
An Introduction to Timed Systems

Patricia Bouyer

LSV, ENS Cachan & CNRS, France

1/39



Introduction

Outline

1. Introduction

2. The timed automaton model

3. Timed automata, decidability issues

4. Understanding further...

5. Conclusion

2/39



Introduction

Time!

Context: verification of embedded critical systems

Time

naturally appears in real systems

appears in properties (for ex. bounded response time)

➜ Need of models and specification languages integrating timing aspects

3/39



Introduction

Adding timing informations

Untimed case: sequence of observable events
a: send message b: receive message

a b a b a b a b a b · · · = (a b)ω

4/39



Introduction

Adding timing informations

Untimed case: sequence of observable events
a: send message b: receive message

a b a b a b a b a b · · · = (a b)ω

Timed case: sequence of dated observable events

(a, d1) (b, d2) (a, d3) (b, d4) (a, d5) (b, d6) · · ·

d1: date at which the first a occurs
d2: date at which the first b occurs, . . .

4/39



Introduction

Adding timing informations

Untimed case: sequence of observable events
a: send message b: receive message

a b a b a b a b a b · · · = (a b)ω

Timed case: sequence of dated observable events

(a, d1) (b, d2) (a, d3) (b, d4) (a, d5) (b, d6) · · ·

d1: date at which the first a occurs
d2: date at which the first b occurs, . . .

Discrete-time semantics: dates are e.g. taken in N

Ex: (a, 1)(b, 3)(c, 4)(a, 6)

4/39



Introduction

Adding timing informations

Untimed case: sequence of observable events
a: send message b: receive message

a b a b a b a b a b · · · = (a b)ω

Timed case: sequence of dated observable events

(a, d1) (b, d2) (a, d3) (b, d4) (a, d5) (b, d6) · · ·

d1: date at which the first a occurs
d2: date at which the first b occurs, . . .

Discrete-time semantics: dates are e.g. taken in N

Ex: (a, 1)(b, 3)(c, 4)(a, 6)

Dense-time semantics: dates are e.g. taken in Q+, or in R+

Ex: (a, 1.28).(b, 3.1).(c, 3.98)(a, 6.13)

4/39



Introduction

A case for dense-time

Time domain: discrete (e.g. N) or dense (e.g. Q+ or R+)

A compositionality problem with discrete time

Dense-time is a more general model than discrete time

But, can we not always discretize?

5/39



Introduction

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

6/39



Introduction

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

Start with x=0 and y=[101] (stable configuration)

6/39



Introduction

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

Start with x=0 and y=[101] (stable configuration)

The input x changes to 1. The corresponding stable state is y=[011]

6/39



Introduction

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

Start with x=0 and y=[101] (stable configuration)

The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101]
y2
−→
1.2

[111]
y3
−→
2.5

[110]
y1
−→
2.8

[010]
y3
−→
4.5

[011]

6/39



Introduction

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

Start with x=0 and y=[101] (stable configuration)

The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101]
y2
−→
1.2

[111]
y3
−→
2.5

[110]
y1
−→
2.8

[010]
y3
−→
4.5

[011]

Reachable configurations: {[101], [111], [110], [010], [011], [001]}
6/39



Introduction

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

7/39



Introduction

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

7/39



Introduction

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
y1
−→

1
[01100000]

y2
−→
1.5

[00100000]
y3,y5
−→

2
[00001000]

y5,y7
−→

3
[00000010]

y7,y8
−→

4
[00000001]

7/39



Introduction

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
y1
−→

1
[01100000]

y2
−→
1.5

[00100000]
y3,y5
−→

2
[00001000]

y5,y7
−→

3
[00000010]

y7,y8
−→

4
[00000001]

[11100000]
y1,y2,y3
−→

1
[00000000]

7/39



Introduction

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
y1
−→

1
[01100000]

y2
−→
1.5

[00100000]
y3,y5
−→

2
[00001000]

y5,y7
−→

3
[00000010]

y7,y8
−→

4
[00000001]

[11100000]
y1,y2,y3
−→

1
[00000000]

[11100000]
y1
−→

1
[01111000]

y2,y3,y4,y5
−→

2
[00000000]

7/39



Introduction

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
y1
−→

1
[01100000]

y2
−→
1.5

[00100000]
y3,y5
−→

2
[00001000]

y5,y7
−→

3
[00000010]

y7,y8
−→

4
[00000001]

[11100000]
y1,y2,y3
−→

1
[00000000]

[11100000]
y1
−→

1
[01111000]

y2,y3,y4,y5
−→

2
[00000000]

[11100000]
y1,y2
−→

1
[00100000]

y3,y5,y6
−→

2
[00001100]

y5,y6
−→

3
[00000000]

7/39



Introduction

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
y1
−→

1
[01100000]

y2
−→
1.5

[00100000]
y3,y5
−→

2
[00001000]

y5,y7
−→

3
[00000010]

y7,y8
−→

4
[00000001]

[11100000]
y1,y2,y3
−→

1
[00000000]

[11100000]
y1
−→

1
[01111000]

y2,y3,y4,y5
−→

2
[00000000]

[11100000]
y1,y2
−→

1
[00100000]

y3,y5,y6
−→

2
[00001100]

y5,y6
−→

3
[00000000]

7/39



Introduction

Is discretizing sufficient?

