
Introduction Average-LTL Results Conclusion

Averaging in LTL

Patricia Bouyer Nicolas Markey Raj Mohan Matteplackel

LSV, CNRS & ENS Cachan, France

1/22

Introduction Average-LTL Results Conclusion

Outline

1 Introduction

2 Average-LTL

3 Results

4 Conclusion

2/22

Introduction Average-LTL Results Conclusion

Model-checking

system:

8 8
property:

a!
b?

a?
b!

AG(¬B.overfull
∧ ¬B.dried up)

model-checking

algorithm

yes/no

a?
b!

3/22

Introduction Average-LTL Results Conclusion

Boolean verification

Standard model-checking

Strict dichotomy between correct and incorrect systems

· · · |= U

· · · 6|= U

· · · |= G

· · · 6|= G

; this Boolean approach might be too crude

4/22

Introduction Average-LTL Results Conclusion

Boolean verification

Standard model-checking

Strict dichotomy between correct and incorrect systems

· · · |= U

· · · 6|= U

· · · |= G

· · · 6|= G

; this Boolean approach might be too crude

4/22

Introduction Average-LTL Results Conclusion

Boolean verification

Standard model-checking

Strict dichotomy between correct and incorrect systems

· · · |= U

· · · 6|= U

· · · |= G

· · · 6|= G

; this Boolean approach might be too crude

4/22

Introduction Average-LTL Results Conclusion

Boolean verification

Standard model-checking

Strict dichotomy between correct and incorrect systems

· · · |= U

· · · 6|= U

· · · |= G

· · · 6|= G

; this Boolean approach might be too crude

4/22

Introduction Average-LTL Results Conclusion

Boolean verification

Standard model-checking

Strict dichotomy between correct and incorrect systems

· · · |= U

· · · 6|= U

· · · |= G

· · · 6|= G

; this Boolean approach might be too crude

4/22

Introduction Average-LTL Results Conclusion

Boolean verification

Standard model-checking

Strict dichotomy between correct and incorrect systems

· · · |= U

· · · 6|= U

· · · |= G

· · · 6|= G

; this Boolean approach might be too crude

4/22

Introduction Average-LTL Results Conclusion

Towards quantitative verification

Quantitative model-checking

Measure the accuracy of a system w.r.t. a property.

+ give a value in [0, 1] instead of a Boolean value!

· · · high value to U

· · · smaller value to U

· · · high value to G

· · · smaller value to G

5/22

Introduction Average-LTL Results Conclusion

Towards quantitative verification

Quantitative model-checking

Measure the accuracy of a system w.r.t. a property.

+ give a value in [0, 1] instead of a Boolean value!

· · · high value to U

· · · smaller value to U

· · · high value to G

· · · smaller value to G

5/22

Introduction Average-LTL Results Conclusion

Towards quantitative verification

Quantitative model-checking

Measure the accuracy of a system w.r.t. a property.

+ give a value in [0, 1] instead of a Boolean value!

· · · high value to U

· · · smaller value to U

· · · high value to G

· · · smaller value to G

5/22

Introduction Average-LTL Results Conclusion

Towards quantitative verification

Quantitative model-checking

Measure the accuracy of a system w.r.t. a property.

+ give a value in [0, 1] instead of a Boolean value!

· · · high value to U

· · · smaller value to U

· · · high value to G

· · · smaller value to G

5/22

Introduction Average-LTL Results Conclusion

Towards quantitative verification

Quantitative model-checking

Measure the accuracy of a system w.r.t. a property.

+ give a value in [0, 1] instead of a Boolean value!

· · · high value to U

· · · smaller value to U

· · · high value to G

· · · smaller value to G

5/22

Introduction Average-LTL Results Conclusion

Towards quantitative verification

Quantitative model-checking

Measure the accuracy of a system w.r.t. a property.

+ give a value in [0, 1] instead of a Boolean value!

· · · high value to U

· · · smaller value to U

· · · high value to G

· · · smaller value to G

5/22

Introduction Average-LTL Results Conclusion

Related work

Quantitative verification

value of executions given by weighted automata [DCH10,...]

accuracy of a model given by a distance to another model or to a
specification (e.g. simulation distance [CHR12], model measuring
[HO13])

quantitative specification languages/logics: standard in probabilistic
model-checking (e.g. CSL and PCTL logics)

· · ·

6/22

Introduction Average-LTL Results Conclusion

Related work

Quantitative verification

value of executions given by weighted automata [DCH10,...]

accuracy of a model given by a distance to another model or to a
specification (e.g. simulation distance [CHR12], model measuring
[HO13])

quantitative specification languages/logics: standard in probabilistic
model-checking (e.g. CSL and PCTL logics)

· · ·

6/22

Introduction Average-LTL Results Conclusion

Related work – cont’d

Quantitative logics based on LTL

Logics yielding finitely many values

min/max extension of LTL to quant. Kripke structures [FLS08]
extension of LTL with functions [ABK13]

; the model-checking is decidable

LTL over weighted Kripke structures using numerical assertions over
weight variables [BCHK11,THHY12,BGM14]

; various decidability/undecidability results

Frequency LTL [BDL12]

boolean interpretation with quantitative constraints
π |= •U1/2 • if at least half of the positions satisfy • before •

; the model-checking is undecidable

Discounted LTL [ABK14]

the until modality discounts over the future
; the (threshold) model-checking is decidable, undecidable with an

extra local average operator

7/22

Introduction Average-LTL Results Conclusion

Related work – cont’d

Quantitative logics based on LTL

Logics yielding finitely many values

min/max extension of LTL to quant. Kripke structures [FLS08]
extension of LTL with functions [ABK13]

; the model-checking is decidable

LTL over weighted Kripke structures using numerical assertions over
weight variables [BCHK11,THHY12,BGM14]

; various decidability/undecidability results

Frequency LTL [BDL12]

boolean interpretation with quantitative constraints
π |= •U1/2 • if at least half of the positions satisfy • before •

; the model-checking is undecidable

Discounted LTL [ABK14]

the until modality discounts over the future
; the (threshold) model-checking is decidable, undecidable with an

extra local average operator

7/22

Introduction Average-LTL Results Conclusion

Related work – cont’d

Quantitative logics based on LTL

Logics yielding finitely many values

min/max extension of LTL to quant. Kripke structures [FLS08]
extension of LTL with functions [ABK13]

; the model-checking is decidable

LTL over weighted Kripke structures using numerical assertions over
weight variables [BCHK11,THHY12,BGM14]

; various decidability/undecidability results

Frequency LTL [BDL12]

boolean interpretation with quantitative constraints
π |= •U1/2 • if at least half of the positions satisfy • before •

; the model-checking is undecidable

Discounted LTL [ABK14]

the until modality discounts over the future
; the (threshold) model-checking is decidable, undecidable with an

extra local average operator

7/22

Introduction Average-LTL Results Conclusion

Related work – cont’d

Quantitative logics based on LTL

Logics yielding finitely many values

min/max extension of LTL to quant. Kripke structures [FLS08]
extension of LTL with functions [ABK13]

