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Quantitative model-checking

Measure the accuracy of a system w.r.t. a property.

+ give a value in [0, 1] instead of a Boolean value!

· · · high value to U

· · · smaller value to U

· · · high value to G

· · · smaller value to G
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The logic Average-LTL

ϕ ::= p | ¬ p | ϕ ∨ ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ | G ϕ | ϕ‹Uϕ | ‹Gϕ.

Jπ, ψ1 ∨ ψ2K = max(Jπ, ψ1K, Jπ, ψ2K)

Jπ, ψ1 ∧ ψ2K = min(Jπ, ψ1K, Jπ, ψ2K)

Jπ,X ϕK = Jπ≥1, ϕK
Jπ,G ϕK = inf i

(
Jπ≥i , ϕK

)
Jπ, ψ U ϕK = supi

(
min
(
Jπ≥i , ϕK,min0≤j<i (Jπ≥j , ψK)

))
Jπ,‹GϕK = lim inf i→∞

(∑j<i
j=0Jπ≥j , ϕK

)
/i

Jπ, ψ ‹UϕK = max
(
Jπ, ϕK, supi>0

(
min
(
Jπ≥i , ϕK,

(∑j<i
j=0 Jπ≥j , ψK

)
/i
)))

For a Kripke structure K,

JK, ϕK = sup
π path in K

Jπ, ϕK
Continue
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Examples of computations in Kripke structure K

JK, •‹U •K = ?

Formula •‹U •:
J• · • · •ω, •‹U •K = 1

Formula •‹U •:
J• · • · •ω, •‹U •K = 0

J• · (• · •)ω, •‹U •K = sup {n/(2n + 1) | n ∈ N∗} = 1/2.
Note that the value 1/2 is not reached by any prefix.
Write π′k = • · • · •k · (• · •)ω. Then:

Jπ′k , •‹U •K = sup {(k + n)/(k + 2n + 2) | n ∈ N} = k/(k + 2)

Hence JK, •‹U •K = 1, even though no run witnesses that value.
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Our results

For any threshold ./ c :

Existence problem: given K, ϕ, is there π in K s.t. Jπ, ϕK ./ c?

Value problem: given K, ϕ, does JK, ϕK ./ c?

Theorem

The existence and value problems are undecidable (for every threshold of
the form ./ 1/2).

Not always a link between the existence and the value problems:

JK, ϕK > 1/2 iff there is π in K s.t. Jπ, ϕK > 1/2

The same equivalence does not hold for other thresholds ./ 1/2

JK, ϕK = 1/2 iff there exists a sequence (πn)n∈N s.t. Jπn, ϕK ≤ 1/2
for every n, and limn→∞Jπn, ϕK = 1/2
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Undecidability of the existence problem

Encoding of a two-counter machine M
Configuration (q, n0, n1) encoded in unary: q •n0•n1

Execution encoded as a run (concatenation of the above)

Structure of M and zero tests encoded in a Kripke structure KM
Checking counter values requires Average-LTL

(q, n0, n1)→ (q′, n′0, n
′
1) keeps counter values unchanged whenever

for every α ∈ {1 + n0 + n1, 1 + n0 + n′1, 1 + n′0 + n1, 1 + n′0 + n′1}, it
holds that:

α

(1 + n0 + n1) + (1 + n′0 + n′1)
=

1

2

I.e.

Jq •n0•n1q′ •n
′
0•n

′
1q′′, ψα ‹UQK =

1

2

where ψα = q′ ∨ • ∨ • when α = 1 + n0 + n′1
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Undecidability of the existence problem (cont’d)

Global reduction
Formula to be checked:

haltM = F qhalt ∧ G consecM

where (roughly) consecM =
∧

q,α

(
q → ψα ‹UQ)

The two counter machine halts iff there is an execution π such that
Jπ, haltMK = 1/2

; This yields the undecidability of the existence problem
for threshold = 1/2
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Introduction Average-LTL Results Conclusion

What about the value problem?

If M halts, then JKM, haltMK = 1/2

It might be the case that M does not halt but JKM, haltMK = 1/2

M does not halt but JKM, haltMK = 1/2

a1++ a1=0 a0=0

a1>0 a0++ a0>0

a0−−

a1++

+ We need to be careful with machines having such a
converging phenomenon
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Introduction Average-LTL Results Conclusion

Arguments for the undecidability proof

Technical lemmas
For a finite invalid run, if the first invalid consecution assigns a value
smaller than 1/2− 1/n to consecM, then the value of formula
G consecM along the run is smaller than 1/2− 1/n.

We assume two halting states: accept and reject.

If JKM, acceptMK = 1/2 but no run gives value 1/2 to formula
acceptM, then the unique valid run is infinite.
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The diagonal argument

B det. Turing machine can either accept, reject, or not halt
→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if JKM(B), acceptM(B)K = 1/2

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence
JKM(C), acceptM(C)K < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

JKM(C), acceptM(C)K = 1/2. However since C does not accept C, the unique

valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.
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Conclusion and current work

We have proposed a natural and expressive quant. extension of LTL

Unfortunately the model-checking is undecidable

No nesting of quantitative modalities in the proof is required
Decidable twist: only using discounting
Note: LTL with mean-payoff constraints is decidable [THHY12]

Undecidability also holds for several approximation problems

However, original and interesting (we believe) diagonal argument for
proving the undecidability

We did not manage to simulate the halting problem for Turing
machines directly. What does that mean for the undecidability?
Proof technics re-used in the context of timed systems
Might be useful in other quantitative contexts?
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