On the optimal reachability problem in weighted timed games

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

Based on former works with Thomas Brihaye, Kim G. Larsen, Nicolas Markey, etc... And on recent work with Samy Jaziri and Nicolas Markey

Outline

1 Introduction

- 2 Overview of "old" results
 - Weighted timed automata
 - Timed games
 - Weighted timed games

3 Some recent developments

- Undecidability of the value problem
- Approximation of the optimal cost
- Back to the undecidability

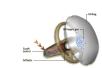
Conclusion

Time-dependent systems

• We are interested in timed systems

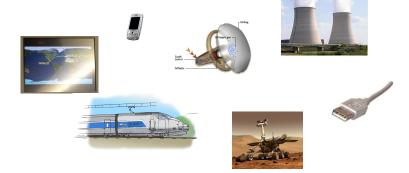
Time-dependent systems

• We are interested in timed systems



Time-dependent systems

• We are interested in timed systems

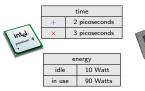


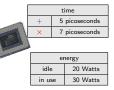
• ... and in their analysis and control

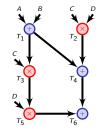
Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

$$P_1$$
 (fast):

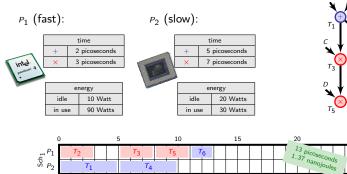
$$P_2$$
 (slow):







Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

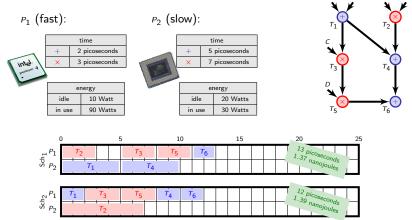


D

 T_6

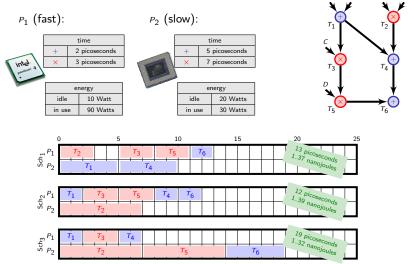
25

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:



D

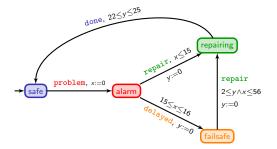
Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:



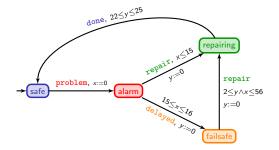
[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata.

D

The model of timed automata



The model of timed automata



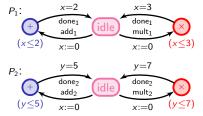
	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
x	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

failsafe	$\xrightarrow{2.3}$	failsafe	$\xrightarrow{\text{repair}}$	repairing	$\xrightarrow{22.1}$	repairing	$\xrightarrow{\text{done}}$	safe	
 15.6		17.9		17.9		40		40	
0		2.3		0		22.1		22.1	

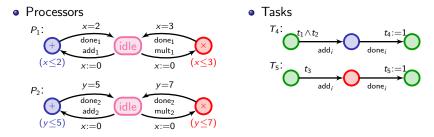
Modelling the task graph scheduling problem

Modelling the task graph scheduling problem

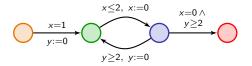
Processors

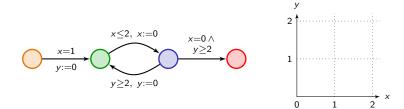


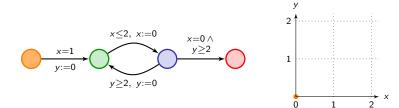
Modelling the task graph scheduling problem

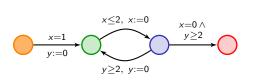


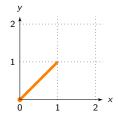
A schedule is a path in the product automaton

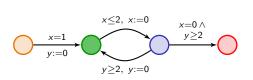


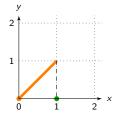


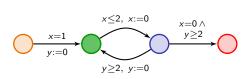


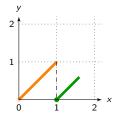


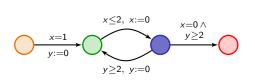


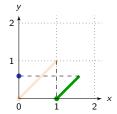


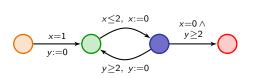


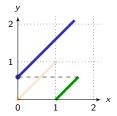


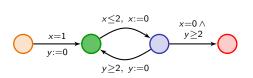


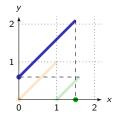


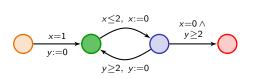


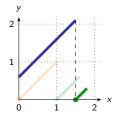


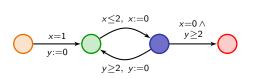


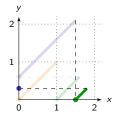


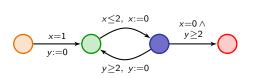


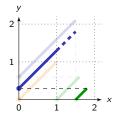


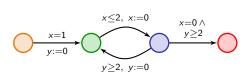


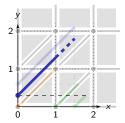


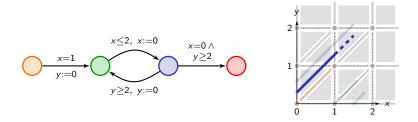








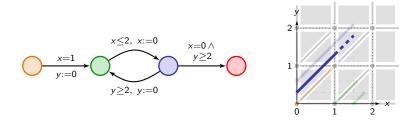




Theorem [AD94]

Reachability in timed automata is decidable (as well as many other important properties). It is PSPACE-complete.

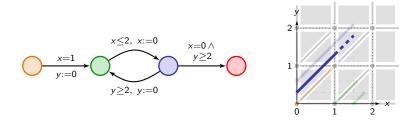
• Technical tool: region abstraction



Theorem [AD94]

Reachability in timed automata is decidable (as well as many other important properties). It is PSPACE-complete.

- Technical tool: region abstraction
- Efficient symbolic technics based on zones, implemented in tools

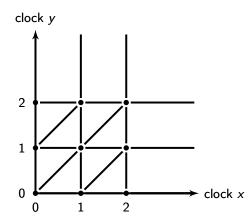


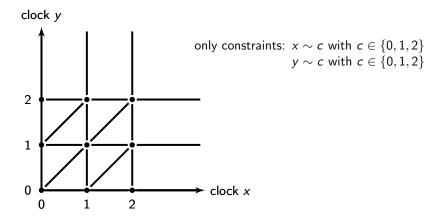
Theorem [AD94]

Reachability in timed automata is decidable (as well as many other important properties). It is PSPACE-complete.

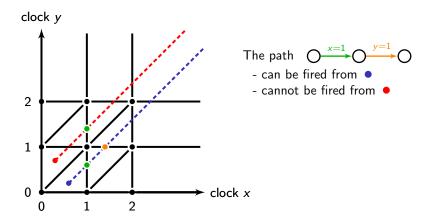
- Technical tool: region abstraction
- Efficient symbolic technics based on zones, implemented in tools

Skip regions

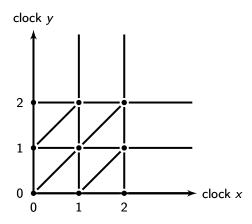




• "compatibility" between regions and constraints

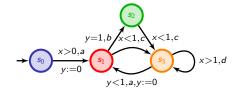


- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

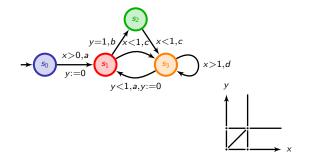


 \rightsquigarrow This is a finite time-abstract bisimulation!

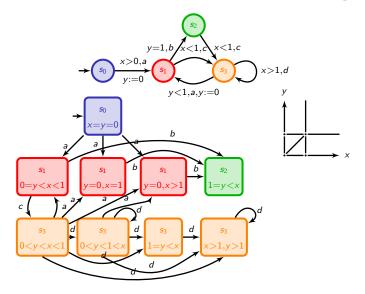
Technical tool: Region abstraction – An example [AD94]



Technical tool: Region abstraction – An example [AD94]



Technical tool: Region abstraction – An example [AD94]



Outline

Introduction

Overview of "old" results

- Weighted timed automata
- Timed games
- Weighted timed games

3 Some recent developments

- Undecidability of the value problem
- Approximation of the optimal cost
- Back to the undecidability

4 Conclusion

Outline

Introduction

- Overview of "old" results
 - Weighted timed automata
 - Timed games
 - Weighted timed games

3 Some recent developments

- Undecidability of the value problem
- Approximation of the optimal cost
- Back to the undecidability

4 Conclusion

Modelling resources in timed systems

• System resources might be relevant and even crucial information

Modelling resources in timed systems

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,

- price to pay,
- bandwidth,

• ...

Modelling resources in timed systems

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,

- price to pay,
- bandwidth,

• ...

 \rightsquigarrow timed automata are not powerful enough!

Modelling resources in timed systems

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,

- price to pay,
- bandwidth,

• ...

 \rightsquigarrow timed automata are not powerful enough!

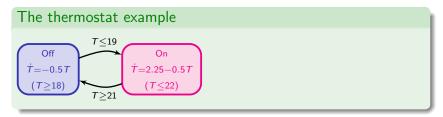
- A possible solution: use hybrid automata
 - a discrete control (the mode of the system)
 - $+ \quad$ continuous evolution of the variables within a mode

Modelling resources in timed systems

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,

• ...

- price to pay,
- bandwidth,
- → timed automata are not powerful enough!
- A possible solution: use hybrid automata

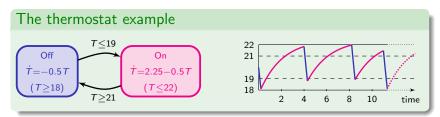


Modelling resources in timed systems

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,

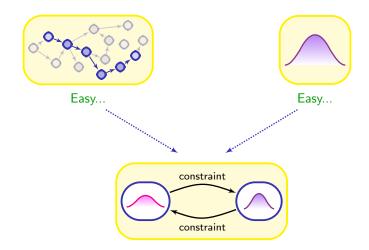
• ...

- price to pay,
- bandwidth,
- \rightsquigarrow timed automata are not powerful enough!
- A possible solution: use hybrid automata

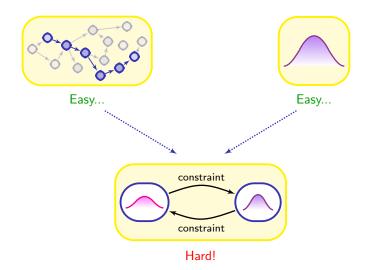


Easy...

Ok... but?



Ok... but?



Modelling resources in timed systems

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,

- price to pay,
- bandwidth,

- ...
- \rightsquigarrow timed automata are not powerful enough!
- A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is **undecidable** in hybrid automata. Even for the simplest, the so-called stopwatch automata (clocks can be stopped).

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).

