Averaging in LTL

Patricia Bouyer Nicolas Markey Raj Mohan Matteplackel

LSV, CNRS & ENS Cachan, France

1/22

Introduction

Outline

© Introduction

2/22

Introduction
Model-checking

system: property:

model-checking - AG(—B.overfull
algorithm A —B.dried_up)

3/22

Introduction

Boolean verification

Strict dichotomy between correct and incorrect systems

Standard model-checking J

4/22

Introduction

Boolean verification

Standard model-checking

Strict dichotomy between correct and incorrect systems

00000000000000000000O0O0COCKOCOCFO " ': elU o

4/22

Introduction

Boolean verification

Standard model-checking

Strict dichotomy between correct and incorrect systems

00000000000000000000O0O0COCKOCOCFO " ': elU o

00000000000000000000O0COCOCKOCFCFE " l?é elUoe

4/22

Introduction

Boolean verification

Standard model-checking

Strict dichotomy between correct and incorrect systems

00000000000000000000O0O0COCKOCOCFO " ': elU o

00000000000000000000O0COCOCKOCFCFE " l?é elUoe

000000000000000000000O0CKOCKOCCFE " ': Ge

4/22

Introduction

Boolean verification

Standard model-checking

Strict dichotomy between correct and incorrect systems

00000000000000000000O0O0COCKOCOCFO " ': elU o
00000000000000000000O0COCOCKOCFCFE " l?é elUoe
000000000000000000000O0CKOCKOCCFE " ': Ge

00000000000000O0OOCGOCGCOCOOOOOONOTS " bé Ge

4/22

Introduction

Boolean verification

Standard model-checking
Strict dichotomy between correct and incorrect systems
000000000000 00000000O0CKOCKOCKOFOIS " ': .U.
0000000000000 000000O0K0CBOCGKOFOGFOGIIIS " bé .U.
0000000000000 00000O0CKOCKBOCGKOCFOGFOGISGIS " ': G.
0000000000000 0000OCGOCGOOGOGIOGIOGIOGIOG - % G.

~> this Boolean approach might be too crude J

4/22

Introduction

Towards quantitative verification

Quantitative model-checking

Measure the accuracy of a system w.r.t. a property.

5/22

Introduction

Towards quantitative verification

Quantitative model-checking

Measure the accuracy of a system w.r.t. a property.

1= give a value in [0, 1] instead of a Boolean value!

5/22

Introduction

Towards quantitative verification

Quantitative model-checking

Measure the accuracy of a system w.r.t. a property.

1= give a value in [0, 1] instead of a Boolean value!

0000000000000 0000000000000 - highvalueto e U o

5/22

Introduction

Towards quantitative verification

Quantitative model-checking

Measure the accuracy of a system w.r.t. a property.

1= give a value in [0, 1] instead of a Boolean value!

0000000000000 0000000000000 - highvalueto e U o

0000000000000 0000000000000 - - smallervalueto e U [}

5/22

Introduction

Towards quantitative verification

Quantitative model-checking

Measure the accuracy of a system w.r.t. a property.

1= give a value in [0, 1] instead of a Boolean value!

0000000000000 0000000000000 - highvalueto e U o

0000000000000 0000000000000 - - smallervalueto e U [}

0000000000000 0000000000000 - - high value to G e

5/22

Introduction

Towards quantitative verification

Quantitative model-checking

Measure the accuracy of a system w.r.t. a property.

1= give a value in [0, 1] instead of a Boolean value!

0000000000000 0000000000000 - highvalueto e U o
©c000000000000000000000000 - - smallervalueto e U o
0000000000000 0000000000000 - - high value to G e

0000000000000 0000000000000 --- smallervalueto G e

5/22

Introduction

Related work

Quantitative verification
@ value of executions given by weighted automata [DCH10,..]

@ accuracy of a model given by a distance to another model or to a
specification (e.g. simulation distance [CHR12], model measuring
[HO13])

@ quantitative specification languages/logics: standard in probabilistic
model-checking (e.g. CSL and PCTL logics)

6/22

Introduction

Related work

Quantitative verification
@ value of executions given by weighted automata [DCH10,..]