Theorem [Brzozowski Seger 1991]

For every k ≥ 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time
(with granularity 1

k
).

8/39



Introduction

Is discretizing sufficient?

Theorem [Brzozowski Seger 1991]

For every k ≥ 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time
(with granularity 1

k
).

Claim
Finding a correct granularity is as difficult as computing the set of
reachable states in dense-time.

8/39



Introduction

Is discretizing sufficient?

Theorem [Brzozowski Seger 1991]

For every k ≥ 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time
(with granularity 1

k
).

Claim
Finding a correct granularity is as difficult as computing the set of
reachable states in dense-time.

Further counter-example

There exist systems for which no granularity exists. (see later)

8/39



Introduction

Is discretizing sufficient?

Theorem [Brzozowski Seger 1991]

For every k ≥ 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time
(with granularity 1

k
).

Claim
Finding a correct granularity is as difficult as computing the set of
reachable states in dense-time.

Further counter-example

There exist systems for which no granularity exists. (see later)

Hence, we better consider a dense-time domain!

8/39



The timed automaton model

Outline

1. Introduction

2. The timed automaton model

3. Timed automata, decidability issues

4. Understanding further...

5. Conclusion

9/39



The timed automaton model

Timed automata [Alur,Dill 1990]

A finite control structure + variables (clocks)

A transition is of the form:

g , a, C := 0

Enabling condition Reset to zero

An enabling condition (or guard) is:

g ::= x ∼ c | g ∧ g

where ∼∈ {<,≤, =,≥, >}

10/39



The timed automaton model

Timed automata (example)

x , y : clocks

ℓ0 ℓ1 ℓ2

x ≤ 5, a, y := 0 y > 1, b, x := 0

11/39



The timed automaton model

Timed automata (example)

x , y : clocks

ℓ0 ℓ1 ℓ2

x ≤ 5, a, y := 0 y > 1, b, x := 0

ℓ0
δ(4.1) ℓ0 a ℓ1

δ(1.4) ℓ1 b ℓ2

x 0 4.1 4.1 5.5 0
y 0 4.1 0 1.4 1.4

11/39



The timed automaton model

Timed automata (example)

x , y : clocks

ℓ0 ℓ1 ℓ2

x ≤ 5, a, y := 0 y > 1, b, x := 0

ℓ0
δ(4.1) ℓ0 a ℓ1

δ(1.4) ℓ1 b ℓ2

x 0 4.1 4.1 5.5 0
y 0 4.1 0 1.4 1.4

(clock) valuation

11/39



The timed automaton model

Timed automata (example)

x , y : clocks

ℓ0 ℓ1 ℓ2

x ≤ 5, a, y := 0 y > 1, b, x := 0

ℓ0
δ(4.1) ℓ0 a ℓ1

δ(1.4) ℓ1 b ℓ2

x 0 4.1 4.1 5.5 0
y 0 4.1 0 1.4 1.4

(clock) valuation

➜ timed word (a, 4.1)(b, 5.5)

11/39



The timed automaton model

Timed automata semantics

A = (Σ, L, X , ) is a TA

Configurations: (ℓ, v) ∈ L× TX where T is the time domain

Timed Transition System:

action transition: (ℓ, v) a (ℓ′, v ′) if ∃ℓ g,a,r
ℓ′ ∈ A s.t.§

v |= g

v ′ = v [r ← 0]

delay transition: (ℓ, v)
δ(d)

(ℓ, v + d) if d ∈ T

12/39



The timed automaton model

Discrete vs dense-time semantics

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0

13/39



The timed automaton model

Discrete vs dense-time semantics

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0
Dense-time:
Ldense = {((ab)ω , τ) | ∀i , τ2i−1 = i and τ2i − τ2i−1 > τ2i+2 − τ2i+1}

13/39



The timed automaton model

Discrete vs dense-time semantics

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0
Dense-time:
Ldense = {((ab)ω , τ) | ∀i , τ2i−1 = i and τ2i − τ2i−1 > τ2i+2 − τ2i+1}

Discrete-time: Ldiscrete = ∅

13/39



The timed automaton model

Discrete vs dense-time semantics

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0
Dense-time:
Ldense = {((ab)ω , τ) | ∀i , τ2i−1 = i and τ2i − τ2i−1 > τ2i+2 − τ2i+1}

Discrete-time: Ldiscrete = ∅

x = 1, a, x := 0

b, y := 0

y < 1
b

y := 0

ab‖ ‖

13/39



The timed automaton model

Classical verification problems

reachability of a control state

S ∼ S ′: bisimulation, etc...

L(S) ⊆ L(S ′): language inclusion

S |= ϕ for some formula ϕ: model-checking

S ‖ AT + reachability: testing automata

. . .

14/39



The timed automaton model

The train crossing example (1)

Traini with i = 1, 2, ...

Far

Before, xi < 30

On, xi < 20

App!, xi := 0

20 < xi < 30, a, xi := 0

10 < xi < 20, Exit!

15/39



The timed automaton model

The train crossing example (2)

The gate:

Open

CloseRaising, Hg < 10

Lowering, Hg < 10
GoDown?, Hg := 0

Hg < 10, a

GoUp?, Hg := 0

Hg < 10, a

16/39



The timed automaton model

The train crossing example (3)

The controller:

c1, xc ≤ 20 c2, xc ≤ 10c0
App? Hc := 0Exit?, Hc := 0

Hc ≤ 10, GoDown!

