Chennai

- january 2003

Timed Automata — From Theory

to Implementation

Patricia Bouyer

LSV — CNRS & ENS de Cachan
France

Timed Automata — From Theory to Implementation — p.1

Roadmap

e Timed automata, decidability issues

o Some extensions of the model

e Implementation of timed automata

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.2

Timed automata, decidability issues

6 presentation of the model
6® decidability of the model

6 the region automaton construction

Chennai - january 2003 Timed Automata - From Theory to Implementation — p.3

Timed automata

x, y: clocks [Alur & Dill - 1990’s]

guard action reset

N

y<4,a, x:=0

O (I Dere

r=25,0b

Chennai - january 2003 Timed Automata — From Theory to Implementation - p.4

Timed automata

x, y: clocks [Alur & Dill - 1990’s]

Chennai - january 2003

guard action reset

N

y<4,a, x:=0

O Dk
r=>5,0b
a c b
p 3.2 q 5.1 q 8.2 p
value of z 0 0 1.9 5
value of y 0 3.2 0 3.1

[timed word (a, 3.2)(¢,5.1)(b, 8.2)...

Timed Automata — From Theory to Implementation - p.4

Emptiness checking

Emptiness problem: is the language accepted by a timed automaton empty?

6 reachability properties (final states)

6@ basic liveness properties (Biichi (or other) conditions)

Chennai - january 2003 Timed Automata - From Theory to Implementation — p.5

Emptiness checking

Emptiness problem: is the language accepted by a timed automaton empty?

6 reachability properties (final states)

6@ basic liveness properties (Biichi (or other) conditions)

Theorem: The emptiness problem for timed automata is decidable.
It is PSPACE-complete.

[Alur & Dill 1990’s]

Chennai - january 2003 Timed Automata - From Theory to Implementation — p.5

The region abstraction

Y A
Equivalence of finite index
2 -
1 +
I I I >
0 1 2 3 T

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.6

The region abstraction

Y A
Equivalence of finite index
2
1
>
0 1 2 3 T

6 “compatibility” between regions and constraints

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.6

The region abstraction

/

>
X

Equivalence of finite index

6 “compatibility” between regions and constraints

6 “compatibility” between regions and time elapsing

Chennai - january 2003

Timed Automata — From Theory to Implementation — p.6

The region abstraction

Equivalence of finite index

0 1 2 3 x
6 “compatibility” between regions and constraints

6 “compatibility” between regions and time elapsing

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.6

The region abstraction

Equivalence of finite index

A

0 1 2 3 T

6 “compatibility” between regions and constraints

6 “compatibility” between regions and time elapsing

[a bisimulation property

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.6

The region abstraction

Equivalence of finite index
2

/ region defined by
1 I, =]1;2[, I, =]0; 1]
/ {r} <{y}

0 1 2 3 T

6 “compatibility” between regions and constraints

6 “compatibility” between regions and time elapsing

[a bisimulation property

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.6

The region automaton

timed automaton (X) region partition

,a,C:=0 . .
g —2 > ¢’ is transformed into:

(¢, R) —%— (¢/, R') if there exists R” € Succ; (R) s.t.
@ R// g g

6 [C—O0R'CR

L(reg. aut.) = UNTIME(L (timed aut.))
where UNTIME((CLl, tl)(az, tg) L..)=a1a9 ...

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.7

An example [AD 90’s]

d, (x>1)7?

a, (y<1)?,y:=0

1 L—————
I sl
S /
0 I /7 I
x=y=0 kL - L _— —_
0 1 T
a s a b
e
b b S
=3 Sy % LB) B
D=y<x<1 y=0, x=1 y=0, x>1 l=y<x

D<y<x<l D<y<l<x d l=y<x x>1,y>1

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.8

Partial conclusion

[J a timed model interesting for verification purposes

Numerous works have been (and are) devoted to:

6 the “theoretical” comprehension of timed automata

6 extensions of the model (to ease the modelling)
— expressiveness

— analyzability

6 algorithmic problems and implementation

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.9

Some extensions of the model

6 adding constraints of the formz —y ~ ¢
6 adding silent actions
6 adding constraints of the form z + y ~ ¢

6 adding new operations on clocks

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.10

Adding diagonal constraints

[az—ywc and ch}

6 Decidability: yes, using the region abstraction

Yy

|

/

/

d

6 Expressiveness: no additional expressive power

Chennai - january 2003

Timed Automata — From Theory to Implementation — p.11

Adding diagonal constraints (cont.)

c is positive copywherex —y < c /—\

[1 proof in [Bérard,Diekert,Gastin,Petit 1998]

copy wherex —y > ¢

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.12

Adding diagonal constraints (cont.)

4)

Open question: is this construction “optimal”?

In the sense that timed automata with diagonal constraints

_ are explonentially more concise than diagonal-free timed automata. Y.