@ accuracy of a model given by a distance to another model or to a

specification (e.g. simulation distance [CHR12], model measuring
[HO13])

@ quantitative specification languages/logics: standard in probabilistic
model-checking (e.g. CSL and PCTL logics)

6/22

Introduction

Related work — cont'd

Quantitative logics based on LTL
@ Logics yielding finitely many values
e min/max extension of LTL to quant. Kripke structures [FLS08]

e extension of LTL with functions [ABK13]
~> the model-checking is decidable

7/22

Introduction

Related work — cont'd

Quantitative logics based on LTL
@ Logics yielding finitely many values
e min/max extension of LTL to quant. Kripke structures [FLS08]

e extension of LTL with functions [ABK13]
~> the model-checking is decidable

@ LTL over weighted Kripke structures using numerical assertions over
weight variables [BCHK11, THHY12,BGM14]

~ various decidability/undecidability results

7/22

Introduction

Related work — cont'd

Quantitative logics based on LTL
@ Logics yielding finitely many values
e min/max extension of LTL to quant. Kripke structures [FLS08]

e extension of LTL with functions [ABK13]
~> the model-checking is decidable

@ LTL over weighted Kripke structures using numerical assertions over
weight variables [BCHK11, THHY12,BGM14]

~ various decidability/undecidability results
@ Frequency LTL [BDL12]

o boolean interpretation with quantitative constraints
o m=eUY2e if at least half of the positions satisfy e before o
~> the model-checking is undecidable

7/22

Introduction

Related work — cont'd

Quantitative logics based on LTL
@ Logics yielding finitely many values
e min/max extension of LTL to quant. Kripke structures [FLS08]

e extension of LTL with functions [ABK13]
~> the model-checking is decidable

@ LTL over weighted Kripke structures using numerical assertions over
weight variables [BCHK11, THHY12,BGM14]

~ various decidability/undecidability results
@ Frequency LTL [BDL12]

o boolean interpretation with quantitative constraints
o m=eUY2e if at least half of the positions satisfy e before o
~> the model-checking is undecidable

@ Discounted LTL [ABK14]
o the until modality discounts over the future

~ the (threshold) model-checking is decidable, undecidable with an
extra local average operator

Average-LTL

Outline

© Average LTL

8/22

Average-LTL

The logic Average-LTL

o= plapleVeleAe[XeleUp|GeleUp|Ge.

9/22

Average-LTL
The logic Average-LTL
o u=plopleVvelehe|XeloUp|GeleUyp|Go.

[m 41 v o] = max([m, 9], [m, ¢2])
[[71-7"701 A 7/}2]] = min([[ﬂvwl]]7[[7rvw2]])

9/22

Average-LTL

The logic Average-LTL

pu=plapleVvelone|XeleUp|[GeleUep|Ge.

[[Wa¢1 \ ¢2]]
[7r,1b1 A @bZH
[, X ¥l
[7,G ¢l
[7,4 U o]

max ([, 1], [7, ¢2])
min([r, 1], [, v2])

[7>1.]
infi ([7>i, ¢])
sup; (mi“([[ﬂzi,<PH7minogj<i([[ﬂzja¢]]))) @@

9/22

Average-LTL

The logic Average-LTL

pu=rploplevelene|XeleUe|GeleUp|Ge.

[[Trawl \ ¢2]]
[m, 91 A 22]

[, X ¢]
[, G]
[m, % U]

[7, G ¢]

max ([, 1], [7, ¢2])
min([r, 1], [, v2])

[7>1,]
infi ([7>i, ¢])
sup; (min([7>;,], mino<j<i([m>;, Zb]])))

liminfi o0 (YSglm>), 0]) /i

9/22

Average-LTL

The logic Average-LTL

o= plapleVeleAe[XeleUp|GeleUp|Ge.

[[77,1?1 \ ¢2ﬂ
[7r,1b1 A @b2ﬂ
[, X ¥l
[7,G ¢l
[7,4 U o]

[7.G¢]
[7, 4 U]

= max ([, el supyso (min ([, ¢l (5556 b=, 1) /1)))

max ([, 1], [7, ¢2])
min([r, 1], [, v2])

[7>1,]

inf; ([7>i,¢])

sup; (min([7>;,], mino<j<i([m>;, Zb]])))
liminfi o (Y0 Sg[m)s ¢l) /i o

9/22

Average-LTL
The logic Average-LTL
pu=plapleVvelone|XeleUp|[GeleUep|Ge.

