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Introduction

Time!

Context: verification of embedded critical systems

Time
@ naturally appears in real systems

@ appears in properties (for ex. bounded response time)

O Need of models and specification languages integrating timing aspects
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Introduction

Adding timing informations

@ Untimed case: sequence of observable events
a: send message b: receive message

ababababab ---=(ab)
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a: send message b: receive message

ababababab ---=(ab)

@ Timed case: sequence of dated observable events
(av dl) (b d2) (av d3) (b d4) (av d5) (b dﬁ) e

di: date at which the first a occurs
dy: date at which the first b occurs, ...
o Discrete-time semantics: dates are e.g. taken in N
Ex: (a,1)(b,3)(c,4)(a,6)
o Dense-time semantics: dates are e.g. taken in Q4+, or in Ry
Ex: (a,1.28).(b,3.1).(c,3.98)(a,6.13)
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Introduction

A case for dense-time

Time domain: discrete (e.g. N) or dense (e.g. Q4 or R})
@ A compositionality problem with discrete time
@ Dense-time is a more general model than discrete time

@ But, can we not always discretize?
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Introduction

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]
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Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

3

—Do Loq1,2)
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. :‘J

Y.
(1,31 °

Start with x=0 and y=[101] (stable configuration)
The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101] = [111] = 1100 & [010] = [011]
1.2 25 2.8 4.5

Reachable configurations: {[101], [111], [110], [010], [011], [001]}
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Introduction

Is discretizing sufficient? An example [Alur 91]
(1,21 v, (1
Dy
[1,2]

o =D
—DHAD—Y‘

(1,21 ¥ [1] ¢

Y

[1] [1]

:j) ¥, E‘) Yy

@ This digital circuit is not 1-discretizable.
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@ This digital circuit is not 1-discretizable.

@ Why that? (initially x =0 and y = [11100000], x is set to 1)
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Is discretizing sufficient?

Theorem [Brzozowski Seger 1991]

For every k > 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time
(with granularity 7).
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Is discretizing sufficient?

Theorem [Brzozowski Seger 1991]

For every k > 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time
(with granularity 7).

Claim

Finding a correct granularity is as difficult as computing the set of
reachable states in dense-time.

Further counter-example

There exist systems for which no granularity exists. (see later)

v

Hence, we better consider a dense-time domain!
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The timed automaton model

Timed automata [Alur,Dill 1990]

@ A finite control structure + variables (clocks)

@ A transition is of the form:

g,a C:=0

O O

Enabling condition Reset to zero
@ An enabling condition (or guard) is:
g = x~c | ghg

where ~ € {<, <, =,>,>}
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The timed automaton model

Timed automata (example)

x,y . clocks

x<5 a y:=0 y>1, b, x:=0

—~®

()
&
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Timed automata (example)

x,y . clocks

The timed automaton model

y>1 b, x:=0

@ ©—
A 5(4.1) A 0 004 g b
X 0 4.1 4.1 5.5 0
y 0 4.1 0 1.4 1.4
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The timed automaton model

Timed automata (example)

x,y . clocks

by 41 gy _a, ¢ 4 g b, ¢,
x 0 4.1 4.1 0
0 4.1 0 1.4

(clock) valuation

O timed word (a,4.1)(b,5.5)
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The timed automaton model

Timed automata semantics

e A=(X,LLX,—)isa TA
o Configurations: (¢,v) € L x TX where T is the time domain
@ Timed Transition System:

¢ action transition: (£,v) —2> (¢, V') if 3 £25 ¢ € A st
{V g

v = v[r 0]

o delay transition: (¢, v) LG lv+d)ifdeT
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Discrete vs dense-time semantics
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The timed automaton model

Discrete vs dense-time semantics

@ Dense-time:
Lgense = {((ab)¥,T) | Vi, mi_1 =i and To; — Toi—1 > T2it2 — T2it1}

@ Discrete-time: Lyjscrete = 0

x=1, a, x:=0

= A
—

<
o

13/39



The timed automaton model

Classical verification problems

@ reachability of a control state

o S ~ &’: bisimulation, etc...

o L(S) C L(S'): language inclusion

@ S |= ¢ for some formula ¢: model-checking
@ S || AT + reachability: testing automata

o ...
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The timed automaton model

The train crossing example (1)

Train; with i =12 ...