; the model-checking is decidable

LTL over weighted Kripke structures using numerical assertions over
weight variables [BCHK11,THHY12,BGM14]

; various decidability/undecidability results

Frequency LTL [BDL12]

boolean interpretation with quantitative constraints
π |= •U1/2 • if at least half of the positions satisfy • before •

; the model-checking is undecidable

Discounted LTL [ABK14]

the until modality discounts over the future
; the (threshold) model-checking is decidable, undecidable with an

extra local average operator

7/22

Introduction Average-LTL Results Conclusion

Outline

1 Introduction

2 Average-LTL

3 Results

4 Conclusion

8/22

Introduction Average-LTL Results Conclusion

The logic Average-LTL

ϕ ::= p | ¬ p | ϕ ∨ ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ | G ϕ | ϕ‹Uϕ | ‹Gϕ.

Jπ, ψ1 ∨ ψ2K = max(Jπ, ψ1K, Jπ, ψ2K)

Jπ, ψ1 ∧ ψ2K = min(Jπ, ψ1K, Jπ, ψ2K)

Jπ,X ϕK = Jπ≥1, ϕK
Jπ,G ϕK = inf i

(
Jπ≥i , ϕK

)
Jπ, ψ U ϕK = supi

(
min
(
Jπ≥i , ϕK,min0≤j<i (Jπ≥j , ψK)

))
Jπ,‹GϕK = lim inf i→∞

(∑j<i
j=0Jπ≥j , ϕK

)
/i

Jπ, ψ ‹UϕK = max
(
Jπ, ϕK, supi>0

(
min
(
Jπ≥i , ϕK,

(∑j<i
j=0 Jπ≥j , ψK

)
/i
)))

For a Kripke structure K,

JK, ϕK = sup
π path in K

Jπ, ϕK
Continue

9/22

Introduction Average-LTL Results Conclusion

The logic Average-LTL

ϕ ::= p | ¬ p | ϕ ∨ ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ | G ϕ | ϕ‹Uϕ | ‹Gϕ.

Jπ, ψ1 ∨ ψ2K = max(Jπ, ψ1K, Jπ, ψ2K)

Jπ, ψ1 ∧ ψ2K = min(Jπ, ψ1K, Jπ, ψ2K)

Jπ,X ϕK = Jπ≥1, ϕK
Jπ,G ϕK = inf i

(
Jπ≥i , ϕK

)
Jπ, ψ U ϕK = supi

(
min
(
Jπ≥i , ϕK,min0≤j<i (Jπ≥j , ψK)

))
Jπ,‹GϕK = lim inf i→∞

(∑j<i
j=0Jπ≥j , ϕK

)
/i

Jπ, ψ ‹UϕK = max
(
Jπ, ϕK, supi>0

(
min
(
Jπ≥i , ϕK,

(∑j<i
j=0 Jπ≥j , ψK

)
/i
)))

For a Kripke structure K,

JK, ϕK = sup
π path in K

Jπ, ϕK
Continue

9/22

Introduction Average-LTL Results Conclusion

The logic Average-LTL

ϕ ::= p | ¬ p | ϕ ∨ ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ | G ϕ | ϕ‹Uϕ | ‹Gϕ.

Jπ, ψ1 ∨ ψ2K = max(Jπ, ψ1K, Jπ, ψ2K)

Jπ, ψ1 ∧ ψ2K = min(Jπ, ψ1K, Jπ, ψ2K)

Jπ,X ϕK = Jπ≥1, ϕK
Jπ,G ϕK = inf i

(
Jπ≥i , ϕK

)
Jπ, ψ U ϕK = supi

(
min
(
Jπ≥i , ϕK,min0≤j<i (Jπ≥j , ψK)

))
More

Jπ,‹GϕK = lim inf i→∞
(∑j<i

j=0Jπ≥j , ϕK
)
/i

Jπ, ψ ‹UϕK = max
(
Jπ, ϕK, supi>0

(
min
(
Jπ≥i , ϕK,

(∑j<i
j=0 Jπ≥j , ψK

)
/i
)))

For a Kripke structure K,

JK, ϕK = sup
π path in K

Jπ, ϕK
Continue

9/22

Introduction Average-LTL Results Conclusion

The logic Average-LTL

ϕ ::= p | ¬ p | ϕ ∨ ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ | G ϕ | ϕ‹Uϕ | ‹Gϕ.

Jπ, ψ1 ∨ ψ2K = max(Jπ, ψ1K, Jπ, ψ2K)

Jπ, ψ1 ∧ ψ2K = min(Jπ, ψ1K, Jπ, ψ2K)

Jπ,X ϕK = Jπ≥1, ϕK
Jπ,G ϕK = inf i

(
Jπ≥i , ϕK

)
Jπ, ψ U ϕK = supi

(
min
(
Jπ≥i , ϕK,min0≤j<i (Jπ≥j , ψK)

))
Jπ,‹GϕK = lim inf i→∞

(∑j<i
j=0Jπ≥j , ϕK

)
/i

Jπ, ψ ‹UϕK = max
(
Jπ, ϕK, supi>0

(
min
(
Jπ≥i , ϕK,

(∑j<i
j=0 Jπ≥j , ψK

)
/i
)))

For a Kripke structure K,

JK, ϕK = sup
π path in K

Jπ, ϕK
Continue

9/22

Introduction Average-LTL Results Conclusion

The logic Average-LTL

ϕ ::= p | ¬ p | ϕ ∨ ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ | G ϕ | ϕ‹Uϕ | ‹Gϕ.

Jπ, ψ1 ∨ ψ2K = max(Jπ, ψ1K, Jπ, ψ2K)

Jπ, ψ1 ∧ ψ2K = min(Jπ, ψ1K, Jπ, ψ2K)

Jπ,X ϕK = Jπ≥1, ϕK
Jπ,G ϕK = inf i

(
Jπ≥i , ϕK

)
Jπ, ψ U ϕK = supi

(
min
(
Jπ≥i , ϕK,min0≤j<i (Jπ≥j , ψK)

))
Jπ,‹GϕK = lim inf i→∞

(∑j<i
j=0Jπ≥j , ϕK

)
/i More

Jπ, ψ ‹UϕK = max
(
Jπ, ϕK, supi>0

(
min
(
Jπ≥i , ϕK,

(∑j<i
j=0 Jπ≥j , ψK

)
/i
)))

For a Kripke structure K,

JK, ϕK = sup
π path in K

Jπ, ϕK
Continue

9/22

Introduction Average-LTL Results Conclusion

The logic Average-LTL

ϕ ::= p | ¬ p | ϕ ∨ ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ | G ϕ | ϕ‹Uϕ | ‹Gϕ.