Modelling resources in timed systems

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,

- price to pay,
- bandwidth,

- ...
- \rightsquigarrow timed automata are not powerful enough!
- A possible solution: use hybrid automata

Theorem [HKPV95]

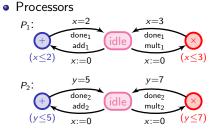
The reachability problem is **undecidable** in hybrid automata. Even for the simplest, the so-called stopwatch automata (clocks can be stopped).

 An alternative: weighted/priced timed automata [ALP01,BFH+01]

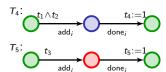
 hybrid variables do not constrain the system hybrid variables are observer variables

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95). [ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01). [BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01). 14/70

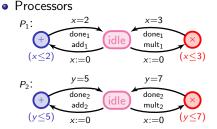
Modelling the task graph scheduling problem



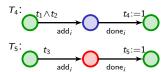
Tasks



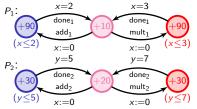
Modelling the task graph scheduling problem



Tasks

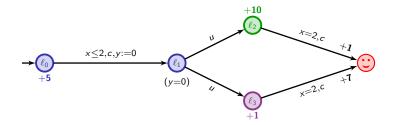


Modelling energy

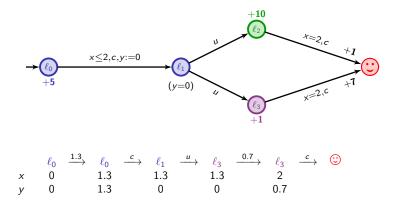


A good schedule is a path in the product automaton with a low cost

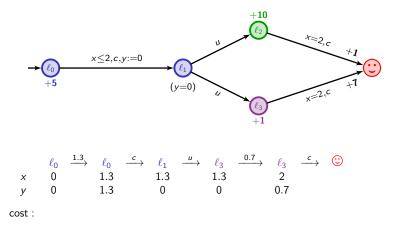
Weighted/priced timed automata [ALP01,BFH+01]



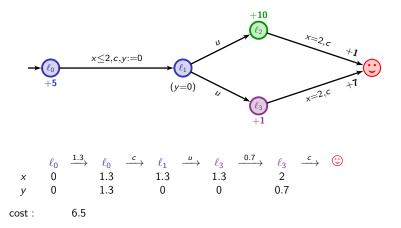
Weighted/priced timed automata [ALP01,BFH+01]



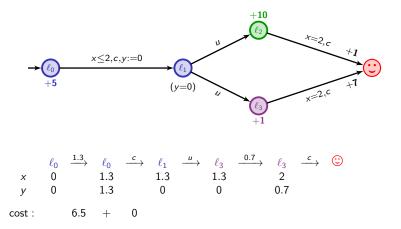
Weighted/priced timed automata [ALP01,BFH+01]



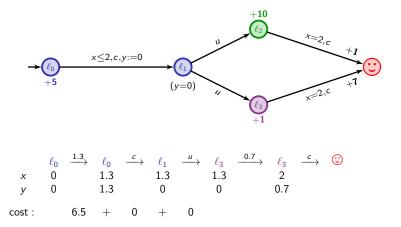
Weighted/priced timed automata [ALP01,BFH+01]



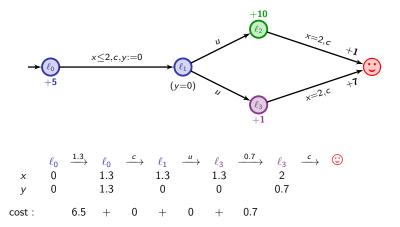
Weighted/priced timed automata [ALP01,BFH+01]



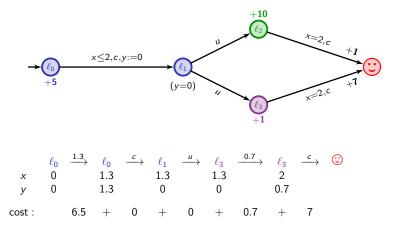
Weighted/priced timed automata [ALP01,BFH+01]



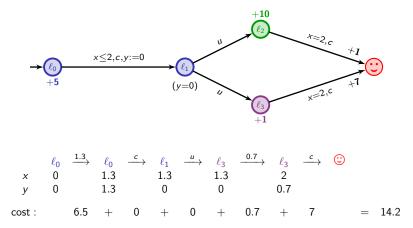
Weighted/priced timed automata [ALP01,BFH+01]



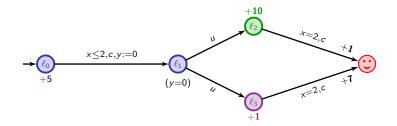
Weighted/priced timed automata [ALP01,BFH+01]



Weighted/priced timed automata [ALP01,BFH+01]

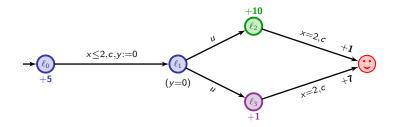


Weighted/priced timed automata [ALP01,BFH+01]



Question: what is the optimal cost for reaching \bigcirc ?

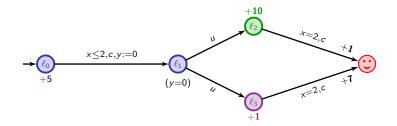
Weighted/priced timed automata [ALP01,BFH+01]



Question: what is the optimal cost for reaching \bigcirc ?

5t + 10(2 - t) + 1

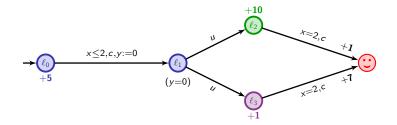
Weighted/priced timed automata [ALP01,BFH+01]



Question: what is the optimal cost for reaching \bigcirc ?

5t + 10(2 - t) + 1, 5t + (2 - t) + 7

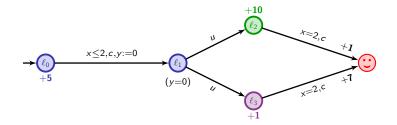
Weighted/priced timed automata [ALP01,BFH+01]



Question: what is the optimal cost for reaching \bigcirc ?

min (5t + 10(2 - t) + 1, 5t + (2 - t) + 7)

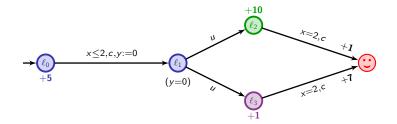
Weighted/priced timed automata [ALP01,BFH+01]



Question: what is the optimal cost for reaching \bigcirc ?

$$\inf_{0 \le t \le 2} \min \left(5t + 10(2-t) + 1 , 5t + (2-t) + 7 \right) = 9$$

Weighted/priced timed automata [ALP01,BFH+01]



Question: what is the optimal cost for reaching \bigcirc ?

$$\inf_{0 \le t \le 2} \min \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 9$$

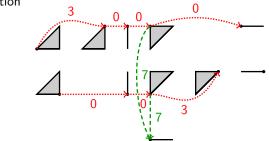
 \sim strategy: leave immediately ℓ_0 , go to ℓ_3 , and wait there 2 t.u.

Optimal-cost reachability

Theorem [ALP01,BFH+01,BBBR07]

In weighted timed automata, the optimal cost is an integer and can be computed in PSPACE.

• Technical tool: a refinement of the regions, the corner-point abstraction



[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01). [BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01). [BBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem (Formal Methods in System Design).

From timed to discrete behaviours

Optimal reachability as a linear programming problem

From timed to discrete behaviours

Optimal reachability as a linear programming problem

 $\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \cdots$

From timed to discrete behaviours

Optimal reachability as a linear programming problem

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \cdots \begin{cases} t_1 + t_2 \leq 2 \\ \vdots \leq 1 \leq 2 \end{cases}$$

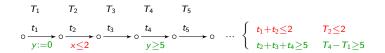
From timed to discrete behaviours

Optimal reachability as a linear programming problem

$$\circ \underbrace{t_1}_{y:=0} \circ \underbrace{t_2}_{x\leq 2} \circ \underbrace{t_3}_{y\geq 5} \circ \underbrace{t_4}_{y\geq 5} \circ \underbrace{t_5}_{t_2} \circ \cdots \begin{cases} t_1+t_2\leq 2\\ t_2+t_3+t_4\geq 5 \end{cases}$$

From timed to discrete behaviours

Optimal reachability as a linear programming problem



From timed to discrete behaviours

Optimal reachability as a linear programming problem

$$T_1 \qquad T_2 \qquad T_3 \qquad T_4 \qquad T_5$$

$$\circ \underbrace{t_1}_{y:=0} \circ \underbrace{t_2}_{x \le 2} \circ \underbrace{t_3}_{y \ge 5} \circ \underbrace{t_4}_{y \ge 5} \circ \underbrace{t_5}_{y \ge 5} \circ \cdots \begin{cases} t_1 + t_2 \le 2 \qquad T_2 \le 2 \\ t_2 + t_3 + t_4 \ge 5 \qquad T_4 - T_1 \ge 5 \end{cases}$$

Lemma

Let Z be a bounded zone and f be a function

$$f:(T_1,...,T_n)\mapsto \sum_{i=1}^n c_i T_i + c$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

From timed to discrete behaviours

Optimal reachability as a linear programming problem

$$T_1 \qquad T_2 \qquad T_3 \qquad T_4 \qquad T_5$$

$$\circ \underbrace{t_1}_{y:=0} \circ \underbrace{t_2}_{x \le 2} \circ \underbrace{t_3}_{y \ge 5} \circ \underbrace{t_4}_{y \ge 5} \circ \underbrace{t_5}_{y \ge 5} \circ \cdots \begin{cases} t_1 + t_2 \le 2 \qquad T_2 \le 2 \\ t_2 + t_3 + t_4 \ge 5 \qquad T_4 - T_1 \ge 5 \end{cases}$$

Lemma

Let Z be a bounded zone and f be a function

$$f:(T_1,...,T_n)\mapsto \sum_{i=1}^n c_i T_i + c$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

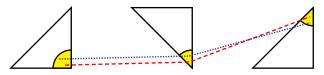
 \sim for every finite path π in \mathcal{A} , there exists a path Π in \mathcal{A}_{cp} such that

 $cost(\Pi) \leq cost(\pi)$

[Π is a "corner-point projection" of π]

From discrete to timed behaviours

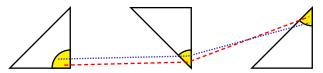
Approximation of abstract paths:



For any path Π of $\mathcal{A}_{\mathsf{cp}}$,

From discrete to timed behaviours

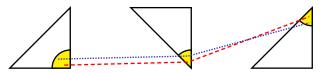
Approximation of abstract paths:



For any path Π of $\mathcal{A}_{\mathsf{cp}}$, for any $\varepsilon > \mathsf{0},$

From discrete to timed behaviours

Approximation of abstract paths:

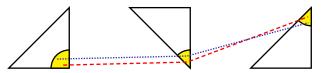


For any path Π of A_{cp} , for any $\varepsilon > 0$, there exists a path π_{ε} of A s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$

From discrete to timed behaviours

Approximation of abstract paths:



For any path Π of \mathcal{A}_{cp} , for any $\varepsilon > 0$, there exists a path π_{ε} of \mathcal{A} s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$

For every $\eta > 0$, there exists $\varepsilon > 0$ s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon \Rightarrow |\mathsf{cost}(\Pi) - \mathsf{cost}(\pi_{\varepsilon})| < \eta$$

Note on the corner-point abstraction

It is a very interesting abstraction, that can be used in several other contexts:

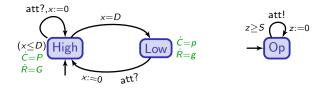
- for mean-cost optimization
- for discounted-cost optimization
- for all concavely-priced timed automata
- for deciding frequency objectives

[BBL04,BBL08] [FL08] [JT08] [BBBS11,Sta12]

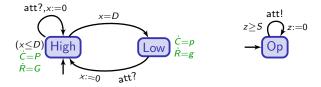
• . . .

