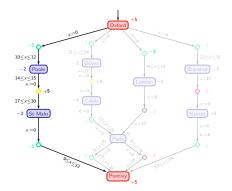
Managing resources in timed systems

Patricia Bouyer-Decitre Uli Fahrenberg Nicolas Markey Kim G. Larsen Jirí Srba

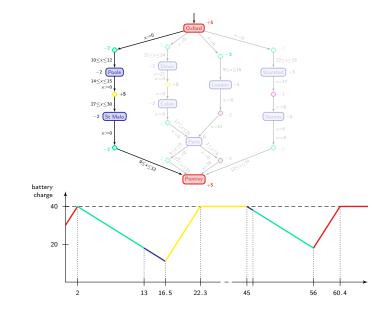
LSV. CNRS & ENS Cachan, France Aalborg University, Denmark

Dagstuhl seminar - January 2010

Can I work with my computer all the way?

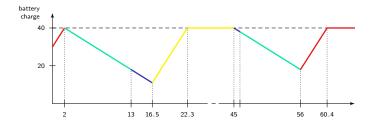


Can I work with my computer all the way?

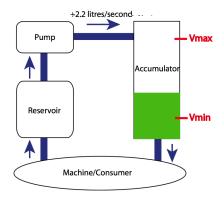


Can I work with my computer all the way?

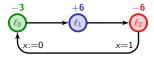
Energy is not only consumed, but can be regained. \sim the aim is to continuously satisfy some energy constraints.

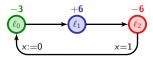


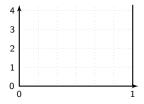
An oil pump control system



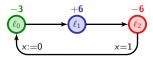
[CJL+09] Cassez, Jessen, Larsen, Raskin, Reynier. Automatic synthesis of robust and optimal controllers - An industrial case study (HSCC'09).

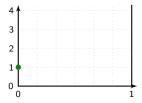




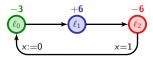


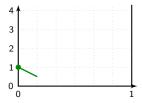
• Lower-bound problem: can we stay above 0?



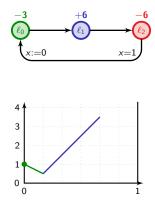


• Lower-bound problem: can we stay above 0?

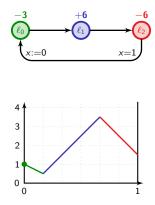




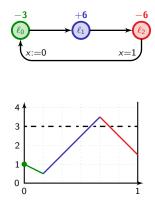
• Lower-bound problem: can we stay above 0?



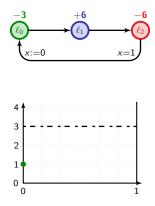
• Lower-bound problem: can we stay above 0?



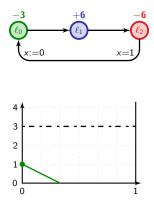
• Lower-bound problem: can we stay above 0?



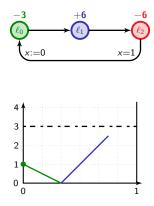
• Lower-bound problem: can we stay above 0?



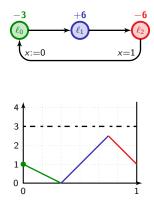
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



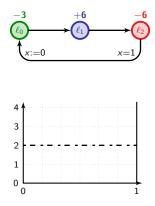
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



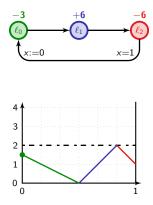
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



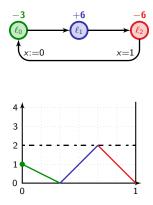
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



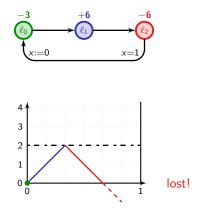
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



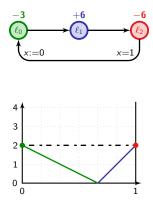
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



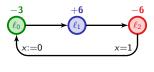
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

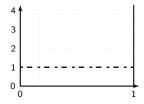


- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

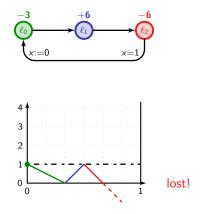


- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?