[[71',’(/}1 \ ¢2]] = maX([[ﬂ',’(ﬁl]], [[7T7¢2]])
[[7771/)1 A 7/)2]] = min([[ﬂ-vd)l]L [[7771!)2]})

[7.X¢] = [r>1,¢4]
[7,Ge]l = infi([r>i,¢])

[r,p U] = sup; (min([[ﬂzn@]],mi“03i<i([[77>4a¢]])))
[r,Gel = liminfio(SUSilms)e]) /i

[r Tl = max ([, el supsso(min([msi, ol (S35 b, 1) /1))

v

For a Kripke structure IC,

[K,e] = sup [m, ¢]
7 path in K

9/22

Average-LTL
The logic Average-LTL
pu=plapleVvelone|XeleUp|[GeleUep|Ge.

[[71',’(/}1 \ ¢2]] = max([[w,zpl]], ﬂ”v¢2]])
[[7771/)1 A 7/)2]] = min([[ﬂ-vd)l]L [[7‘-7'(!)2]})

[7.X¢] = [r>1,¢4]
[7,Ge] = infi([r>i¢])

[r,p U] = sup; (min([[ﬂzn@]],mi“03i<i([[77>4a¢]])))
[r,Gel = liminfio(SUSilms)e]) /i

[r Tl = max ([, el supsso(min([msi, ol (S35 b, 1) /1))

v

For a Kripke structure IC,

[K,e] = sup [m, ¢]
7 path in K

9/22

Average-LTL

[m, v U ¢] = sup; (min([[ﬂzmﬁﬂvmin0§j<i(ﬂ7fzi:¢]])))

10/22

Average-LTL

o o] — o

[m,¢ U @] = sup; (min([[wz,-,cp]],min0§j<,-([[7r2j,@/;]])))

10/22

Average-LTL

[m, v U ¢] = sup; (min([[ﬂzmﬁﬂvmin0§j<i(ﬂ7fzi:¢]])))

10/22

Average-LTL

[m, v U ¢] = sup; (min([[ﬂzmﬁﬂvmin0§j<i(ﬂ7fzi:¢]])))

10/22

Average-LTL

[m, v U ¢] = sup; (min([[ﬂzmﬁﬂvmin0§j<i(ﬂ7fzi:¢]])))

10/22

Average-LTL

[m, v U ¢] = sup; (min([[ﬂzmﬁﬂvmin0§j<i(ﬂ7fzi:¢]])))

10/22

Average-LTL

[m, v U ¢] = sup; (min([[ﬂzmﬁﬂvmin0§j<i(ﬂ7fzi:¢]])))

10/22

Average-LTL

[U o] = sup; (‘min ([,], minog<i([r;: v1)))