[BBL08] Bouyer, Brinksma, Larsen. Staying Alive As Cheaply As Possible (*HSCC'04*).
[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (*Formal Methods in System Designs*).
[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (*INFINITY'08*).
[JT08] Judziński, Trivedi. Concavely-priced timed automata (*FORMATS'08*).
[BBES11] Bertrand, Bouyer, Brihaye, Stainer. Emptiness and universailty problems in timed automata with positive frequency (*ICALP'11*).
[Sta12] Stainer. Frequencies in forgetful timed automata (*FORMATS'12*).

Going further 1: mean-cost optimization



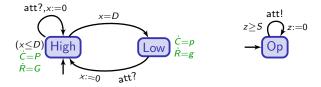
Going further 1: mean-cost optimization



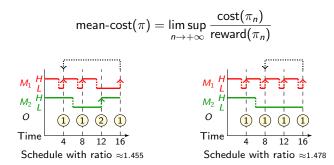
 \rightsquigarrow compute optimal infinite schedules that minimize

mean-cost
$$(\pi) = \limsup_{n \to +\infty} \frac{\operatorname{cost}(\pi_n)}{\operatorname{reward}(\pi_n)}$$

Going further 1: mean-cost optimization

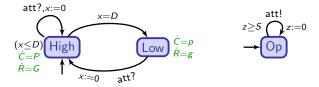


 \rightsquigarrow compute optimal infinite schedules that minimize



[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

Going further 1: mean-cost optimization



 \rightsquigarrow compute optimal infinite schedules that minimize

$$\operatorname{mean-cost}(\pi) = \limsup_{n \to +\infty} \frac{\operatorname{cost}(\pi_n)}{\operatorname{reward}(\pi_n)}$$

Theorem [BBL08]

In weighted timed automata, the optimal mean-cost can be compute in PSPACE.

 \rightsquigarrow the corner-point abstraction can be used

From timed to discrete behaviours

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

From timed to discrete behaviours

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

 \sim for every finite path π in A, there exists a path Π in A_{cp} s.t. mean-cost(Π) ≤ mean-cost(π)

From timed to discrete behaviours

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

 \sim → for every finite path π in \mathcal{A} , there exists a path Π in \mathcal{A}_{cp} s.t. mean-cost(Π) ≤ mean-cost(π)

• Infinite behaviours: decompose each sufficiently long projection into cycles:

The (acyclic) linear part will be negligible!

From timed to discrete behaviours

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

 \sim for every finite path π in A, there exists a path Π in A_{cp} s.t. mean-cost(Π) ≤ mean-cost(π)

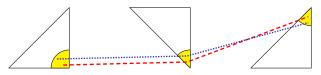
• Infinite behaviours: decompose each sufficiently long projection into cycles:

The (acyclic) linear part will be negligible!

 \rightsquigarrow the optimal cycle of $\mathcal{A}_{\sf cp}$ is better than any infinite path of $\mathcal{A}!$

From discrete to timed behaviours

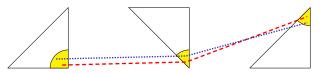
Approximation of abstract paths:



For any path Π of $\mathcal{A}_{\mathsf{cp}}$,

From discrete to timed behaviours

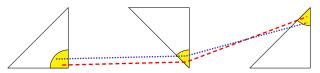
Approximation of abstract paths:



For any path Π of $\mathcal{A}_{\mathsf{cp}}$, for any $\varepsilon > \mathsf{0},$

From discrete to timed behaviours

Approximation of abstract paths:

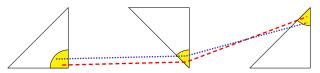


For any path Π of \mathcal{A}_{cp} , for any $\varepsilon > 0$, there exists a path π_{ε} of \mathcal{A} s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$

From discrete to timed behaviours

Approximation of abstract paths:



For any path Π of \mathcal{A}_{cp} , for any $\varepsilon>0$, there exists a path π_{ε} of \mathcal{A} s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$

For every $\eta > 0$, there exists $\varepsilon > 0$ s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon \Rightarrow |\mathsf{mean-cost}(\Pi) - \mathsf{mean-cost}(\pi_{\varepsilon})| < \eta$$

Going further 2: concavely-priced cost functions

 \rightsquigarrow A general abstract framework for quantitative timed systems

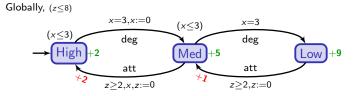
Theorem [JT08]

In concavely-priced timed automata, optimal cost is computable, if we restrict to quasi-concave cost functions. For the following cost functions, the (decision) problem is even PSPACE-complete:

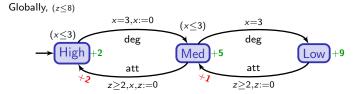
- optimal-time and optimal-cost reachability;
- optimal discrete discounted cost;
- optimal mean-cost.

 \rightsquigarrow the corner-point abstraction can be used

Going further 3: discounted-time cost optimization

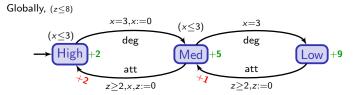


Going further 3: discounted-time cost optimization



 \rightsquigarrow compute optimal infinite schedules that minimize discounted cost over time

Going further 3: discounted-time cost optimization

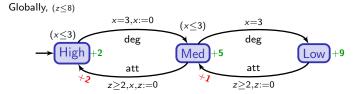


 \rightsquigarrow compute optimal infinite schedules that minimize

discounted-cost_{$$\lambda$$}(π) = $\sum_{n\geq 0} \lambda^{T_n} \int_{t=0}^{\tau_{n+1}} \lambda^t \text{cost}(\ell_n) \, \mathrm{d}t + \lambda^{T_{n+1}} \text{cost}(\ell_n \xrightarrow{a_{n+1}} \ell_{n+1})$

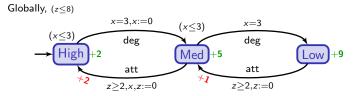
if
$$\pi = (\ell_0, v_0) \xrightarrow{\tau_1, a_1} (\ell_1, v_1) \xrightarrow{\tau_2, a_2} \cdots$$
 and $T_n = \sum_{i \le n} \tau_i$

Going further 3: discounted-time cost optimization

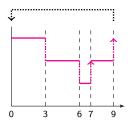


 \rightsquigarrow compute optimal infinite schedules that minimize discounted cost over time

Going further 3: discounted-time cost optimization

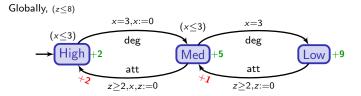


 \rightsquigarrow compute optimal infinite schedules that minimize discounted cost over time



if $\lambda = e^{-1}$, the discounted cost of that infinite schedule is ≈ 2.16

Going further 3: discounted-time cost optimization



 \rightsquigarrow compute optimal infinite schedules that minimize discounted cost over time

Theorem [FL08]

In weighted timed automata. the optimal discounted cost is computable in EXPTIME.

 \rightsquigarrow the corner-point abstraction can be used

Outline

Introduction

- Overview of "old" results
 - Weighted timed automata
 - Timed games
 - Weighted timed games

3 Some recent developments

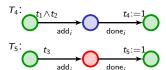
- Undecidability of the value problem
- Approximation of the optimal cost
- Back to the undecidability

Conclusion

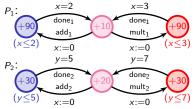
Modelling the task graph scheduling problem

Processors x=2x=3 P_1 : done₁ done₁ idle add1 mult₁ (x≤2) (x≤3) x := 0x := 0v=5y=7 P_2 : done₂ done₂ idle add₂ mult₂ (*y*≤5) (y≤7) x := 0x := 0

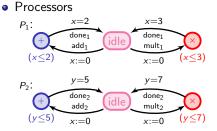
Tasks



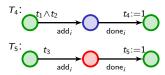
Modelling energy



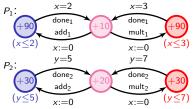
Modelling the task graph scheduling problem



Tasks



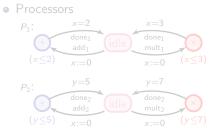
Modelling energy



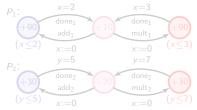
 Modelling uncertainty $x \ge 1$ x > 1 P_1 : done₁ done₁ add mult₁ (x≤3) (x≤2) x := 0x := 0y≥3 y≥2 P_2 : done₂ done₂ adda mult₂ (x≤2) (x≤3) x := 0

x := 0

Modelling the task graph scheduling problem



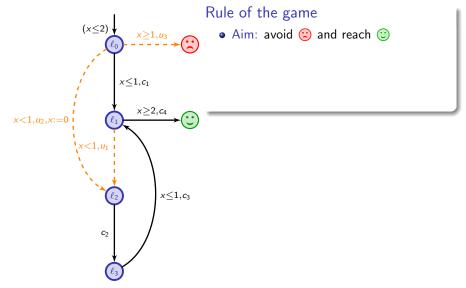
Modelling energy



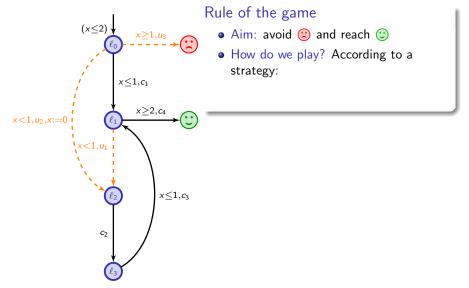
Tasks

A (good) schedule is a strategy in the product game (with a low cost)

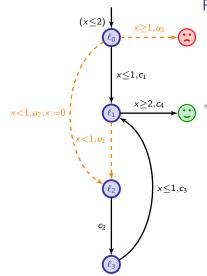
An example of a timed game



An example of a timed game



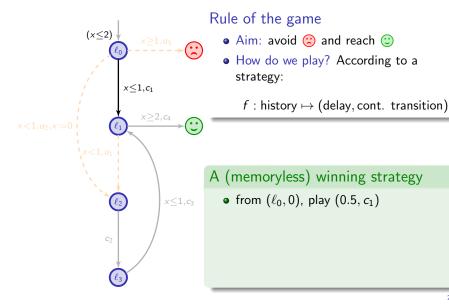
An example of a timed game



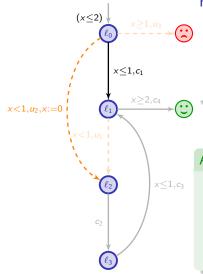
Rule of the game

- Aim: avoid 🙁 and reach 🙂
- How do we play? According to a strategy:

f: history \mapsto (delay, cont. transition)