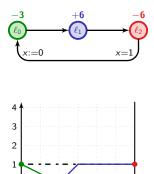
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

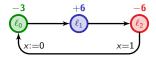
Globally $(x \le 1)$

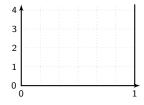
0 L



- Lower-bound problem
- Lower-upper-bound problem
- Lower-weak-upper-bound problem: can we "weakly" stay within bounds?

Globally ($x \le 1$)





- Lower-bound problem \rightsquigarrow L
- Lower-upper-bound problem \rightsquigarrow L+U

• Lower-weak-upper-bound problem ~~ \sim

→ L+W

Only partial results so far

0 clock!	exist. problem	univ. problem	games
L	∈ PTIME	∈ PTIME	$\in UP \cap co-UP$ PTIME-hard
L+W	∈ PTIME	∈ PTIME	$\in NP \cap co\text{-}NP$ $PTIME\text{-}hard$
L+U	$\in PSPACE$ NP-hard	∈ PTIME	EXPTIME-c.

Only partial results so far

1 clock	exist. problem	univ. problem	games
L	∈ PTIME	∈ PTIME	?
L+W	∈ PTIME	∈ PTIME	?
L+U	?	?	undecidable

Only partial results so far

n clocks	exist. problem	univ. problem	games
L	?	?	?
L+W	?	?	?
L+U	?	?	undecidable

Back to 0 clock

0 clock!	exist. problem	univ. problem	games
L	∈ PTIME	∈ PTIME	$\in UP \cap co-UP$ $PTIME-hard$
L+W	∈ PTIME	∈ PTIME	$\in NP \cap co\text{-}NP$ $PTIME\text{-}hard$
L+U	$\in PSPACE$ NP-hard	€ PTIME	EXPTIME-c.

 \sim PTIME: Bellman-Ford algorithm

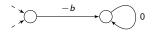
Back to 0 clock

0 clock!	exist. problem	univ. problem	games
L	∈ PTIME	∈ PTIME	$\in UP \cap co-UP$ $PTIME-hard$
L+W	∈ PTIME	∈ PTIME	$\in NP \cap co-NP \\ PTIME-hard$
L+U	$\in PSPACE$ NP-hard	∈ PTIME	EXPTIME-c.

 \rightsquigarrow PSPACE: guess an infinite path in the graph augmented with the energy level

 \rightsquigarrow NP-hardness: encode SUBSET-SUM:





Back to 0 clock

0 clock!	exist. problem	univ. problem	games
L	∈ PTIME	∈ PTIME	$\in UP \cap co-UP$ $PTIME-hard$
L+W	∈ PTIME	∈ PTIME	$\in NP \cap co\text{-}NP$ $PTIME\text{-}hard$
L+U	$\in PSPACE$ NP-hard	€ PTIME	EXPTIME-c.

 \sim EXPTIME: play the game in the graph augmented with the energy level

→ EXPTIME-hardness: encode COUNTDOWN-GAME [JLS07]

Definition

Mean-payoff games: in a weighted game graph, does there exists a strategy s.t. the mean-cost of any play is nonnegative?

Definition

Mean-payoff games: in a weighted game graph, does there exists a strategy s.t. the mean-cost of any play is nonnegative?

Lemma

 $\ensuremath{\mathsf{L}}\xspace$ and $\ensuremath{\mathsf{L}}\xspace+\ensuremath{\mathsf{W}}\xspace$ are determined, and memoryless strategies are sufficient to win.