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.12

Adding silent actions

g, e, C:=0
> [Bérard,Diekert, Gastin,Petit 1998]

6 Decidability: yes (actions has no influence on the previous construction)

6 Expressiveness: strictly more expressive!

—+ 9
\}

w L
IR

a
|
0

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.13

Adding constraints of the formz + y ~ ¢

[r+y~c and x~c } [Bérard, Dufourd 2000]

6 Decidability: - for two clocks, decidable using the abstraction

'y
5 /
. /
0 1 2 T

- for four clocks (or more), undecidable!

6@ Expressiveness: more expressive! (even using two clocks)

r+y=1,a, z:=0

{(an,tl.--tn)|n21andti:1—%} ‘_@

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.14

The two-counter machine

Definition. A two-counter machine is a finite set of instructions over two
counters (x and y):

6 Incrementation:
(p): x:=x+1; goto (q)

® Decrementation:
(p): if >0 then x:=x —1; goto (q) else goto (r)

Theorem. [Minsky 67] The emptiness problem for two counter machines is
undecidable.

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.15

Undecidability proof

. clsunchanged ~ cisincremented =
Ccé d ddl Ccé d dd Ccéc d dd
A A O ! R 0 1 R A 2 T A 1! A A 17 .
20 21 22 23 24 25 20 time

d is decremented

[1 simulation of e decrement of d
e increment of ¢

We will use 4 clocks: e u, “tic” clock (each time unit)
e 1o, T1, 2. reference clocks for the two counters

“x; reference for ¢” “the last time x; has been reset is

the last time action c has been performed”

[Bérard,Dufourd 2000]

Chennai - january 2003 Timed Automata - From Theory to Implementation — p.16

Undecidability proof (cont.)

® Increment of counter c:

ro <2, ut+x2=1,c, x2 :=0

To 1= xo > 2, ¢, xo :=0
u=1, %, u:=0 Vv u+x2 =1]

ref for cis xzg ref for cis zo

® Decrement of counter c:

ro < 2,u+x2=1,¢c, 20 :=0

To 1= xo =2, ¢ x2:=0
u+xo =1
u=1, 0 =2, x, u:=0, 220 : =0 @

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.17

Adding constraints of the formz + y ~ ¢

6 Two clocks: decidable! using the abstraction

©® Four clocks (or more): undecidable!

Chennai - january 2003

Yy

2

1

Timed Automata — From Theory to Implementation — p.18

Adding constraints of the formz + y ~ ¢

6 Two clocks: decidable! using the abstraction

Y,
5 /
. /
0 1 2 g

6 [Three clocks: open question}

©® Four clocks (or more): undecidable!

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.18

Adding new operations on clocks

Several types of updates: = := y + ¢, x : < ¢, x :> ¢, etc...

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.19

Adding new operations on clocks

Several types of updates: = := y + ¢, x : < ¢, x :> ¢, etc...

6 The general model is undecidable.

(simulation of a two-counter machine)

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.19

Adding new operations on clocks

Several types of updates: = := y + ¢, x : < ¢, x :> ¢, etc...

6 The general model is undecidable.

(simulation of a two-counter machine)

6 Only decrementation also leads to undecidability

— Incrementation of counter z

e e e e e e e e e e R B e B s B

— Decrementation of counter x

e e e e e e e e R T e e BN

Z:O x> 1

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.19

Decidability

y:=20 Y r—y<l1
—(~O ~O O

Y

imagebyy :=1

| [] the bisimulation property is not met

The classical region automaton construction is not correct.

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.20

Decidability (cont.)

A~ Diophantine linear inequations system
~+ is there a solution?

~» if yes, belongs to a decidable class

Examples:
©® constraintz ~ ¢ ¢ < maxy
©® constraintz —y ~ ¢ c < maxy 4
® updatez :~ y+c max; < maxy +c
and for each clock z, max, . > max, . + ¢, max. ; > max, , — C
©® updatez:<c c < maxy

and for each clock z, max, > ¢ 4+ max. ,

The constants (max,) and (max, ,) define a set of regions.

Chennai - january 2003 Timed Automata - From Theory to Implementation — p.21

Decidability (cont.)

Y

y:=0 y =1 z—y<l
—O O O O

,

max, > 0 p
max, = 2
max, > 0+ maxg ,
max, = 1
{ max, > 1 — <
max,; , = 1
max, > 1 + max; ,

- | maxy , = —1
| maxXgy, =
y A
1
The bisimulation property is met. N
0 1 2 x

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.22

What’s wrong when undecidable?

Decrementationz ;= ¢ — 1

Y

Chennai - january 2003 Timed Automata - From Theory to Implementation — p.23

What’s wrong when undecidable?

Decrementationz ;= ¢ — 1

Y

Chennai - january 2003 Timed Automata - From Theory to Implementation — p.23

What’s wrong when undecidable?

Decrementationz ;= ¢ — 1

Y

Chennai - january 2003 Timed Automata - From Theory to Implementation — p.23

What’s wrong when undecidable?

Decrementationz ;= ¢ — 1

Y

Chennai - january 2003 Timed Automata - From Theory to Implementation — p.23

What’s wrong when undecidable?

