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Introduction

Natural questions

I Can I reach Pontivy from Oxford?

I What is the minimal time to reach
Pontivy from Oxford?

I What is the minimal fuel consumption to
reach Pontivy from Oxford?

I What if there is an unexpected event?
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Introduction

A first model of the system
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Introduction

Can I reach Pontivy from Oxford?

Oxford

Pontivy

Dover

Calais

Paris

London

Stansted

Nantes

Poole

St Malo

This is a reachability question in a finite graph: Yes, I can!
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Introduction

A second model of the system
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Introduction

How long will that take?

Oxford
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Dover
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x :
=
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27≤
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3≤
x≤
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x :=
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It is a reachability (and optimization) question
in a timed automaton: at least 350mn = 5h50mn!
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Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0

23 0 15.6 15.6 ···

y 0

23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1
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Introduction

Timed automata

Theorem [AD90]

The reachability problem is decidable (and PSPACE-complete) for timed
automata.

timed automaton

finite bisimulation

large (but finite) automaton
(region automaton)
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Introduction

The region abstraction

y

0 x1 2 3

1

2

3

• •

I “compatibility” between regions and constraints

I “compatibility” between regions and time elapsing

+ an equivalence of finite index
a time-abstract bisimulation
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Introduction

The region abstraction

time elapsing

reset to 0
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Introduction

Time-optimal reachability

Theorem [CY92]

The time-optimal reachability problem is decidable (and PSPACE-
complete) for timed automata.
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Introduction

A third model of the system
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Introduction

How much fuel will I use?
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It is a quantitative (optimization) problem
in a priced timed automaton: at least 68 anti-planet units!
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Timed automata with costs

HSCC’01: weighted/timed automata

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

,x≤2,c,y :=0

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

Question: what is the optimal cost for reaching ,?

inf
0≤t≤2

min (

5t + 10(2− t) + 1

, 5t + (2− t) + 7 ) = 9

Ü strategy: leave immediately `0, go to `3, and wait there 2 t.u.
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Timed automata with costs

Optimal reachability

The idea “go through corners” extends in the general case.

Theorem [ALP01,BFH+01,BBBR07]

Optimal reachability is decidable in timed automata.
It is PSPACE-complete.
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Timed automata with costs

The region abstraction is not fine enough

time elapsing

reset to 0
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Timed automata with costs

The corner-point abstraction

3
0 0

0

0 0
3

7

7
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Timed automata with costs

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
···

8<:

t1+t2≤2

t2+t3+t4≥5

x≤2y :=0 y≥5

Lemma

Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
nX

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

Ü for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]
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Timed automata with costs

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp ,

for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε ⇒ |cost(Π)− cost(πε)| < η
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Timed automata with costs

Mean-Cost Optimization

Low
Ċ=p

Ṙ=g

High
x≤D

Ċ=P

Ṙ=G

att?

x :=0

x=D

att?
x :=0

Op

att!
z:=0z≥S

Question: How to minimize limn→+∞
accumulated cost(πn)

accumulated reward(πn)
?
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Timed automata with costs

An example

Two machines M1(D = 3,P = 3,G = 4, p = 5, g = 3) and
M2(D = 6,P = 3,G = 2, p = 5, g = 2).
An operator O(4).

Time

1 1 2 1

H
L

M2

H
L

M1

4 8 12 16

O

Schedule with ratio 1.455

Time

1 1 1 1

H
L

M2

H
L

M1

4 8 12 16

O

Schedule with ratio 1.478
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Timed automata with costs

Mean-cost optimization

Theorem [BBL04,BBL08]

The mean-cost optimization problem is decidable (and PSPACE-complete)
for priced timed automata.

+ The corner-point abstraction is sound and complete.
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Timed automata with costs

From timed to discrete behaviours
Ü Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
Pn

i=1 ci ti + cPn
i=1 ri ti + r

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

Ü for every finite path π in A, there exists a path Π in Acp such that

mean-cost(Π) ≤ mean-cost(π)
I Infinite behaviours: decompose each sufficiently long projection

into cycles

The linear part will be negligible!

Ü the optimal cycle of Acp is better than any infinite path of A!
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Timed automata with costs

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp ,

for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε ⇒ |mean-cost(Π)−mean-cost(πε)| < η
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Timed automata with costs

Uppaal Cora

A branch of Uppaal for cost optimal

reachability
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Optimal timed games

Outline

1. Introduction

2. Timed automata with costs

3. Optimal timed games

4. Conclusion
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Optimal timed games

What if an unexpected event happens?

Oxford

Pontivy

Dover

Calais

Paris
+2

London +2

Stansted

Nantes

Poole

St Malo

3

3

3

3

3

3

3

3

2

2

7

1

2

x :=0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :
=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :
=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12
≤x≤

14

Flight
cancelled!

On strike!!!