Exit?

App?

Exit?

Hc = 20, GoUp!

App?

17/39



The timed automaton model

The train crossing example (4)

We use the synchronization function f :

Train1 Train2 Gate Controller
App! . . App? App

. App! . App? App

Exit! . . Exit? Exit

. Exit! . Exit? Exit

a . . . a

. a . . a

. . a . a

. . GoUp? GoUp! GoUp

. . GoDown? GoDown! GoDown

to define the parallel composition (Train1 ‖ Train2 ‖ Gate ‖ Controller)

NB: the parallel composition does not add expressive power!

18/39



The timed automaton model

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?

19/39



The timed automaton model

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?

AG(train.On⇒ gate.Close)

19/39



The timed automaton model

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?

AG(train.On⇒ gate.Close)

Is the gate always closed for less than 5 minutes?

19/39



The timed automaton model

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?

AG(train.On⇒ gate.Close)

Is the gate always closed for less than 5 minutes?

¬EF(gate.Close ∧ E(gate.Close U>5 min ¬gate.Close))

19/39



Timed automata, decidability issues

Outline

1. Introduction

2. The timed automaton model

3. Timed automata, decidability issues

4. Understanding further...

5. Conclusion

20/39



Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

reachability properties (final states)

basic liveness properties (Büchi (or other) conditions)

21/39



Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods for finite-state systems cannot be applied

21/39



Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods for finite-state systems cannot be applied

Positive key point: variables (clocks) increase at the same speed

21/39



Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods for finite-state systems cannot be applied

Positive key point: variables (clocks) increase at the same speed

Theorem [Alur,Dill 1990]

The emptiness problem for timed automata is decidable. It is
PSPACE-complete.

21/39



Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods for finite-state systems cannot be applied

Positive key point: variables (clocks) increase at the same speed

Theorem [Alur,Dill 1990]

The emptiness problem for timed automata is decidable. It is
PSPACE-complete.

Method: construct a finite abstraction

21/39



Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

22/39



Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

“compatibility” between regions and constraints

22/39



Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

•
•

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

22/39



Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

•
•

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

22/39



Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

➜ a time-abstract bisimulation property

22/39



Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

region defined by

Ix =]1; 2[, Iy =]0; 1[

{x} < {y}

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

➜ a time-abstract bisimulation property

22/39



Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

region defined by

Ix =]1; 2[, Iy =]0; 1[

{x} < {y}

successor regions

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

➜ a time-abstract bisimulation property

22/39



Timed automata, decidability issues

Time-abstract bisimulation

∀
a

23/39



Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

23/39



Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

23/39



Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

23/39



Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

(ℓ0, v0)
a1,t1 (ℓ1, v1)

a2,t2 (ℓ2, v2)
a3,t3 . . .

23/39



Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

(ℓ0, v0)
a1,t1 (ℓ1, v1)

a2,t2 (ℓ2, v2)
a3,t3 . . .

(ℓ0, R0)
a1 (ℓ1, R1)

a2 (ℓ2, R2)
a3 . . .

with vi ∈ Ri for all i .

23/39



Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

(ℓ0, v0)
a1,t1 (ℓ1, v1)

a2,t2 (ℓ2, v2)
a3,t3 . . .

(ℓ0, R0)
a1 (ℓ1, R1)

a2 (ℓ2, R2)
a3 . . .

with vi ∈ Ri for all i .

23/39



Timed automata, decidability issues

Region automaton ≡ finite bisimulation quotient

timed automaton
N

region abstraction

24/39



Timed automata, decidability issues

Region automaton ≡ finite bisimulation quotient

timed automaton
N

region abstraction

ℓ g ,a,C :=0 ℓ′ is transformed into:

(ℓ, R) a (ℓ′, R ′) if there exists R ′′ ∈ Succ∗t (R) s.t.

R ′′ ⊆ g

[C ← 0]R ′′ ⊆ R ′

24/39



Timed automata, decidability issues

Region automaton ≡ finite bisimulation quotient

timed automaton
N

region abstraction

ℓ g ,a,C :=0 ℓ′ is transformed into:

(ℓ, R) a (ℓ′, R ′) if there exists R ′′ ∈ Succ∗t (R) s.t.

R ′′ ⊆ g

[C ← 0]R ′′ ⊆ R ′

L(reg. aut.) = UNTIME(L(timed aut.))

where UNTIME((a1, t1)(a2, t2) . . . ) = a1a2 . . .

24/39



Timed automata, decidability issues

An example [AD 90’s]

0 1 x

1

y

25/39



Timed automata, decidability issues

Consequence of region automata construction

Region automata:

correct finite (and exponential) abstraction for checking
reachability/Büchi-like properties.

26/39



Timed automata, decidability issues

Consequence of region automata construction

Region automata:

correct finite (and exponential) abstraction for checking
reachability/Büchi-like properties.

However...
everything can not be reduced to finite automata...

26/39



Timed automata, decidability issues

A model not far from undecidability

Some bad news...
Language universality is undecidable [Alur,Dill 1990]

Language inclusion is undecidable [Alur,Dill 1990]

Complementability is undecidable [Tripakis 2003, Finkel 2006]

...

