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Strict dichotomy between correct and incorrect systems
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~> this Boolean approach might be too crude J
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Quantitative logics based on LTL
@ Logics yielding finitely many values
e min/max extension of LTL to quant. Kripke structures [FLS08]

e extension of LTL with functions [ABK13]
~> the model-checking is decidable

@ LTL over weighted Kripke structures using numerical assertions over
weight variables [BCHK11, THHY12,BGM14]

~ various decidability/undecidability results
@ Frequency LTL [BDL12]

o boolean interpretation with quantitative constraints
o m=eUY2e if at least half of the positions satisfy e before o
~> the model-checking is undecidable

@ Discounted LTL [ABK14]
o the until modality discounts over the future

~ the (threshold) model-checking is decidable, undecidable with an
extra local average operator
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Examples of computations in Kripke structure IC

— 0O

[[IC,OﬁO]] =1

[[’Cv.fj.]] =1

o Formula e U'e:
° [[o-o-o“’,oﬁo]] = 1
e Formula e U'e:
° [[o'o~o“,oﬁo]] =0
o fo-(o- 0)“’,060}] =sup{n/(2n+1) | neN"} =1/2.
Note that the value 1/2 is not reached by any prefix.
o Write 7y, = e -o- . (o-0). Then:
[rh, 0 Ue] =sup{(k+n)/(k+2n+2) | neN}=k/(k+2)
Hence [K, oﬁo]] =1, even though no run witnesses that value.
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e Existence problem: given K, ¢, is there m in K s.t. [, @] > ¢?
e Value problem: given K, ¢, does [/, ¢] 1 c?

Theorem

The existence and value problems are undecidable (for every threshold of
the form <1 1/2).

Not always a link between the existence and the value problems:
o [KC,¢] > 1/2iff there is w in KC s.t. [, ] > 1/2
@ The same equivalence does not hold for other thresholds <1 1/2

o [IC, ] = 1/2 iff there exists a sequence (7")pen s.t. [77, ] < 1/2
for every n, and lim,— oo [7", ] =1/2
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holds that:
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[[q o"0e™M g/ .n(').n{q//,wa fj Q]] _ %

where ¥, = g’ Ve Ve when a =1+ ng+ )
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Undecidability of the existence problem (cont'd)

Global reduction
@ Formula to be checked:

halt s = F gpair A G consec g

where (roughly) conseca = A4 (q — o U Q)

@ The two counter machine halts iff there is an execution 7 such that
[r,halt ] = 1/2

~ This yields the undecidability of the existence problem
for threshold = 1/2
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Results

What about the value problem?

e If M halts, then [[Caq,halt p] = 1/2
@ It might be the case that M does not halt but [y, halt ] =1/2

M does not halt but [/, halt ] =1/2

C a++ M\ a1=0 M\ ap=0 O:
apg——
o

1= We need to be careful with machines having such a
converging phenomenon
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Technical lemmas

@ For a finite invalid run, if the first invalid consecution assigns a value
smaller than 1/2 — 1/n to consecy, then the value of formula
G consecy, along the run is smaller than 1/2 — 1/n.

We assume two halting states: accept and reject.

o If [ICar, accept ] = 1/2 but no run gives value 1/2 to formula
accept ,,, then the unique valid run is infinite.
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B det. Turing machine can either accept, reject, or not halt
—  M(B) two-counter machine which simulates B on B

We define the program

2B {accept if [y, accept pqm] = 1/2

reject  otherwise

The function H is not computable. }

Towards a contradiction, assume it is computable by det. Turing machine 77, and
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