10/22

Average-LTL

[r. ¢ U] = sup; (min([[ﬂzi, ¢, min0§j<i([[7fzjﬂ/)]]))): 03

10/22

Average-LTL

[r. ¢ U] = sup; (min([[ﬂzi, ¢, min0§j<i([[7fzjﬂ/)]]))): 03

10/22

Average-LTL

[[71', wﬁ‘ﬂ]] = max ([[71-7 (pﬂvsupi>0(min([[ﬂ-2iv 90]]’ (Ejiéj [[TrZval])/l))>

11/22

Average-LTL

[[71', wﬁ‘ﬂ]] = max ([[71-7 (pﬂvsupi>0(min([[ﬂ-2iv 90]]’ (Ejiéj [[TrZval])/l))>

11/22

Average-LTL

[[71', wﬁ‘ﬂ]] = max ([[71-7 (pﬂvsupi>0(min([[ﬂ-2iv 90]]’ (Ejiéj [[TrZval])/l))>

11/22

Average-LTL

[[71', wﬁ‘ﬂ]] = max ([[71-7 (pﬂvsupi>0(min([[ﬂ-2iv 90]]’ (Ejiéj [[TrZval])/l))>

11/22

Average-LTL

[[71', wﬁ‘ﬂ]] = max ([[71-7 (pﬂvsupi>0(min([[ﬂ-2iv 90]]’ (Ejiéj [[TrZval])/l))>

11/22

Average-LTL

[[71', wﬁ‘ﬂ]] = max ([[71-7 (pﬂvsupi>0(min([[ﬂ-2iv 90]]’ (Ejiéj [[TrZval])/l))>

11/22

Average-LTL

[[71', wﬁ‘ﬂ]] = max ([[71-7 (pﬂvsupi>0(min([[ﬂ-2iv 90]]’ (Ejiéj [[TrZval])/l))>

11/22

Average-LTL

[[71', wﬁ‘ﬂ]] = max ([[71-7 (pﬂvsupi>0(min([[ﬂ-2iv 90]]’ (Ejiéj [[TrZval])/l))>

11/22

Average-LTL

[0 U o] = max ([, 1, supyo (min ([, 0], (3456 [, 01) /1))) = 0.5

11/22

Average-LTL

o o — o

[[F,?/)ﬁ(p]] = max ([[7'(', ¢l sup;so (min([r>i, ¢], (Ejié [[wzj,wl])/i))): 0.5

11/22

Average-LTL

Back to the introductory examples

00000000000000000000000000 - - highvalueto .ﬁ.
00000000000000000000000000 - - - smaller value to .fj.
00000000000000000000000000 - - - highvalueto (N;.

00000000000000000000000000 - - - smaller value to a.

12/22

Average-LTL

Back to the introductory examples

000000000000000000000000O0F0 - - givesvalueo.g6to .fj.
00000000000000000000000OOCCFFF - - Sma||erva|ueto .ﬁ.
0000000000000 00000COCCOCOCFONOCIOTS " - highvalueto a.
00000000000000000000000KOCOCFFF " - Sma”erVaIUetO a.

12/22

Average-LTL

Back to the introductory examples

000000000000000000000000O0F0 - - givesvalueo.g6to .fj—.
00000000000000000000000OOCCFFF - - givesvalue0.68to .fj.
0000000000000 00000COCCOCOCFONOCIOTS " - highvalueto a.
00000000000000000000000KOCOCFFF " - Sma”erVaIUetO a.

12/22

Back to the introductory examples

Average-LTL

gives value 0.96 to

gives value 0.68 to

gives value 1 to

smaller value to

e Ue

e Ue

12/22

Average-LTL

Back to the introductory examples

00000000000000000000000COKOCOCFFF - - givesvalue0‘96to .fj.
00000000000000000000000OCCFF "' - givesvalue0.68to .ﬁ.
000000000000000000000000C0KO0CFF - - givesvaluelto é.

0000000000000 0000COCGCGOCOCOIONOGIOTS - - givesvalueO_?Sto a.

12/22

Average-LTL

Examples of computations in Kripke structure IC

—_—

[[K:7Oﬁ0]] =7

o Formula e U'e:
° [[o-o-o“’,oﬁo]] =1

13/22

Average-LTL

Examples of computations in Kripke structure IC

— 0O

[[IC,OﬁO]] =1

o Formula e U'e:
° [[o-o-o“’,oﬁo]] =1

13/22

Average-LTL

Examples of computations in Kripke structure IC

— 0O

[[IC,OﬁO]] =1

[K, e U] =7

o Formula e U'e:
° [[o-o-o“’,oﬁo]] =1

o Formula e U e:

13/22

Average-LTL

Examples of computations in Kripke structure IC
— O boa D] =1

[K, e U] =7

o Formula e Ue:

° [[o-o-o“’,oﬁo]]:l
o Formula e U e:

° [[o~o~o“’,oﬁo]]:0

13/22

Average-LTL

Examples of computations in Kripke structure IC

— 0O

[[IC,OﬁO]] =1

[K,eUe] =7

o Formula e U'e:
° [[o-o-o“’,oﬁo]] =1l
e Formula e U'e:
° [[o'o~o“,oﬁo]] =0
o o (o- o)“’,oﬁo}] =sup{n/(2n+1) | ne N} =1/2.
Note that the value 1/2 is not reached by any prefix.

13/22

Average-LTL

Examples of computations in Kripke structure IC

— 0O

[[IC,OﬁO]] =1

[[]C,.ﬁ.]] =7

o Formula e U'e:
° [[o-o-o“’,oﬁo]] = 1
o Formula e U'e:
° [[o'o~o“,oﬁo]] =0
o fo-(o-0),0Us] =sup{n/(2n+1) | ne N} =1/2.
Note that the value 1/2 is not reached by any prefix.
o Write 7y, = e -o- . (o-0). Then:

[rh, 0 Ue] =sup{(k+n)/(k+2n+2) | neN}=k/(k+2)

13/22

Average-LTL

Examples of computations in Kripke structure IC

— 0O

[[IC,OﬁO]] =1

[[’Cv.fj.]] =1

o Formula e U'e:
° [[o-o-o“’,oﬁo]] = 1
e Formula e U'e:
° [[o'o~o“,oﬁo]] =0
o fo-(o- 0)“’,060}] =sup{n/(2n+1) | neN"} =1/2.
Note that the value 1/2 is not reached by any prefix.
o Write 7y, = e -o- . (o-0). Then:
[rh, 0 Ue] =sup{(k+n)/(k+2n+2) | neN}=k/(k+2)
Hence [K, oﬁo]] =1, even though no run witnesses that value.

