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Can | work with my computer all the way?

Energy is not only consumed, but can be regained. J

~ the aim is to continuously satisfy some energy constraints.
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An oil pump control system

+2.2 litres/second- --

Accumulator|

Reservoir

Machine/Consumer

[CJL+09] Cassez, Jessen, Larsen, Raskin, Reynier. Automatic synthesis of robust and optimal controllers - An industrial case study (HSCC'09).
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An example of resource management
Globally (x<1)

@ Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?
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An example of resource management
Globally (x<1)

@ Lower—bound problem ~» L
@ Lower-upper-bound problem ~» L+U
o Lower-weak-upper-bound problem ~ L+W
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Only partial results so far
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Back to 0 clock

0 clock! | exist. problem univ. problem games
L € PTIME € PTIME EPLTJFM“EfE;JdP
L+W € PTIME € PTIME Ep'irMmEfE;':'dP
L+U ENPPS_ Z\EJE € PTIME EXPTIME-c.

~> PTIME: Bellman-Ford algorithm
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L € PTIME € PTIME EPLTJFM“EfE;JdP
L+W € PTIME € PTIME Ep'irMmEfE;':'dP
L+U ENPPS_ Z\EJE € PTIME EXPTIME-c.

~» PSPACE: guess an infinite path in the graph augmented with the
energy level

~> NP-hardness: encode SUBSET-SUM:
0 0
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Back to 0 clock

0 clock! | exist. problem univ. problem games
L € PTIME € PTIME EPLTJFM“EfE;JdP
L+W € PTIME € PTIME Ep'irMmEfE;':'dP
L+U ENPPS_ Z\EJE € PTIME EXPTIME-c.

~» EXPTIME: play the game in the graph augmented with the energy

level

~» EXPTIME-hardness: encode COUNTDOWN-GAME [JLS07]

[JLS07] Jurdzinski, Laroussinie, Sproston. Model checking probabilistic timed automata with one or two clocks (TACAS'07).
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0 clock: Relation with mean-payoff games

Definition
Mean-payoff games: in a weighted game graph, does there exists a
strategy s.t. the mean-cost of any play is nonnegative?
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Definition
Mean-payoff games: in a weighted game graph, does there exists a
strategy s.t. the mean-cost of any play is nonnegative?

Lemma

L-games and L+W-games are determined, and memoryless strategies are
sufficient to win. )

@ from mean-payoff games to L-games or L4+W-games: play in the
same game graph G with initial credit —M > 0 (where M is the sum
of negative costs in G).

e from L-games to mean-payoff games: transform the game as follows:
P 0

oO———0 ~  O——0——0
To

to initial state
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0 clock: Relation with mean-payoff games

Definition
Mean-payoff games: in a weighted game graph, does there exists a
strategy s.t. the mean-cost of any play is nonnegative?

Lemma

L-games and L+W-games are determined, and memoryless strategies are
sufficient to win.

4

Corollary

Mean-payoff games (and hence parity games) and L-games have the
same complexity (log-space reducibility).

~> a way to improve complexity of mean-payoff games [DGR09]

[DGRO9] Doyen, Gentilini, Raskin. Faster Pseudo-Polynomial Algorithms for Mean-Payoff Games.
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What about 1

clock?

1 clock

exist. problem

univ. problem
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undecidable
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1 clock: L- and L4+W-cases

Idea: delay in the most profitable location
~> the corner-point abstraction
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1 clock: L- and L4+W-cases

Idea: delay in the most profitable location
~> the corner-point abstraction

!X::O ><=1l

,—>[{0},o]—0>[(o,1),o];3>[(o,1),1]—0>[{1},1]

Example

0 0 0
[{0},o]—°>[(o,1),o]i6>[(o,1),1]—°>[{1},1]
0
0 0 0 0

[{0},o]—0>[(o,1),0];6>[(o,1),1]—0>[{1},1]
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1 clock: L- and L4+W-cases

Idea: delay in the most profitable location
~> the corner-point abstraction

Remark
The corner-point abstraction is not correct with discrete costs.

