An Introduction to Timed Systems

Patricia Bouyer

LSV, ENS Cachan & CNRS, France

Outline

1. Introduction

- 2. The timed automaton model
- 3. Timed automata, decidability issues
- 4. Understanding further...
- 5. Conclusion

Time!

Context: verification of embedded critical systems

Time

- naturally appears in real systems
- appears in properties (for ex. bounded response time)

 \clubsuit Need of models and specification languages integrating timing aspects

- Untimed case: sequence of observable events
 - *a*: send message *b*: receive message

 $a b a b a b a b a b a b \cdots = (a b)^{\omega}$

- Untimed case: sequence of observable events
 - *a*: send message *b*: receive message

```
a b a b a b a b a b a \cdots = (a b)^{\omega}
```

• Timed case: sequence of dated observable events

 (a, d_1) (b, d_2) (a, d_3) (b, d_4) (a, d_5) (b, d_6) · · ·

 d_1 : date at which the first *a* occurs d_2 : date at which the first *b* occurs, ...

- Untimed case: sequence of observable events
 - *a*: send message *b*: receive message

```
a b a b a b a b a b a \cdots = (a b)^{\omega}
```

• Timed case: sequence of dated observable events

 (a, d_1) (b, d_2) (a, d_3) (b, d_4) (a, d_5) (b, d_6) · · ·

- d_1 : date at which the first *a* occurs
- d_2 : date at which the first **b** occurs, ...
 - Discrete-time semantics: dates are e.g. taken in N
 Ex: (a, 1)(b, 3)(c, 4)(a, 6)

- Untimed case: sequence of observable events
 - *a*: send message *b*: receive message

 $a b a b a b a b a b a \cdots = (a b)^{\omega}$

• Timed case: sequence of dated observable events

 (a, d_1) (b, d_2) (a, d_3) (b, d_4) (a, d_5) (b, d_6) · · ·

- d_1 : date at which the first *a* occurs
- d_2 : date at which the first **b** occurs, ...
 - Discrete-time semantics: dates are e.g. taken in N
 Ex: (a, 1)(b, 3)(c, 4)(a, 6)
 - Dense-time semantics: dates are *e.g.* taken in Q₊, or in R₊
 Ex: (a, 1.28).(b, 3.1).(c, 3.98)(a, 6.13)

A case for dense-time

Time domain: discrete (*e.g.* \mathbb{N}) or dense (*e.g.* \mathbb{Q}_+ or \mathbb{R}_+)

- A compositionality problem with discrete time
- Dense-time is a more general model than discrete time
- But, can we not always discretize?

[Alur 91]

Discussion in the context of reachability problems for asynchronous digital circuits [Brzozowski, Seger 1991]

[Alur 91]

Discussion in the context of reachability problems for asynchronous digital circuits [Brzozowski, Seger 1991]

Start with x=0 and y=[101] (stable configuration)

[Alur 91]

Discussion in the context of reachability problems for asynchronous digital circuits [Brzozowski, Seger 1991]

Start with x=0 and y=[101] (stable configuration)

The input x changes to 1. The corresponding stable state is y=[011]

[Alur 91]

Discussion in the context of reachability problems for asynchronous digital circuits [Brzozowski, Seger 1991]

Start with x=0 and y=[101] (stable configuration)

The input x changes to 1. The corresponding stable state is y=[011]However, many possible behaviours, e.g.

$$\begin{bmatrix} 101 \end{bmatrix} \xrightarrow{y_2} \begin{bmatrix} 111 \end{bmatrix} \xrightarrow{y_3} 2.5 \begin{bmatrix} 110 \end{bmatrix} \xrightarrow{y_1} 2.8 \begin{bmatrix} 010 \end{bmatrix} \xrightarrow{y_3} 4.5 \begin{bmatrix} 011 \end{bmatrix}$$

[Alur 91]

Discussion in the context of reachability problems for asynchronous digital circuits [Brzozowski, Seger 1991]

Start with x=0 and y=[101] (stable configuration)

The input x changes to 1. The corresponding stable state is y=[011]However, many possible behaviours, e.g.

$$\begin{bmatrix} 101 \end{bmatrix} \xrightarrow{y_2} \begin{bmatrix} 111 \end{bmatrix} \xrightarrow{y_3} \begin{bmatrix} 110 \end{bmatrix} \xrightarrow{y_1} \begin{bmatrix} 28 \end{bmatrix} \begin{bmatrix} 010 \end{bmatrix} \xrightarrow{y_3} \begin{bmatrix} 011 \end{bmatrix}$$

Reachable configurations: {[101], [111], [110], [010], [011], [001]}

Is discretizing sufficient? An example

• This digital circuit is not 1-discretizable.