13/22

Results

Outline

© Results

14/22

Results

Our results

For any threshold i c:
e Existence problem: given K, ¢, is there m in K s.t. [, @] > ¢?
@ Value problem: given K, ¢, does [K,] i c?

15/22

Results

Our results

For any threshold i c:
e Existence problem: given K, ¢, is there m in K s.t. [, @] > ¢?
@ Value problem: given K, ¢, does [K,] i c?

Theorem

The existence and value problems are undecidable (for every threshold of
the form <1 1/2).

15/22

Results

Our results

For any threshold i c:
e Existence problem: given K, ¢, is there m in K s.t. [, @] > ¢?
@ Value problem: given K, ¢, does [K,] i c?

Theorem

The existence and value problems are undecidable (for every threshold of
the form <1 1/2).

Not always a link between the existence and the value problems:
o [KC,¢] > 1/2iff there is w in KC s.t. [,] > 1/2

15/22

Results

Our results

For any threshold i c:
e Existence problem: given K, ¢, is there m in K s.t. [, @] > ¢?
@ Value problem: given K, ¢, does [K,] i c?

Theorem

The existence and value problems are undecidable (for every threshold of
the form <1 1/2).

Not always a link between the existence and the value problems:

o [KC,¢] > 1/2iff there is w in KC s.t. [,] > 1/2
@ The same equivalence does not hold for other thresholds <1 1/2

15/22

Results

Our results

For any threshold i c:
e Existence problem: given K, ¢, is there m in K s.t. [, @] > ¢?
e Value problem: given K, ¢, does [/, ¢] 1 c?

Theorem

The existence and value problems are undecidable (for every threshold of
the form <1 1/2).

Not always a link between the existence and the value problems:
o [KC,¢] > 1/2iff there is w in KC s.t. [,] > 1/2
@ The same equivalence does not hold for other thresholds <1 1/2

o [IC,] = 1/2 iff there exists a sequence (7")pen s.t. [77,] < 1/2
for every n, and lim,— oo [7",] =1/2

15/22

Results

Undecidability of the existence problem

Encoding of a two-counter machine M

e Configuration (g, ng, n1) encoded in unary: q e™e™

16/22

Results

Undecidability of the existence problem

Encoding of a two-counter machine M
e Configuration (g, ng, n1) encoded in unary: q e™e™

@ Execution encoded as a run (concatenation of the above)

16/22

Results

Undecidability of the existence problem

Encoding of a two-counter machine M
e Configuration (g, ng, n1) encoded in unary: q e™e™
@ Execution encoded as a run (concatenation of the above)
@ Structure of M and zero tests encoded in a Kripke structure g

16/22

Results

Undecidability of the existence problem

Encoding of a two-counter machine M

Configuration (g, ng, n1) encoded in unary: q e™e™

Execution encoded as a run (concatenation of the above)
Structure of M and zero tests encoded in a Kripke structure K

Checking counter values requires Average-LTL

16/22

Results

Undecidability of the existence problem

Encoding of a two-counter machine M
e Configuration (g, ng, n1) encoded in unary: q e™e™
@ Execution encoded as a run (concatenation of the above)
@ Structure of M and zero tests encoded in a Kripke structure g
@ Checking counter values requires Average-LTL

(g, no, m) — (¢, ng, n}) keeps counter values unchanged whenever
for every o € {1+ ng + ny, 1+ ng + nf, 1+ nj+ ny, 1+ nj + ni}, it

holds that:
« 1

(T+nm+m)+Q+n+n) 2

16/22

Results

Undecidability of the existence problem

Encoding of a two-counter machine M
e Configuration (g, ng, n1) encoded in unary: q e™e™
@ Execution encoded as a run (concatenation of the above)
@ Structure of M and zero tests encoded in a Kripke structure g
@ Checking counter values requires Average-LTL

