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Energy is not only consumed, but can be regained.

; the aim is to continuously satisfy some energy constraints.
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An oil pump control system

[CJL+09] Cassez, Jessen, Larsen, Raskin, Reynier. Automatic synthesis of robust and optimal controllers - An industrial case study (HSCC’09).
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An example of resource management
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Only partial results so far

0 clock!

L

L+W

L+U

exist. problem univ. problem games

∈ PTIME ∈ PTIME
∈ UP ∩ co-UP

PTIME-hard

∈ PTIME ∈ PTIME
∈ NP ∩ co-NP

PTIME-hard

∈ PSPACE

NP-hard
∈ PTIME EXPTIME-c.
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Back to 0 clock

0 clock!

L
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∈ PTIME ∈ PTIME
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∈ NP ∩ co-NP

PTIME-hard

∈ PSPACE

NP-hard
∈ PTIME EXPTIME-c.

; PTIME: Bellman-Ford algorithm
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PTIME-hard

∈ PTIME ∈ PTIME
∈ NP ∩ co-NP

PTIME-hard

∈ PSPACE
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∈ PTIME EXPTIME-c.

; PSPACE: guess an infinite path in the graph augmented with the
energy level
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Back to 0 clock

[JLS07] Jurdziński, Laroussinie, Sproston. Model checking probabilistic timed automata with one or two clocks (TACAS’07).

0 clock!

L

L+W

L+U

exist. problem univ. problem games

∈ PTIME ∈ PTIME
∈ UP ∩ co-UP

PTIME-hard

∈ PTIME ∈ PTIME
∈ NP ∩ co-NP

PTIME-hard

∈ PSPACE

NP-hard
∈ PTIME EXPTIME-c.

; EXPTIME: play the game in the graph augmented with the energy
level
; EXPTIME-hardness: encode COUNTDOWN-GAME [JLS07]
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0 clock: Relation with mean-payoff games

[DGR09] Doyen, Gentilini, Raskin. Faster Pseudo-Polynomial Algorithms for Mean-Payoff Games.

Definition
Mean-payoff games: in a weighted game graph, does there exists a
strategy s.t. the mean-cost of any play is nonnegative?

Lemma
L-games and L+W-games are determined, and memoryless strategies are
sufficient to win.
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from mean-payoff games to L-games or L+W-games: play in the
same game graph G with initial credit −M ≥ 0 (where M is the sum
of negative costs in G ).

from L-games to mean-payoff games: transform the game as follows:
p p

0

to initial state

0;
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0 clock: Relation with mean-payoff games

[DGR09] Doyen, Gentilini, Raskin. Faster Pseudo-Polynomial Algorithms for Mean-Payoff Games.

Definition
Mean-payoff games: in a weighted game graph, does there exists a
strategy s.t. the mean-cost of any play is nonnegative?

Lemma
L-games and L+W-games are determined, and memoryless strategies are
sufficient to win.

Corollary

Mean-payoff games (and hence parity games) and L-games have the
same complexity (log-space reducibility).

; a way to improve complexity of mean-payoff games [DGR09]
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What about 1 clock?

1 clock
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1 clock: L- and L+W-cases

Idea: delay in the most profitable location
; the corner-point abstraction
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1 clock: L- and L+W-cases

Idea: delay in the most profitable location
; the corner-point abstraction

Remark
The corner-point abstraction is not correct with discrete costs.
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1 clock: L+U-problem and fixpoint computation

The backward fixpoint computation, which is correct in the limit, does
not terminate in general.
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1 clock: L+U-games

Theorem
The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

each instruction is encoded as a module;

the values c1 and c2 of the counters are encoded by the energy level

e = 5− 1

2c1 ⋅ 3c2
when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a
strategy in the single-clock timed game under which the energy level
remains between 0 and 5.

; We present a generic construction
for incrementing/decrementing the counters.
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Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

n

−�
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5−�e
6

�=3: increment c1

�=2: increment c2

�=12: decrement c1

�=18: decrement c2
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Conclusion & ongoing/future work

Extension of weighted/priced (timed) automata with negative costs:

three natural problems related to the management of resources;
reasonable complexity in the untimed case;
undecidable for 1-clock games.

Many open problems:
in the untimed case:

existential problem with interval constraints: the problem is related to
reachability in 2-clock timed automata;
games with lower-bound constraint: the problem is equivalent to the
mean-payoff game problem.

in the timed case:

many open questions for the 1-clock case, and no results for the
general case.

Other cost functions? ; see next talk
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