
Weighted Timed Automata:
Optimization Problems

Patricia Bouyer

LSV – ENS Cachan & CNRS – France

Based on joint works with Thomas Brihaye (UMH, Belgium), Ed Brinksma (Twente University, The Netherlands),
Véronique Bruyère (UMH, Belgium), Franck Cassez (IRCCyN, France), Emmanuel Fleury (LaBRI, France),

Kim G. Larsen (Aalborg University, Denmark), Nicolas Markey (LSV, France), Jean-François Raskin (ULB, Belgium),
and Jacob Illum Rasmussen (Aalborg University, Denmark)

1/39

Introduction

Outline

1. Introduction

2. Timed automata with costs

3. Optimal timed games

4. Conclusion

2/39

Introduction

A starting example

3/39

Introduction

Natural questions

I Can I reach Pontivy from Oxford?

I What is the minimal time to reach
Pontivy from Oxford?

I What is the minimal fuel consumption to
reach Pontivy from Oxford?

I What if there is an unexpected event?

4/39

Introduction

Natural questions

I Can I reach Pontivy from Oxford?

I What is the minimal time to reach
Pontivy from Oxford?

I What is the minimal fuel consumption to
reach Pontivy from Oxford?

I What if there is an unexpected event?

4/39

Introduction

Natural questions

I Can I reach Pontivy from Oxford?

I What is the minimal time to reach
Pontivy from Oxford?

I What is the minimal fuel consumption to
reach Pontivy from Oxford?

I What if there is an unexpected event?

4/39

Introduction

Natural questions

I Can I reach Pontivy from Oxford?

I What is the minimal time to reach
Pontivy from Oxford?

I What is the minimal fuel consumption to
reach Pontivy from Oxford?

I What if there is an unexpected event?

4/39

Introduction

A first model of the system

Oxford

Pontivy

Dover

Calais

Paris

London

Stansted

Nantes

Poole

St Malo

5/39

Introduction

Can I reach Pontivy from Oxford?

Oxford

Pontivy

Dover

Calais

Paris

London

Stansted

Nantes

Poole

St Malo

This is a reachability question in a finite graph: Yes, I can!

6/39

Introduction

A second model of the system

Oxford

Pontivy

Dover

Calais

Paris

London

Stansted

Nantes

Poole

St Malo

x :=0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :
=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :
=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12
≤x≤

14

7/39

Introduction

How long will that take?

Oxford

Pontivy

Dover

Calais

Paris

London

Stansted

Nantes

Poole

St Malo

x :=0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :
=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :
=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12
≤x≤

14

It is a reachability (and optimization) question
in a timed automaton: at least 350mn = 5h50mn!

8/39

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0

23 0 15.6 15.6 ···

y 0

23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

9/39

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0

23 0 15.6 15.6 ···

y 0

23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

9/39

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23

0 15.6 15.6 ···

y 0 23

23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

9/39

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0 23 0

15.6 15.6 ···

y 0 23 23

38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

9/39

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6

15.6 ···

y 0 23 23 38.6

0

failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

9/39

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe

2.3−−→ failsafe
repair−−−−→ reparation

22.1−−→ reparation
done−−−→ safe

··· 15.6

17.9 17.9 40 40

0

2.3 0 22.1 22.1

9/39

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe

··· 15.6 17.9

17.9 40 40

0 2.3

0 22.1 22.1

9/39

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ reparation

22.1−−→ reparation
done−−−→ safe

··· 15.6 17.9 17.9

40 40

0 2.3 0

22.1 22.1

9/39

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe

··· 15.6 17.9 17.9 40

40

0 2.3 0 22.1

22.1

9/39

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ reparation
22.1−−→ reparation

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

9/39

Introduction

Timed automata

Theorem [AD90]

The reachability problem is decidable (and PSPACE-complete) for timed
automata.

timed automaton

finite bisimulation

large (but finite) automaton
(region automaton)

10/39

Introduction

Timed automata

Theorem [AD90]

The reachability problem is decidable (and PSPACE-complete) for timed
automata.

timed automaton

finite bisimulation

large (but finite) automaton
(region automaton)