+ modelled as timed games
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Optimal timed games

A simple example of timed games

`0 `1

(y=0)

`2

`3

x≤2,c,y :=0

u

u

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7
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Optimal timed games

Decidability of timed games

Theorem [AMPS98] [HK99]

Safety and reachability control in timed automata are decidable and
EXPTIME-complete.

(the attractor is computable...)

+ classical regions are sufficient for solving such problems
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Optimal timed games

Decidability of timed games

Theorem [AMPS98] [HK99]

Safety and reachability control in timed automata are decidable and
EXPTIME-complete.
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Optimal timed games

Uppaal Tiga

A forward on-the-fly algorithm for
solving reachability timed games

+ implemented as a branch of

Uppaal
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Optimal timed games

Back to the simple example

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

,x≤2,c,y :=0

u

u

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

Question: what is the optimal cost we can ensure in state `0?

inf
0≤t≤2

max (

5t + 10(2− t) + 1

, 5t + (2− t) + 7 ) = 14 +
1

3

Ü strategy: wait in `0, and when t = 4
3 , go to `1

I How to automatically compute such optimal costs?

I How to synthesize optimal strategies (if one exists)?
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Optimal timed games

A fairly hot topic!

I optimal time is computable in timed games [AM99]

I case of acyclic games [LMM02]

I general case [ABM04]
I complexity of k-step games
I under a strongly non-zeno assumption, optimal cost is computable

I general case [BCFL04]
I structural properties of strategies (e.g. memory)
I under a strongly non-zeno assumption, optimal cost is computable

35/39



Optimal timed games

A fairly hot topic!

I optimal time is computable in timed games [AM99]

I case of acyclic games [LMM02]

I general case [ABM04]
I complexity of k-step games
I under a strongly non-zeno assumption, optimal cost is computable

I general case [BCFL04]
I structural properties of strategies (e.g. memory)
I under a strongly non-zeno assumption, optimal cost is computable

35/39



Optimal timed games

A fairly hot topic!

I optimal time is computable in timed games [AM99]

I case of acyclic games [LMM02]

I general case [ABM04]
I complexity of k-step games
I under a strongly non-zeno assumption, optimal cost is computable

I general case [BCFL04]
I structural properties of strategies (e.g. memory)
I under a strongly non-zeno assumption, optimal cost is computable

35/39



Optimal timed games

A fairly hot topic!

I optimal time is computable in timed games [AM99]

I case of acyclic games [LMM02]

I general case [ABM04]
I complexity of k-step games
I under a strongly non-zeno assumption, optimal cost is computable

I general case [BCFL04]
I structural properties of strategies (e.g. memory)
I under a strongly non-zeno assumption, optimal cost is computable

35/39



Optimal timed games

A fairly hot topic!

I general case [BBR05]
I with five clocks, optimal cost is not computable!
I with one clock and one stopwatch cost, optimal cost is computable

I general case [BBM06]
I with three clocks, optimal cost is not computable

I the single-clock case [BLMR06]
I with one clock, optimal cost is computable
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Optimal timed games

Why is that hard?

Given two clocks x and y , we can check whether y = 2x
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Optimal timed games

Why is that hard?

Given two clocks x and y , we can check whether y = 2x

0 1

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by x0

Add+(x)

1 0

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by 1−x0

Add−(x)
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Optimal timed games

Why is that hard?

Given two clocks x and y , we can check whether y = 2x

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

I In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

I if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

I Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/39



Optimal timed games

Why is that hard?

Given two clocks x and y , we can check whether y = 2x

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

I In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

I if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

I Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/39



Optimal timed games

Why is that hard?

Given two clocks x and y , we can check whether y = 2x

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

I In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

I if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

I Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/39



Optimal timed games

Why is that hard?

Given two clocks x and y , we can check whether y = 2x

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

I In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

I if y0 < 2x0, player 2 chooses the first branch: cost > 3

if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

I Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/39



Optimal timed games

Why is that hard?

Given two clocks x and y , we can check whether y = 2x

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

I In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

I if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3

if y0 = 2x0, in both branches, cost = 3

I Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/39



Optimal timed games

Why is that hard?

Given two clocks x and y , we can check whether y = 2x

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

I In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

I if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

I Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/39



Optimal timed games

Why is that hard?

Given two clocks x and y , we can check whether y = 2x

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

I In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

I if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

I Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/39



Conclusion

Outline

1. Introduction

2. Timed automata with costs

3. Optimal timed games

4. Conclusion

38/39



Conclusion

Conclusion

Priced timed automata, a model and framework to represent quantitative
constraints on timed systems:

I several interesting optimization problems

Not mentioned here

I all works on model-checking issues (extensions of CTL, LTL)
I very few decidability results

[BBR04,BBM06,BLM07,BM07]

I discounted cost

Further work

I approximate optimal timed games to circumvent undecidability
results
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