(g, no, m) — (¢, ng, n}) keeps counter values unchanged whenever
for every o € {1+ ng + ny, 1+ ng + nf, 1+ nj+ ny, 1+ nj + ni}, it

holds that:
« 1

(T+nm+m)+Q+n+n) 2

[[q o"0e™M g/ .n(').n{q//,wa fj Q]] _ %

where ¥, = g’ Ve Ve when a =1+ ng+)

16/22

Results

Undecidability of the existence problem (cont'd)

Global reduction
@ Formula to be checked:

halt s = F gpair A G consec g

where (roughly) consecp = Ag 4 (q — Yy U Q)

17/22

Results

Undecidability of the existence problem (cont'd)

Global reduction
@ Formula to be checked:

halt s = F gpair A G consec g

where (roughly) consecp = Ag 4 (q — Yy U Q)

@ The two counter machine halts iff there is an execution 7 such that
[r,halt] = 1/2

17/22

Results

Undecidability of the existence problem (cont'd)

Global reduction
@ Formula to be checked:

halt s = F gpair A G consec g

where (roughly) conseca = A4 (q — o U Q)

@ The two counter machine halts iff there is an execution 7 such that
[r,halt] = 1/2

~ This yields the undecidability of the existence problem
for threshold = 1/2

17/22

Results

What about the value problem?
o If M halts, then [Kaq, halt] = 1/2

18/22

Results

What about the value problem?

e If M halts, then [[Caq,halt p] = 1/2
@ It might be the case that M does not halt but [y, halt] =1/2

18/22

Results

What about the value problem?

e If M halts, then [[Caq,halt p] = 1/2
@ It might be the case that M does not halt but [y, halt] =1/2

M does not halt but [/, halt] =1/2

C a++ M\ a1=0 M\ ap=0 O:
apg——
o

1= We need to be careful with machines having such a
converging phenomenon

18/22

Results

Arguments for the undecidability proof

Technical lemmas

@ For a finite invalid run, if the first invalid consecution assigns a value
smaller than 1/2 — 1/n to consecy, then the value of formula
G consecy, along the run is smaller than 1/2 — 1/n.

19/22

Results

Arguments for the undecidability proof

Technical lemmas
@ For a finite invalid run, if the first invalid consecution assigns a value
smaller than 1/2 — 1/n to consecy, then the value of formula
G consecy, along the run is smaller than 1/2 — 1/n.

We assume two halting states: accept and reject.

19/22

Results

Arguments for the undecidability proof

Technical lemmas

@ For a finite invalid run, if the first invalid consecution assigns a value
smaller than 1/2 — 1/n to consecy, then the value of formula
G consecy, along the run is smaller than 1/2 — 1/n.

We assume two halting states: accept and reject.

o If [ICar, accept] = 1/2 but no run gives value 1/2 to formula
accept ,,, then the unique valid run is infinite.

19/22

Results

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
— M(B) two-counter machine which simulates B on B

20/22

Results

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
— M(B) two-counter machine which simulates B on B
We define the program
2B {ac-cept if [[ICM-(B),acceptM(B)]] =1/2
reject otherwise

20/22

Results

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
— M(B) two-counter machine which simulates B on B

We define the program

H:Br {accept if [Kr(s), accept pyg)] = 1/2

reject otherwise

The function H is not computable. J

20/22

Results

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
— M(B) two-counter machine which simulates B on B

We define the program

2B {accept if [y, accept pqm] = 1/2

reject otherwise

The function H is not computable. J

Towards a contradiction, assume it is computable by det. Turing machine 7,

20/22

Results

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
— M(B) two-counter machine which simulates B on B

We define the program

2B {accept if [y, accept pqm] = 1/2

reject otherwise

The function H is not computable. }

Towards a contradiction, assume it is computable by det. Turing machine 77, and
define the program:
C(B): Simulate T3 on B;
If T34 accepts B then reject, otherwise accept

20/22

Results

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
— M(B) two-counter machine which simulates B on B

We define the program

2B {accept if [y, accept pqm] = 1/2

reject otherwise

The function H is not computable. }

Towards a contradiction, assume it is computable by det. Turing machine 77, and
define the program:

C(B): Simulate T3 on B;
If T34 accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C

20/22

Results

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
— M(B) two-counter machine which simulates B on B

We define the program

2B {accept if [y, accept pqm] = 1/2

reject otherwise

The function H is not computable. J

Towards a contradiction, assume it is computable by det. Turing machine 77, and
define the program:

C(B): Simulate T3 on B;
If T34 accepts B then reject, otherwise accept
Program C is deterministic hence we can run C on C
Program C always terminates:

@ Assume C accepts C:

20/22

Results

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
— M(B) two-counter machine which simulates B on B

We define the program

2B {accept if [y, accept pqm] = 1/2

reject otherwise

The function H is not computable. J

Towards a contradiction, assume it is computable by det. Turing machine 77, and
define the program:

C(B): Simulate T3 on B;
If T34 accepts B then reject, otherwise accept
Program C is deterministic hence we can run C on C
Program C always terminates:

@ Assume C accepts C: this means that 7(C) = reject,

20/22

Results

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
— M(B) two-counter machine which simulates B on B

We define the program

2B {accept if [y, accept pqm] = 1/2

reject otherwise

The function H is not computable. J

Towards a contradiction, assume it is computable by det. Turing machine 77, and
define the program:
C(B): Simulate T3 on B;
If T34 accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

@ Assume C accepts C: this means that 7(C) = reject, hence
[[ICM(C), acceptM(c)]] <1/2.

20/22

Results

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
— M(B) two-counter machine which simulates B on B

We define the program

2B {accept if [y, accept pqm] = 1/2

reject otherwise

The function H is not computable. J

Towards a contradiction, assume it is computable by det. Turing machine 77, and
define the program:
C(B): Simulate T3 on B;
If T34 accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

@ Assume C accepts C: this means that 7(C) = reject, hence
[Kr(cy, accept pqcy]l < 1/2. This implies M(C) does not accept,

20/22

Results

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
— M(B) two-counter machine which simulates B on B

We define the program

2B {accept if [y, accept pqm] = 1/2

reject otherwise

The function H is not computable. J

Towards a contradiction, assume it is computable by det. Turing machine 77, and
define the program:
C(B): Simulate T3 on B;
If T34 accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

@ Assume C accepts C: this means that 7(C) = reject, hence

[rc)s acceptM(c)]] < 1/2. This implies M(C) does not accept, and therefore
C does not accept C,

20/22

Results

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
— M(B) two-counter machine which simulates B on B

We define the program

2B {accept if [y, accept pqm] = 1/2

reject otherwise

The function H is not computable. J

Towards a contradiction, assume it is computable by det. Turing machine 77, and
define the program:
C(B): Simulate T3 on B;
If T34 accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

@ Assume C accepts C: this means that 7(C) = reject, hence

[[ICM(C), acceptM(c)]] < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

20/22

Results

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
— M(B) two-counter machine which simulates B on B

We define the program

2B {accept if [y, accept pqm] = 1/2

reject otherwise

The function H is not computable. J

Towards a contradiction, assume it is computable by det. Turing machine 77, and
define the program:
C(B): Simulate T3 on B;
If T34 accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

@ Assume C accepts C: this means that 7(C) = reject, hence
[[ICM(C), acceptM(c)]] < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

O [Ka(c), accept pq()] = 1/2.

20/22

Results

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
— M(B) two-counter machine which simulates B on B

We define the program

2B {accept if [y, accept pqm] = 1/2

reject otherwise

The function H is not computable. J

Towards a contradiction, assume it is computable by det. Turing machine 77, and
define the program:
C(B): Simulate T3 on B;
If T34 accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:
@ Assume C accepts C: this means that 7(C) = reject, hence
[rc)s acceptM(c)]] < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.
O [Kaq(c)s accept rq(c)]l = 1/2. However since C does not accept C, the unique
valid computation of M(C) is either infinite or rejecting.

20/22

Results

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
— M(B) two-counter machine which simulates B on B

We define the program

2B {accept if [y, accept pqm] = 1/2

reject otherwise

The function H is not computable. J

Towards a contradiction, assume it is computable by det. Turing machine 77, and
define the program:
C(B): Simulate T3 on B;
If T3, accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:
@ Assume C accepts C: this means that 7(C) = reject, hence
[rc)s acceptM(c)]] < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

O [Kaq(c)s accept rq(c)]l = 1/2. However since C does not accept C, the unique

valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite,

20/22

Results

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
— M(B) two-counter machine which simulates B on B

We define the program

2B {accept if [y, accept pqm] = 1/2

reject otherwise

The function H is not computable. J

Towards a contradiction, assume it is computable by det. Turing machine 77, and
define the program:
C(B): Simulate T3 on B;
If T3, accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:
@ Assume C accepts C: this means that 7(C) = reject, hence
[rc)s acceptM(c)]] < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

O [Kaq(c)s accept rq(c)]l = 1/2. However since C does not accept C, the unique

valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite, which contradicts the fact that C always terminates.