10/39

Introduction

The region abstraction

y

0 x1 2 3

1

2

3

• •

I “compatibility” between regions and constraints

I “compatibility” between regions and time elapsing

+ an equivalence of finite index
a time-abstract bisimulation

11/39

Introduction

The region abstraction

y

0 x1 2 3

1

2

3

• •

I “compatibility” between regions and constraints

I “compatibility” between regions and time elapsing

+ an equivalence of finite index
a time-abstract bisimulation

11/39

Introduction

The region abstraction

y

0 x1 2 3

1

2

3

• •

I “compatibility” between regions and constraints

I “compatibility” between regions and time elapsing

+ an equivalence of finite index
a time-abstract bisimulation

11/39

Introduction

The region abstraction

y

0 x1 2 3

1

2

3

• •

I “compatibility” between regions and constraints

I “compatibility” between regions and time elapsing

+ an equivalence of finite index
a time-abstract bisimulation

11/39

Introduction

The region abstraction

y

0 x1 2 3

1

2

3

• •

I “compatibility” between regions and constraints

I “compatibility” between regions and time elapsing

+ an equivalence of finite index
a time-abstract bisimulation

11/39

Introduction

The region abstraction

time elapsing

reset to 0

12/39

Introduction

Time-optimal reachability

Theorem [CY92]

The time-optimal reachability problem is decidable (and PSPACE-
complete) for timed automata.

13/39

Introduction

A third model of the system

Oxford

Pontivy

Dover

Calais

Paris
+2

London +2

Stansted

Nantes

Poole

St Malo

3

3

3

3

3

3

3

3

2

2

7

1

2

x :=0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :
=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :
=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12
≤x≤

14

14/39

Introduction

How much fuel will I use?

Oxford

Pontivy

Dover

Calais

Paris
+2

London +2

Stansted

Nantes

Poole

St Malo

3

3

3

3

3

3

3

3

2

2

7

1

2

x :=0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :
=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :
=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12
≤x≤

14

It is a quantitative (optimization) problem
in a priced timed automaton: at least 68 anti-planet units!

15/39

Timed automata with costs

Outline

1. Introduction

2. Timed automata with costs

3. Optimal timed games

4. Conclusion

16/39

Timed automata with costs

HSCC’01: weighted/timed automata

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

,x≤2,c,y :=0

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

Question: what is the optimal cost for reaching ,?

inf
0≤t≤2

min (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 9

Ü strategy: leave immediately `0, go to `3, and wait there 2 t.u.

17/39

Timed automata with costs

HSCC’01: weighted/timed automata

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

,x≤2,c,y :=0

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

(`0, (0, 0))
1.3−−→ (`0, (1.3, 1.3))

c−→ (`1, (1.3, 0))
u−→ (`3, (1.3, 0))

0.7−−→ (`3, (2, 0.7))
c−→ ,

cost : 6.5 + 0 + 0 + 0.7 + 7 = 14.2

Question: what is the optimal cost for reaching ,?

inf
0≤t≤2

min (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 9

Ü strategy: leave immediately `0, go to `3, and wait there 2 t.u.

17/39

Timed automata with costs

HSCC’01: weighted/timed automata

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

,x≤2,c,y :=0

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

Question: what is the optimal cost for reaching ,?

inf
0≤t≤2

min (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 9

Ü strategy: leave immediately `0, go to `3, and wait there 2 t.u.

17/39

Timed automata with costs

HSCC’01: weighted/timed automata

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

,x≤2,c,y :=0

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

Question: what is the optimal cost for reaching ,?

inf
0≤t≤2

min (

5t + 10(2− t) + 1 , 5t + (2− t) + 7

) = 9

Ü strategy: leave immediately `0, go to `3, and wait there 2 t.u.

17/39

Timed automata with costs

HSCC’01: weighted/timed automata

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

,x≤2,c,y :=0

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

Question: what is the optimal cost for reaching ,?

inf
0≤t≤2

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7)

= 9

Ü strategy: leave immediately `0, go to `3, and wait there 2 t.u.

17/39

Timed automata with costs

HSCC’01: weighted/timed automata

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

,x≤2,c,y :=0

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

Question: what is the optimal cost for reaching ,?

inf
0≤t≤2

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 9

Ü strategy: leave immediately `0, go to `3, and wait there 2 t.u.