27/39



Timed automata, decidability issues

A model not far from undecidability

Some bad news...
Language universality is undecidable [Alur,Dill 1990]

Language inclusion is undecidable [Alur,Dill 1990]

Complementability is undecidable [Tripakis 2003, Finkel 2006]

...

An example of non-determinizable/non-complementable timed aut.:

a

a, x := 0

a

x = 1, a

a

27/39



Timed automata, decidability issues

A model not far from undecidability

Some bad news...
Language universality is undecidable [Alur,Dill 1990]

Language inclusion is undecidable [Alur,Dill 1990]

Complementability is undecidable [Tripakis 2003, Finkel 2006]

...

An example of non-determinizable/non-complementable timed aut.:
[Alur,Madhusudan 2004]

a, b

a, x := 0

x 6= 1, a, b

UNTIME
�
L ∩ {(a∗b∗, τ) | all a′s happen before 1 and no two a′s simultaneously}

�
is

not regular (exercise!)

27/39



Timed automata, decidability issues

Partial conclusion
This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:

various extensions of timed automata
[Bérard,Diekert,Gastin,Petit 1998] [Choffrut,Goldwurm 2000]

[Bouyer,Dufourd,Fleury,Petit 2004] · · ·

28/39



Timed automata, decidability issues

Partial conclusion
This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:

various extensions of timed automata
[Bérard,Diekert,Gastin,Petit 1998] [Choffrut,Goldwurm 2000]

[Bouyer,Dufourd,Fleury,Petit 2004] · · ·

model-checking of branching-time properties (TCTL, timed
µ-calculus)
[Alur,Courcoubetis,Dill 1993] [Laroussinie,Larsen,Weise 1995]

28/39



Timed automata, decidability issues

Partial conclusion
This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:

various extensions of timed automata
[Bérard,Diekert,Gastin,Petit 1998] [Choffrut,Goldwurm 2000]

[Bouyer,Dufourd,Fleury,Petit 2004] · · ·

model-checking of branching-time properties (TCTL, timed
µ-calculus)
[Alur,Courcoubetis,Dill 1993] [Laroussinie,Larsen,Weise 1995]

weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)
[Bouyer,Larsen,Markey,Rasmussen 2006] [Bouyer,Larsen,Markey 2007]

28/39



Timed automata, decidability issues

Partial conclusion
This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:

various extensions of timed automata
[Bérard,Diekert,Gastin,Petit 1998] [Choffrut,Goldwurm 2000]

[Bouyer,Dufourd,Fleury,Petit 2004] · · ·

model-checking of branching-time properties (TCTL, timed
µ-calculus)
[Alur,Courcoubetis,Dill 1993] [Laroussinie,Larsen,Weise 1995]

weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)
[Bouyer,Larsen,Markey,Rasmussen 2006] [Bouyer,Larsen,Markey 2007]

o-minimal hybrid systems
[Lafferriere,Pappas,Sastry 2000] [Brihaye 2005]

28/39



Timed automata, decidability issues

Partial conclusion
This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:

various extensions of timed automata
[Bérard,Diekert,Gastin,Petit 1998] [Choffrut,Goldwurm 2000]

[Bouyer,Dufourd,Fleury,Petit 2004] · · ·

model-checking of branching-time properties (TCTL, timed
µ-calculus)
[Alur,Courcoubetis,Dill 1993] [Laroussinie,Larsen,Weise 1995]

weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)
[Bouyer,Larsen,Markey,Rasmussen 2006] [Bouyer,Larsen,Markey 2007]

o-minimal hybrid systems
[Lafferriere,Pappas,Sastry 2000] [Brihaye 2005]

· · ·

28/39



Timed automata, decidability issues

Partial conclusion
This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:

various extensions of timed automata
[Bérard,Diekert,Gastin,Petit 1998] [Choffrut,Goldwurm 2000]

[Bouyer,Dufourd,Fleury,Petit 2004] · · ·

model-checking of branching-time properties (TCTL, timed
µ-calculus)
[Alur,Courcoubetis,Dill 1993] [Laroussinie,Larsen,Weise 1995]

weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)
[Bouyer,Larsen,Markey,Rasmussen 2006] [Bouyer,Larsen,Markey 2007]

o-minimal hybrid systems
[Lafferriere,Pappas,Sastry 2000] [Brihaye 2005]

· · ·

Note however that it might be hard to prove there is a finite
bisimulation quotient!

28/39



Timed automata, decidability issues

Partial conclusion
This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid” systems:

various extensions of timed automata
[Bérard,Diekert,Gastin,Petit 1998] [Choffrut,Goldwurm 2000]

[Bouyer,Dufourd,Fleury,Petit 2004] · · ·

model-checking of branching-time properties (TCTL, timed
µ-calculus)
[Alur,Courcoubetis,Dill 1993] [Laroussinie,Larsen,Weise 1995]

weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)
[Bouyer,Larsen,Markey,Rasmussen 2006] [Bouyer,Larsen,Markey 2007]

o-minimal hybrid systems
[Lafferriere,Pappas,Sastry 2000] [Brihaye 2005]

· · ·

Note however that it might be hard to prove there is a finite
bisimulation quotient!

Note that in practice, the region automaton is not constructed, and
symbolic technics based on zones are used

28/39



Understanding further...