Is discretizing sufficient? An example

- This digital circuit is not 1-discretizable.
- Why that? (initially x = 0 and y = [11100000], x is set to 1)

Is discretizing sufficient? An example

- This digital circuit is not 1-discretizable.
- Why that? (initially x = 0 and y = [11100000], x is set to 1)

Is discretizing sufficient? An example

- This digital circuit is not 1-discretizable.
- Why that? (initially *x* = 0 and *y* = [11100000], *x* is set to 1)

 $\begin{array}{c} [11100000] \xrightarrow{y_1}{1} [01100000] \xrightarrow{y_2}{1.5} [00100000] \xrightarrow{y_3,y_5}{2} [00001000] \xrightarrow{y_5,y_7}{3} [00000010] \xrightarrow{y_7,y_8}{4} [00000001] \\ [11100000] \xrightarrow{y_1,y_2,y_3}{1} [00000000] \end{array}$

Is discretizing sufficient? An example

- This digital circuit is not 1-discretizable.
- Why that? (initially *x* = 0 and *y* = [11100000], *x* is set to 1)

 $\begin{array}{c} [11100000] \xrightarrow{y_1}{1} [01100000] \xrightarrow{y_2}{1.5} [00100000] \xrightarrow{y_3,y_5}{2} [00001000] \xrightarrow{y_5,y_7}{3} [00000010] \xrightarrow{y_7,y_8}{4} [00000001] \\ [11100000] \xrightarrow{y_1,y_2,y_3}{1} [00000000] \\ [11100000] \xrightarrow{y_1}{1} [01111000] \xrightarrow{y_2,y_3,y_4,y_5}{2} [00000000] \\ \end{array}$

Is discretizing sufficient? An example

- This digital circuit is not 1-discretizable.
- Why that? (initially x = 0 and y = [11100000], x is set to 1)

$$\begin{array}{c} [11100000] \xrightarrow{y_1} [01100000] \xrightarrow{y_2} 1.5 \\ 1.5 \\ [00100000] \xrightarrow{y_3,y_5} [00001000] \xrightarrow{y_5,y_7} 3 \\ [00000010] \xrightarrow{y_7,y_8} [00000001] \\ [11100000] \xrightarrow{y_1,y_2,y_3} [00000000] \\ [11100000] \xrightarrow{y_1} 1 \\ 1 \\ [01111000] \xrightarrow{y_2,y_3,y_4,y_5} [00000000] \\ [11100000] \xrightarrow{y_1,y_2} [00100000] \xrightarrow{y_3,y_5,y_6} [00001100] \xrightarrow{y_5,y_6} [00000000] \\ [11100000] \xrightarrow{y_1,y_2} 1 \\ [001000000] \xrightarrow{y_3,y_5,y_6} [00001100] \xrightarrow{y_5,y_6} [00000000] \\ \end{array}$$

Is discretizing sufficient? An example

- This digital circuit is not 1-discretizable.
- Why that? (initially x = 0 and y = [11100000], x is set to 1)

Theorem [Brzozowski Seger 1991]

For every $k \ge 1$, there exists a digital circuit such that the reachability set of states in dense-time is strictly larger than the one in discrete time (with granularity $\frac{1}{k}$).

Theorem [Brzozowski Seger 1991]

For every $k \ge 1$, there exists a digital circuit such that the reachability set of states in dense-time is strictly larger than the one in discrete time (with granularity $\frac{1}{k}$).

Claim

Finding a correct granularity is as difficult as computing the set of reachable states in dense-time.

Theorem [Brzozowski Seger 1991]

For every $k \ge 1$, there exists a digital circuit such that the reachability set of states in dense-time is strictly larger than the one in discrete time (with granularity $\frac{1}{k}$).

Claim

Finding a correct granularity is as difficult as computing the set of reachable states in dense-time.

Further counter-example

There exist systems for which no granularity exists.