17/39

Timed automata with costs

HSCC’01: weighted/timed automata

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

,x≤2,c,y :=0

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

Question: what is the optimal cost for reaching ,?

inf
0≤t≤2

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 9

Ü strategy: leave immediately `0, go to `3, and wait there 2 t.u.

17/39

Timed automata with costs

Optimal reachability

The idea “go through corners” extends in the general case.

Theorem [ALP01,BFH+01,BBBR07]

Optimal reachability is decidable in timed automata.
It is PSPACE-complete.

18/39

Timed automata with costs

The region abstraction is not fine enough

time elapsing

reset to 0

19/39

Timed automata with costs

The corner-point abstraction

3
0 0

0

0 0
3

7

7

20/39

Timed automata with costs

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
···

8<:

t1+t2≤2

t2+t3+t4≥5

x≤2y :=0 y≥5

Lemma

Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
nX

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

Ü for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

21/39

Timed automata with costs

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
···

8<:

t1+t2≤2

t2+t3+t4≥5

x≤2y :=0 y≥5

Lemma

Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
nX

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

Ü for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

21/39

Timed automata with costs

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
···

8<: t1+t2≤2

t2+t3+t4≥5

x≤2

y :=0 y≥5

Lemma

Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
nX

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

Ü for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

21/39

Timed automata with costs

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
···

8<: t1+t2≤2

t2+t3+t4≥5x≤2y :=0 y≥5

Lemma

Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
nX

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

Ü for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

21/39

Timed automata with costs

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
···

8<: t1+t2≤2

t2+t3+t4≥5x≤2y :=0 y≥5

Lemma

Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
nX

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

Ü for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

21/39

Timed automata with costs

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
···

8<: t1+t2≤2

t2+t3+t4≥5x≤2y :=0 y≥5

Lemma

Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
nX

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

Ü for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

21/39

Timed automata with costs

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp ,

for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε ⇒ |cost(Π)− cost(πε)| < η

22/39

Timed automata with costs

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any ε > 0,

there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε ⇒ |cost(Π)− cost(πε)| < η

22/39

Timed automata with costs

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε ⇒ |cost(Π)− cost(πε)| < η

22/39

Timed automata with costs

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε ⇒ |cost(Π)− cost(πε)| < η

22/39

Timed automata with costs

Mean-Cost Optimization

Low
Ċ=p

Ṙ=g

High
x≤D

Ċ=P

Ṙ=G

att?

x :=0

x=D

att?
x :=0

Op

att!
z:=0z≥S

Question: How to minimize limn→+∞
accumulated cost(πn)

accumulated reward(πn)
?

23/39

Timed automata with costs

An example

Two machines M1(D = 3,P = 3,G = 4, p = 5, g = 3) and
M2(D = 6,P = 3,G = 2, p = 5, g = 2).
An operator O(4).

Time

1 1 2 1

H
L

M2

H
L

M1

4 8 12 16

O

Schedule with ratio 1.455

Time

1 1 1 1

H
L

M2

H
L

M1

4 8 12 16

O

Schedule with ratio 1.478

24/39

Timed automata with costs

Mean-cost optimization

Theorem [BBL04,BBL08]

The mean-cost optimization problem is decidable (and PSPACE-complete)
for priced timed automata.

+ The corner-point abstraction is sound and complete.

25/39

Timed automata with costs

From timed to discrete behaviours
Ü Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
Pn

i=1 ci ti + cPn
i=1 ri ti + r

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

Ü for every finite path π in A, there exists a path Π in Acp such that

mean-cost(Π) ≤ mean-cost(π)
I Infinite behaviours: decompose each sufficiently long projection

into cycles

The linear part will be negligible!

Ü the optimal cycle of Acp is better than any infinite path of A!

26/39

Timed automata with costs

From timed to discrete behaviours
Ü Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
Pn

i=1 ci ti + cPn
i=1 ri ti + r

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

Ü for every finite path π in A, there exists a path Π in Acp such that

mean-cost(Π) ≤ mean-cost(π)

I Infinite behaviours: decompose each sufficiently long projection
into cycles

The linear part will be negligible!

Ü the optimal cycle of Acp is better than any infinite path of A!