2 -3
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Idea: delay in the most profitable location

~> the corner-point abstraction

Remark

The corner-point abstraction is not correct with discrete costs.
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1 clock: L- and L4+W-cases

Idea: delay in the most profitable location
~> the corner-point abstraction

Remark

The corner-point abstraction is not correct with discrete costs.

2 -3
—(12) 14

x=1,x:=0
4 ! 2
i
3 I i 3 .
I | I I I I P
2 I i 2 I I I I
1 | i : I I I I
ya VARV ARV
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~ next talk by Nicolas Markey
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not terminate in general.

Globally (x<1)

-3

+6
20 “ 21 J 22
x:=0 x=1

[1.75,2]

10/13



1 clock: L4+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

Globally (x<1)

Pl R R e R CE B (o

10/13



1 clock: L4+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

Globally (x<1)

0] SR —— R LA

10/13



1 clock: L4+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

Globally (x<1)

e in the limit [2]

10/13



1 clock: L4+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.

Globally (x<1)

in the limit [2]

10/13



1 clock: L4+U-games

Theorem
The single-clock L+U-games are undecidable. J

11/13



1 clock: L4+U-games

Theorem
The single-clock L+ U-games are undecidable. J

We encode the behaviour of a two-counter machine:
@ each instruction is encoded as a module;
@ the values ¢; and ¢, of the counters are encoded by the energy level
1

2¢ . 3@

when entering the corresponding module.

e=5—

11/13



1 clock: L4+U-games

The single-clock L+U-games are undecidable.

Theorem J

We encode the behaviour of a two-counter machine:
@ each instruction is encoded as a module;
@ the values ¢; and ¢, of the counters are encoded by the energy level
1

2¢ . 3@

when entering the corresponding module.

e=5—

There is an infinite execution in the two-counter machine iff there is a
strategy in the single-clock timed game under which the energy level
remains between 0 and 5.

11/13



1 clock: L4+U-games

Theorem
The single-clock L+ U-games are undecidable. J

We encode the behaviour of a two-counter machine:
@ each instruction is encoded as a module;
@ the values ¢; and ¢, of the counters are encoded by the energy level
1

2¢ . 3@

when entering the corresponding module.

e=5—

There is an infinite execution in the two-counter machine iff there is a
strategy in the single-clock timed game under which the energy level
remains between 0 and 5.

~>  We present a generic construction
for incrementing/decrementing the counters.
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Generic module for incrementing/decrementing

L, 5 —6 +30 +30 o
() {m) (m2) (ms) )—=
Y \ J ¢ J |G ) —J

1
y x:=0 :
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Generic module for incrementing/decrementing

L, 5 —6 +30 +30 o
X ) {m) ) {m3) )—=
) Gy, ) (G =J
; x:=0 | x:=0
Y
+5 -5
x=1 x=1
_module ok _module ok |
energy
5—e +
X
0 1
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Generic module for incrementing/decrementing

+30 —«
() =) —=2
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0 | x:=0
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Generic module for incrementing/decrementing

-6 6 +30 +30 —a
x:=0 'm' 'm1' 'mz' 'm3' 'n' x=1

| GLLY) | G ) | G ) ) J

; x:=0 | x:=0

Y
+5 -5

x=1 x=1

_module ok “module ok

energy

5—e
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Generic module for incrementing/decrementing

-6 —6 +30 +30 —a
= . —()—)——=
Y \ J \ J | ) J
; x:=0 | x:=0
Y
+5 -5
x=1 x=1
_module ok _module ok
energy
5 e | @ o=3: increment ¢
@ a=2: increment c,
@ o=12: decrement ¢
@ «=18: decrement c,
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e Extension of weighted /priced (timed) automata with negative costs:

o three natural problems related to the management of resources;
o reasonable complexity in the untimed case;
e undecidable for 1-clock games.

@ Many open problems:
e in the untimed case:

@ existential problem with interval constraints: the problem is related to
reachability in 2-clock timed automata;

@ games with lower-bound constraint: the problem is equivalent to the
mean-payoff game problem.

e in the timed case:

@ many open questions for the 1-clock case, and no results for the
general case.

@ Other cost functions? ~> see next talk
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