Definition

Mean-payoff games: in a weighted game graph, does there exists a strategy s.t. the mean-cost of any play is nonnegative?

Lemma

 $\ensuremath{\mathsf{L}}\xspace$ and $\ensuremath{\mathsf{L}}\xspace+\ensuremath{\mathsf{W}}\xspace$ are determined, and memoryless strategies are sufficient to win.

• from mean-payoff games to L-games or L+W-games: play in the same game graph G with initial credit $-M \ge 0$ (where M is the sum of negative costs in G).

Definition

Mean-payoff games: in a weighted game graph, does there exists a strategy s.t. the mean-cost of any play is nonnegative?

Lemma

 $\ensuremath{\mathsf{L}}\xspace$ and $\ensuremath{\mathsf{L}}\xspace+\ensuremath{\mathsf{W}}\xspace$ are determined, and memoryless strategies are sufficient to win.

- from mean-payoff games to L-games or L+W-games: play in the same game graph G with initial credit $-M \ge 0$ (where M is the sum of negative costs in G).
- from L-games to mean-payoff games: transform the game as follows:

Definition

Mean-payoff games: in a weighted game graph, does there exists a strategy s.t. the mean-cost of any play is nonnegative?

Lemma

 $\ensuremath{\mathsf{L}}\xspace$ and $\ensuremath{\mathsf{L}}\xspace+\ensuremath{\mathsf{W}}\xspace$ are determined, and memoryless strategies are sufficient to win.

Corollary

Mean-payoff games (and hence parity games) and L-games have the same complexity (log-space reducibility).

 \sim a way to improve complexity of mean-payoff games [DGR09]

What about 1 clock?

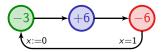
1 clock	exist. problem	univ. problem	games
L	∈ PTIME	∈ PTIME	?
L+W	∈ PTIME	∈ PTIME	?
L+U	?	?	undecidable

Idea: delay in the most profitable location

 \rightsquigarrow the corner-point abstraction

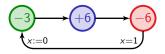
Idea: delay in the most profitable location

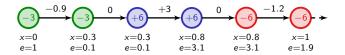
 \rightsquigarrow the corner-point abstraction



Idea: delay in the most profitable location

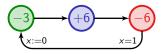
 \rightsquigarrow the corner-point abstraction

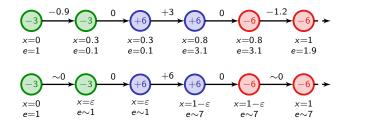




Idea: delay in the most profitable location

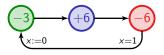
 \rightsquigarrow the corner-point abstraction