An example of a timed game



Rule of the game

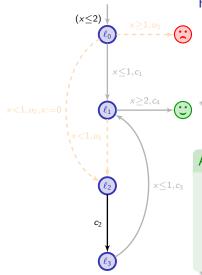
- Aim: avoid 🙁 and reach 🙂
- How do we play? According to a strategy:

f: history \mapsto (delay, cont. transition)

A (memoryless) winning strategy

• from ($\ell_0, 0$), play (0.5, c_1) \sim can be preempted by u_2

An example of a timed game



Rule of the game

- Aim: avoid 🙁 and reach 🙂
- How do we play? According to a strategy:

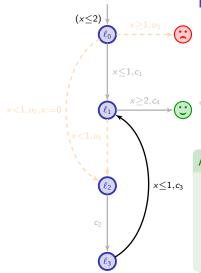
f: history \mapsto (delay, cont. transition)

A (memoryless) winning strategy

• from ($\ell_0, 0$), play (0.5, c_1) \sim can be preempted by u_2

• from
$$(\ell_2, \star)$$
, play $(1 - \star, c_2)$

An example of a timed game



Rule of the game

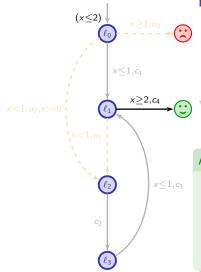
- Aim: avoid 🙁 and reach 🙂
- How do we play? According to a strategy:

f: history \mapsto (delay, cont. transition)

A (memoryless) winning strategy

- from $(\ell_0, 0)$, play $(0.5, c_1)$ \sim can be preempted by u_2
- from (ℓ_2, \star) , play $(1 \star, c_2)$
- from $(\ell_3, 1)$, play $(0, c_3)$

An example of a timed game



Rule of the game

- Aim: avoid 🙁 and reach 🙂
- How do we play? According to a strategy:

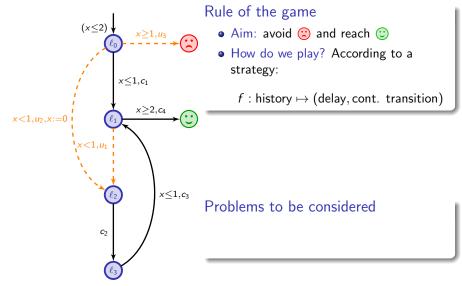
f: history \mapsto (delay, cont. transition)

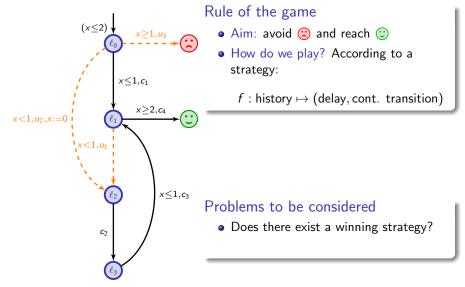
A (memoryless) winning strategy

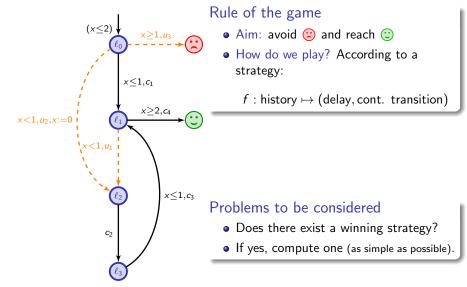
• from ($\ell_0, 0$), play (0.5, c_1) \sim can be preempted by u_2

• from
$$(\ell_2, \star)$$
, play $(1 - \star, c_2)$

- from $(\ell_3, 1)$, play $(0, c_3)$
- from $(\ell_1, 1)$, play $(1, c_4)$







Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and EXPTIME-complete. Furthermore memoryless and "region-based" strategies are sufficient.

Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and EXPTIME-complete. Furthermore memoryless and "region-based" strategies are sufficient.

 \rightsquigarrow classical regions are sufficient for solving such problems

Decidability of timed games

Theorem [AMPS98,HK99]

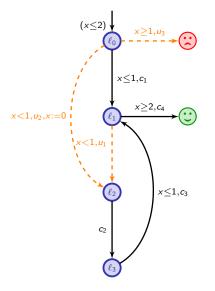
Reachability and safety timed games are decidable and EXPTIME-complete. Furthermore memoryless and "region-based" strategies are sufficient.

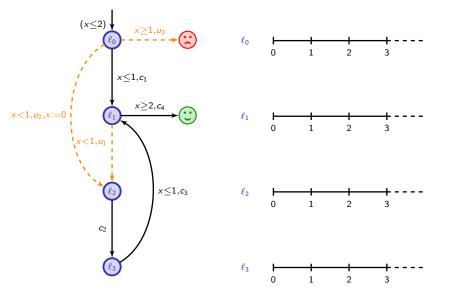
 \rightsquigarrow classical regions are sufficient for solving such problems

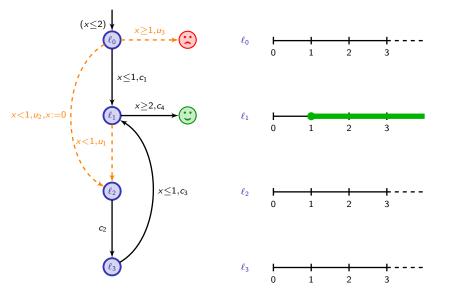
Theorem [AM99,BHPR07,JT07]

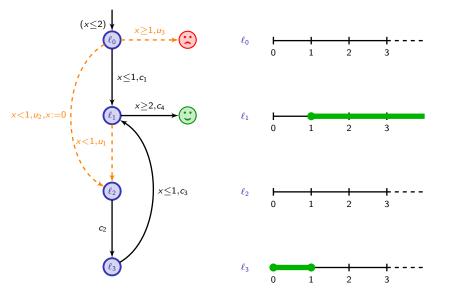
Optimal-time reachability timed games are decidable and EXPTIME-complete.

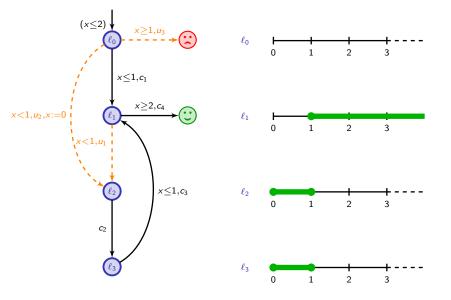
[AM99] Asarin, Maler. As soon as possible: time optimal control for timed automata (HSCC'99). [BHPR07] Brihaye, Henzinger, Prabhu, Raskin. Minimum-time reachability in timed games (ICALP'07). [JT07] Jurdziński, Trivedi. Reachability-time games on timed automata (ICALP'07).

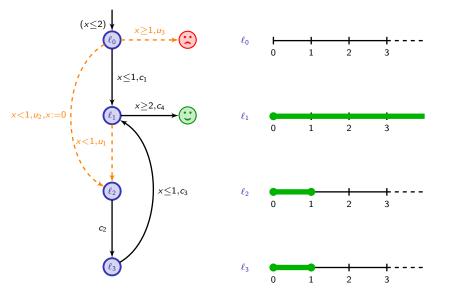


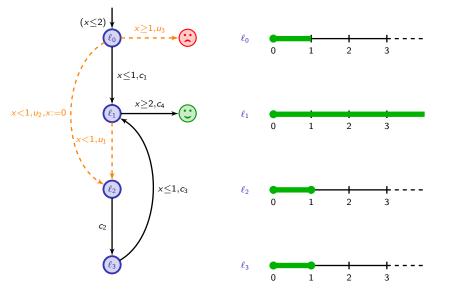


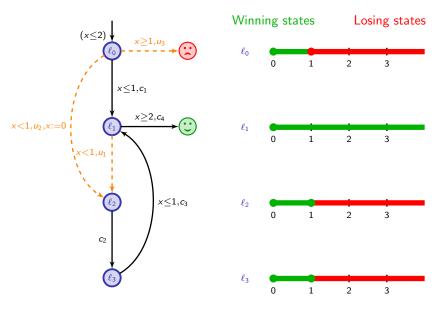










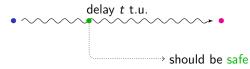


Decidability via attractors

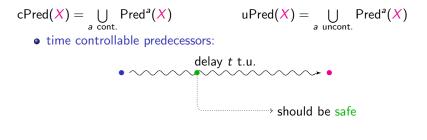
• $\operatorname{Pred}^{a}(X) = \{ \bullet \mid \bullet \xrightarrow{a} \bullet \in X \}$

- $\operatorname{Pred}^{a}(X) = \{ \bullet \mid \bullet \xrightarrow{a} \bullet \in X \}$
- controllable and uncontrollable discrete predecessors:
- $\operatorname{cPred}(X) = \bigcup_{a \text{ cont.}} \operatorname{Pred}^{a}(X)$ $\operatorname{uPred}(X) = \bigcup_{a \text{ uncont.}} \operatorname{Pred}^{a}(X)$

- $\mathsf{Pred}^{\mathsf{a}}(\mathsf{X}) = \{\bullet \mid \bullet \xrightarrow{\mathsf{a}} \bullet \in \mathsf{X}\}$
- controllable and uncontrollable discrete predecessors:
- $cPred(X) = \bigcup_{a \text{ cont.}} Pred^{a}(X) \qquad uPred(X) = \bigcup_{a \text{ uncont.}} Pred^{a}(X)$ • time controllable predecessors:



- $\mathsf{Pred}^{\mathsf{a}}(\mathsf{X}) = \{\bullet \mid \bullet \xrightarrow{\mathsf{a}} \bullet \in \mathsf{X}\}$
- controllable and uncontrollable discrete predecessors:



$$\mathsf{Pred}_{\delta}(X,\mathsf{Safe}) = \{\bullet \mid \exists t \ge 0, \bullet \xrightarrow{\delta(t)} \bullet \\ \mathsf{and} \ \forall 0 \le t' \le t, \bullet \xrightarrow{\delta(t')} \bullet \in \mathsf{Safe}\}$$

Timed games with a reachability objective

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

Timed games with a reachability objective

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure 🙂 in no more than 1 step is:

 $\operatorname{Attr}_1(\bigcirc) = \pi(\bigcirc)$

Timed games with a reachability objective

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure 🙂 in no more than 1 step is:

$$\mathsf{Attr}_1(\bigcirc) = \pi(\bigcirc)$$

• The states from which one can ensure 🙄 in no more than 2 steps is:

$$\operatorname{Attr}_2(\bigcirc) = \pi(\operatorname{Attr}_1(\bigcirc))$$

Timed games with a reachability objective

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure 🙂 in no more than 1 step is:

$$\mathsf{Attr}_1(\bigcirc) = \pi(\bigcirc)$$

• The states from which one can ensure 🙄 in no more than 2 steps is:

$$\operatorname{Attr}_2(\bigcirc) = \pi(\operatorname{Attr}_1(\bigcirc))$$

• . . .