26/39

Timed automata with costs

From timed to discrete behaviours
Ü Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
Pn

i=1 ci ti + cPn
i=1 ri ti + r

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

Ü for every finite path π in A, there exists a path Π in Acp such that

mean-cost(Π) ≤ mean-cost(π)
I Infinite behaviours: decompose each sufficiently long projection

into cycles

The linear part will be negligible!

Ü the optimal cycle of Acp is better than any infinite path of A!

26/39

Timed automata with costs

From timed to discrete behaviours
Ü Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
Pn

i=1 ci ti + cPn
i=1 ri ti + r

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

Ü for every finite path π in A, there exists a path Π in Acp such that

mean-cost(Π) ≤ mean-cost(π)
I Infinite behaviours: decompose each sufficiently long projection

into cycles

The linear part will be negligible!

Ü the optimal cycle of Acp is better than any infinite path of A!

26/39

Timed automata with costs

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp ,

for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε ⇒ |mean-cost(Π)−mean-cost(πε)| < η

27/39

Timed automata with costs

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any ε > 0,

there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε ⇒ |mean-cost(Π)−mean-cost(πε)| < η

27/39

Timed automata with costs

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε ⇒ |mean-cost(Π)−mean-cost(πε)| < η

27/39

Timed automata with costs

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε ⇒ |mean-cost(Π)−mean-cost(πε)| < η

27/39

Timed automata with costs

Uppaal Cora

A branch of Uppaal for cost optimal

reachability

28/39

Optimal timed games

Outline

1. Introduction

2. Timed automata with costs

3. Optimal timed games

4. Conclusion

29/39

Optimal timed games

What if an unexpected event happens?

Oxford

Pontivy

Dover

Calais

Paris
+2

London +2

Stansted

Nantes

Poole

St Malo

3

3

3

3

3

3

3

3

2

2

7

1

2

x :=0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :
=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :
=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12
≤x≤

14

Flight
cancelled!

On strike!!!

+ modelled as timed games

30/39

Optimal timed games

What if an unexpected event happens?

Oxford

Pontivy

Dover

Calais

Paris
+2

London +2

Stansted

Nantes

Poole

St Malo

3

3

3

3

3

3

3

3

2

2

7

1

2

x :=0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :
=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :
=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12
≤x≤

14

Flight
cancelled!

On strike!!!

+ modelled as timed games

30/39

Optimal timed games

What if an unexpected event happens?

Oxford

Pontivy

Dover

Calais

Paris
+2

London +2

Stansted

Nantes

Poole

St Malo

3

3

3

3

3

3

3

3

2

2

7

1

2

x :=0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :
=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :
=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12
≤x≤

14

Flight
cancelled!

On strike!!!

+ modelled as timed games

30/39

Optimal timed games

A simple example of timed games

`0 `1

(y=0)

`2

`3

x≤2,c,y :=0

u

u

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

31/39

Optimal timed games

A simple example of timed games

`0 `1

(y=0)

`2

`3

x≤2,c,y :=0

u

u

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

31/39

Optimal timed games

Decidability of timed games

Theorem [AMPS98] [HK99]

Safety and reachability control in timed automata are decidable and
EXPTIME-complete.

(the attractor is computable...)

+ classical regions are sufficient for solving such problems

32/39

Optimal timed games

Decidability of timed games

Theorem [AMPS98] [HK99]

Safety and reachability control in timed automata are decidable and
EXPTIME-complete.

(the attractor is computable...)

+ classical regions are sufficient for solving such problems

32/39

Optimal timed games

Decidability of timed games

Theorem [AMPS98] [HK99]

Safety and reachability control in timed automata are decidable and
EXPTIME-complete.

(the attractor is computable...)

+ classical regions are sufficient for solving such problems

32/39

Optimal timed games

Uppaal Tiga

A forward on-the-fly algorithm for
solving reachability timed games

+ implemented as a branch of

Uppaal

33/39

Optimal timed games

Back to the simple example

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

,x≤2,c,y :=0

u

u

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

Question: what is the optimal cost we can ensure in state `0?

inf
0≤t≤2

max (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 14 +
1

3

Ü strategy: wait in `0, and when t = 4
3 , go to `1

I How to automatically compute such optimal costs?