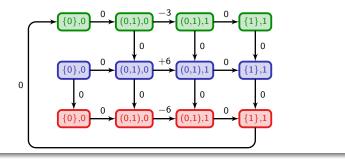




Idea: delay in the most profitable location

 \rightsquigarrow the corner-point abstraction

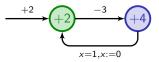




Idea: delay in the most profitable location

 \rightsquigarrow the corner-point abstraction

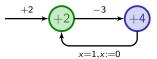
Remark

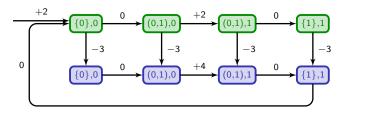


Idea: delay in the most profitable location

 \rightsquigarrow the corner-point abstraction

Remark

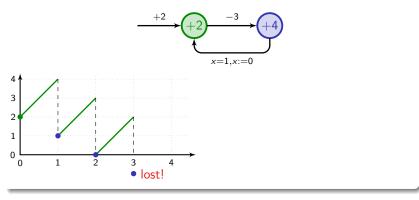




Idea: delay in the most profitable location

 \rightsquigarrow the corner-point abstraction

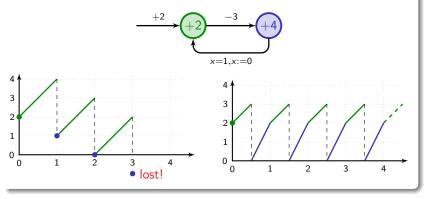
Remark



Idea: delay in the most profitable location

 \rightsquigarrow the corner-point abstraction

Remark

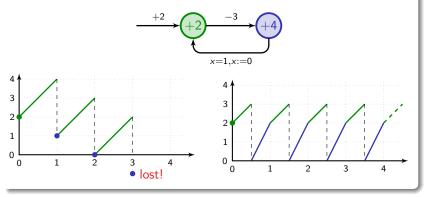


Idea: delay in the most profitable location

 \rightsquigarrow the corner-point abstraction

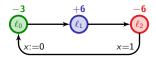
Remark

The corner-point abstraction is not correct with discrete costs.

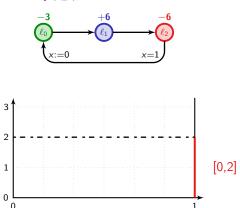


 \rightsquigarrow next talk by Nicolas Markey

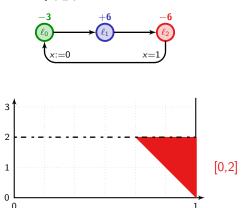
The backward fixpoint computation, which is correct in the limit, does not terminate in general.



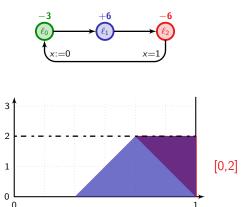
The backward fixpoint computation, which is correct in the limit, does not terminate in general.



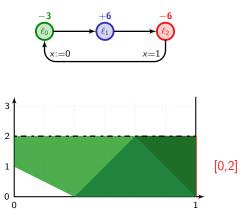
The backward fixpoint computation, which is correct in the limit, does not terminate in general.



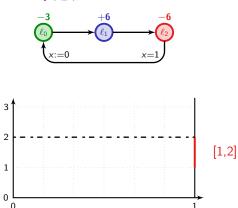
The backward fixpoint computation, which is correct in the limit, does not terminate in general.



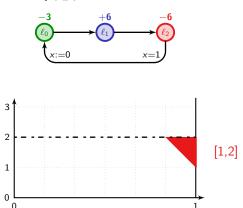
The backward fixpoint computation, which is correct in the limit, does not terminate in general.



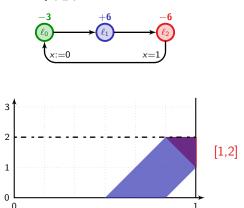
The backward fixpoint computation, which is correct in the limit, does not terminate in general.



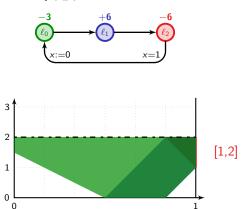
The backward fixpoint computation, which is correct in the limit, does not terminate in general.



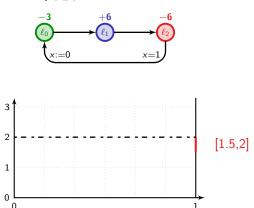
The backward fixpoint computation, which is correct in the limit, does not terminate in general.



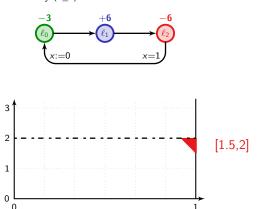
The backward fixpoint computation, which is correct in the limit, does not terminate in general.



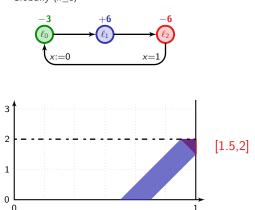
The backward fixpoint computation, which is correct in the limit, does not terminate in general.



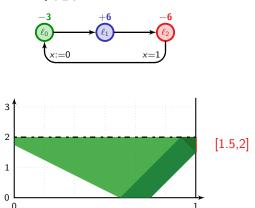
The backward fixpoint computation, which is correct in the limit, does not terminate in general.