20 < x; < 30,a,x; :=0

10 < x; < 20, Exit!
(:)I1, X < 20
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The timed automaton model

The train crossing example (2)

The gate:
GoDown?, H, :=0
Opf_n/‘ ~( Lowering, H, < 10
Hg <10, a Hy <10, a
Raising, Hy < 10}« /Hose

GoUp?, H, :=0
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The timed automaton model

The train crossing example (3)

The controller:

H. = 20, GoUp! H. <10, GoDown!
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The train crossing example

We use the synchronization function f:

The timed automaton model

(4)

Trainy | Trainy Gate Controller

App! : App? App
: App! App? App
Exit! . Exit? Exit
. Exit! Exit? Exit

a . a

a a

a ) a

GoUp? GoUp! GoUp
GoDown? | GoDown! || GoDown

to define the parallel composition (Trainy || Trainy || Gate || Controller)

NB: the parallel composition does not add expressive power!
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The timed automaton model

The train crossing example (5)

Some properties one could check:
@ |s the gate closed when a train crosses the road?
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The timed automaton model

The train crossing example (5)

Some properties one could check:
@ |s the gate closed when a train crosses the road?

AG(train.On = gate.Close)

@ Is the gate always closed for less than 5 minutes?

—EF(gate.Close A E(gate.Close Uss min —gate.Close))
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Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton

empty?
@ reachability properties (final states)
@ basic liveness properties (Biichi (or other) conditions)
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Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

@ Problem: the set of configurations is infinite
O classical methods for finite-state systems cannot be applied

o Positive key point: variables (clocks) increase at the same speed

Theorem [Alur,Dill 1990]

The emptiness problem for timed automata is decidable. It is
PSPACE-complete.

( Method: construct a finite abstraction |
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Timed automata, decidability issues

The region abstraction

Equivalence of finite index
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Timed automata, decidability issues

The region abstraction

y
Equivalence of finite index
2 region defined by
L =]1;2[, I, =]0; 1]
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0 1 2 3 X
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Timed automata, decidability issues

The region abstraction

y
Equivalence of finite index
2 region defined by
L =]1;2[, I, =]0; 1]
1 {x} <{y}
. successor regions
0 1 2 3 X

@ ‘“compatibility” between regions and constraints

@ “compatibility” between regions and time elapsing

0 a time-abstract bisimulation property
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Time-abstract bisimulation

a 5(d)
v o —2 5 Vd > 0
Je—2 >e °
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Timed automata, decidability issues

Time-abstract bisimulation

a (d)
A e Vd >0 e
| R | | 5(d") |
10— 0 3d">0 @ ———> @
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Timed automata, decidability issues

Time-abstract bisimulation

a d(d)
v & —> vd >0
| R | o 8(d)
10— @ 3d'>0 @— @
(&), V()) 21_,1‘1) (617 Vl) aZ—’tz> (62, V2) 33—’t3>

(lo, Ro) —= (1, R1)) —2> (l,R) —=—

with v; € R; for all i.
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Timed automata, decidability issues

Region automaton = finite bisimulation quotient

timed automaton ) region abstraction
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Timed automata, decidability issues

Region automaton = finite bisimulation quotient

timed automaton @) region abstraction

¢ _£3aC=0_ /s transformed into:

(6,R) —2_, (¢, R’) if there exists R” € Succ;(R) s.t.

o R'C g
o [C—0RVCR

L(reg. aut.) = UNTIME(L(timed aut.))

where UNTIME((a1, t1)(a2, t2) ...) = a1a2...
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An example [AD 90's]

c, (x<1)?

a, (y<1)?,y:=0

d, (x>1)?

