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An example: The task graph scheduling problem
Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):
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The model of timed automata

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤

25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1
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Modelling the task graph scheduling problem

Processors

P1:
idle+

(x≤2)

×

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
idle+

(y≤5)

×

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Tasks
T4: t1∧t2

addi

t4:=1

donei

T5: t3

addi

t5:=1

donei

Modelling energy

P1:
+10+90

(x≤2)

+90

(x≤3)x :=0

add1

x :=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)x :=0

add2

x :=0

mult2

y=5

done2

y=7

done2

Modelling uncertainty

P1:
idle+

(x≤2)

×

(x≤3)
x :=0

add1

x :=0

mult1

x≥1

done1

x≥1

done1

P2:
idle+

(x≤2)

×

(x≤3)
x :=0

add2

x :=0

mult2

y≥3

done2

y≥2

done2
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A schedule is a path in the product automaton
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Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem (Formal Methods in System Design).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

That can be generalized!
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y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7 = 14.2
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0≤t≤2

min ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 9

; strategy: leave immediately `0, go to `3, and wait there 2 t.u.

That can be generalized!
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A simple
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Question: what is the optimal cost we can ensure while reaching,?

inf
0≤t≤2

max ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1
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Optimal reachability in weighted timed games (1)

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
[ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP’04).
[BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS’04).
[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS’05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).
[Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (QAPL’11).
[HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (CONCUR’13).
[BGK+14] Brihaye, Geeraerts, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (CONCUR’14).

This topic has been fairly hot these last fifteen years...

[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMM02]

Tree-like weighted timed games can be solved in 2EXPTIME.

[ABM04,BCFL04]

Depth-k weighted timed games can be solved in EXPTIME. There is a
symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost.
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Optimal reachability in weighted timed games (2)

[BBR05,BBM06]

In weighted timed games, the optimal cost cannot be computed, as soon
as games have three clocks or more.

[BLMR06,Rut11,HIM13,BGK+14]

Turn-based optimal timed games are decidable in EXPTIME (resp.
PTIME) when automata have a single clock (resp. with two rates). They
are PTIME-hard.

8/24



Optimal reachability in weighted timed games (2)

[BBR05,BBM06]

In weighted timed games, the optimal cost cannot be computed, as soon
as games have three clocks or more.

[BLMR06,Rut11,HIM13,BGK+14]

Turn-based optimal timed games are decidable in EXPTIME (resp.
PTIME) when automata have a single clock (resp. with two rates). They
are PTIME-hard.

8/24



Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .
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x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by x0

Add+(x)

1 0

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by 1−x0

Add−(x)

9/24



Computing the optimal cost: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2x=x0

y=y0 z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

; player 2 can enforce cost 3 + |y0 − 2x0|

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0
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Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the counter values c1 and c2 are encoded by two clocks:

x =
1

2c1
and y =

1

3c2

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

u:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)u=1,u:=0

Testy (x=2z)
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Shape of the reduction
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Are we done?

No! Let’s be a bit more precise!

Given G a weighted timed game,

a strategy σ is winning whenever all its outcomes are winning;

Cost of a winning strategy σ:

cost(σ) = sup{cost(ρ) | ρ outcome of σ up to the target}

Optimal cost:
optcostG = inf

σ winning strat.
cost(σ)

(set it to +∞ if there is no winning strategy)

Two problems of interest

The value problem asks, given G and a threshold ./ c , whether
optcostG ./ c?

The existence problem asks, given G and a threshold ./ c , whether
there exists a winning strategy in G such that cost(σ) ./ c?

Note: These problems are distinct...
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The value of the game is 3, but no strategy has cost 3.
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Weighted timed automata

In weighted timed automata, the optimal cost is an integer, and can be
computed in PSPACE.

Weighted timed games
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The value problem can be decided in EXPTIME in weighted timed games with
a strongly non-Zeno cost. Almost-optimal winning strategies can be computed.