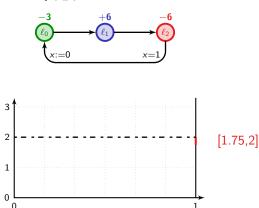
The backward fixpoint computation, which is correct in the limit, does not terminate in general.



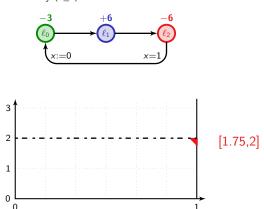
The backward fixpoint computation, which is correct in the limit, does not terminate in general.



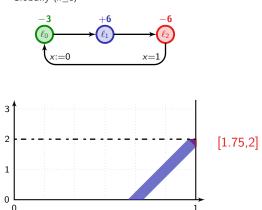
The backward fixpoint computation, which is correct in the limit, does not terminate in general.



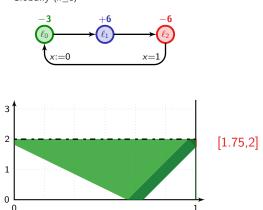
The backward fixpoint computation, which is correct in the limit, does not terminate in general.



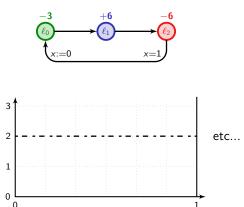
The backward fixpoint computation, which is correct in the limit, does not terminate in general.



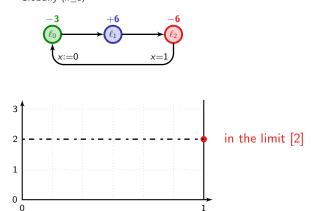
The backward fixpoint computation, which is correct in the limit, does not terminate in general.



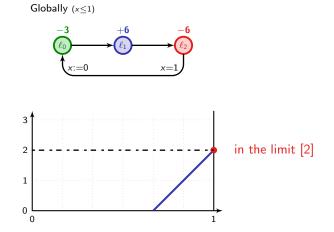
The backward fixpoint computation, which is correct in the limit, does not terminate in general.



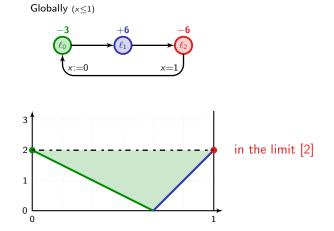
The backward fixpoint computation, which is correct in the limit, does not terminate in general.



The backward fixpoint computation, which is correct in the limit, does not terminate in general.



The backward fixpoint computation, which is correct in the limit, does not terminate in general.



Theorem

The single-clock L+U-games are undecidable.

Theorem

The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the energy level

$$e = 5 - \frac{1}{2^{c_1} \cdot 3^{c_2}}$$

when entering the corresponding module.

Theorem

The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the energy level

$$e = 5 - \frac{1}{2^{c_1} \cdot 3^{c_2}}$$

when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a strategy in the single-clock timed game under which the energy level remains between 0 and 5.

Theorem

The single-clock **L**+**U**-games are undecidable.

We encode the behaviour of a two-counter machine:

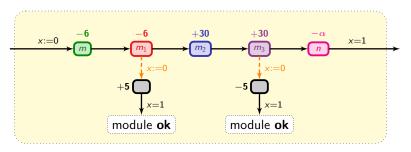
- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the energy level

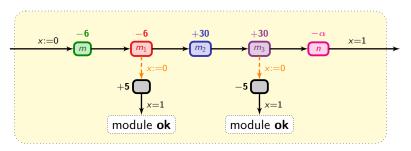
$$e = 5 - \frac{1}{2^{c_1} \cdot 3^{c_2}}$$

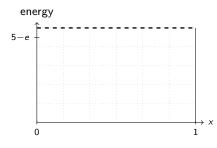
when entering the corresponding module.