Outline

1. Introduction

2. The timed automaton model

3. Timed automata, decidability issues

4. Understanding further...

5. Conclusion

29/39



Understanding further...

The example of alternating timed automata

Alternating timed automata ≡ ATA
[Lasota,Walukiewicz 2005,2007] [Ouaknine,Worrell 2005,2007]

30/39



Understanding further...

The example of alternating timed automata

Alternating timed automata ≡ ATA
[Lasota,Walukiewicz 2005,2007] [Ouaknine,Worrell 2005,2007]

Example

“No two a’s are separated by 1 unit of time”8><>: ℓ0, a, true 7→ ℓ0 ∧ (x := 0, ℓ1)
ℓ1, a, x 6= 1 7→ ℓ1

ℓ1, a, x = 1 7→ ℓ2

ℓ2, a, true 7→ ℓ2

8<: ℓ0 initial state
ℓ0, ℓ1 final states
ℓ2 losing state

30/39



Understanding further...

The example of alternating timed automata

Alternating timed automata ≡ ATA
[Lasota,Walukiewicz 2005,2007] [Ouaknine,Worrell 2005,2007]

Example

“No two a’s are separated by 1 unit of time”8><>: ℓ0, a, true 7→ ℓ0 ∧ (x := 0, ℓ1)
ℓ1, a, x 6= 1 7→ ℓ1

ℓ1, a, x = 1 7→ ℓ2

ℓ2, a, true 7→ ℓ2

8<: ℓ0 initial state
ℓ0, ℓ1 final states
ℓ2 losing state

ℓ0 ℓ1 ℓ2

a

x := 0

x 6= 1, a

x = 1, a

a

30/39



Understanding further...

[Lasota,Walukiewicz 2005]

nice closure properties

31/39



Understanding further...

[Lasota,Walukiewicz 2005]

nice closure properties
➜ universality is as difficult as reachability

31/39



Understanding further...

[Lasota,Walukiewicz 2005]

nice closure properties
➜ universality is as difficult as reachability

more expressive than timed automata

31/39



Understanding further...

[Lasota,Walukiewicz 2005]

nice closure properties
➜ universality is as difficult as reachability

more expressive than timed automata

Theorem
Emptiness of ATA is undecidable.

Emptiness of one-clock ATA is decidable, but non-primitive recursive.

Emptiness for Büchi properties of one-clock ATA is undecidable.

Emptiness of one-clock ATA with ε-transitions is undecidable.

31/39



Understanding further...

[Lasota,Walukiewicz 2005]

nice closure properties
➜ universality is as difficult as reachability

more expressive than timed automata

Theorem
Emptiness of ATA is undecidable.

Emptiness of one-clock ATA is decidable, but non-primitive recursive.

Emptiness for Büchi properties of one-clock ATA is undecidable.

Emptiness of one-clock ATA with ε-transitions is undecidable.

Lower bound: simulation of a lossy channel system... [Schnoebelen 2002]

31/39



Understanding further...

Example

ℓ0 ℓ1 ℓ2

a

x := 0

x 6= 1, a

x = 1, a

a

32/39



Understanding further...

Example

ℓ0 ℓ1 ℓ2

a

x := 0

x 6= 1, a

x = 1, a

a

Execution over timed word (a, .3)(a, .8)(a, 1.4)(a, 1.8)(a, 2)

32/39



Understanding further...

Example

ℓ0 ℓ1 ℓ2

a

x := 0

x 6= 1, a

x = 1, a

a

Execution over timed word (a, .3)(a, .8)(a, 1.4)(a, 1.8)(a, 2)

{ (ℓ0, 0) }

32/39



Understanding further...

Example

ℓ0 ℓ1 ℓ2

a

x := 0

x 6= 1, a

x = 1, a

a

Execution over timed word (a, .3)(a, .8)(a, 1.4)(a, 1.8)(a, 2)

{ (ℓ0, 0) }

↓

{ (ℓ0, .3) , (ℓ1, 0) }

32/39



Understanding further...

Example

ℓ0 ℓ1 ℓ2

a

x := 0

x 6= 1, a

x = 1, a

a

Execution over timed word (a, .3)(a, .8)(a, 1.4)(a, 1.8)(a, 2)

{ (ℓ0, 0) }

↓

{ (ℓ0, .3) , (ℓ1, 0) }

↓

{ (ℓ0, .8) , (ℓ1, 0) , (ℓ1, .5) }

32/39



Understanding further...

Example

ℓ0 ℓ1 ℓ2

a

x := 0

x 6= 1, a

x = 1, a

a

Execution over timed word (a, .3)(a, .8)(a, 1.4)(a, 1.8)(a, 2)

{ (ℓ0, 0) }

↓

{ (ℓ0, .3) , (ℓ1, 0) }

↓

{ (ℓ0, .8) , (ℓ1, 0) , (ℓ1, .5) }

↓

{ (ℓ0, 1.4) , (ℓ1, 0) , (ℓ1, .6) , (ℓ1, 1.1) }

32/39



Understanding further...