In weighted timed games, the optimal cost cannot be computed, as soon as
games have three clocks or more.
The existence problem is undecidable in weighted timed games.
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Our recent developments

[BMM14] Bouyer, Markey, Matteplackel. Averaging in LTL (CONCUR’14).

1 The value problem is undecidable in weighted timed games

; Intellectually satisfactory to not have this discrepancy in the set of
results

; Proof based on a diagonal construction (originally proposed in the
context of quantitative temporal logics [BMM14])

2 An approximation algorithm for a large class of weighted timed
games (that comprises the class of games used for proving the above
undecidability)

Almost-optimality in practice should be sufficient
Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...
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[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games.

Optimal cost is computable...

... when cost is strongly non-zeno. [AM04,BCFL04]

That is, there exists κ > 0 such that for every region cycle C , for every real run
% read on C ,

cost(%) ≥ κ

Optimal cost is not computable...

... when cost is almost-strongly non-zeno.

[BJM15]

That is, there exists κ > 0 such that for every region cycle C , for every real run
% read on C ,

cost(%) ≥ κ or cost(%) = 0

Note: In both cases, we can assume κ = 1.
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Approximation of the optimal cost

Theorem
Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every ε > 0, one can compute:

two values v−ε and v+
ε such that

|v+
ε − v−ε | < ε and v−ε ≤ optcostG ≤ v+

ε

one strategy σε such that

optcostG ≤ cost(σε) ≤ optcostG + ε

It is an ε-optimal winning strategy.

Standard technics: unfold the game to get more precision, and
compute two adjacency sequences

; This is not possible here
There might be runs with prefixes of arbitrary length and cost 0 (e.g. the

game of the undecidability proof)
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Idea for approximation

Idea
Only partially unfold the game:

Keep components with cost 0 untouched – we call it the kernel

Unfold the rest of the game
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Semi-unfolding

Only cost 0
Kernel K

Only cost 0
Kernel K

Hypothesis:
cost > 0 implies cost ≥ κ

Conclusion: we can stop unfolding the game after N steps
(e.g. N = (M + 2) · |R(A)|, where M is a pre-computed bound on optcostG)
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Approximation scheme

Exact computation

Approximation
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First step: Tree-like parts

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

; Goes back to [LMM02]

c `

`′ `′′

g ′,Y ′

c′
g ′′,Y ′′

c′′

O(`, v) = inf
t′|v+t′|=g ′

max
(

(α)

,

(β)

)

(α) = t ′c + c′ + O(`′, v ′)

(β) = sup
t′′≤t′|v+t′′|=g ′′

t ′′c + c′′ + O(`′′, v ′′)

v ′=[Y ′←0](v+t′)

v ′′=[Y ′′←0](v+t′′)
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Second step: Kernels

Output cost functions f

1 Refine the regions such that f differs
of at most ε within a small region

2 Under- and over-approximate by
piecewise constant functions f −ε and
f +
ε
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Second step: Kernels

fε: constant fε: constant

constant

3 Refine/split the kernel along the new
small regions and fix f −ε or f +

ε , write fε
4 Since cost is 0 everywhere, the

resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by fε)

5 Those can be solved using standard
technics based on attractors: small
regions are sufficient, and the local
optimal cost (for output fε) is constant
within a small region

; We have computed ε-approximations of
the optimal cost, which are constant
within small regions. Corresponding
strategies can be inferred
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Conclusion

Summary of the talk

Very quick overview of results concerning the optimal reachability
problem in weighted timed games

Some new insight into the value problem for this model:

Undecidability of this problem
Approximability of the optimal cost
(under some conditions)

Future work

Improve the approximation scheme (2EXP(|G|) ·
(

1/ε
)|X |

)

Extend to the whole class of weighted timed games, or understand
why it is not possible

Assume stochastic uncertainty?

Multiplayer setting?
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