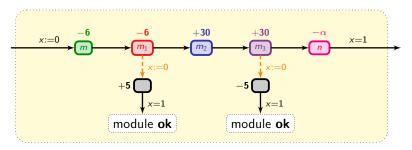
There is an infinite execution in the two-counter machine iff there is a strategy in the single-clock timed game under which the energy level remains between 0 and 5.

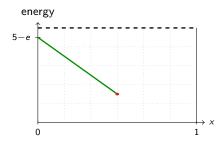
 → We present a generic construction for incrementing/decrementing the counters.

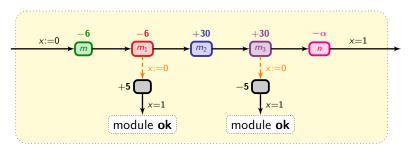


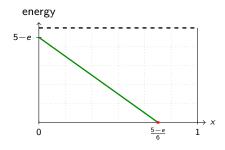


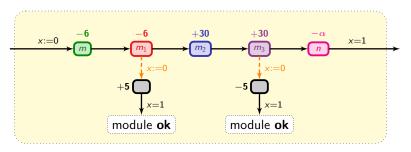


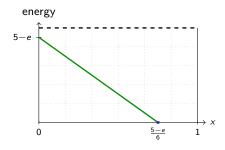


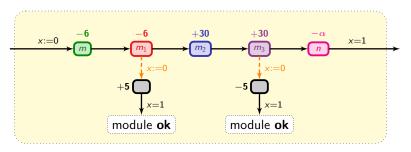


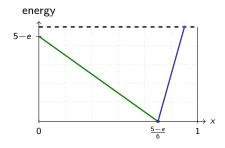


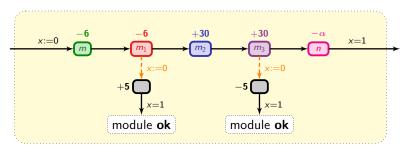


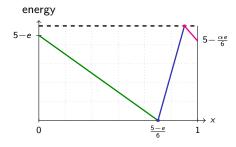


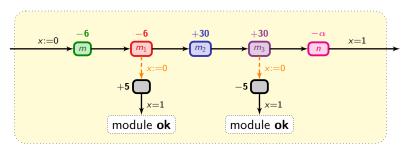


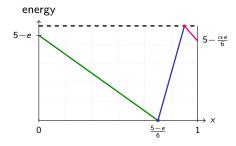












- $\alpha=3$: increment c_1
- $\alpha=2$: increment c_2
- $\alpha = 12$: decrement c_1
- α=18: decrement c₂

Conclusion & ongoing/future work

- Extension of weighted/priced (timed) automata with negative costs:
 - three natural problems related to the management of resources;
 - reasonable complexity in the untimed case;
 - undecidable for 1-clock games.

Conclusion & ongoing/future work

• Extension of weighted/priced (timed) automata with negative costs:

- three natural problems related to the management of resources;
- reasonable complexity in the untimed case;
- undecidable for 1-clock games.

Many open problems:

- in the untimed case:
 - existential problem with interval constraints: the problem is related to reachability in 2-clock timed automata;
 - games with lower-bound constraint: the problem is equivalent to the mean-payoff game problem.
- in the timed case:
 - many open questions for the 1-clock case, and no results for the general case.

Conclusion & ongoing/future work

• Extension of weighted/priced (timed) automata with negative costs:

- three natural problems related to the management of resources;
- reasonable complexity in the untimed case;
- undecidable for 1-clock games.

Many open problems:

- in the untimed case:
 - existential problem with interval constraints: the problem is related to reachability in 2-clock timed automata;
 - games with lower-bound constraint: the problem is equivalent to the mean-payoff game problem.
- in the timed case:
 - many open questions for the 1-clock case, and no results for the general case.

• Other cost functions?

 \sim see next talk