Timed games with a reachability objective

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure 🙂 in no more than 1 step is:

$$\mathsf{Attr}_1(\bigcirc) = \pi(\bigcirc)$$

• The states from which one can ensure \bigcirc in no more than 2 steps is:

$$\operatorname{Attr}_2(\bigcirc) = \pi(\operatorname{Attr}_1(\bigcirc))$$

• . . .

• The states from which one can ensure 🙄 in no more than *n* steps is:

$$\operatorname{Attr}_n(\textcircled{\odot}) = \pi(\operatorname{Attr}_{n-1}(\textcircled{\odot}))$$

Timed games with a reachability objective

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure 🙂 in no more than 1 step is:

$$\mathsf{Attr}_1(\bigcirc) = \pi(\bigcirc)$$

• The states from which one can ensure \bigcirc in no more than 2 steps is:

$$\operatorname{Attr}_2(\bigcirc) = \pi(\operatorname{Attr}_1(\bigcirc))$$

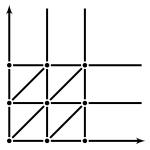
• . . .

• The states from which one can ensure 🙄 in no more than *n* steps is:

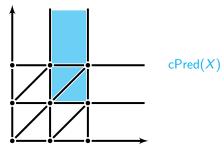
$$\operatorname{Attr}_{n}(\textcircled{\odot}) = \pi(\operatorname{Attr}_{n-1}(\textcircled{\odot})) \\ = \pi^{n}(\textcircled{\odot})$$

- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).

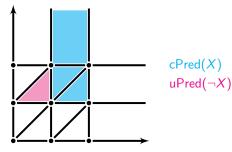
- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions?



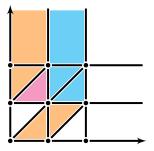
- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions?



- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions?

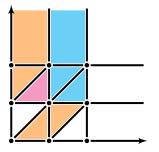


- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions?



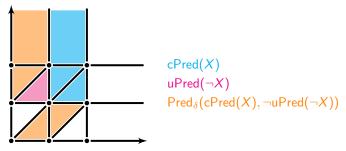
cPred(X) $uPred(\neg X)$ $Pred_{\delta}(cPred(X), \neg uPred(\neg X))$

- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions? Yes!



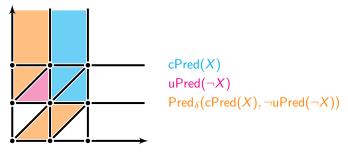
cPred(X) $uPred(\neg X)$ $Pred_{\delta}(cPred(X), \neg uPred(\neg X))$

- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions? Yes!



(but it generates non-convex unions of regions...)

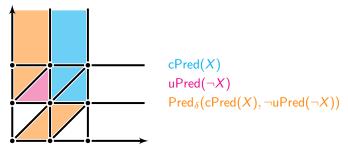
- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions? Yes!



(but it generates non-convex unions of regions...)

 \rightsquigarrow the computation of $\pi^*(\bigcirc)$ terminates!

- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions? Yes!



(but it generates non-convex unions of regions...)

 \sim the computation of $\pi^*(\textcircled{O})$ terminates! ... and is correct

Timed games with a safety objective

• We can use operator $\widetilde{\pi}$ defined by

 $\widetilde{\pi}(X) = \operatorname{Pred}_{\delta}(X \cap \operatorname{cPred}(X), \neg \operatorname{uPred}(\neg X))$

instead of π , and compute $\tilde{\pi}^*(\neg \textcircled{S})$

Timed games with a safety objective

• We can use operator $\widetilde{\pi}$ defined by

 $\widetilde{\pi}(X) = \mathsf{Pred}_{\delta}(X \cap \mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$

instead of π , and compute $\tilde{\pi}^*(\neg \boxdot)$

• It is also stable w.r.t. regions.

Outline

Introduction

Overview of "old" results

- Weighted timed automata
- Timed games
- Weighted timed games

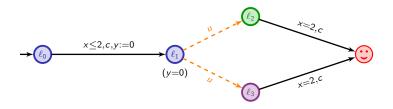
Some recent developments

- Undecidability of the value problem
- Approximation of the optimal cost
- Back to the undecidability

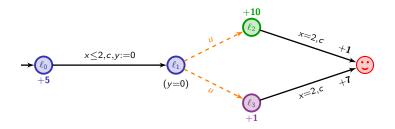
Conclusion

A simple

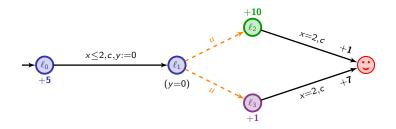
timed game



A simple weighted timed game

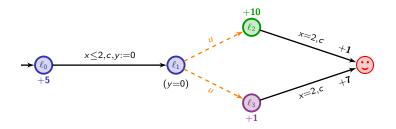


A simple weighted timed game



Question: what is the optimal cost we can ensure while reaching \bigcirc ?

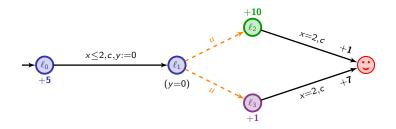
A simple weighted timed game



Question: what is the optimal cost we can ensure while reaching \bigcirc ?

5t + 10(2 - t) + 1

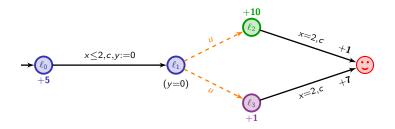
A simple weighted timed game



Question: what is the optimal cost we can ensure while reaching \bigcirc ?

5t + 10(2 - t) + 1, 5t + (2 - t) + 7

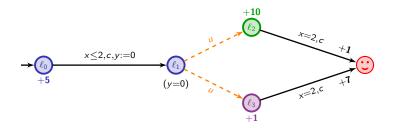
A simple weighted timed game



Question: what is the optimal cost we can ensure while reaching \bigcirc ?

max (5t + 10(2 - t) + 1 , 5t + (2 - t) + 7)

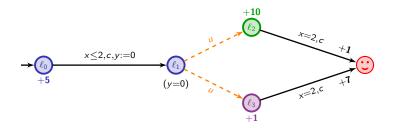
A simple weighted timed game



Question: what is the optimal cost we can ensure while reaching \bigcirc ?

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1 , 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

A simple weighted timed game



Question: what is the optimal cost we can ensure while reaching \bigcirc ? $\inf_{0 \le t \le 2} \max (5t + 10(2 - t) + 1, 5t + (2 - t) + 7) = 14 + \frac{1}{3}$ \rightsquigarrow strategy: wait in ℓ_0 , and when $t = \frac{4}{3}$, go to ℓ_1

Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...

[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS002). [ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed game automata (*FCTTCS'04*). [BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (*FSTTCS'04*). [BBM06] Bouyer, Cassez, Fleury, Larsen. Optimal strategies (*FORMATS'05*). [BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (*Information Processing Letters*). [BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (*FSTTCS'06*). [Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (*QAPL'11*). [HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (*CONCUR'13*). [BCK+14] Brihaye, Geeraets, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (*CONCUR'14*).

Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...

[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMM02]

Tree-like weighted timed games can be solved in 2EXPTIME.

Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...

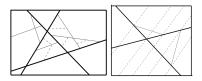
[LMM02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMM02]

Tree-like weighted timed games can be solved in 2EXPTIME.

[ABM04,BCFL04]

Depth-*k* weighted timed games can be solved in EXPTIME. There is a symbolic algorithm to solve weighted timed games **with a strongly non-Zeno cost**.



Optimal reachability in weighted timed games (2)

[BBR05,BBM06]

In weighted timed games, the optimal cost cannot be computed, as soon as games have three clocks or more.

Optimal reachability in weighted timed games (2)

[BBR05,BBM06]

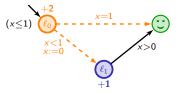
In weighted timed games, the optimal cost cannot be computed, as soon as games have three clocks or more.

[BLMR06,Rut11,HIM13,BGK+14]

Turn-based optimal timed games are decidable in EXPTIME (resp. PTIME) when automata have a single clock (resp. with two rates). They are PTIME-hard.

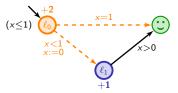
What is easier with a single clock?

• Memoryless strategies can be non-optimal...



What is easier with a single clock?

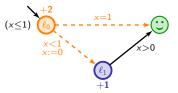
• Memoryless strategies can be non-optimal...



... but memoryless almost-optimal strategies will be sufficient.

What is easier with a single clock?

• Memoryless strategies can be non-optimal...

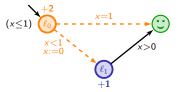


... but memoryless almost-optimal strategies will be sufficient.

• Key: resetting the clock somehow resets the history...

What is easier with a single clock?

• Memoryless strategies can be non-optimal...

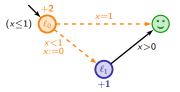


... but memoryless almost-optimal strategies will be sufficient.

- Key: resetting the clock somehow resets the history...
- By unfolding and removing one by one the locations, we can synthesize memoryless almost-optimal winning strategies.

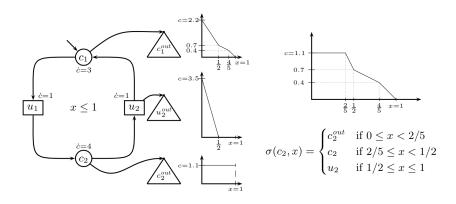
What is easier with a single clock?

• Memoryless strategies can be non-optimal...



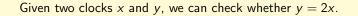
... but memoryless almost-optimal strategies will be sufficient.

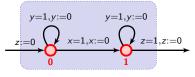
- Key: resetting the clock somehow resets the history...
- By unfolding and removing one by one the locations, we can synthesize memoryless almost-optimal winning strategies.
- Rather involved proofs of correctness



Computing the optimal cost: why is that hard?

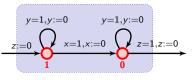
Computing the optimal cost: why is that hard?





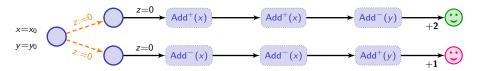
The cost is increased by x_0

 $\operatorname{Add}^{-}(x)$

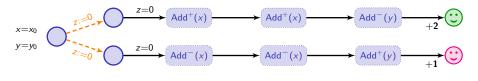


The cost is increased by $1-x_0$

Computing the optimal cost: why is that hard?

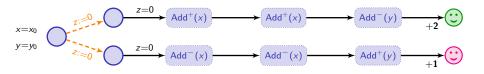


Computing the optimal cost: why is that hard?



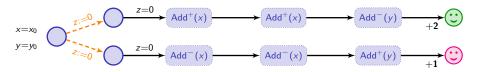
• In
$$\bigcirc$$
, cost = $2x_0 + (1 - y_0) + 2$

Computing the optimal cost: why is that hard?



Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.

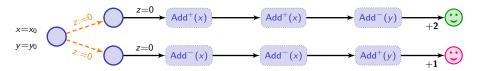


• In
$$\textcircled{i}$$
, cost = $2x_0 + (1 - y_0) + 2$
In \textcircled{i} , cost = $2(1 - x_0) + y_0 + 1$

• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.

