strongly non-zeno. [AM04,BCFL04]

There is κ > 0 s.t. for every region cycle C , for every real run % read on C ,

cost(%) ≥ κ

Optimal cost is not computable... but is approximable!

... when cost is almost-strongly non-zeno. [BJM15]

There is κ > 0 s.t. for every region cycle C , for every real run % read on C ,

cost(%) ≥ κ or cost(%) = 0

Almost-optimality in practice should be sufficient

Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

Note: In both cases, we can assume κ = 1.

65/80



Timed automata Weighted timed automata Timed games Weighted timed games Tool TiAMo Conclusion

Are we done? No!

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games (CONCUR’15).

Optimal cost is computable...

... when cost is strongly non-zeno. [AM04,BCFL04]

There is κ > 0 s.t. for every region cycle C , for every real run % read on C ,

cost(%) ≥ κ

Optimal cost is not computable... but is approximable!

... when cost is almost-strongly non-zeno. [BJM15]

There is κ > 0 s.t. for every region cycle C , for every real run % read on C ,

cost(%) ≥ κ or cost(%) = 0

Almost-optimality in practice should be sufficient

Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...

Note: In both cases, we can assume κ = 1.

65/80



Timed automata Weighted timed automata Timed games Weighted timed games Tool TiAMo Conclusion

Approximation of the optimal cost

Theorem
Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every ε > 0, one can compute:

two values v−ε and v+
ε such that

|v+
ε − v−ε | < ε and v−ε ≤ optcostG ≤ v+

ε

one strategy σε such that

optcostG ≤ cost(σε) ≤ optcostG + ε

[it is an ε-optimal winning strategy]

Standard technics: unfold the game to get more precision, and
compute two adjacency sequences

; This is not possible here
There might be runs with prefixes of arbitrary length and cost 0 (e.g. the

game of the undecidability proof)
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Idea for approximation

Idea
Only partially unfold the game:

Keep components with cost 0 untouched – we call it the kernel

Unfold the rest of the game

First: split the game along regions!

g ,Y := 0
;

r1,Y := 0

r2,Y := 0
r3,Y = 0

r4,Y := 0

r5,Y := 0
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Semi-unfolding

Only cost 0
Kernel K

Only cost 0
Kernel K

Hypothesis:
cost > 0 implies cost ≥ κ

Conclusion: we can stop unfolding the game after N steps
(e.g. N = (M + 2) · |R(A)|, where M is a pre-computed bound on optcostG)
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Approximation scheme

Exact computation

Approximation
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First step: Tree-like parts

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

; Goes back to [LMM02]

c `

`′ `′′

g ′,Y ′

c′
g ′′,Y ′′

c′′

O(`, v) = inf
t′|v+t′|=g ′

max
(

(α)

,

(β)

)

(α) = t ′c + c′ + O(`′, v ′)

(β) = sup
t′′≤t′|v+t′′|=g ′′

t ′′c + c′′ + O(`′′, v ′′)

v ′=[Y ′←0](v+t′)

v ′′=[Y ′′←0](v+t′′)
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Second step: Kernels

Output cost functions f

1 Refine the regions such that f differs
of at most ε within a small region

2 Under- and over-approximate by
piecewise constant functions f −ε and
f +
ε
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Second step: Kernels

fε: constant fε: constant

3 Refine/split the kernel along the new
small regions and fix f −ε or f +

ε , write fε
4 Since cost is 0 everywhere, the

resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by fε)

5 Those can be solved using standard
technics based on attractors: small
regions are sufficient, and the local
optimal cost (for output fε) is constant
within a small region

; We have computed ε-approximations of
the optimal cost, which are constant
within small regions. Corresponding
strategies can be inferred
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TiAMo = Timed Automata Model-checker

Development started in September 2015

Main developer: Maximilien Colange (LSV)

Uses some previous code by Ocan Sankur (IRISA)

Why?

Main tool for timed systems: Uppaal, developed since 1995

; Unfortunately, not open source

; Often hard to know what is exactly implemented

What TiAMo targets

Be a platform for experiments (open source!)

Assert and compare algorithms

https://git.lsv.fr/colange/tiamo
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TiAMo architecture

Reachability Algorithm

standard (unweighted)

optimal (weighted)

Abstraction
module

Inclusion
module

Exploration Order
module

incl2

incl1

incl3

abstr2

abstr1

abstr3

BFS

DFS

. . .

Timed Automaton

transition relation

Uppaal TA Parsing
Library

Uppaal DBM
Library
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What is implemented

[HT15] Herbreteau, Tran. Improving Search Order for Reachability Testing in Timed Automata (FORMATS’15).

Exploration strategies

BFS, DFS

best cost first (for weighted models)

preference-based (use a special “preference” variable in the model)

“smart” BFS: inspired by [HT15]

Abstractions

identity (i.e. no abstraction), to be used with abstract inclusion tests

LU-abstraction [BBLP06]

Inclusions

set inclusion

weighted set inclusion [RLS06]

abstract inclusion [HSW12]

abstract weighted inclusion [BCM16]
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Experiments

Various metrics

wall-clock time
number of symbolic states explored
number of comparisons done

In various contexts

with different exploration strategies

Examples taken from Uppaal-Cora

The Aircraft Landing System (ALS)

The Vehicle Routing Problem with Time Windows (VRPTW)

An unbounded-clock (ad hoc) model
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Experimental results

for mentioned weighted models

-P (no pruning) / +P (pruning)

⊆ (standard inclusion – no guarantee of term.) / v (abstract
inclusion – guarantee of term.)

# Waiting # Passed # stored # tests # succ. tests time (s.)

A
S

L +
P v 11,820 4,785 9,324 3.7× 1005 13,676 0.3

⊆ 32,322 13,036 26,555 2.9× 1006 32,263 0.7

-P

v 1.7× 1006 1.5× 1006 6.9× 1005 8.1× 1008 1.2× 1007 312.7

⊆ TO TO TO TO TO TO

E
T

S

+
P v 107 84 83 174 66 0.0

⊆ 664 606 590 17,684 455 0.0

V
R

P
T

W +
P v 6.0× 1005 4.8× 1005 5.6× 1005 6.2× 1006 1.7× 1005 11.3

⊆ 1.5× 1006 1.3× 1006 1.4× 1006 9.1× 1007 7.0× 1005 27.5

-P

v 1.3× 1006 1.3× 1006 1.3× 1006 2.5× 1007 7.0× 1005 23.9

⊆ 5.8× 1006 5.8× 1006 5.4× 1006 1.1× 1009 1.9× 1006 111.2

u
n

b
o

u
n

d
.

+
P v 14 13 14 135 3 0.0

⊆ TO TO TO TO TO TO

-P

v 14 14 14 135 3 0.0

⊆ TO TO TO TO TO TO
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Conclusion

[BMPS15] Bouyer, Markey, Perrin, Schlehuber-Caissier. Timed-Automata Abstraction of Switched Dynamical Systems Using Control Funnels
(FORMATS’15).

Summary of the talk

Overview of results concerning the optimal reachability problem in
weighted timed automata and games

Various (un)decidability + symbolic technics

Our new tool TiAMo

Future work
Various theoretical issues

Apply further the idea of approximation
Stochastic uncertainty

Continue working on TiAMo

Implementation of (weighted) timed games
More applications (e.g. motion planning problems using the funnel
automata approach [BMPS15])
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