Timed automata, decidability issues
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Timed automata, decidability issues

Consequence of region automata construction

Region automata:

correct finite (and exponential) abstraction for checking
reachability/Biichi-like properties.
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Timed automata, decidability issues

Consequence of region automata construction

Region automata:

correct finite (and exponential) abstraction for checking
reachability/Biichi-like properties.

everything can not be reduced to finite automata...

However... J
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A model not far from undecidability

Some bad news...

o
o
o
o

Language universality is undecidable
Language inclusion is undecidable

Complementability is undecidable

Timed automata, decidability issues

[Alur,Dill 1990]
[Alur,Dill 1990]
[Tripakis 2003, Finkel 2006]
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Timed automata, decidability issues

A model not far from undecidability

Some bad news...

o Language universality is undecidable [Alur,Dill 1990]
@ Language inclusion is undecidable [Alur,Dill 1990]
@ Complementability is undecidable [Tripakis 2003, Finkel 2006]
°

An example of non-determinizable/non-complementable timed aut.:
[Alur,Madhusudan 2004]

a, b x#1, a,b

a, x:=0

UNTIME (Zﬂ {(a*b*,7) | all a’s happen before 1 and no two a’s simultaneously}) is
not regular (exercise!)
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Timed automata, decidability issues

Partial conclusion

@ This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid" systems:
o various extensions of timed automata
[Bérard, Diekert,Gastin, Petit 1998] [Choffrut,Goldwurm 2000]
[Bouyer,Dufourd,Fleury,Petit 2004] - - -
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Timed automata, decidability issues

Partial conclusion
@ This idea of a finite bisimulation quotient has been applied to many
“timed” or “hybrid" systems:
o various extensions of timed automata
[Bérard, Diekert,Gastin, Petit 1998] [Choffrut,Goldwurm 2000]
[Bouyer,Dufourd,Fleury,Petit 2004] - - -
o model-checking of branching-time properties (TCTL, timed
p-calculus)
[Alur,Courcoubetis,Dill 1993] [Laroussinie,Larsen,Weise 1995]
e weighted/priced timed automata (e.g. WCTL model-checking,
optimal games)
[Bouyer,Larsen,Markey,Rasmussen 2006] [Bouyer,Larsen,Markey 2007]
@ o-minimal hybrid systems
[Lafferriere,Pappas,Sastry 2000] [Brihaye 2005]

@ -

@ Note however that it might be hard to prove there is a finite
bisimulation quotient!

@ Note that in practice, the region automaton is not constructed, and
symbolic technics based on zones are used
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.{ lo,a true = Lo A (x:=0,0) [ 7, initial state
li,a,x#1 — 0 .
lg, 01 final states
bra,x=1 = b U5 losing state
\ b,a, true — Uy 2 &

x:=0 x=1, a
E a

30/39



Understanding further...

[Lasota,Walukiewicz 2005]

@ nice closure properties

31/39



Understanding further...

[Lasota,Walukiewicz 2005]

@ nice closure properties
O universality is as difficult as reachability

31/39



Understanding further...

[Lasota,Walukiewicz 2005]

@ nice closure properties
O universality is as difficult as reachability

@ more expressive than timed automata

31/39



Understanding further...

[Lasota,Walukiewicz 2005]

@ nice closure properties
O universality is as difficult as reachability

@ more expressive than timed automata

Theorem
@ Emptiness of ATA is undecidable.
@ Emptiness of one-clock ATA is decidable, but non-primitive recursive.
@ Emptiness for Buichi properties of one-clock ATA is undecidable.
@ Emptiness of one-clock ATA with e-transitions is undecidable.

31/39



Understanding further...

[Lasota,Walukiewicz 2005]

@ nice closure properties
O universality is as difficult as reachability

@ more expressive than timed automata

Theorem
@ Emptiness of ATA is undecidable.
@ Emptiness of one-clock ATA is decidable, but non-primitive recursive.
@ Emptiness for Buichi properties of one-clock ATA is undecidable.
@ Emptiness of one-clock ATA with e-transitions is undecidable.