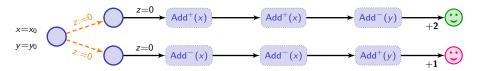


• In
$$\textcircled{\begin{subarray}{c} \mbox{.}}$$
, $\mbox{cost} = 2x_0 + (1 - y_0) + 2$
In $\textcircled{\begin{subarray}{c} \mbox{.}}$, $\mbox{cost} = 2(1 - x_0) + y_0 + 1$

• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.

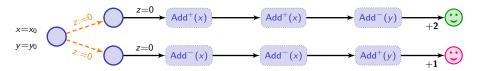


• In
$$\textcircled{\begin{subarray}{c} \mbox{.}}$$
, $\mbox{cost} = 2x_0 + (1 - y_0) + 2$
In $\textcircled{\begin{subarray}{c} \mbox{.}}$, $\mbox{cost} = 2(1 - x_0) + y_0 + 1$

• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3 if $y_0 = 2x_0$, in both branches, cost = 3

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.



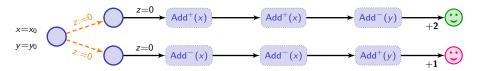
• In
$$\textcircled{\begin{subarray}{c} \mbox{.}}$$
, $\mbox{cost} = 2x_0 + (1 - y_0) + 2$
In $\textcircled{\begin{subarray}{c} \mbox{.}}$, $\mbox{cost} = 2(1 - x_0) + y_0 + 1$

• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3 if $y_0 = 2x_0$, in both branches, cost = 3

 \rightarrow player 2 can enforce cost $3 + |y_0 - 2x_0|$

Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x.



• In
$$\textcircled{\begin{subarray}{c} \mbox{.}}$$
, $\mbox{cost} = 2x_0 + (1 - y_0) + 2$
In $\textcircled{\begin{subarray}{c} \mbox{.}}$, $\mbox{cost} = 2(1 - x_0) + y_0 + 1$

• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3 if $y_0 = 2x_0$, in both branches, cost = 3

 \rightarrow player 2 can enforce cost $3 + |y_0 - 2x_0|$

• Player 1 has a winning strategy with cost \leq 3 iff $y_0 = 2x_0$

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

$$x = rac{1}{2^{c_1}}$$
 and $y = rac{1}{2^{c_2}}$

Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$

Computing the optimal cost: why is that hard?

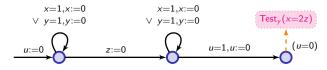
Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$

The two-counter machine has a halting computation iff player 1 has a winning strategy to ensure a cost no more than 3.

Globally, $(x \le 1, y \le 1, u \le 1)$



Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$

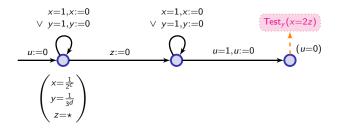


Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$

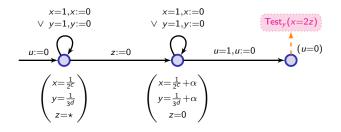


Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$

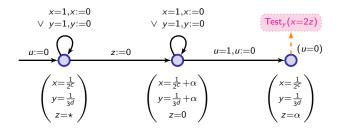


Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$

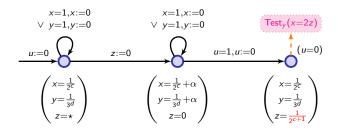


Computing the optimal cost: why is that hard?

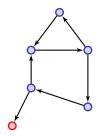
Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the counter values c_1 and c_2 are encoded by two clocks:

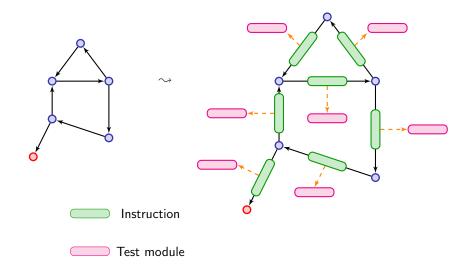
$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{2^{c_2}}$



Shape of the reduction



Shape of the reduction



Are we done?

Outline

Introduction

- Overview of "old" results
 - Weighted timed automata
 - Timed games
 - Weighted timed games

3 Some recent developments

- Undecidability of the value problem
- Approximation of the optimal cost
- Back to the undecidability

Conclusion

Are we done?

Are we done? No! Let's be a bit more precise!

Given $\ensuremath{\mathcal{G}}$ a weighted timed game,

• a strategy σ is winning whenever all its outcomes are winning;

Given $\ensuremath{\mathcal{G}}$ a weighted timed game,

- a strategy σ is winning whenever all its outcomes are winning;
- Cost of a winning strategy σ :

 $cost(\sigma) = sup\{cost(\rho) \mid \rho \text{ outcome of } \sigma \text{ up to the target}\}$

Given $\ensuremath{\mathcal{G}}$ a weighted timed game,

- a strategy σ is winning whenever all its outcomes are winning;
- Cost of a winning strategy σ :

 $cost(\sigma) = sup\{cost(\rho) \mid \rho \text{ outcome of } \sigma \text{ up to the target}\}$

• Optimal cost:

 $\mathsf{optcost}_{\mathcal{G}} = \inf_{\sigma \text{ winning strat.}} \mathsf{cost}(\sigma)$

(set it to $+\infty$ if there is no winning strategy)

Given $\ensuremath{\mathcal{G}}$ a weighted timed game,

- a strategy σ is winning whenever all its outcomes are winning;
- Cost of a winning strategy σ :

 $cost(\sigma) = sup\{cost(\rho) \mid \rho \text{ outcome of } \sigma \text{ up to the target}\}$

• Optimal cost:

 $\mathsf{optcost}_{\mathcal{G}} = \inf_{\sigma \text{ winning strat.}} \mathsf{cost}(\sigma)$

(set it to $+\infty$ if there is no winning strategy)

Two problems of interest

The value problem asks, given G and a threshold ⋈ c, whether optcost_G ⋈ c?

Given $\ensuremath{\mathcal{G}}$ a weighted timed game,

- a strategy σ is winning whenever all its outcomes are winning;
- Cost of a winning strategy σ :

 $cost(\sigma) = sup\{cost(\rho) \mid \rho \text{ outcome of } \sigma \text{ up to the target}\}$

• Optimal cost:

 $\mathsf{optcost}_{\mathcal{G}} = \inf_{\sigma \text{ winning strat.}} \mathsf{cost}(\sigma)$

(set it to $+\infty$ if there is no winning strategy)

Two problems of interest

- The value problem asks, given G and a threshold ⋈ c, whether optcost_G ⋈ c?
- The existence problem asks, given G and a threshold ⋈ c, whether there exists a winning strategy in G such that cost(σ) ⋈ c?

Given $\ensuremath{\mathcal{G}}$ a weighted timed game,

- a strategy σ is winning whenever all its outcomes are winning;
- Cost of a winning strategy σ :

 $cost(\sigma) = sup\{cost(\rho) \mid \rho \text{ outcome of } \sigma \text{ up to the target}\}$

• Optimal cost:

 $\mathsf{optcost}_{\mathcal{G}} = \inf_{\sigma \text{ winning strat.}} \mathsf{cost}(\sigma)$

(set it to $+\infty$ if there is no winning strategy)

Two problems of interest

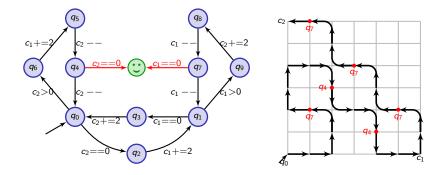
- The value problem asks, given G and a threshold ⋈ c, whether optcost_G ⋈ c?
- The existence problem asks, given G and a threshold ⋈ c, whether there exists a winning strategy in G such that cost(σ) ⋈ c?

Note: These problems are distinct...

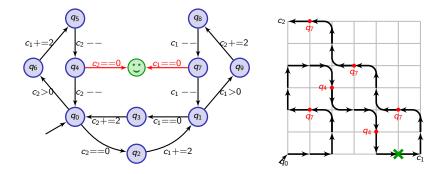
The value of the game is 3, but no strategy has cost 3.



The value of the game is 3, but no strategy has cost 3.



The value of the game is 3, but no strategy has cost 3.



In weighted timed automata, the optimal cost is an integer, and can be computed in PSPACE.

In weighted timed automata, the optimal cost is an integer, and can be computed in PSPACE.

The value problem is PSPACE-complete in weighted timed automata. Almost-optimal winning schedules can be computed.

In weighted timed automata, the optimal cost is an integer, and can be computed in PSPACE.

The value problem is PSPACE-complete in weighted timed automata. Almost-optimal winning schedules can be computed.

• Weighted timed games

Turn-based optimal timed games are decidable in EXPTIME when automata have a single clock.

In weighted timed automata, the optimal cost is an integer, and can be computed in PSPACE.

The value problem is PSPACE-complete in weighted timed automata. Almost-optimal winning schedules can be computed.

Weighted timed games

Turn-based optimal timed games are decidable in EXPTIME when automata have a single clock.

The value problem is decidable in EXPTIME in single-clock weighted timed games. Almost-optimal memoryless winning strategies can be computed.

In weighted timed automata, the optimal cost is an integer, and can be computed in PSPACE.

The value problem is PSPACE-complete in weighted timed automata. Almost-optimal winning schedules can be computed.

Weighted timed games

Turn-based optimal timed games are decidable in EXPTIME when automata have a single clock.

The value problem is decidable in EXPTIME in single-clock weighted timed games. Almost-optimal memoryless winning strategies can be computed.

There is a symbolic algorithm to solve weighted timed games with a strongly non-Zeno cost.

In weighted timed automata, the optimal cost is an integer, and can be computed in PSPACE.

The value problem is PSPACE-complete in weighted timed automata. Almost-optimal winning schedules can be computed.

Weighted timed games

Turn-based optimal timed games are decidable in EXPTIME when automata have a single clock.

The value problem is decidable in EXPTIME in single-clock weighted timed games. Almost-optimal memoryless winning strategies can be computed.

There is a symbolic algorithm to solve weighted timed games with a strongly non-Zeno cost.

The value problem can be decided in EXPTIME in weighted timed games with a strongly non-Zeno cost. Almost-optimal winning strategies can be computed.

Weighted timed automata

In weighted timed automata, the optimal cost is an integer, and can be computed in PSPACE.

The value problem is PSPACE-complete in weighted timed automata. Almost-optimal winning schedules can be computed.

Weighted timed games

Turn-based optimal timed games are decidable in EXPTIME when automata have a single clock.

The value problem is decidable in EXPTIME in single-clock weighted timed games. Almost-optimal memoryless winning strategies can be computed.

There is a symbolic algorithm to solve weighted timed games with a strongly non-Zeno cost.

The value problem can be decided in EXPTIME in weighted timed games with a strongly non-Zeno cost. Almost-optimal winning strategies can be computed.

In weighted timed games, the optimal cost cannot be computed, as soon as games have three clocks or more.

In weighted timed automata, the optimal cost is an integer, and can be computed in PSPACE.

The value problem is PSPACE-complete in weighted timed automata. Almost-optimal winning schedules can be computed.

Weighted timed games

Turn-based optimal timed games are decidable in EXPTIME when automata have a single clock.

The value problem is decidable in EXPTIME in single-clock weighted timed games. Almost-optimal memoryless winning strategies can be computed.

There is a symbolic algorithm to solve weighted timed games with a strongly non-Zeno cost.