Example

ℓ0 ℓ1 ℓ2

a

x := 0

x 6= 1, a

x = 1, a

a

Execution over timed word (a, .3)(a, .8)(a, 1.4)(a, 1.8)(a, 2)

{ (ℓ0, 0) }

↓

{ (ℓ0, .3) , (ℓ1, 0) }

↓

{ (ℓ0, .8) , (ℓ1, 0) , (ℓ1, .5) }

↓

{ (ℓ0, 1.4) , (ℓ1, 0) , (ℓ1, .6) , (ℓ1, 1.1) }

↓

{ (ℓ0, 1.8) , (ℓ1, 0) , (ℓ1, .4) , (ℓ2, 1) , (ℓ1, 1.5) }

32/39



Understanding further...

Example

ℓ0 ℓ1 ℓ2

a

x := 0

x 6= 1, a

x = 1, a

a

Execution over timed word (a, .3)(a, .8)(a, 1.4)(a, 1.8)(a, 2)

{ (ℓ0, 0) }

↓

{ (ℓ0, .3) , (ℓ1, 0) }

↓

{ (ℓ0, .8) , (ℓ1, 0) , (ℓ1, .5) }

↓

{ (ℓ0, 1.4) , (ℓ1, 0) , (ℓ1, .6) , (ℓ1, 1.1) }

↓

{ (ℓ0, 1.8) , (ℓ1, 0) , (ℓ1, .4) , (ℓ2, 1) , (ℓ1, 1.5) }

↓

{ (ℓ0, 2) , (ℓ1, 0) , (ℓ1, .2) , (ℓ1, .6) , (ℓ2, 1.2) , (ℓ1, 1.7) }
32/39



Understanding further...

An abstraction

A configuration = a finite set of pairs (ℓ, x)

(ℓ, 0) (ℓ, 0.3) (ℓ, 1.2) (ℓ, 2.3) (ℓ′, 0.4) (ℓ′, 1) (ℓ′, 0.8)

33/39



Understanding further...

An abstraction

A configuration = a finite set of pairs (ℓ, x)

(ℓ, 0) (ℓ, 0.3) (ℓ, 1.2) (ℓ, 2.3) (ℓ′, 0.4) (ℓ′, 1) (ℓ′, 0.8)

{(ℓ, 0), (ℓ′, 1)}

0.0

33/39



Understanding further...

An abstraction

A configuration = a finite set of pairs (ℓ, x)

(ℓ, 0) (ℓ, 0.3) (ℓ, 1.2) (ℓ, 2.3) (ℓ′, 0.4) (ℓ′, 1) (ℓ′, 0.8)

{(ℓ, 0), (ℓ′, 1)}

0.0

{(ℓ, 1)}

0.2

33/39



Understanding further...

An abstraction

A configuration = a finite set of pairs (ℓ, x)

(ℓ, 0) (ℓ, 0.3) (ℓ, 1.2) (ℓ, 2.3) (ℓ′, 0.4) (ℓ′, 1) (ℓ′, 0.8)

{(ℓ, 0), (ℓ′, 1)}

0.0

{(ℓ, 1)}

0.2

{(ℓ, 0), (ℓ, 2)}

0.3

33/39



Understanding further...

An abstraction

A configuration = a finite set of pairs (ℓ, x)

(ℓ, 0) (ℓ, 0.3) (ℓ, 1.2) (ℓ, 2.3) (ℓ′, 0.4) (ℓ′, 1) (ℓ′, 0.8)

{(ℓ, 0), (ℓ′, 1)}

0.0

{(ℓ, 1)}

0.2

{(ℓ, 0), (ℓ, 2)}

0.3

{(ℓ′, 0)}

0.4

33/39



Understanding further...

An abstraction

A configuration = a finite set of pairs (ℓ, x)

(ℓ, 0) (ℓ, 0.3) (ℓ, 1.2) (ℓ, 2.3) (ℓ′, 0.4) (ℓ′, 1) (ℓ′, 0.8)

{(ℓ, 0), (ℓ′, 1)}

0.0

{(ℓ, 1)}

0.2

{(ℓ, 0), (ℓ, 2)}

0.3

{(ℓ′, 0)}

0.4

{(ℓ′, 0)}

0.8

33/39



Understanding further...

An abstraction

A configuration = a finite set of pairs (ℓ, x)

(ℓ, 0) (ℓ, 0.3) (ℓ, 1.2) (ℓ, 2.3) (ℓ′, 0.4) (ℓ′, 1) (ℓ′, 0.8)

{(ℓ, 0), (ℓ′, 1)}

0.0

{(ℓ, 1)}

0.2

{(ℓ, 0), (ℓ, 2)}

0.3

{(ℓ′, 0)}

0.4

{(ℓ′, 0)}

0.8

33/39



Understanding further...

An abstraction

A configuration = a finite set of pairs (ℓ, x)

(ℓ, 0) (ℓ, 0.3) (ℓ, 1.2) (ℓ, 2.3) (ℓ′, 0.4) (ℓ′, 1) (ℓ′, 0.8)

{(ℓ, 0), (ℓ′, 1)}

0.0

{(ℓ, 1)}

0.2

{(ℓ, 0), (ℓ, 2)}

0.3

{(ℓ′, 0)}

0.4

{(ℓ′, 0)}

0.8

Abstracted into: {(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)} · {(ℓ′, 0)} · {(ℓ′, 0)}

33/39



Understanding further...

Abstract transition system

{(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)} · {(ℓ′, 0)} · {(ℓ′, 0)}

34/39



Understanding further...