(see later)

Theorem [Brzozowski Seger 1991]

For every $k \ge 1$, there exists a digital circuit such that the reachability set of states in dense-time is strictly larger than the one in discrete time (with granularity $\frac{1}{k}$).

Claim

Finding a correct granularity is as difficult as computing the set of reachable states in dense-time.

Further counter-example

There exist systems for which no granularity exists.

(see later)

Hence, we better consider a dense-time domain!

1. Introduction

2. The timed automaton model

- 3. Timed automata, decidability issues
- 4. Understanding further...
- 5. Conclusion

Timed automata

[Alur,Dill 1990]

- A finite control structure + variables (clocks)
- A transition is of the form:

• An enabling condition (or guard) is:

$$g$$
 ::= $x \sim c$ | $g \wedge g$

where $\sim \in \{<,\leq,=,\geq,>\}$

x, y : clocks

x, y : clocks

x, y : clocks

x, y : clocks

 \rightarrow timed word (a, 4.1)(b, 5.5)

Timed automata semantics

•
$$\mathcal{A} = (\Sigma, L, X, \longrightarrow)$$
 is a TA

- Configurations: $(\ell, v) \in L \times T^X$ where T is the time domain
- Timed Transition System:

• action transition:
$$(\ell, v) \xrightarrow{a} (\ell', v')$$
 if $\exists \ell \xrightarrow{g,a,r} \ell' \in \mathcal{A}$ s.t.

$$\begin{cases} v \models g \\ v' = v[r \leftarrow 0] \end{cases}$$

• delay transition: $(\ell, v) \xrightarrow{\delta(d)} (\ell, v + d)$ if $d \in T$

• Discrete-time: $L_{discrete} = \emptyset$

 $L_{dense} = \{ ((ab)^{\omega}, \tau) \mid \forall i, \ \tau_{2i-1} = i \text{ and } \tau_{2i} - \tau_{2i-1} > \tau_{2i+2} - \tau_{2i+1} \}$

• Discrete-time: $L_{discrete} = \emptyset$

Classical verification problems

- reachability of a control state
- $\mathcal{S} \sim \mathcal{S}'$: bisimulation, etc...
- $L(S) \subseteq L(S')$: language inclusion
- $\mathcal{S} \models \varphi$ for some formula φ : model-checking
- $S \parallel A_T$ + reachability: testing automata
- . . .

(1)

Train_{*i*} with i = 1, 2, ...

(2)

The train crossing example

The gate:

(3)

The controller:

(4)

We use the synchronization function f:

$Train_1$	$Train_2$	Gate	Controller	
App!			App?	Арр
	App!		App?	Арр
Exit!			Exit?	Exit
	Exit!		Exit?	Exit
а	•			а
•	а			а
		а		а
		GoUp?	GoUp!	GoUp
•	•	GoDown?	GoDown!	GoDown

to define the parallel composition (Train₁ \parallel Train₂ \parallel Gate \parallel Controller)

NB: the parallel composition does not add expressive power!

(5)

Some properties one could check:

• Is the gate closed when a train crosses the road?

(5)

Some properties one could check:

• Is the gate closed when a train crosses the road?

 $AG(train.On \Rightarrow gate.Close)$

(5)

Some properties one could check:

• Is the gate closed when a train crosses the road?

 $AG(train.On \Rightarrow gate.Close)$

• Is the gate always closed for less than 5 minutes?

(5)

Some properties one could check:

• Is the gate closed when a train crosses the road?

 $AG(train.On \Rightarrow gate.Close)$

• Is the gate always closed for less than 5 minutes?

 $\neg EF(gate.Close \land E(gate.Close U_{>5 min} \neg gate.Close))$

- 1. Introduction
- 2. The timed automaton model
- 3. Timed automata, decidability issues
- 4. Understanding further...
- 5. Conclusion

Emptiness problem: is the language accepted by a timed automaton empty?

• reachability properties

(final states)

basic liveness properties

(Büchi (or other) conditions)

Emptiness problem: is the language accepted by a timed automaton empty?

● Problem: the set of configurations is infinite
 → classical methods for finite-state systems cannot be applied

Emptiness problem: is the language accepted by a timed automaton empty?

- Problem: the set of configurations is infinite
 → classical methods for finite-state systems cannot be applied
- Positive key point: variables (clocks) increase at the same speed

Emptiness problem: is the language accepted by a timed automaton empty?