The value problem can be decided in EXPTIME in weighted timed games with a strongly non-Zeno cost. Almost-optimal winning strategies can be computed.

In weighted timed games, the optimal cost cannot be computed, as soon as games have three clocks or more.

The existence problem is undecidable in weighted timed games.

Outline of the rest of the talk

Show that the value problem is undecidable in weighted timed games

- Show that the value problem is undecidable in weighted timed games
 - \sim This is intellectually satisfactory to not have this discrepancy in the set of results

- Show that the value problem is undecidable in weighted timed games
 - \rightsquigarrow This is intellectually satisfactory to not have this discrepancy in the set of results
 - → A first proof based on a diagonal construction (originally proposed in the context of quantitative temporal logics [BMM14])

- Show that the value problem is undecidable in weighted timed games
 - \rightsquigarrow This is intellectually satisfactory to not have this discrepancy in the set of results
 - \sim A first proof based on a diagonal construction (originally proposed in the context of quantitative temporal logics [BMM14])
 - \rightsquigarrow A second direct proof

- Show that the value problem is undecidable in weighted timed games
 - \rightsquigarrow This is intellectually satisfactory to not have this discrepancy in the set of results
 - \sim A first proof based on a diagonal construction (originally proposed in the context of quantitative temporal logics [BMM14])
 - \rightsquigarrow A second direct proof
- Propose an approximation algorithm for a large class of weighted timed games (that comprises the class of games used for proving the above undecidability)
 - Almost-optimality in practice should be sufficient
 - Even when we know how to compute the value, we are only able to synthesize almost-optimal strategies...

Outline

1 Introduction

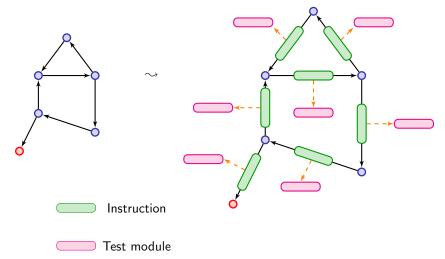
- Overview of "old" results
 - Weighted timed automata
 - Timed games
 - Weighted timed games

3 Some recent developments

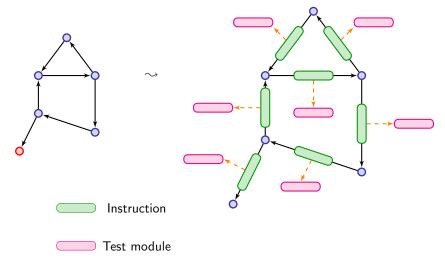
- Undecidability of the value problem
- Approximation of the optimal cost
- Back to the undecidability

4 Conclusion

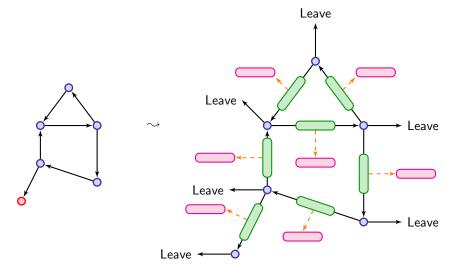
A snapshot on the undecidability proof



A snapshot on the undecidability proof

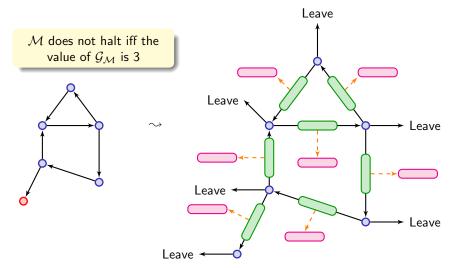


A snapshot on the undecidability proof



Leave with cost $3 + 1/2^n$ (*n*: length of the path)

A snapshot on the undecidability proof



Leave with cost $3 + 1/2^n$ (*n*: length of the path)

Theorem [BJM15]

The value problem is undecidable in weighted timed games (with four clocks or more).

- Remark on the reduction:
 - Cost 0 within the core of the game
 - The rest of the game is acyclic

Outline

Introduction

- Overview of "old" results
 - Weighted timed automata
 - Timed games
 - Weighted timed games

3 Some recent developments

- Undecidability of the value problem
- Approximation of the optimal cost
- Back to the undecidability

4 Conclusion

[AM04, BCFL04]

[BJM15]

Optimal cost is computable...

... when cost is strongly non-zeno.

That is, there exists $\kappa > 0$ such that for every region cycle C, for every real run ϱ read on C,

$$\mathsf{cost}(\varrho) \geq \kappa$$

Optimal cost is not computable...

... when cost is almost-strongly non-zeno.

That is, there exists $\kappa > 0$ such that for every region cycle C, for every real run ϱ read on C,

$$cost(\varrho) \ge \kappa$$
 or $cost(\varrho) = 0$

Note: In both cases, we can assume $\kappa = 1$.

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games.

[AM04, BCFL04]

[BJM15]

Optimal cost is computable...

... when cost is strongly non-zeno.

That is, there exists $\kappa>0$ such that for every region cycle C, for every real run ϱ read on C,

$$cost(\varrho) \ge \kappa$$

Optimal cost is not computable... but is approximable!

... when cost is almost-strongly non-zeno.

That is, there exists $\kappa>0$ such that for every region cycle C, for every real run ϱ read on C,

$$cost(\varrho) \ge \kappa$$
 or $cost(\varrho) = 0$

Note: In both cases, we can assume $\kappa = 1$.

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games.

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly non-zeno. For every $\epsilon > 0$, one can compute:

• two values v_{ϵ}^{-} and v_{ϵ}^{+} such that

$$|v_{\epsilon}^+ - v_{\epsilon}^-| < \epsilon \quad \text{and} \quad v_{\epsilon}^- \leq \mathsf{optcost}_\mathcal{G} \leq v_{\epsilon}^+$$

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly non-zeno. For every $\epsilon > 0$, one can compute:

• two values v_{ϵ}^{-} and v_{ϵ}^{+} such that

$$|v_{\epsilon}^+ - v_{\epsilon}^-| < \epsilon \quad ext{and} \quad v_{\epsilon}^- \leq ext{optcost}_\mathcal{G} \leq v_{\epsilon}^+$$

• one strategy σ_{ϵ} such that

$$\mathsf{optcost}_{\mathcal{G}} \leq \mathsf{cost}(\sigma_{\epsilon}) \leq \mathsf{optcost}_{\mathcal{G}} + \epsilon$$

[it is an ϵ -optimal winning strategy]

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly non-zeno. For every $\epsilon > 0$, one can compute:

• two values v_{ϵ}^- and v_{ϵ}^+ such that

$$|v_{\epsilon}^+ - v_{\epsilon}^-| < \epsilon \quad ext{and} \quad v_{\epsilon}^- \leq ext{optcost}_\mathcal{G} \leq v_{\epsilon}^+$$

• one strategy σ_{ϵ} such that

$$\operatorname{optcost}_{\mathcal{G}} \leq \operatorname{cost}(\sigma_{\epsilon}) \leq \operatorname{optcost}_{\mathcal{G}} + \epsilon$$

[it is an ϵ -optimal winning strategy]

• Standard technics: unfold the game to get more precision, and compute two adjacency sequences

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly non-zeno. For every $\epsilon > 0$, one can compute:

• two values v_{ϵ}^- and v_{ϵ}^+ such that

$$|v_{\epsilon}^+ - v_{\epsilon}^-| < \epsilon$$
 and $v_{\epsilon}^- \leq \mathsf{optcost}_\mathcal{G} \leq v_{\epsilon}^+$

• one strategy σ_{ϵ} such that

$$\operatorname{optcost}_{\mathcal{G}} \leq \operatorname{cost}(\sigma_{\epsilon}) \leq \operatorname{optcost}_{\mathcal{G}} + \epsilon$$

[it is an ϵ -optimal winning strategy]

- Standard technics: unfold the game to get more precision, and compute two adjacency sequences
- \sim This is not possible here There might be runs with prefixes of arbitrary length and cost 0 (e.g. the game of the undecidability proof)

Idea for approximation

Idea

Only partially unfold the game:

- Keep components with cost 0 untouched we call it the kernel
- Unfold the rest of the game

Idea for approximation

Idea

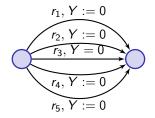
Only partially unfold the game:

- Keep components with cost 0 untouched we call it the kernel
- Unfold the rest of the game

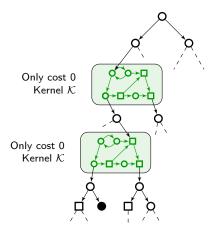
First: split the game along regions!

$$\bigcirc g, Y := 0 \\ \longrightarrow \bigcirc$$

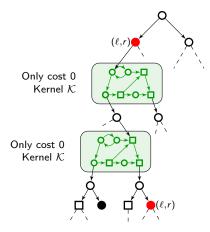
 \sim



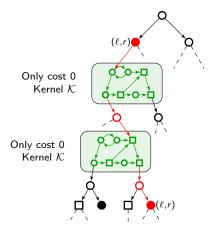
Semi-unfolding



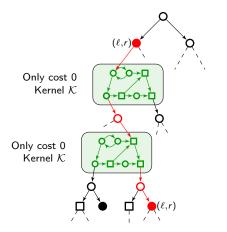
Semi-unfolding



Semi-unfolding

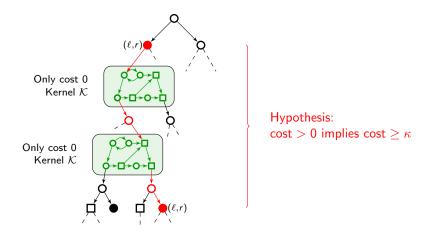


Semi-unfolding

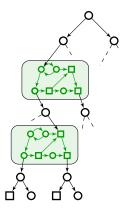


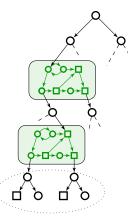
Hypothesis: $\cos t > 0$ implies $\cos t \ge \kappa$

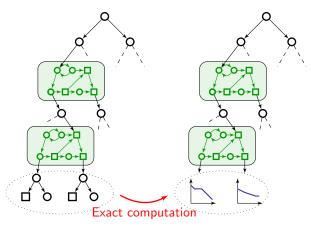
Semi-unfolding

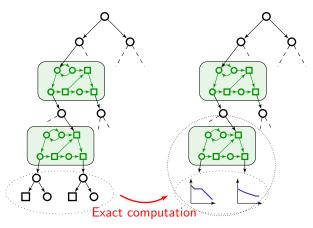


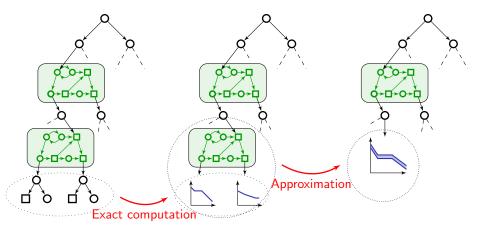
Conclusion: we can stop unfolding the game after N steps (e.g. $N = (M + 2) \cdot |\mathcal{R}(\mathcal{A})|$, where M is a pre-computed bound on $optcost_{\mathcal{G}}$)





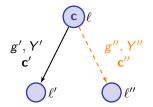




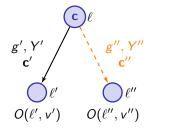


First step: Tree-like parts

First step: Tree-like parts

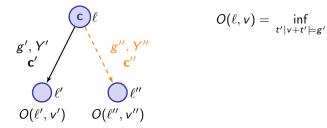


First step: Tree-like parts

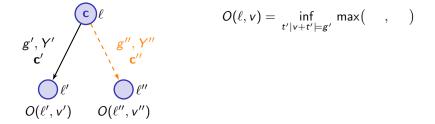


$$O(\ell, v) =$$

First step: Tree-like parts



First step: Tree-like parts

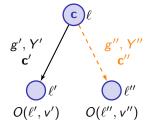


First step: Tree-like parts

 \sim Goes back to [LMM02]

1.