Abstract transition system

{(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)} · {(ℓ′, 0)} · {(ℓ′, 0)}

Time successors:

34/39



Understanding further...

Abstract transition system

{(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)} · {(ℓ′, 0)} · {(ℓ′, 0)}

Time successors:

{(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)} · {(ℓ′, 0)}

34/39



Understanding further...

Abstract transition system

{(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)} · {(ℓ′, 0)} · {(ℓ′, 0)}

Time successors:

{(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)} · {(ℓ′, 0)}

{(ℓ′, 1)} · {(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)}

34/39



Understanding further...

Abstract transition system

{(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)} · {(ℓ′, 0)} · {(ℓ′, 0)}

Time successors:

{(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)} · {(ℓ′, 0)}

{(ℓ′, 1)} · {(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)}

{(ℓ, 1), (ℓ, 3)} · {(ℓ′, 1)} · {(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)}

34/39



Understanding further...

Abstract transition system

{(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)} · {(ℓ′, 0)} · {(ℓ′, 0)}

Time successors:

{(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)} · {(ℓ′, 0)}

{(ℓ′, 1)} · {(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)}

{(ℓ, 1), (ℓ, 3)} · {(ℓ′, 1)} · {(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)}

{(ℓ, 2)} · {(ℓ, 1), (ℓ, 3)} · {(ℓ′, 1)} · {(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)}

34/39



Understanding further...

Abstract transition system

{(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)} · {(ℓ′, 0)} · {(ℓ′, 0)}

Time successors:

{(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)} · {(ℓ′, 0)}

{(ℓ′, 1)} · {(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)}

{(ℓ, 1), (ℓ, 3)} · {(ℓ′, 1)} · {(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)}

{(ℓ, 2)} · {(ℓ, 1), (ℓ, 3)} · {(ℓ′, 1)} · {(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)}

{(ℓ, 1), (ℓ′, 2)} · {(ℓ, 2)} · {(ℓ, 1), (ℓ, 3)} · {(ℓ′, 1)} · {(ℓ′, 1)}

34/39



Understanding further...

Abstract transition system

{(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)} · {(ℓ′, 0)} · {(ℓ′, 0)}

Time successors:

{(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)} · {(ℓ′, 0)}

{(ℓ′, 1)} · {(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)}

{(ℓ, 1), (ℓ, 3)} · {(ℓ′, 1)} · {(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)}

{(ℓ, 2)} · {(ℓ, 1), (ℓ, 3)} · {(ℓ′, 1)} · {(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)}

{(ℓ, 1), (ℓ′, 2)} · {(ℓ, 2)} · {(ℓ, 1), (ℓ, 3)} · {(ℓ′, 1)} · {(ℓ′, 1)}

Transition ℓ
x>2,x :=0
−−−−−−→ ℓ′′:

34/39



Understanding further...

Abstract transition system

{(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)} · {(ℓ′, 0)} · {(ℓ′, 0)}

Time successors:

{(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)} · {(ℓ′, 0)}

{(ℓ′, 1)} · {(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)} · {(ℓ, 0), (ℓ, 2)}

{(ℓ, 1), (ℓ, 3)} · {(ℓ′, 1)} · {(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)} · {(ℓ, 1)}

{(ℓ, 2)} · {(ℓ, 1), (ℓ, 3)} · {(ℓ′, 1)} · {(ℓ′, 1)} · {(ℓ, 0), (ℓ′, 1)}

{(ℓ, 1), (ℓ′, 2)} · {(ℓ, 2)} · {(ℓ, 1), (ℓ, 3)} · {(ℓ′, 1)} · {(ℓ′, 1)}

Transition ℓ
x>2,x :=0
−−−−−−→ ℓ′′:

{(ℓ′′, 0)} · {(ℓ, 1), (ℓ′, 2)} · {(ℓ, 1)} · {(ℓ′, 1)} · {(ℓ′, 1)}

34/39



Understanding further...

What can we do with that abstract transition system?

Correctness?

35/39



Understanding further...

What can we do with that abstract transition system?

Correctness?

The previous abstraction is (almost) a time-abstract bisimulation.

35/39



Understanding further...

What can we do with that abstract transition system?

Correctness?

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

35/39



Understanding further...

What can we do with that abstract transition system?

Correctness?

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

/ possibly infinitely many abstract configurations

35/39



Understanding further...

What can we do with that abstract transition system?

Correctness?

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

/ possibly infinitely many abstract configurations

, there is a well-quasi ordering on the set of abstract configurations!
(subword relation ⊑)

35/39



Understanding further...

What can we do with that abstract transition system?

Correctness?

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

/ possibly infinitely many abstract configurations

, there is a well-quasi ordering on the set of abstract configurations!
(subword relation ⊑)

+ downward compatibility:
(γ1 ⊑ γ′

1 and γ′
1 ; γ′

2)⇒ (γ1 ;
∗ γ2 and γ2 ⊑ γ′

2)

35/39



Understanding further...

What can we do with that abstract transition system?

Correctness?

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

/ possibly infinitely many abstract configurations

, there is a well-quasi ordering on the set of abstract configurations!
(subword relation ⊑)

+ downward compatibility:
(γ1 ⊑ γ′

1 and γ′
1 ; γ′

2)⇒ (γ1 ;
∗ γ2 and γ2 ⊑ γ′

2)
+ downward-closed objective (all states are accepting)

35/39



Understanding further...