● Problem: the set of configurations is infinite
 → classical methods for finite-state systems cannot be applied

• Positive key point: variables (clocks) increase at the same speed

Theorem [Alur,Dill 1990]

The emptiness problem for timed automata is decidable. It is PSPACE-complete.

Emptiness problem: is the language accepted by a timed automaton empty?

● Problem: the set of configurations is infinite
 → classical methods for finite-state systems cannot be applied

• Positive key point: variables (clocks) increase at the same speed

Theorem [Alur,Dill 1990]

The emptiness problem for timed automata is decidable. It is PSPACE-complete.

Method: construct a finite abstraction

Equivalence of finite index

Equivalence of finite index

• "compatibility" between regions and constraints

Equivalence of finite index

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

Equivalence of finite index

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

Equivalence of finite index

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

→ a time-abstract bisimulation property

Equivalence of finite index

region defined by $I_x =]1; 2[, I_y =]0; 1[$ $\{x\} < \{y\}$

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

→ a time-abstract bisimulation property

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

→ a time-abstract bisimulation property

$(\ell_0, v_0) \xrightarrow{a_1, t_1} (\ell_1, v_1) \xrightarrow{a_2, t_2} (\ell_2, v_2) \xrightarrow{a_3, t_3} \dots$

Region automaton \equiv finite bisimulation quotient

timed automaton \otimes region abstraction

Region automaton \equiv finite bisimulation quotient

timed automaton \otimes region abstraction

$$\ell \xrightarrow{g,a,C:=0} \ell'$$
 is transformed into:

$$(\ell, R) \xrightarrow{a} (\ell', R')$$
 if there exists $R'' \in \operatorname{Succ}_t^*(R)$ s.t.

Region automaton \equiv finite bisimulation quotient

timed automaton \otimes region abstraction

$$\ell \xrightarrow{g,a,C:=0} \ell' \text{ is transformed into:}$$

$$(\ell, R) \xrightarrow{a} (\ell', R') \text{ if there exists } R'' \in \text{Succ}_t^*(R) \text{ s.t.}$$

$$\bullet R'' \subseteq g$$

•
$$[C \leftarrow 0]R'' \subseteq R'$$

 $\mathcal{L}(reg. aut.) = UNTIME(\mathcal{L}(timed aut.))$

where $\mathsf{UNTIME}((a_1, t_1)(a_2, t_2) \dots) = a_1 a_2 \dots$

An example [AD 90's]

Consequence of region automata construction

Region automata:

correct finite (and exponential) abstraction for checking reachability/Büchi-like properties.

Consequence of region automata construction

Region automata:

correct finite (and exponential) abstraction for checking reachability/Büchi-like properties.

However...

everything can not be reduced to finite automata...

A model not far from undecidability

Some bad news...

- Language universality is undecidable
- Language inclusion is undecidable
- Complementability is undecidable

• ...

[Alur,Dill 1990] [Alur,Dill 1990] [Tripakis 2003, Finkel 2006]

[Alur, Dill 1990]

A model not far from undecidability

Some bad news...

- Language universality is undecidable
- Language inclusion is undecidable
- Complementability is undecidable

• ...

[Alur,Dill 1990] [Tripakis 2003, Finkel 2006]

An example of non-determinizable/non-complementable timed aut.:

[Alur, Dill 1990]

A model not far from undecidability

Some bad news...

- Language universality is undecidable
- Language inclusion is undecidable
- Complementability is undecidable

• ...

[Alur,Dill 1990] [Tripakis 2003, Finkel 2006]

An example of non-determinizable/non-complementable timed aut.:

[Alur,Madhusudan 2004]

UNTIME $(\overline{L} \cap \{(a^*b^*, \tau) \mid all \ a's \text{ happen before 1 and no two } a's \text{ simultaneously}\})$ is not regular (exercise!)