I How to synthesize optimal strategies (if one exists)?

34/39

Optimal timed games

Back to the simple example

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

,x≤2,c,y :=0

u

u

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

Question: what is the optimal cost we can ensure in state `0?

inf
0≤t≤2

max (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 14 +
1

3

Ü strategy: wait in `0, and when t = 4
3 , go to `1

I How to automatically compute such optimal costs?

I How to synthesize optimal strategies (if one exists)?

34/39

Optimal timed games

Back to the simple example

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

,x≤2,c,y :=0

u

u

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

Question: what is the optimal cost we can ensure in state `0?

inf
0≤t≤2

max (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 14 +
1

3

Ü strategy: wait in `0, and when t = 4
3 , go to `1

I How to automatically compute such optimal costs?

I How to synthesize optimal strategies (if one exists)?

34/39

Optimal timed games

Back to the simple example

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

,x≤2,c,y :=0

u

u

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

Question: what is the optimal cost we can ensure in state `0?

inf
0≤t≤2

max (

5t + 10(2− t) + 1 , 5t + (2− t) + 7

) = 14 +
1

3

Ü strategy: wait in `0, and when t = 4
3 , go to `1

I How to automatically compute such optimal costs?

I How to synthesize optimal strategies (if one exists)?

34/39

Optimal timed games

Back to the simple example

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

,x≤2,c,y :=0

u

u

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

Question: what is the optimal cost we can ensure in state `0?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7)

= 14 +
1

3

Ü strategy: wait in `0, and when t = 4
3 , go to `1

I How to automatically compute such optimal costs?

I How to synthesize optimal strategies (if one exists)?

34/39

Optimal timed games

Back to the simple example

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

,x≤2,c,y :=0

u

u

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

Question: what is the optimal cost we can ensure in state `0?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 14 +
1

3

Ü strategy: wait in `0, and when t = 4
3 , go to `1

I How to automatically compute such optimal costs?

I How to synthesize optimal strategies (if one exists)?

34/39

Optimal timed games

Back to the simple example

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

,x≤2,c,y :=0

u

u

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

Question: what is the optimal cost we can ensure in state `0?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 14 +
1

3

Ü strategy: wait in `0, and when t = 4
3 , go to `1

I How to automatically compute such optimal costs?

I How to synthesize optimal strategies (if one exists)?

34/39

Optimal timed games

Back to the simple example

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

,x≤2,c,y :=0

u

u

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

Question: what is the optimal cost we can ensure in state `0?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 14 +
1

3

Ü strategy: wait in `0, and when t = 4
3 , go to `1

I How to automatically compute such optimal costs?

I How to synthesize optimal strategies (if one exists)?

34/39

Optimal timed games

Back to the simple example

`0

dcost
dt =5

`1

(y=0)

`2

dcost
dt =10

`3

dcost
dt =1

,x≤2,c,y :=0

u

u

u

u

x=2,c,cost=+1

x=2,c,cos
t=+7

Question: what is the optimal cost we can ensure in state `0?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 14 +
1

3

Ü strategy: wait in `0, and when t = 4
3 , go to `1

I How to automatically compute such optimal costs?

I How to synthesize optimal strategies (if one exists)?

34/39

Optimal timed games

A fairly hot topic!

I optimal time is computable in timed games [AM99]

I case of acyclic games [LMM02]

I general case [ABM04]
I complexity of k-step games
I under a strongly non-zeno assumption, optimal cost is computable

I general case [BCFL04]
I structural properties of strategies (e.g. memory)
I under a strongly non-zeno assumption, optimal cost is computable

35/39

Optimal timed games

A fairly hot topic!

I optimal time is computable in timed games [AM99]

I case of acyclic games [LMM02]

I general case [ABM04]
I complexity of k-step games
I under a strongly non-zeno assumption, optimal cost is computable

I general case [BCFL04]
I structural properties of strategies (e.g. memory)
I under a strongly non-zeno assumption, optimal cost is computable

35/39

Optimal timed games

A fairly hot topic!

I optimal time is computable in timed games [AM99]

I case of acyclic games [LMM02]

I general case [ABM04]
I complexity of k-step games
I under a strongly non-zeno assumption, optimal cost is computable

I general case [BCFL04]
I structural properties of strategies (e.g. memory)
I under a strongly non-zeno assumption, optimal cost is computable

35/39

Optimal timed games

A fairly hot topic!