Jπ, ψ1 ∨ ψ2K = max(Jπ, ψ1K, Jπ, ψ2K)

Jπ, ψ1 ∧ ψ2K = min(Jπ, ψ1K, Jπ, ψ2K)

Jπ,X ϕK = Jπ≥1, ϕK
Jπ,G ϕK = inf i

(
Jπ≥i , ϕK

)
Jπ, ψ U ϕK = supi

(
min
(
Jπ≥i , ϕK,min0≤j<i (Jπ≥j , ψK)

))
Jπ,‹GϕK = lim inf i→∞

(∑j<i
j=0Jπ≥j , ϕK

)
/i

Jπ, ψ ‹UϕK = max
(
Jπ, ϕK, supi>0

(
min
(
Jπ≥i , ϕK,

(∑j<i
j=0 Jπ≥j , ψK

)
/i
)))

For a Kripke structure K,

JK, ϕK = sup
π path in K

Jπ, ϕK

Continue

9/22

Introduction Average-LTL Results Conclusion

The logic Average-LTL

ϕ ::= p | ¬ p | ϕ ∨ ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ | G ϕ | ϕ‹Uϕ | ‹Gϕ.

Jπ, ψ1 ∨ ψ2K = max(Jπ, ψ1K, Jπ, ψ2K)

Jπ, ψ1 ∧ ψ2K = min(Jπ, ψ1K, Jπ, ψ2K)

Jπ,X ϕK = Jπ≥1, ϕK
Jπ,G ϕK = inf i

(
Jπ≥i , ϕK

)
Jπ, ψ U ϕK = supi

(
min
(
Jπ≥i , ϕK,min0≤j<i (Jπ≥j , ψK)

))
Jπ,‹GϕK = lim inf i→∞

(∑j<i
j=0Jπ≥j , ϕK

)
/i

Jπ, ψ ‹UϕK = max
(
Jπ, ϕK, supi>0

(
min
(
Jπ≥i , ϕK,

(∑j<i
j=0 Jπ≥j , ψK

)
/i
)))

For a Kripke structure K,

JK, ϕK = sup
π path in K

Jπ, ϕK
Continue

9/22

Introduction Average-LTL Results Conclusion

0.3

0.7

0 1 2 3 4 5 6

Jπ, ψ U ϕK = supi

(
min
(
Jπ≥i , ϕK,min0≤j<i (Jπ≥j , ψK)

))

= 0.3

−
0

0

0.3
0

0

0.3
0

0

0.3
0

0

0.3
0.2

0.2

0.3
0

0

0.3
0.7

0.3

Back

10/22

Introduction Average-LTL Results Conclusion

0.3

0.7

0 1 2 3 4 5 6

Jπ, ψ U ϕK = supi

(
min
(
Jπ≥i , ϕK,min0≤j<i (Jπ≥j , ψK)

))

= 0.3

−
0

0

0.3
0

0

0.3
0

0

0.3
0

0

0.3
0.2

0.2

0.3
0

0

0.3
0.7

0.3

Back

10/22

Introduction Average-LTL Results Conclusion

0.3

0.7

0 1 2 3 4 5 6

Jπ, ψ U ϕK = supi

(
min
(
Jπ≥i , ϕK,min0≤j<i (Jπ≥j , ψK)

))

= 0.3

−
0

0

0.3
0

0

0.3
0

0

0.3
0

0

0.3
0.2

0.2

0.3
0

0

0.3
0.7

0.3

Back

10/22

Introduction Average-LTL Results Conclusion

0.3

0.7

0 1 2 3 4 5 6

Jπ, ψ U ϕK = supi

(
min
(
Jπ≥i , ϕK,min0≤j<i (Jπ≥j , ψK)

))

= 0.3

−
0

0

0.3
0

0

0.3
0

0

0.3
0

0

0.3
0.2

0.2

0.3
0

0

0.3
0.7

0.3

Back

10/22

Introduction Average-LTL Results Conclusion

0.3

0.7

0 1 2 3 4 5 6

Jπ, ψ U ϕK = supi

(
min
(
Jπ≥i , ϕK,min0≤j<i (Jπ≥j , ψK)

))

= 0.3

−
0

0

0.3
0

0

0.3
0

0

0.3
0

0

0.3
0.2

0.2

0.3
0

0

0.3
0.7

0.3

Back

10/22

Introduction Average-LTL Results Conclusion

0.3

0.7

0 1 2 3 4 5 6

Jπ, ψ U ϕK = supi

(
min
(
Jπ≥i , ϕK,min0≤j<i (Jπ≥j , ψK)

))

= 0.3

−
0

0

0.3
0

0

0.3
0

0

0.3
0

0

0.3
0.2

0.2

0.3
0

0

0.3
0.7

0.3

Back

10/22

Introduction Average-LTL Results Conclusion

0.3

0.7

0 1 2 3 4 5 6

Jπ, ψ U ϕK = supi

(
min
(
Jπ≥i , ϕK,min0≤j<i (Jπ≥j , ψK)

))

= 0.3

−
0

0

0.3
0

0

0.3
0

0

0.3
0

0

0.3
0.2

0.2

0.3
0

0

0.3
0.7

0.3

Back

10/22

Introduction Average-LTL Results Conclusion

0.3

0.7

0 1 2 3 4 5 6

Jπ, ψ U ϕK = supi

(
min
(
Jπ≥i , ϕK,min0≤j<i (Jπ≥j , ψK)

))

= 0.3

−
0

0

0.3
0

0

0.3
0

0

0.3
0

0

0.3
0.2

0.2

0.3
0

0

0.3
0.7

0.3

Back

10/22

Introduction Average-LTL Results Conclusion

0.3

0.7

0 1 2 3 4 5 6

Jπ, ψ U ϕK = supi

(
min
(
Jπ≥i , ϕK,min0≤j<i (Jπ≥j , ψK)

))
= 0.3

−
0

0

0.3
0

0

0.3
0

0

0.3
0

0

0.3
0.2

0.2

0.3
0

0

0.3
0.7

0.3

Back

10/22

Introduction Average-LTL Results Conclusion

0.3

0.7

0 1 2 3 4 5 6

Jπ, ψ U ϕK = supi

(
min
(
Jπ≥i , ϕK,min0≤j<i (Jπ≥j , ψK)

))
= 0.3

−
0

0

0.3
0

0

0.3
0

0

0.3
0

0

0.3
0.2

0.2

0.3
0

0

0.3
0.7

0.3

Back

10/22

Introduction Average-LTL Results Conclusion

0.3

0.7

0 1 2 3 4 5 6

Jπ, ψ ‹UϕK = max
(
Jπ, ϕK, supi>0

(
min
(
Jπ≥i , ϕK,

(∑j<i
j=0 Jπ≥j , ψK

)
/i
)))