• This idea of a finite bisimulation quotient has been applied to many "timed" or "hybrid" systems:

• various extensions of timed automata [Bérard,Diekert,Gastin,Petit 1998] [Choffrut,Goldwurm 2000] [Bouyer,Dufourd,Fleury,Petit 2004] · · ·

- This idea of a finite bisimulation quotient has been applied to many "timed" or "hybrid" systems:
 - various extensions of timed automata [Bérard,Diekert,Gastin,Petit 1998] [Choffrut,Goldwurm 2000] [Bouyer,Dufourd,Fleury,Petit 2004] · · ·
 - model-checking of branching-time properties (TCTL, timed μ -calculus)

[Alur, Courcoubetis, Dill 1993] [Laroussinie, Larsen, Weise 1995]

- This idea of a finite bisimulation quotient has been applied to many "timed" or "hybrid" systems:
 - various extensions of timed automata [Bérard,Diekert,Gastin,Petit 1998] [Choffrut,Goldwurm 2000] [Bouyer,Dufourd,Fleury,Petit 2004] · · ·
 - model-checking of branching-time properties (TCTL, timed μ-calculus)
 [Alur,Courcoubetis,Dill 1993] [Laroussinie,Larsen,Weise 1995]
 - weighted/priced timed automata (e.g. WCTL model-checking, optimal games)

[Bouyer, Larsen, Markey, Rasmussen 2006] [Bouyer, Larsen, Markey 2007]

- This idea of a finite bisimulation quotient has been applied to many "timed" or "hybrid" systems:
 - various extensions of timed automata
 [Bérard,Diekert,Gastin,Petit 1998] [Choffrut,Goldwurm 2000]
 [Bouyer,Dufourd,Fleury,Petit 2004] · · ·
 - model-checking of branching-time properties (TCTL, timed μ-calculus)
 [Alur, Courcoubetis, Dill 1993] [Laroussinie, Larsen, Weise 1995]
 - weighted/priced timed automata (e.g. WCTL model-checking, optimal games)
 [Bouyer,Larsen,Markey,Rasmussen 2006] [Bouyer,Larsen,Markey 2007]
 - o-minimal hybrid systems
 [Lafferriere, Pappas, Sastry 2000] [Brihaye 2005]

- This idea of a finite bisimulation quotient has been applied to many "timed" or "hybrid" systems:
 - various extensions of timed automata
 [Bérard,Diekert,Gastin,Petit 1998] [Choffrut,Goldwurm 2000]
 [Bouyer,Dufourd,Fleury,Petit 2004] · · ·
 - model-checking of branching-time properties (TCTL, timed μ-calculus)
 [Alur,Courcoubetis,Dill 1993] [Laroussinie,Larsen,Weise 1995]
 - weighted/priced timed automata (e.g. WCTL model-checking, optimal games)
 [Bouyer,Larsen,Markey,Rasmussen 2006] [Bouyer,Larsen,Markey 2007]
 - o-minimal hybrid systems [Lafferriere,Pappas,Sastry 2000] [Brihaye 2005]

<u>ه</u> ...

- This idea of a finite bisimulation quotient has been applied to many "timed" or "hybrid" systems:
 - various extensions of timed automata [Bérard,Diekert,Gastin,Petit 1998] [Choffrut,Goldwurm 2000] [Bouyer,Dufourd,Fleury,Petit 2004] · · ·
 - model-checking of branching-time properties (TCTL, timed μ-calculus)
 [Alur, Courcoubetis, Dill 1993] [Laroussinie, Larsen, Weise 1995]
 - weighted/priced timed automata (e.g. WCTL model-checking, optimal games)
 [Bouyer,Larsen,Markey,Rasmussen 2006] [Bouyer,Larsen,Markey 2007]
 - o-minimal hybrid systems [Lafferriere,Pappas,Sastry 2000] [Brihaye 2005]

• • • •

• Note however that it might be hard to prove there is a finite bisimulation quotient!

- This idea of a finite bisimulation quotient has been applied to many "timed" or "hybrid" systems:
 - various extensions of timed automata [Bérard,Diekert,Gastin,Petit 1998] [Choffrut,Goldwurm 2000] [Bouyer,Dufourd,Fleury,Petit 2004] · · ·
 - model-checking of branching-time properties (TCTL, timed μ-calculus)
 [Alur, Courcoubetis, Dill 1993] [Laroussinie, Larsen, Weise 1995]
 - weighted/priced timed automata (e.g. WCTL model-checking, optimal games)
 [Bouyer,Larsen,Markey,Rasmussen 2006] [Bouyer,Larsen,Markey 2007]
 - o-minimal hybrid systems [Lafferriere,Pappas,Sastry 2000] [Brihaye 2005]

<u>ه</u> ...