1



$$O(\ell, \mathbf{v}) = \inf_{t' \mid \mathbf{v} + t' \models g'} \max((\alpha), \quad)$$
$$(\alpha) = t'\mathbf{c} + \mathbf{c}' + O(\ell', \mathbf{v}')$$

$$v' = [Y' \leftarrow 0](v+t')$$

First step: Tree-like parts

$$g', Y' \qquad O(\ell, v) = \inf_{t' \mid v+t' \models g'} \max((\alpha), (\beta))$$

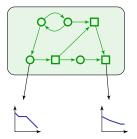
$$g', Y' \qquad O(\ell', v') \qquad O(\ell'', v'')$$

$$(\alpha) = t'\mathbf{c} + \mathbf{c}' + O(\ell', v')$$

$$(\beta) = \sup_{t'' \le t' \mid v+t'' \models g''} t''\mathbf{c} + \mathbf{c}'' + O(\ell'', v'')$$

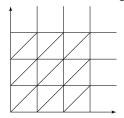
$$\overset{v' = [Y' \leftarrow 0](v+t')}{\overset{v'' = [Y' \leftarrow 0](v+t')}{}$$

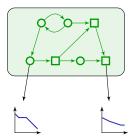
Second step: Kernels



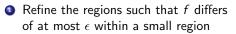
Second step: Kernels

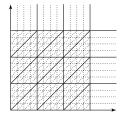
Refine the regions such that f differs of at most ε within a small region

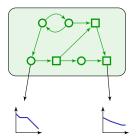




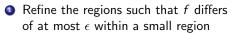
Second step: Kernels

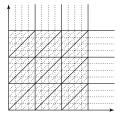


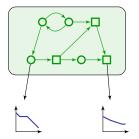




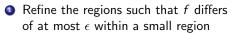
Second step: Kernels

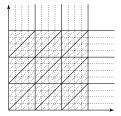


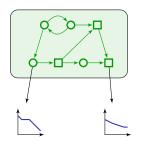




Second step: Kernels



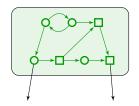




Output cost functions f

Second step: Kernels

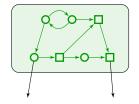
Refine/split the kernel along the new small regions and fix f_e⁻ or f_e⁺, write f_e



 f_{ϵ} : constant f_{ϵ} : constant

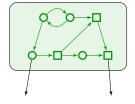
Second step: Kernels

- Refine/split the kernel along the new small regions and fix f_e⁻ or f_e⁺, write f_e
- Since cost is 0 everywhere, the resulting game is nothing more than a reachability timed game with an order on target (output) edges (given by f_e)



 f_{ϵ} : constant f_{ϵ} : constant

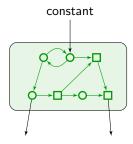
Second step: Kernels



 f_{ϵ} : constant f_{ϵ} : constant

- Refine/split the kernel along the new small regions and fix f_e⁻ or f_e⁺, write f_e
- Since cost is 0 everywhere, the resulting game is nothing more than a reachability timed game with an order on target (output) edges (given by f_e)
- Those can be solved using standard technics based on attractors: small regions are sufficient, and the local optimal cost (for output f_e) is constant within a small region

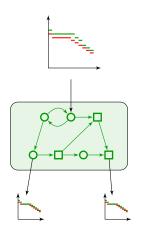
Second step: Kernels



 f_{ϵ} : constant f_{ϵ} : constant

- Refine/split the kernel along the new small regions and fix f_e⁻ or f_e⁺, write f_e
- Since cost is 0 everywhere, the resulting game is nothing more than a reachability timed game with an order on target (output) edges (given by f_e)
- Those can be solved using standard technics based on attractors: small regions are sufficient, and the local optimal cost (for output f_e) is constant within a small region

Second step: Kernels



- Refine/split the kernel along the new small regions and fix f_{ϵ}^{-} or f_{ϵ}^{+} , write f_{ϵ}
- Since cost is 0 everywhere, the resulting game is nothing more than a reachability timed game with an order on target (output) edges (given by f_e)
- Those can be solved using standard technics based on attractors: small regions are sufficient, and the local optimal cost (for output f_e) is constant within a small region
- ✓ We have computed *ϵ*-approximations of the optimal cost, which are constant within small regions. Corresponding strategies can be inferred

Outline

Introduction

- Overview of "old" results
 - Weighted timed automata
 - Timed games
 - Weighted timed games

3 Some recent developments

- Undecidability of the value problem
- Approximation of the optimal cost
- Back to the undecidability

4 Conclusion

Consequence of the approximation algorithm

Theorem

The value problem is co-recursively enumerable (for almost-strongly non-zeno weighted timed games), but not recursively enumerable.

Outline

Introduction

- Overview of "old" results
 - Weighted timed automata
 - Timed games
 - Weighted timed games

3 Some recent developments

- Undecidability of the value problem
- Approximation of the optimal cost
- Back to the undecidability

4 Conclusion

Summary of the talk

- Quick overview of results concerning the optimal reachability problem in weighted timed games
- New insight into the value problem for this model:
 - Undecidability of this problem
 - Approximability of the optimal cost (under some conditions)

Summary of the talk

- Quick overview of results concerning the optimal reachability problem in weighted timed games
- New insight into the value problem for this model:
 - Undecidability of this problem
 - Approximability of the optimal cost (under some conditions)

- Improve the approximation scheme $(\mathsf{2EXP}(|\mathcal{G}|) \cdot \left(1/\epsilon\right)^{|X|})$
- Extend to the whole class of weighted timed games? understand why it is not possible
- Assume stochastic uncertainty

Summary of the talk

- Quick overview of results concerning the optimal reachability problem in weighted timed games
- New insight into the value problem for this model:
 - Undecidability of this problem
 - Approximability of the optimal cost (under some conditions)

- Improve the approximation scheme $(\mathsf{2EXP}(|\mathcal{G}|) \cdot \left(1/\epsilon\right)^{|X|})$
- Extend to the whole class of weighted timed games? understand why it is not possible
- Assume stochastic uncertainty
- Is the value of any game a rational number?

Summary of the talk

- Quick overview of results concerning the optimal reachability problem in weighted timed games
- New insight into the value problem for this model:
 - Undecidability of this problem
 - Approximability of the optimal cost (under some conditions)

- Improve the approximation scheme $(\mathsf{2EXP}(|\mathcal{G}|) \cdot \left(1/\epsilon\right)^{|X|})$
- Extend to the whole class of weighted timed games? understand why it is not possible
- Assume stochastic uncertainty
- Is the value of any game a rational number?
- Understand the multiplayer setting (see next slides)

Nash equilibria in weighted timed games

The setting

- One weight function per player, one target state
- Payoff_i: weight_i of the outcome if the target is reached; $+\infty$ otherwise (note: the smaller, the better)
- Nash equilibrium: a strategy profile such that the payoff of each player cannot be improved by unilateral deviation by that player

Nash equilibria in weighted timed games

The setting

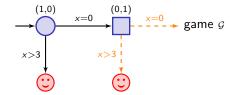
- One weight function per player, one target state
- Payoff_i: weight_i of the outcome if the target is reached; $+\infty$ otherwise (note: the smaller, the better)
- Nash equilibrium: a strategy profile such that the payoff of each player cannot be improved by unilateral deviation by that player

Theorem

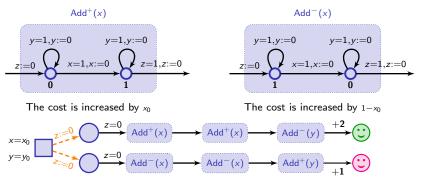
In a two-player (non-zero-sum) weighted timed game as given above, we cannot decide whether there is a Nash equilibrium.

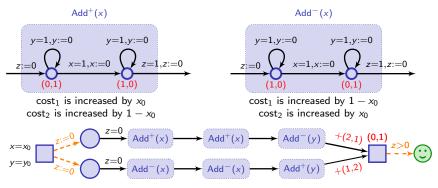
 \rightsquigarrow inspired by a result in Romain Brenguier's Master thesis (originally one clock, and negative/positive weights)

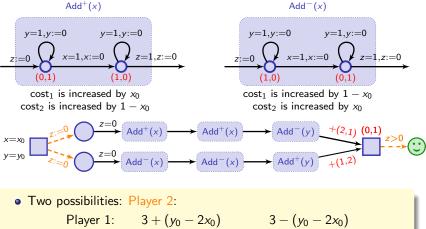
An interesting gadget with no Nash equilibrium

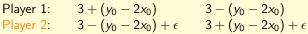


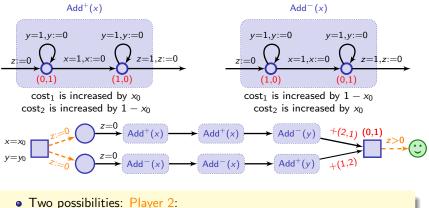
In this game, if there is a NE, then the payoff of each player is no more than 3.











Player 1: $3 + (y_0 - 2x_0)$ $3 - (y_0 - 2x_0)$ Player 2: $3 - (y_0 - 2x_0) + \epsilon$ $3 + (y_0 - 2x_0) + \epsilon$ Player 2 has a strategy to get payoff $3 - |y_0 - 2x_0| + \epsilon$ (with $\epsilon > 0$)

and give payoff $3 + |y_0 - 2x_0|$ to Player 1

There is a NE if and only if the two-counter machine halts.

What do we want to do?

• We want to use the idea of the approximation algorithm to compute ϵ -NE (or ϵ -subgame perfect equilibria) in weighted timed games...

What do we want to do?

- We want to use the idea of the approximation algorithm to compute ϵ -NE (or ϵ -subgame perfect equilibria) in weighted timed games...
- ... with the help of [BBD10,BBDG12]

Conclusion \bigcirc

Summary of the talk

- Quick overview of results concerning the optimal reachability problem in weighted timed games
- New insight into the value problem for this model:
 - Undecidability of this problem
 - Approximability of the optimal cost (under some conditions)

- Improve the approximation scheme $(\mathsf{2EXP}(|\mathcal{G}|) \cdot \left(1/\epsilon\right)^{|X|})$
- Extend to the whole class of weighted timed games? understand why it is not possible
- Assume stochastic uncertainty
- Is the value of any game a rational number?
- Understand the multiplayer setting