= 0.5

−
0

0

0.3
0

0

0.45
0

0

0.43
0

0

0.45
0.2

0.2

0.5
0

0

0.5
0.7

0.5

Back

11/22

Introduction Average-LTL Results Conclusion

0.3

0.7

0 1 2 3 4 5 6

Jπ, ψ ‹UϕK = max
(
Jπ, ϕK, supi>0

(
min
(
Jπ≥i , ϕK,

(∑j<i
j=0 Jπ≥j , ψK

)
/i
)))

= 0.5

−
0

0

0.3
0

0

0.45
0

0

0.43
0

0

0.45
0.2

0.2

0.5
0

0

0.5
0.7

0.5

Back

11/22

Introduction Average-LTL Results Conclusion

0.3

0.7

0 1 2 3 4 5 6

Jπ, ψ ‹UϕK = max
(
Jπ, ϕK, supi>0

(
min
(
Jπ≥i , ϕK,

(∑j<i
j=0 Jπ≥j , ψK

)
/i
)))

= 0.5

−
0

0

0.3
0

0

0.45
0

0

0.43
0

0

0.45
0.2

0.2

0.5
0

0

0.5
0.7

0.5

Back

11/22

Introduction Average-LTL Results Conclusion

0.3

0.7

0 1 2 3 4 5 6

Jπ, ψ ‹UϕK = max
(
Jπ, ϕK, supi>0

(
min
(
Jπ≥i , ϕK,

(∑j<i
j=0 Jπ≥j , ψK

)
/i
)))

= 0.5

−
0

0

0.3
0

0

0.45
0

0

0.43
0

0

0.45
0.2

0.2

0.5
0

0

0.5
0.7

0.5

Back

11/22

Introduction Average-LTL Results Conclusion

0.3

0.7

0 1 2 3 4 5 6

Jπ, ψ ‹UϕK = max
(
Jπ, ϕK, supi>0

(
min
(
Jπ≥i , ϕK,

(∑j<i
j=0 Jπ≥j , ψK

)
/i
)))

= 0.5

−
0

0

0.3
0

0

0.45
0

0

0.43
0

0

0.45
0.2

0.2

0.5
0

0

0.5
0.7

0.5

Back

11/22

Introduction Average-LTL Results Conclusion

0.3

0.7

0 1 2 3 4 5 6

Jπ, ψ ‹UϕK = max
(
Jπ, ϕK, supi>0

(
min
(
Jπ≥i , ϕK,

(∑j<i
j=0 Jπ≥j , ψK

)
/i
)))

= 0.5

−
0

0

0.3
0

0

0.45
0

0

0.43
0

0

0.45
0.2

0.2

0.5
0

0

0.5
0.7

0.5

Back

11/22

Introduction Average-LTL Results Conclusion

0.3

0.7

0 1 2 3 4 5 6

Jπ, ψ ‹UϕK = max
(
Jπ, ϕK, supi>0

(
min
(
Jπ≥i , ϕK,

(∑j<i
j=0 Jπ≥j , ψK

)
/i
)))

= 0.5

−
0

0

0.3
0

0

0.45
0

0

0.43
0

0

0.45
0.2

0.2

0.5
0

0

0.5
0.7

0.5

Back

11/22

Introduction Average-LTL Results Conclusion

0.3

0.7

0 1 2 3 4 5 6

Jπ, ψ ‹UϕK = max
(
Jπ, ϕK, supi>0

(
min
(
Jπ≥i , ϕK,

(∑j<i
j=0 Jπ≥j , ψK

)
/i
)))

= 0.5

−
0

0

0.3
0

0

0.45
0

0

0.43
0

0

0.45
0.2

0.2

0.5
0

0

0.5
0.7

0.5

Back

11/22

Introduction Average-LTL Results Conclusion

0.3

0.7

0 1 2 3 4 5 6

Jπ, ψ ‹UϕK = max
(
Jπ, ϕK, supi>0

(
min
(
Jπ≥i , ϕK,

(∑j<i
j=0 Jπ≥j , ψK

)
/i
)))

= 0.5

−
0

0

0.3
0

0

0.45
0

0

0.43
0

0

0.45
0.2

0.2

0.5
0

0

0.5
0.7

0.5

Back

11/22

Introduction Average-LTL Results Conclusion

0.3

0.7

0 1 2 3 4 5 6

Jπ, ψ ‹UϕK = max
(
Jπ, ϕK, supi>0

(
min
(
Jπ≥i , ϕK,

(∑j<i
j=0 Jπ≥j , ψK

)
/i
)))

= 0.5

−
0

0

0.3
0

0

0.45
0

0

0.43
0

0

0.45
0.2

0.2

0.5
0

0

0.5
0.7

0.5

Back

11/22

Introduction Average-LTL Results Conclusion

Back to the introductory examples

· · · high value to ‹U
· · · smaller value to ‹U
· · · high value to ‹G
· · · smaller value to ‹G

12/22

Introduction Average-LTL Results Conclusion

Back to the introductory examples

· · · gives value 0.96 to ‹U
· · · smaller value to ‹U
· · · high value to ‹G
· · · smaller value to ‹G

12/22

Introduction Average-LTL Results Conclusion

Back to the introductory examples

· · · gives value 0.96 to ‹U
· · · gives value 0.68 to ‹U
· · · high value to ‹G
· · · smaller value to ‹G

12/22

Introduction Average-LTL Results Conclusion

Back to the introductory examples

· · · gives value 0.96 to ‹U
· · · gives value 0.68 to ‹U
· · · gives value 1 to ‹G
· · · smaller value to ‹G

12/22

Introduction Average-LTL Results Conclusion

Back to the introductory examples

· · · gives value 0.96 to ‹U
· · · gives value 0.68 to ‹U
· · · gives value 1 to ‹G
· · · gives value 0.75 to ‹G

12/22

Introduction Average-LTL Results Conclusion

Examples of computations in Kripke structure K

JK, •‹U •K = ?

Formula •‹U •:
J• · • · •ω, •‹U •K = 1

Formula •‹U •:
J• · • · •ω, •‹U •K = 0

J• · (• · •)ω, •‹U •K = sup {n/(2n + 1) | n ∈ N∗} = 1/2.
Note that the value 1/2 is not reached by any prefix.
Write π′k = • · • · •k · (• · •)ω. Then:

Jπ′k , •‹U •K = sup {(k + n)/(k + 2n + 2) | n ∈ N} = k/(k + 2)

Hence JK, •‹U •K = 1, even though no run witnesses that value.

13/22

Introduction Average-LTL Results Conclusion

Examples of computations in Kripke structure K

JK, •‹U •K = 1

Formula •‹U •:
J• · • · •ω, •‹U •K = 1

Formula •‹U •:
J• · • · •ω, •‹U •K = 0

J• · (• · •)ω, •‹U •K = sup {n/(2n + 1) | n ∈ N∗} = 1/2.
Note that the value 1/2 is not reached by any prefix.
Write π′k = • · • · •k · (• · •)ω. Then:

Jπ′k , •‹U •K = sup {(k + n)/(k + 2n + 2) | n ∈ N} = k/(k + 2)

Hence JK, •‹U •K = 1, even though no run witnesses that value.