- Note however that it might be hard to prove there is a finite bisimulation quotient!
- Note that in practice, the region automaton is not constructed, and symbolic technics based on *zones* are used

Outline

1. Introduction

- 2. The timed automaton model
- 3. Timed automata, decidability issues
- 4. Understanding further...
- 5. Conclusion

The example of alternating timed automata

Alternating timed automata \equiv ATA

[Lasota,Walukiewicz 2005,2007] [Ouaknine,Worrell 2005,2007]

The example of alternating timed automata

Alternating timed automata \equiv ATA

[Lasota,Walukiewicz 2005,2007] [Ouaknine,Worrell 2005,2007]

Example

"No two a's are separated by 1 unit of time"

$$\begin{cases} \ell_0, a, true & \mapsto & \ell_0 \land (x := 0, \ell_1) \\ \ell_1, a, x \neq 1 & \mapsto & \ell_1 \\ \ell_1, a, x = 1 & \mapsto & \ell_2 \\ \ell_2, a, true & \mapsto & \ell_2 \end{cases}$$

$$\begin{cases} \ell_0 \text{ initial state} \\ \ell_0, \ell_1 \text{ final states} \\ \ell_2 \text{ losing state} \end{cases}$$

The example of alternating timed automata

Alternating timed automata \equiv ATA

[Lasota,Walukiewicz 2005,2007] [Ouaknine,Worrell 2005,2007]

Example

"No two a's are separated by 1 unit of time"

• nice closure properties

• nice closure properties

 \rightarrow universality is as difficult as reachability

- nice closure properties
- \rightarrow universality is as difficult as reachability
- more expressive than timed automata

• nice closure properties

 \rightarrow universality is as difficult as reachability

more expressive than timed automata

Theorem

- Emptiness of ATA is undecidable.
- Emptiness of one-clock ATA is decidable, but non-primitive recursive.
- Emptiness for Büchi properties of one-clock ATA is undecidable.
- Emptiness of one-clock ATA with ε -transitions is undecidable.

• nice closure properties

 \rightarrow universality is as difficult as reachability

more expressive than timed automata

Theorem

- Emptiness of ATA is undecidable.
- Emptiness of one-clock ATA is decidable, but non-primitive recursive.
- Emptiness for Büchi properties of one-clock ATA is undecidable.
- Emptiness of one-clock ATA with ε -transitions is undecidable.

Lower bound: simulation of a lossy channel system... [Schnoebelen 2002]

Example

Example

Example

Execution over timed word (a, .3)(a, .8)(a, 1.4)(a, 1.8)(a, 2)

 $\{ (\ell_0, 0) \}$

Example

Execution over timed word (a, .3)(a, .8)(a, 1.4)(a, 1.8)(a, 2)

Example

Example

Example

Example

A configuration = a finite set of pairs (ℓ, x)

 $(\ell, 0)$ $(\ell, 0.3)$ $(\ell, 1.2)$ $(\ell, 2.3)$ $(\ell', 0.4)$ $(\ell', 1)$ $(\ell', 0.8)$

An abstraction

An abstraction

An abstraction

An abstraction

A configuration = a finite set of pairs (ℓ, x)

Abstracted into:

 $\{(\ell,0),(\ell',1)\} \cdot \{(\ell,1)\} \cdot \{(\ell,0),(\ell,2)\} \cdot \{(\ell',0)\} \cdot \{(\ell',0)\}$

Abstract transition system

 $\{(\ell,0),(\ell',1)\} \cdot \{(\ell,1)\} \cdot \{(\ell,0),(\ell,2)\} \cdot \{(\ell',0)\} \cdot \{(\ell',0)\}$

Abstract transition system

$\{(\ell,0),(\ell',1)\} \cdot \{(\ell,1)\} \cdot \{(\ell,0),(\ell,2)\} \cdot \{(\ell',0)\} \cdot \{(\ell',0)\}$

Time successors:

Abstract transition system

 $\{(\ell, 0), (\ell', 1)\} \cdot \{(\ell, 1)\} \cdot \{(\ell, 0), (\ell, 2)\} \cdot \{(\ell', 0)\} \cdot \{(\ell', 0)\}$

Time successors:

Abstract transition system

 $\{(\ell,0),(\ell',1)\} \cdot \{(\ell,1)\} \cdot \{(\ell,0),(\ell,2)\} \cdot \{(\ell',0)\} \cdot \{(\ell',0)\}$