20/22

Results

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
— M(B) two-counter machine which simulates B on B

We define the program

2B {accept if [y, accept pqm] = 1/2

reject otherwise

The function H is not computable. J

Towards a contradiction, assume it is computable by det. Turing machine 77, and
define the program:
C(B): Simulate T3 on B;
If T3, accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

@ Assume C accepts C: this means that 7(C) = reject, hence
[rc)s acceptM(c)]] < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

O [Kaq(c)s accept rq(c)]l = 1/2. However since C does not accept C, the unique
valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

20/22

Conclusion

Outline

@ Conclusion

21/22

Conclusion

Conclusion and current work

@ We have proposed a natural and expressive quant. extension of LTL

22/22

Conclusion

Conclusion and current work

@ We have proposed a natural and expressive quant. extension of LTL
@ Unfortunately the model-checking is undecidable

o No nesting of quantitative modalities in the proof is required

22/22

Conclusion

Conclusion and current work

@ We have proposed a natural and expressive quant. extension of LTL
@ Unfortunately the model-checking is undecidable

o No nesting of quantitative modalities in the proof is required
o Decidable twist: only using discounting

22/22

Conclusion

Conclusion and current work

@ We have proposed a natural and expressive quant. extension of LTL
@ Unfortunately the model-checking is undecidable

o No nesting of quantitative modalities in the proof is required
o Decidable twist: only using discounting
o Note: LTL with mean-payoff constraints is decidable [THHY12]

22/22

Conclusion

Conclusion and current work

@ We have proposed a natural and expressive quant. extension of LTL
@ Unfortunately the model-checking is undecidable

o No nesting of quantitative modalities in the proof is required
o Decidable twist: only using discounting
o Note: LTL with mean-payoff constraints is decidable [THHY12]

@ Undecidability also holds for several approximation problems

22/22

Conclusion

Conclusion and current work

@ We have proposed a natural and expressive quant. extension of LTL
@ Unfortunately the model-checking is undecidable

o No nesting of quantitative modalities in the proof is required
o Decidable twist: only using discounting
o Note: LTL with mean-payoff constraints is decidable [THHY12]

@ Undecidability also holds for several approximation problems

@ However, original and interesting (we believe) diagonal argument for
proving the undecidability

22/22

Conclusion

Conclusion and current work

@ We have proposed a natural and expressive quant. extension of LTL
@ Unfortunately the model-checking is undecidable

o No nesting of quantitative modalities in the proof is required
o Decidable twist: only using discounting
o Note: LTL with mean-payoff constraints is decidable [THHY12]

@ Undecidability also holds for several approximation problems

@ However, original and interesting (we believe) diagonal argument for
proving the undecidability
o We did not manage to simulate the halting problem for Turing
machines directly. What does that mean for the undecidability?

22/22

Conclusion

Conclusion and current work

@ We have proposed a natural and expressive quant. extension of LTL
@ Unfortunately the model-checking is undecidable

o No nesting of quantitative modalities in the proof is required
o Decidable twist: only using discounting
o Note: LTL with mean-payoff constraints is decidable [THHY12]

@ Undecidability also holds for several approximation problems

@ However, original and interesting (we believe) diagonal argument for
proving the undecidability
o We did not manage to simulate the halting problem for Turing
machines directly. What does that mean for the undecidability?
e Proof technics re-used in the context of timed systems

22/22

Conclusion

Conclusion and current work

@ We have proposed a natural and expressive quant. extension of LTL
@ Unfortunately the model-checking is undecidable

o No nesting of quantitative modalities in the proof is required
o Decidable twist: only using discounting
o Note: LTL with mean-payoff constraints is decidable [THHY12]

@ Undecidability also holds for several approximation problems

@ However, original and interesting (we believe) diagonal argument for
proving the undecidability
o We did not manage to simulate the halting problem for Turing
machines directly. What does that mean for the undecidability?
e Proof technics re-used in the context of timed systems
o Might be useful in other quantitative contexts?

22/22

	Introduction
	Average-LTL
	Results
	Conclusion