13/22

Introduction Average-LTL Results Conclusion

Examples of computations in Kripke structure K

JK, •‹U •K = 1

JK, •‹U •K = ?

Formula •‹U •:
J• · • · •ω, •‹U •K = 1

Formula •‹U •:
J• · • · •ω, •‹U •K = 0

J• · (• · •)ω, •‹U •K = sup {n/(2n + 1) | n ∈ N∗} = 1/2.
Note that the value 1/2 is not reached by any prefix.
Write π′k = • · • · •k · (• · •)ω. Then:

Jπ′k , •‹U •K = sup {(k + n)/(k + 2n + 2) | n ∈ N} = k/(k + 2)

Hence JK, •‹U •K = 1, even though no run witnesses that value.

13/22

Introduction Average-LTL Results Conclusion

Examples of computations in Kripke structure K

JK, •‹U •K = 1

JK, •‹U •K = ?

Formula •‹U •:
J• · • · •ω, •‹U •K = 1

Formula •‹U •:
J• · • · •ω, •‹U •K = 0

J• · (• · •)ω, •‹U •K = sup {n/(2n + 1) | n ∈ N∗} = 1/2.
Note that the value 1/2 is not reached by any prefix.
Write π′k = • · • · •k · (• · •)ω. Then:

Jπ′k , •‹U •K = sup {(k + n)/(k + 2n + 2) | n ∈ N} = k/(k + 2)

Hence JK, •‹U •K = 1, even though no run witnesses that value.

13/22

Introduction Average-LTL Results Conclusion

Examples of computations in Kripke structure K

JK, •‹U •K = 1

JK, •‹U •K = ?

Formula •‹U •:
J• · • · •ω, •‹U •K = 1

Formula •‹U •:
J• · • · •ω, •‹U •K = 0

J• · (• · •)ω, •‹U •K = sup {n/(2n + 1) | n ∈ N∗} = 1/2.
Note that the value 1/2 is not reached by any prefix.
Write π′k = • · • · •k · (• · •)ω. Then:

Jπ′k , •‹U •K = sup {(k + n)/(k + 2n + 2) | n ∈ N} = k/(k + 2)

Hence JK, •‹U •K = 1, even though no run witnesses that value.

13/22

Introduction Average-LTL Results Conclusion

Examples of computations in Kripke structure K

JK, •‹U •K = 1

JK, •‹U •K = ?

Formula •‹U •:
J• · • · •ω, •‹U •K = 1

Formula •‹U •:
J• · • · •ω, •‹U •K = 0

J• · (• · •)ω, •‹U •K = sup {n/(2n + 1) | n ∈ N∗} = 1/2.
Note that the value 1/2 is not reached by any prefix.
Write π′k = • · • · •k · (• · •)ω. Then:

Jπ′k , •‹U •K = sup {(k + n)/(k + 2n + 2) | n ∈ N} = k/(k + 2)

Hence JK, •‹U •K = 1, even though no run witnesses that value.

13/22

Introduction Average-LTL Results Conclusion

Examples of computations in Kripke structure K

JK, •‹U •K = 1

JK, •‹U •K = 1

Formula •‹U •:
J• · • · •ω, •‹U •K = 1

Formula •‹U •:
J• · • · •ω, •‹U •K = 0

J• · (• · •)ω, •‹U •K = sup {n/(2n + 1) | n ∈ N∗} = 1/2.
Note that the value 1/2 is not reached by any prefix.
Write π′k = • · • · •k · (• · •)ω. Then:

Jπ′k , •‹U •K = sup {(k + n)/(k + 2n + 2) | n ∈ N} = k/(k + 2)

Hence JK, •‹U •K = 1, even though no run witnesses that value.

13/22

Introduction Average-LTL Results Conclusion

Outline

1 Introduction

2 Average-LTL

3 Results

4 Conclusion

14/22

Introduction Average-LTL Results Conclusion

Our results

For any threshold ./ c :

Existence problem: given K, ϕ, is there π in K s.t. Jπ, ϕK ./ c?

Value problem: given K, ϕ, does JK, ϕK ./ c?

Theorem

The existence and value problems are undecidable (for every threshold of
the form ./ 1/2).

Not always a link between the existence and the value problems:

JK, ϕK > 1/2 iff there is π in K s.t. Jπ, ϕK > 1/2

The same equivalence does not hold for other thresholds ./ 1/2

JK, ϕK = 1/2 iff there exists a sequence (πn)n∈N s.t. Jπn, ϕK ≤ 1/2
for every n, and limn→∞Jπn, ϕK = 1/2

15/22

Introduction Average-LTL Results Conclusion

Our results

For any threshold ./ c :

Existence problem: given K, ϕ, is there π in K s.t. Jπ, ϕK ./ c?

Value problem: given K, ϕ, does JK, ϕK ./ c?

Theorem

The existence and value problems are undecidable (for every threshold of
the form ./ 1/2).

Not always a link between the existence and the value problems:

JK, ϕK > 1/2 iff there is π in K s.t. Jπ, ϕK > 1/2

The same equivalence does not hold for other thresholds ./ 1/2

JK, ϕK = 1/2 iff there exists a sequence (πn)n∈N s.t. Jπn, ϕK ≤ 1/2
for every n, and limn→∞Jπn, ϕK = 1/2

15/22

Introduction Average-LTL Results Conclusion

Our results

For any threshold ./ c :

Existence problem: given K, ϕ, is there π in K s.t. Jπ, ϕK ./ c?

Value problem: given K, ϕ, does JK, ϕK ./ c?

Theorem

The existence and value problems are undecidable (for every threshold of
the form ./ 1/2).

Not always a link between the existence and the value problems:

JK, ϕK > 1/2 iff there is π in K s.t. Jπ, ϕK > 1/2

The same equivalence does not hold for other thresholds ./ 1/2

JK, ϕK = 1/2 iff there exists a sequence (πn)n∈N s.t. Jπn, ϕK ≤ 1/2
for every n, and limn→∞Jπn, ϕK = 1/2

15/22

Introduction Average-LTL Results Conclusion

Our results

For any threshold ./ c :

Existence problem: given K, ϕ, is there π in K s.t. Jπ, ϕK ./ c?

Value problem: given K, ϕ, does JK, ϕK ./ c?

Theorem

The existence and value problems are undecidable (for every threshold of
the form ./ 1/2).