What can we do with that abstract transition system?

Correctness?

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

/ possibly infinitely many abstract configurations

, there is a well-quasi ordering on the set of abstract configurations!
(subword relation ⊑)

+ downward compatibility:
(γ1 ⊑ γ′

1 and γ′
1 ; γ′

2)⇒ (γ1 ;
∗ γ2 and γ2 ⊑ γ′

2)
+ downward-closed objective (all states are accepting)

Recipe learned on Monday:

35/39



Understanding further...

What can we do with that abstract transition system?

Correctness?

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

/ possibly infinitely many abstract configurations

, there is a well-quasi ordering on the set of abstract configurations!
(subword relation ⊑)

+ downward compatibility:
(γ1 ⊑ γ′

1 and γ′
1 ; γ′

2)⇒ (γ1 ;
∗ γ2 and γ2 ⊑ γ′

2)
+ downward-closed objective (all states are accepting)

Recipe learned on Monday:

(Higman’s lemma + Koenig’s lemma) ⇒ termination

35/39



Understanding further...

What can we do with that abstract transition system?

Correctness?

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

/ possibly infinitely many abstract configurations

, there is a well-quasi ordering on the set of abstract configurations!
(subword relation ⊑)

+ downward compatibility:
(γ1 ⊑ γ′

1 and γ′
1 ; γ′

2)⇒ (γ1 ;
∗ γ2 and γ2 ⊑ γ′

2)
+ downward-closed objective (all states are accepting)

Recipe learned on Monday:

(Higman’s lemma + Koenig’s lemma) ⇒ termination

Alternative
The abstract transition system can be simulated by a kind of FIFO
channel machine.

35/39



Understanding further...

A digression on timed automata

r0 r1

r0

r1

x

y

36/39



Understanding further...

A digression on timed automata

r0 r1

r0

r1

x

y

x , y ∈ r0, {y} < {x}

(y , r0) · (x , r0)

36/39



Understanding further...

A digression on timed automata

r0 r1

r0

r1

x

y

x ∈ r1, y ∈ r0, {x} < {y}

(x , r1) · (y , r0)

36/39



Understanding further...

A digression on timed automata

r0 r1

r0

r1

x

y

x , y ∈ r1, {y} < {x}

(y , r1) · (x , r1)

36/39



Understanding further...

A digression on timed automata

r0 r1

r0

r1

x

y

The classical region automaton can be simulated by a channel machine
(with a single bounded channel).

36/39



Understanding further...

Partial conclusion

Similar technics apply to:

networks of single-clock timed automata [Abdulla,Jonsson 1998]

37/39



Understanding further...

Partial conclusion

Similar technics apply to:

networks of single-clock timed automata [Abdulla,Jonsson 1998]

timed Petri nets [Abdulla,Nylén 2001]

37/39



Understanding further...

Partial conclusion

Similar technics apply to:

networks of single-clock timed automata [Abdulla,Jonsson 1998]

timed Petri nets [Abdulla,Nylén 2001]

MTL model checking [Ouaknine,Worrell 2005,2007]

37/39



Understanding further...

Partial conclusion

Similar technics apply to:

networks of single-clock timed automata [Abdulla,Jonsson 1998]

timed Petri nets [Abdulla,Nylén 2001]

MTL model checking [Ouaknine,Worrell 2005,2007]

coFlatMTL model checking [Bouyer,Markey,Ouaknine,Worrell 2007]

(using channel machines with a bounded number of cycles)

37/39



Understanding further...

Partial conclusion

Similar technics apply to:

networks of single-clock timed automata [Abdulla,Jonsson 1998]

timed Petri nets [Abdulla,Nylén 2001]

MTL model checking [Ouaknine,Worrell 2005,2007]

coFlatMTL model checking [Bouyer,Markey,Ouaknine,Worrell 2007]

(using channel machines with a bounded number of cycles)

single-clock automata inclusion checking [Ouaknine,Worrel 2004]

37/39



Understanding further...

Partial conclusion

Similar technics apply to:

networks of single-clock timed automata [Abdulla,Jonsson 1998]

timed Petri nets [Abdulla,Nylén 2001]

MTL model checking [Ouaknine,Worrell 2005,2007]

coFlatMTL model checking [Bouyer,Markey,Ouaknine,Worrell 2007]

(using channel machines with a bounded number of cycles)

single-clock automata inclusion checking [Ouaknine,Worrel 2004]

· · ·

37/39



Conclusion

Outline

1. Introduction

2. The timed automaton model

3. Timed automata, decidability issues

4. Understanding further...

5. Conclusion

38/39



Conclusion

Conclusion

Justification of the dense-time semantics

39/39



Conclusion

Conclusion

Justification of the dense-time semantics

Two main technics for proving decidability of real-time systems

Are missing: initialized rectangular automata

39/39



Conclusion

Conclusion

Justification of the dense-time semantics

Two main technics for proving decidability of real-time systems

Are missing: initialized rectangular automata

Some current streams of research in timed systems:

quantitative model-checking

real-time logics

robustness, implementability issues

timed games

· · ·

39/39


	Introduction
	The timed automaton model
	Timed automata, decidability issues
	Understanding further...
	Conclusion