 $\{(\ell',1)\} \cdot \{(\ell,0),(\ell',1)\} \cdot \{(\ell,1)\} \cdot \{(\ell,0),(\ell,2)\} \cdot \{(\ell',0)\}$ $\{(\ell',1)\} \cdot \{(\ell',1)\} \cdot \{(\ell,0),(\ell',1)\} \cdot \{(\ell,1)\} \cdot \{(\ell,0),(\ell,2)\}$

Abstract transition system

 $\{(\ell,0),(\ell',1)\} \cdot \{(\ell,1)\} \cdot \{(\ell,0),(\ell,2)\} \cdot \{(\ell',0)\} \cdot \{(\ell',0)\}$

$$\{(\ell',1)\} \cdot \{(\ell,0),(\ell',1)\} \cdot \{(\ell,1)\} \cdot \{(\ell,0),(\ell,2)\} \cdot \{(\ell',0)\}$$

$$\{(\ell',1)\} \cdot \{(\ell',1)\} \cdot \{(\ell,0),(\ell',1)\} \cdot \{(\ell,1)\} \cdot \{(\ell,0),(\ell,2)\}$$

$$\{(\ell,1),(\ell,3)\} \cdot \{(\ell',1)\} \cdot \{(\ell',1)\} \cdot \{(\ell',1)\} \cdot \{(\ell,0),(\ell',1)\} \cdot \{(\ell,1)\}$$

Abstract transition system

 $\{(\ell,0),(\ell',1)\} \cdot \{(\ell,1)\} \cdot \{(\ell,0),(\ell,2)\} \cdot \{(\ell',0)\} \cdot \{(\ell',0)\}$

Abstract transition system

 $\{(\ell,0),(\ell',1)\} \cdot \{(\ell,1)\} \cdot \{(\ell,0),(\ell,2)\} \cdot \{(\ell',0)\} \cdot \{(\ell',0)\}$

Abstract transition system

 $\{(\ell,0),(\ell',1)\} \cdot \{(\ell,1)\} \cdot \{(\ell,0),(\ell,2)\} \cdot \{(\ell',0)\} \cdot \{(\ell',0)\}$

Abstract transition system

 $\{(\ell,0),(\ell',1)\} \cdot \{(\ell,1)\} \cdot \{(\ell,0),(\ell,2)\} \cdot \{(\ell',0)\} \cdot \{(\ell',0)\}$

Time successors:

 $\{(\ell'',0)\} \cdot \{(\ell,1),(\ell',2)\} \cdot \{(\ell,1)\} \cdot \{(\ell',1)\} \cdot \{(\ell',1)\}$

The previous abstraction is (almost) a time-abstract bisimulation.

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

© possibly infinitely many abstract configurations

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

- © possibly infinitely many abstract configurations
- ☺ there is a well-quasi ordering on the set of abstract configurations! (subword relation ⊆)

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

- © possibly infinitely many abstract configurations
- ☺ there is a well-quasi ordering on the set of abstract configurations! (subword relation ⊆)

+ downward compatibility:

 $(\gamma_1 \sqsubseteq \gamma'_1 \text{ and } \gamma'_1 \rightsquigarrow \gamma'_2) \Rightarrow (\gamma_1 \rightsquigarrow^* \gamma_2 \text{ and } \gamma_2 \sqsubseteq \gamma'_2)$

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

- © possibly infinitely many abstract configurations
- ☺ there is a well-quasi ordering on the set of abstract configurations! (subword relation ⊆)
 - + downward compatibility:

$$(\gamma_1 \sqsubseteq \gamma'_1 \text{ and } \gamma'_1 \rightsquigarrow \gamma'_2) \Rightarrow (\gamma_1 \rightsquigarrow^* \gamma_2 \text{ and } \gamma_2 \sqsubseteq \gamma'_2)$$

+ downward-closed objective (all states are accepting)

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

- © possibly infinitely many abstract configurations
- ☺ there is a well-quasi ordering on the set of abstract configurations! (subword relation ⊆)
 - + downward compatibility:

 $(\gamma_1 \sqsubseteq \gamma'_1 \text{ and } \gamma'_1 \rightsquigarrow \gamma'_2) \Rightarrow (\gamma_1 \rightsquigarrow^* \gamma_2 \text{ and } \gamma_2 \sqsubseteq \gamma'_2)$

+ downward-closed objective (all states are accepting)

Recipe learned on Monday:

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

- © possibly infinitely many abstract configurations
- ☺ there is a well-quasi ordering on the set of abstract configurations! (subword relation ⊆)
 - + downward compatibility:

 $(\gamma_1 \sqsubseteq \gamma'_1 \text{ and } \gamma'_1 \rightsquigarrow \gamma'_2) \Rightarrow (\gamma_1 \rightsquigarrow^* \gamma_2 \text{ and } \gamma_2 \sqsubseteq \gamma'_2) + \text{downward-closed objective (all states are accepting)}$

Recipe learned on Monday:

 $(\mathsf{Higman's}\;\mathsf{lemma}+\mathsf{Koenig's}\;\mathsf{lemma}) \Rightarrow \mathsf{termination}$

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?

- © possibly infinitely many abstract configurations
- ☺ there is a well-quasi ordering on the set of abstract configurations! (subword relation ⊆)
 - + downward compatibility:

 $(\gamma_1 \sqsubseteq \gamma'_1 \text{ and } \gamma'_1 \rightsquigarrow \gamma'_2) \Rightarrow (\gamma_1 \rightsquigarrow^* \gamma_2 \text{ and } \gamma_2 \sqsubseteq \gamma'_2) + \text{downward-closed objective (all states are accepting)}$

Recipe learned on Monday:

 $(\mathsf{Higman's}\;\mathsf{lemma}+\mathsf{Koenig's}\;\mathsf{lemma}) \Rightarrow \mathsf{termination}$

Alternative

The abstract transition system can be simulated by a kind of FIFO channel machine.

A digression on timed automata

$$x, y \in r_0, \{y\} < \{x\}$$

$$x \in r_1, y \in r_0, \{x\} < \{y\}$$

 $x, y \in r_1, \{y\} < \{x\}$

The classical region automaton can be simulated by a channel machine (with a single bounded channel).

Partial conclusion

Similar technics apply to:

• networks of single-clock timed automata

[Abdulla, Jonsson 1998]

Partial conclusion

Similar technics apply to:

- networks of single-clock timed automata
- timed Petri nets

[Abdulla, Jonsson 1998]

[Abdulla,Nylén 2001]

Partial conclusion

Similar technics apply to:

- networks of single-clock timed automata
- timed Petri nets
- MTL model checking

[Abdulla, Jonsson 1998]

[Abdulla,Nylén 2001]

[Ouaknine,Worrell 2005,2007]

Partial conclusion

Similar technics apply to:

- networks of single-clock timed automata
- timed Petri nets
- MTL model checking

[Abdulla, Jonsson 1998]

[Abdulla,Nylén 2001]

[Ouaknine,Worrell 2005,2007]

• coFlatMTL model checking [Bouyer,Markey,Ouaknine,Worrell 2007] (using channel machines with a bounded number of cycles)

Partial conclusion

Similar technics apply to:

- networks of single-clock timed automata
- timed Petri nets
- MTL model checking

[Abdulla, Jonsson 1998]

[Abdulla,Nylén 2001]

[Ouaknine,Worrell 2005,2007]

- coFlatMTL model checking [Bouyer,Markey,Ouaknine,Worrell 2007] (using channel machines with a bounded number of cycles)
- single-clock automata inclusion checking [Ouaknine,Worrel 2004]

Partial conclusion

Similar technics apply to:

- networks of single-clock timed automata
- timed Petri nets
- MTL model checking

[Abdulla, Jonsson 1998]

[Abdulla,Nylén 2001]

[Ouaknine,Worrell 2005,2007]

- coFlatMTL model checking [Bouyer,Markey,Ouaknine,Worrell 2007] (using channel machines with a bounded number of cycles)
- single-clock automata inclusion checking [Ouaknine,Worrel 2004]

o ...

Outline

- 1. Introduction
- 2. The timed automaton model
- 3. Timed automata, decidability issues
- 4. Understanding further...
- 5. Conclusion

Conclusion

• Justification of the dense-time semantics

Conclusion

- Justification of the dense-time semantics
- Two main technics for proving decidability of real-time systems
 - Are missing: initialized rectangular automata

Conclusion

- Justification of the dense-time semantics
- Two main technics for proving decidability of real-time systems
 - Are missing: initialized rectangular automata

Some current streams of research in timed systems:

- quantitative model-checking
- real-time logics
- robustness, implementability issues
- timed games
- • •