Not always a link between the existence and the value problems:

JK, ϕK > 1/2 iff there is π in K s.t. Jπ, ϕK > 1/2

The same equivalence does not hold for other thresholds ./ 1/2

JK, ϕK = 1/2 iff there exists a sequence (πn)n∈N s.t. Jπn, ϕK ≤ 1/2
for every n, and limn→∞Jπn, ϕK = 1/2

15/22

Introduction Average-LTL Results Conclusion

Our results

For any threshold ./ c :

Existence problem: given K, ϕ, is there π in K s.t. Jπ, ϕK ./ c?

Value problem: given K, ϕ, does JK, ϕK ./ c?

Theorem

The existence and value problems are undecidable (for every threshold of
the form ./ 1/2).

Not always a link between the existence and the value problems:

JK, ϕK > 1/2 iff there is π in K s.t. Jπ, ϕK > 1/2

The same equivalence does not hold for other thresholds ./ 1/2

JK, ϕK = 1/2 iff there exists a sequence (πn)n∈N s.t. Jπn, ϕK ≤ 1/2
for every n, and limn→∞Jπn, ϕK = 1/2

15/22

Introduction Average-LTL Results Conclusion

Undecidability of the existence problem

Encoding of a two-counter machine M
Configuration (q, n0, n1) encoded in unary: q •n0•n1

Execution encoded as a run (concatenation of the above)

Structure of M and zero tests encoded in a Kripke structure KM
Checking counter values requires Average-LTL

(q, n0, n1)→ (q′, n′0, n
′
1) keeps counter values unchanged whenever

for every α ∈ {1 + n0 + n1, 1 + n0 + n′1, 1 + n′0 + n1, 1 + n′0 + n′1}, it
holds that:

α

(1 + n0 + n1) + (1 + n′0 + n′1)
=

1

2

I.e.

Jq •n0•n1q′ •n
′
0•n

′
1q′′, ψα ‹UQK =

1

2

where ψα = q′ ∨ • ∨ • when α = 1 + n0 + n′1

16/22

Introduction Average-LTL Results Conclusion

Undecidability of the existence problem

Encoding of a two-counter machine M
Configuration (q, n0, n1) encoded in unary: q •n0•n1

Execution encoded as a run (concatenation of the above)

Structure of M and zero tests encoded in a Kripke structure KM
Checking counter values requires Average-LTL

(q, n0, n1)→ (q′, n′0, n
′
1) keeps counter values unchanged whenever

for every α ∈ {1 + n0 + n1, 1 + n0 + n′1, 1 + n′0 + n1, 1 + n′0 + n′1}, it
holds that:

α

(1 + n0 + n1) + (1 + n′0 + n′1)
=

1

2

I.e.

Jq •n0•n1q′ •n
′
0•n

′
1q′′, ψα ‹UQK =

1

2

where ψα = q′ ∨ • ∨ • when α = 1 + n0 + n′1

16/22

Introduction Average-LTL Results Conclusion

Undecidability of the existence problem

Encoding of a two-counter machine M
Configuration (q, n0, n1) encoded in unary: q •n0•n1

Execution encoded as a run (concatenation of the above)

Structure of M and zero tests encoded in a Kripke structure KM
Checking counter values requires Average-LTL

(q, n0, n1)→ (q′, n′0, n
′
1) keeps counter values unchanged whenever

for every α ∈ {1 + n0 + n1, 1 + n0 + n′1, 1 + n′0 + n1, 1 + n′0 + n′1}, it
holds that:

α

(1 + n0 + n1) + (1 + n′0 + n′1)
=

1

2

I.e.

Jq •n0•n1q′ •n
′
0•n

′
1q′′, ψα ‹UQK =

1

2

where ψα = q′ ∨ • ∨ • when α = 1 + n0 + n′1

16/22

Introduction Average-LTL Results Conclusion

Undecidability of the existence problem

Encoding of a two-counter machine M
Configuration (q, n0, n1) encoded in unary: q •n0•n1

Execution encoded as a run (concatenation of the above)

Structure of M and zero tests encoded in a Kripke structure KM
Checking counter values requires Average-LTL

(q, n0, n1)→ (q′, n′0, n
′
1) keeps counter values unchanged whenever

for every α ∈ {1 + n0 + n1, 1 + n0 + n′1, 1 + n′0 + n1, 1 + n′0 + n′1}, it
holds that:

α

(1 + n0 + n1) + (1 + n′0 + n′1)
=

1

2

I.e.

Jq •n0•n1q′ •n
′
0•n

′
1q′′, ψα ‹UQK =

1

2

where ψα = q′ ∨ • ∨ • when α = 1 + n0 + n′1

16/22

Introduction Average-LTL Results Conclusion

Undecidability of the existence problem

Encoding of a two-counter machine M
Configuration (q, n0, n1) encoded in unary: q •n0•n1

Execution encoded as a run (concatenation of the above)

Structure of M and zero tests encoded in a Kripke structure KM
Checking counter values requires Average-LTL

(q, n0, n1)→ (q′, n′0, n
′
1) keeps counter values unchanged whenever

for every α ∈ {1 + n0 + n1, 1 + n0 + n′1, 1 + n′0 + n1, 1 + n′0 + n′1}, it
holds that:

α

(1 + n0 + n1) + (1 + n′0 + n′1)
=

1

2

I.e.

Jq •n0•n1q′ •n
′
0•n

′
1q′′, ψα ‹UQK =

1

2

where ψα = q′ ∨ • ∨ • when α = 1 + n0 + n′1

16/22

Introduction Average-LTL Results Conclusion

Undecidability of the existence problem

Encoding of a two-counter machine M
Configuration (q, n0, n1) encoded in unary: q •n0•n1

Execution encoded as a run (concatenation of the above)

Structure of M and zero tests encoded in a Kripke structure KM
Checking counter values requires Average-LTL

(q, n0, n1)→ (q′, n′0, n
′
1) keeps counter values unchanged whenever

for every α ∈ {1 + n0 + n1, 1 + n0 + n′1, 1 + n′0 + n1, 1 + n′0 + n′1}, it
holds that:

α

(1 + n0 + n1) + (1 + n′0 + n′1)
=

1

2

I.e.

Jq •n0•n1q′ •n
′
0•n

′
1q′′, ψα ‹UQK =

1

2

where ψα = q′ ∨ • ∨ • when α = 1 + n0 + n′1

16/22

Introduction Average-LTL Results Conclusion

Undecidability of the existence problem (cont’d)

Global reduction
Formula to be checked:

haltM = F qhalt ∧ G consecM

where (roughly) consecM =
∧

q,α

(
q → ψα ‹UQ)

The two counter machine halts iff there is an execution π such that
Jπ, haltMK = 1/2

; This yields the undecidability of the existence problem
for threshold = 1/2

17/22

Introduction Average-LTL Results Conclusion

Undecidability of the existence problem (cont’d)

Global reduction
Formula to be checked:

haltM = F qhalt ∧ G consecM

where (roughly) consecM =
∧

q,α

(
q → ψα ‹UQ)

The two counter machine halts iff there is an execution π such that
Jπ, haltMK = 1/2

; This yields the undecidability of the existence problem
for threshold = 1/2

17/22

Introduction Average-LTL Results Conclusion

Undecidability of the existence problem (cont’d)

Global reduction
Formula to be checked:

haltM = F qhalt ∧ G consecM

where (roughly) consecM =
∧

q,α

(
q → ψα ‹UQ)

The two counter machine halts iff there is an execution π such that
Jπ, haltMK = 1/2

; This yields the undecidability of the existence problem
for threshold = 1/2

17/22

Introduction Average-LTL Results Conclusion

What about the value problem?