I optimal time is computable in timed games [AM99]

I case of acyclic games [LMM02]

I general case [ABM04]
I complexity of k-step games
I under a strongly non-zeno assumption, optimal cost is computable

I general case [BCFL04]
I structural properties of strategies (e.g. memory)
I under a strongly non-zeno assumption, optimal cost is computable

35/39

Optimal timed games

A fairly hot topic!

I general case [BBR05]
I with five clocks, optimal cost is not computable!
I with one clock and one stopwatch cost, optimal cost is computable

I general case [BBM06]
I with three clocks, optimal cost is not computable

I the single-clock case [BLMR06]
I with one clock, optimal cost is computable

36/39

Optimal timed games

A fairly hot topic!

I general case [BBR05]
I with five clocks, optimal cost is not computable!
I with one clock and one stopwatch cost, optimal cost is computable

I general case [BBM06]
I with three clocks, optimal cost is not computable

I the single-clock case [BLMR06]
I with one clock, optimal cost is computable

36/39

Optimal timed games

A fairly hot topic!

I general case [BBR05]
I with five clocks, optimal cost is not computable!
I with one clock and one stopwatch cost, optimal cost is computable

I general case [BBM06]
I with three clocks, optimal cost is not computable

I the single-clock case [BLMR06]
I with one clock, optimal cost is computable

36/39

Optimal timed games

Why is that hard?

Given two clocks x and y , we can check whether y = 2x

37/39

Optimal timed games

Why is that hard?

Given two clocks x and y , we can check whether y = 2x

0 1

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by x0

Add+(x)

1 0

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by 1−x0

Add−(x)

37/39

Optimal timed games

Why is that hard?

Given two clocks x and y , we can check whether y = 2x

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

I In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

I if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

I Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/39

Optimal timed games

Why is that hard?

Given two clocks x and y , we can check whether y = 2x

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

I In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

I if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

I Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/39

Optimal timed games

Why is that hard?

Given two clocks x and y , we can check whether y = 2x

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

I In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

I if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

I Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/39

Optimal timed games

Why is that hard?

Given two clocks x and y , we can check whether y = 2x

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

I In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

I if y0 < 2x0, player 2 chooses the first branch: cost > 3

if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

I Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/39

Optimal timed games

Why is that hard?

Given two clocks x and y , we can check whether y = 2x

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

I In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

I if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3

if y0 = 2x0, in both branches, cost = 3

I Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/39

Optimal timed games

Why is that hard?

Given two clocks x and y , we can check whether y = 2x

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

I In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

I if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

I Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/39

Optimal timed games

Why is that hard?

Given two clocks x and y , we can check whether y = 2x

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=
0

I In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

I if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

I Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/39

Conclusion

Outline

1. Introduction

2. Timed automata with costs

3. Optimal timed games

4. Conclusion

38/39

Conclusion

Conclusion

Priced timed automata, a model and framework to represent quantitative
constraints on timed systems:

I several interesting optimization problems

Not mentioned here

I all works on model-checking issues (extensions of CTL, LTL)
I very few decidability results

[BBR04,BBM06,BLM07,BM07]

I discounted cost

Further work

I approximate optimal timed games to circumvent undecidability
results

39/39

Conclusion

Conclusion

Priced timed automata, a model and framework to represent quantitative
constraints on timed systems:

I several interesting optimization problems

Not mentioned here

I all works on model-checking issues (extensions of CTL, LTL)
I very few decidability results

[BBR04,BBM06,BLM07,BM07]

I discounted cost

Further work

I approximate optimal timed games to circumvent undecidability
results

39/39

Conclusion

Conclusion

Priced timed automata, a model and framework to represent quantitative
constraints on timed systems:

I several interesting optimization problems

Not mentioned here

I all works on model-checking issues (extensions of CTL, LTL)
I very few decidability results

[BBR04,BBM06,BLM07,BM07]

I discounted cost

Further work

I approximate optimal timed games to circumvent undecidability
results

39/39

	Introduction
	Timed automata with costs
	Optimal timed games
	Conclusion