Lower bound: simulation of a lossy channel system... [Schnoebelen 2002]
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Execution over timed word (a,.3)(a,.8)(a,1.4)(a,1.8)(a,2)
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il (40,0) Ky

{ (.0
{,, (6.5 )
{,, (62,1.1) |
(N ) O
2 2 Y KR

32/39



Understanding further...

An abstraction

A configuration = a finite set of pairs (4, x)

(£,0)  (£,03) (4,12) (4,2.3) (£,04) (£,1) (£,08)

33/39



Understanding further...

An abstraction

A configuration = a finite set of pairs (4, x)

(€,0)  (£,03) (4,1.2) (£,23) (£,04) (¢,1) (¢,0.8)

A\

0.0

33/39



Understanding further...

An abstraction

A configuration = a finite set of pairs (4, x)

(€,0)  (¢£,03) (4,1.2) (£,23) (£,04) (¢,1) (¢,0.8)

Ny {1}

0.0 0.2

33/39



Understanding further...

An abstraction

A configuration = a finite set of pairs (4, x)

(€,0)  (¢£,03) (4,1.2) (£,23) (£,04) (¢,1) (¢,0.8)

1} {(¢, D)} {(¢,0),(42)}

0.0 0.2 0.3

33/39



Understanding further...

An abstraction

A configuration = a finite set of pairs (4, x)

(€,0)  (£,03) (6,12) (4,23) (£,04) (£,1) (£,0.8)

S

Dy {1y {(6,0).(2)} {(#,0

0.0 0.2 0.3 0.4

33/39



Understanding further...

An abstraction

A configuration = a finite set of pairs (4, x)

(,0)  (£,03) (4,1.2) (4,2.3) (£,04) (.1) (£,08)

\ b

{(£,0), (¢, 1) {6, 1)} {(£,0,(62)} {0}  {(¢,0)}

0.0 0.2 0.3 0.4 0.8

33/39



Understanding further...

An abstraction

A configuration = a finite set of pairs (4, x)

(,0)  (£,03) (4,1.2) (4,2.3) (£,04) (.1) (£,08)

\ pA

{(£,0), (¢, 1) {6, 1)} {(£,0,(62)} {0}  {(¢,0)}

0.0 0.2 0.3 0.4 0.8

33/39



Understanding further...

An abstraction

A configuration = a finite set of pairs (4, x)

(€,0)  (¢£,03) (4,1.2) (£,23) (£,04) (¢,1) (¢,0.8)

y |

Dy {1y {(60).(42)} {(¢,0)}

0.0 0.2 0.3 0.4 0.8

Abstracted into: {(6,0), (@, 1)} H{(¢, 1)} B {(¢,0),(¢,2)} SIGHOINE {(¢,0)}
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What can we do with that abstract transition system?

Correctness?

The previous abstraction is (almost) a time-abstract bisimulation.

Termination?
® possibly infinitely many abstract configurations

© there is a well-quasi ordering on the set of abstract configurations!
(subword relation C)
+ downward compatibility:
(71 Eviand 71~ 23) = (1 ~" 12 and 12 £ 7))
+ downward-closed objective (all states are accepting)
Recipe learned on Monday:

(Higman's lemma + Koenig's lemma) = termination

Alternative

The abstract transition system can be simulated by a kind of FIFO
channel machine.
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A digression on timed automata

n

o

o n X

The classical region automaton can be simulated by a channel machine
(with a single bounded channel).
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(using channel machines with a bounded number of cycles)

©

single-clock automata inclusion checking [Ouaknine,Worrel 2004]
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Conclusion

Conclusion

@ Justification of the dense-time semantics
@ Two main technics for proving decidability of real-time systems
@ Are missing: initialized rectangular automata

Some current streams of research in timed systems:

©

quantitative model-checking
real-time logics
robustness, implementability issues

°
°
@ timed games
°
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