If M halts, then JKM, haltMK = 1/2

It might be the case that M does not halt but JKM, haltMK = 1/2

M does not halt but JKM, haltMK = 1/2

a1++ a1=0 a0=0

a1>0 a0++ a0>0

a0−−

a1++

+ We need to be careful with machines having such a
converging phenomenon

18/22

Introduction Average-LTL Results Conclusion

What about the value problem?

If M halts, then JKM, haltMK = 1/2

It might be the case that M does not halt but JKM, haltMK = 1/2

M does not halt but JKM, haltMK = 1/2

a1++ a1=0 a0=0

a1>0 a0++ a0>0

a0−−

a1++

+ We need to be careful with machines having such a
converging phenomenon

18/22

Introduction Average-LTL Results Conclusion

What about the value problem?

If M halts, then JKM, haltMK = 1/2

It might be the case that M does not halt but JKM, haltMK = 1/2

M does not halt but JKM, haltMK = 1/2

a1++ a1=0 a0=0

a1>0 a0++ a0>0

a0−−

a1++

+ We need to be careful with machines having such a
converging phenomenon

18/22

Introduction Average-LTL Results Conclusion

Arguments for the undecidability proof

Technical lemmas
For a finite invalid run, if the first invalid consecution assigns a value
smaller than 1/2− 1/n to consecM, then the value of formula
G consecM along the run is smaller than 1/2− 1/n.

We assume two halting states: accept and reject.

If JKM, acceptMK = 1/2 but no run gives value 1/2 to formula
acceptM, then the unique valid run is infinite.

19/22

Introduction Average-LTL Results Conclusion

Arguments for the undecidability proof

Technical lemmas
For a finite invalid run, if the first invalid consecution assigns a value
smaller than 1/2− 1/n to consecM, then the value of formula
G consecM along the run is smaller than 1/2− 1/n.

We assume two halting states: accept and reject.

If JKM, acceptMK = 1/2 but no run gives value 1/2 to formula
acceptM, then the unique valid run is infinite.

19/22

Introduction Average-LTL Results Conclusion

Arguments for the undecidability proof

Technical lemmas
For a finite invalid run, if the first invalid consecution assigns a value
smaller than 1/2− 1/n to consecM, then the value of formula
G consecM along the run is smaller than 1/2− 1/n.

We assume two halting states: accept and reject.

If JKM, acceptMK = 1/2 but no run gives value 1/2 to formula
acceptM, then the unique valid run is infinite.

19/22

Introduction Average-LTL Results Conclusion

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if JKM(B), acceptM(B)K = 1/2

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence
JKM(C), acceptM(C)K < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

JKM(C), acceptM(C)K = 1/2. However since C does not accept C, the unique

valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

20/22

Introduction Average-LTL Results Conclusion

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if JKM(B), acceptM(B)K = 1/2

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence
JKM(C), acceptM(C)K < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

JKM(C), acceptM(C)K = 1/2. However since C does not accept C, the unique

valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

20/22

Introduction Average-LTL Results Conclusion

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if JKM(B), acceptM(B)K = 1/2

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence
JKM(C), acceptM(C)K < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

JKM(C), acceptM(C)K = 1/2. However since C does not accept C, the unique

valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

20/22

Introduction Average-LTL Results Conclusion

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if JKM(B), acceptM(B)K = 1/2

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence
JKM(C), acceptM(C)K < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

JKM(C), acceptM(C)K = 1/2. However since C does not accept C, the unique

valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

20/22

Introduction Average-LTL Results Conclusion

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if JKM(B), acceptM(B)K = 1/2

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence
JKM(C), acceptM(C)K < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

JKM(C), acceptM(C)K = 1/2. However since C does not accept C, the unique

valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

20/22

Introduction Average-LTL Results Conclusion

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if JKM(B), acceptM(B)K = 1/2

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence
JKM(C), acceptM(C)K < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

JKM(C), acceptM(C)K = 1/2. However since C does not accept C, the unique

valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

20/22

Introduction Average-LTL Results Conclusion

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if JKM(B), acceptM(B)K = 1/2

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence
JKM(C), acceptM(C)K < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

JKM(C), acceptM(C)K = 1/2. However since C does not accept C, the unique

valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

20/22

Introduction Average-LTL Results Conclusion

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if JKM(B), acceptM(B)K = 1/2

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence
JKM(C), acceptM(C)K < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

JKM(C), acceptM(C)K = 1/2. However since C does not accept C, the unique

valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

20/22

Introduction Average-LTL Results Conclusion

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if JKM(B), acceptM(B)K = 1/2

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence
JKM(C), acceptM(C)K < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

JKM(C), acceptM(C)K = 1/2. However since C does not accept C, the unique

valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

20/22

Introduction Average-LTL Results Conclusion

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if JKM(B), acceptM(B)K = 1/2

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence
JKM(C), acceptM(C)K < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

JKM(C), acceptM(C)K = 1/2. However since C does not accept C, the unique

valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

20/22

Introduction Average-LTL Results Conclusion

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if JKM(B), acceptM(B)K = 1/2

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence
JKM(C), acceptM(C)K < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

JKM(C), acceptM(C)K = 1/2. However since C does not accept C, the unique

valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

20/22

Introduction Average-LTL Results Conclusion

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if JKM(B), acceptM(B)K = 1/2

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence
JKM(C), acceptM(C)K < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

JKM(C), acceptM(C)K = 1/2. However since C does not accept C, the unique

valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

20/22

Introduction Average-LTL Results Conclusion

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if JKM(B), acceptM(B)K = 1/2

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence
JKM(C), acceptM(C)K < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

JKM(C), acceptM(C)K = 1/2. However since C does not accept C, the unique

valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

20/22

Introduction Average-LTL Results Conclusion

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if JKM(B), acceptM(B)K = 1/2

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence
JKM(C), acceptM(C)K < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

JKM(C), acceptM(C)K = 1/2. However since C does not accept C, the unique

valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

20/22

Introduction Average-LTL Results Conclusion

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if JKM(B), acceptM(B)K = 1/2

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence
JKM(C), acceptM(C)K < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

JKM(C), acceptM(C)K = 1/2. However since C does not accept C, the unique

valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

20/22

Introduction Average-LTL Results Conclusion

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if JKM(B), acceptM(B)K = 1/2

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence
JKM(C), acceptM(C)K < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

JKM(C), acceptM(C)K = 1/2. However since C does not accept C, the unique

valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

20/22

Introduction Average-LTL Results Conclusion

The diagonal argument

B det. Turing machine can either accept, reject, or not halt
→ M(B) two-counter machine which simulates B on B

We define the program

H : B 7→
ß
accept if JKM(B), acceptM(B)K = 1/2

reject otherwise

The function H is not computable.

Towards a contradiction, assume it is computable by det. Turing machine TH, and
define the program:

C(B) : Simulate TH on B;
If TH accepts B then reject, otherwise accept

Program C is deterministic hence we can run C on C
Program C always terminates:

Assume C accepts C: this means that H(C) = reject, hence
JKM(C), acceptM(C)K < 1/2. This implies M(C) does not accept, and therefore
C does not accept C, contradiction: C rejects C.

JKM(C), acceptM(C)K = 1/2. However since C does not accept C, the unique

valid computation of M(C) is either infinite or rejecting. Applying the lemma on
previous slide, it is infinite, which contradicts the fact that C always terminates.

Therefore, H is not computable.

20/22

Introduction Average-LTL Results Conclusion

Outline

1 Introduction

2 Average-LTL

3 Results

4 Conclusion

21/22

Introduction Average-LTL Results Conclusion

Conclusion and current work

We have proposed a natural and expressive quant. extension of LTL

Unfortunately the model-checking is undecidable

No nesting of quantitative modalities in the proof is required
Decidable twist: only using discounting
Note: LTL with mean-payoff constraints is decidable [THHY12]

Undecidability also holds for several approximation problems

However, original and interesting (we believe) diagonal argument for
proving the undecidability

We did not manage to simulate the halting problem for Turing
machines directly. What does that mean for the undecidability?
Proof technics re-used in the context of timed systems
Might be useful in other quantitative contexts?

22/22

Introduction Average-LTL Results Conclusion

Conclusion and current work

We have proposed a natural and expressive quant. extension of LTL

Unfortunately the model-checking is undecidable

No nesting of quantitative modalities in the proof is required
Decidable twist: only using discounting
Note: LTL with mean-payoff constraints is decidable [THHY12]

Undecidability also holds for several approximation problems

However, original and interesting (we believe) diagonal argument for
proving the undecidability

We did not manage to simulate the halting problem for Turing
machines directly. What does that mean for the undecidability?
Proof technics re-used in the context of timed systems
Might be useful in other quantitative contexts?

22/22

Introduction Average-LTL Results Conclusion

Conclusion and current work

We have proposed a natural and expressive quant. extension of LTL

Unfortunately the model-checking is undecidable

No nesting of quantitative modalities in the proof is required
Decidable twist: only using discounting
Note: LTL with mean-payoff constraints is decidable [THHY12]

Undecidability also holds for several approximation problems

However, original and interesting (we believe) diagonal argument for
proving the undecidability

We did not manage to simulate the halting problem for Turing
machines directly. What does that mean for the undecidability?
Proof technics re-used in the context of timed systems
Might be useful in other quantitative contexts?

22/22

Introduction Average-LTL Results Conclusion

Conclusion and current work

We have proposed a natural and expressive quant. extension of LTL

Unfortunately the model-checking is undecidable

No nesting of quantitative modalities in the proof is required
Decidable twist: only using discounting
Note: LTL with mean-payoff constraints is decidable [THHY12]

Undecidability also holds for several approximation problems

However, original and interesting (we believe) diagonal argument for
proving the undecidability

We did not manage to simulate the halting problem for Turing
machines directly. What does that mean for the undecidability?
Proof technics re-used in the context of timed systems
Might be useful in other quantitative contexts?

22/22

Introduction Average-LTL Results Conclusion

Conclusion and current work

We have proposed a natural and expressive quant. extension of LTL

Unfortunately the model-checking is undecidable

No nesting of quantitative modalities in the proof is required
Decidable twist: only using discounting
Note: LTL with mean-payoff constraints is decidable [THHY12]

Undecidability also holds for several approximation problems

However, original and interesting (we believe) diagonal argument for
proving the undecidability

We did not manage to simulate the halting problem for Turing
machines directly. What does that mean for the undecidability?
Proof technics re-used in the context of timed systems
Might be useful in other quantitative contexts?

22/22

Introduction Average-LTL Results Conclusion

Conclusion and current work

We have proposed a natural and expressive quant. extension of LTL

Unfortunately the model-checking is undecidable

No nesting of quantitative modalities in the proof is required
Decidable twist: only using discounting
Note: LTL with mean-payoff constraints is decidable [THHY12]

Undecidability also holds for several approximation problems

However, original and interesting (we believe) diagonal argument for
proving the undecidability

We did not manage to simulate the halting problem for Turing
machines directly. What does that mean for the undecidability?
Proof technics re-used in the context of timed systems
Might be useful in other quantitative contexts?

22/22

Introduction Average-LTL Results Conclusion

Conclusion and current work

We have proposed a natural and expressive quant. extension of LTL

Unfortunately the model-checking is undecidable

No nesting of quantitative modalities in the proof is required
Decidable twist: only using discounting
Note: LTL with mean-payoff constraints is decidable [THHY12]

Undecidability also holds for several approximation problems

However, original and interesting (we believe) diagonal argument for
proving the undecidability

We did not manage to simulate the halting problem for Turing
machines directly. What does that mean for the undecidability?
Proof technics re-used in the context of timed systems
Might be useful in other quantitative contexts?

22/22

Introduction Average-LTL Results Conclusion

Conclusion and current work

We have proposed a natural and expressive quant. extension of LTL

Unfortunately the model-checking is undecidable

No nesting of quantitative modalities in the proof is required
Decidable twist: only using discounting
Note: LTL with mean-payoff constraints is decidable [THHY12]

Undecidability also holds for several approximation problems

However, original and interesting (we believe) diagonal argument for
proving the undecidability

We did not manage to simulate the halting problem for Turing
machines directly. What does that mean for the undecidability?
Proof technics re-used in the context of timed systems
Might be useful in other quantitative contexts?

22/22

Introduction Average-LTL Results Conclusion

Conclusion and current work

We have proposed a natural and expressive quant. extension of LTL

Unfortunately the model-checking is undecidable

No nesting of quantitative modalities in the proof is required
Decidable twist: only using discounting
Note: LTL with mean-payoff constraints is decidable [THHY12]

Undecidability also holds for several approximation problems

However, original and interesting (we believe) diagonal argument for
proving the undecidability

We did not manage to simulate the halting problem for Turing
machines directly. What does that mean for the undecidability?
Proof technics re-used in the context of timed systems
Might be useful in other quantitative contexts?

22/22

	Introduction
	Average-LTL
	Results
	Conclusion