Decrementationz ;= ¢ — 1

Y

Chennai - january 2003 Timed Automata - From Theory to Implementation — p.23

What’s wrong when undecidable?

Decrementationz ;= ¢ — 1

Y

Chennai - january 2003 Timed Automata - From Theory to Implementation — p.23

What’s wrong when undecidable?

Decrementationz ;= ¢ — 1

etc...

Y

Chennai - january 2003 Timed Automata - From Theory to Implementation — p.23

Decidability (cont.)

Diagonal-free constraints General constraints

PSPACE-complete

x:=x+1 PspACE-complete
r:=y—+c Undecidable
r:=x—1 Undecidable
x:< c PSPACE-complete
T .>cC
PSPACE-complete
Tr:~1Yy—+c .
Undecidable
y+e<x:<y+d
y+e<izx:<z-+d Undecidable

[Bouyer,Dufourd,Fleury,Petit 2000]

Chennai - january 2003

Timed Automata — From Theory to Implementation — p.24

Implementation of Timed Automata

6 analysis algorithms

©® the DBM data structure

6 abugin the forward analysis

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.25

Notice

The region automaton is not used for implementation:

6 suffers from a combinatorics explosion

(the number of regions is exponential in the number of clocks)

6 no really adapted data structure

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.26

Notice

The region automaton is not used for implementation:

6 suffers from a combinatorics explosion

(the number of regions is exponential in the number of clocks)

6 no really adapted data structure

Algorithms for “minimizing” the region automaton have been proposed...
[Alur & Co 1992] [Tripakis,Yovine 2001]

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.26

Notice

The region automaton is not used for implementation:

6 suffers from a combinatorics explosion

(the number of regions is exponential in the number of clocks)

6 no really adapted data structure

Algorithms for “minimizing” the region automaton have been proposed...
[Alur & Co 1992] [Tripakis,Yovine 2001]

...but on-the-fly technics are preferred.

Chennai - january 2003 Timed Automata - From Theory to Implementation — p.26

Reachability analysis

6 forward analysis algorithm:
compute the successors of initial configurations

Chennai - january 2003 Timed Automata - From Theory to Implementation — p.27

Reachability analysis

6 forward analysis algorithm:
compute the successors of initial configurations

Chennai - january 2003 Timed Automata - From Theory to Implementation — p.27

Reachability analysis

6 forward analysis algorithm:
compute the successors of initial configurations

6 backward analysis algorithm:
compute the predecessors of final configurations

Chennai - january 2003 Timed Automata - From Theory to Implementation — p.27

Reachability analysis

6 forward analysis algorithm:
compute the successors of initial configurations

6 backward analysis algorithm:
compute the predecessors of final configurations

Chennai - january 2003 Timed Automata - From Theory to Implementation — p.27

Note on the backward analysis of TA

g, a, C':=0

IC— 0 YZNn(C=0)ng Z

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.28

Note on the backward analysis of TA

g, a, C':=0

IC— 0 YZNn(C=0)ng Z

(/

Y

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.28

Note on the backward analysis of TA

g, a, C':=0
IC— 0 YZNn(C=0)ng Z
Z (C —0]-1(ZN(C =0))

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.28

Note on the backward analysis of TA

g, a, C':=0
C— 0 (Zn(C=0)ng z
Y 4
’ 4
A A A ,
y 4
4
| ; d
Z (C —0]"1(Z N (C =0))

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.28

Note on the backward analysis of TA

g, a, C':=0
IC— 0 YZNn(C=0)ng 7
4
4
A A A , A
Y 4
, /
(d
Z [C—0]""(ZNn(C=0) [C—0"1(ZN(C=0)Ng

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.28

Note on the backward analysis of TA

g, a, C':=0
IC— 0 YZNn(C=0)ng 7
4
4
A A A , A
Y 4
, /
(d
Z [C—0]""(ZNn(C=0) [C—0"1(ZN(C=0)Ng

The exact backward computation terminates and is correct!

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.28

Note on the backward analysis of TA (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.29

Note on the backward analysis of TA (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

But, the backward computation is not so nice, when also dealing with
integer variables...

1:=j.k+£L.m

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.29

Forward analysis of TA

g, a, C':=0

N
Zones Z C — 0](Z Ng)

A zone is a set of valuations defined by a clock constraint

g i=x~c|lrx—y~c| oAy

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.30

Forward analysis of TA

g, a, C':=0

O,

zones Z

Y

Chennai - january 2003

Timed Automata — From Theory to Implementation — p.30

Forward analysis of TA

g, a, C':=0
©
zones Z
Z 7

Chennai - january 2003

Timed Automata — From Theory to Implementation — p.30

Forward analysis of TA

g, a, C':=0

N
Zones Z C — 0](Z Ng)
Q /
/
|
> > I >
Z 7 7 Ng

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.30

Forward analysis of TA

g, a, C':=0

_
Zones Z C — 0](Z Ng)
/ /
| |
> > | > ——I—)
Z 7 Zng [y — 0)(Z Ng)

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.30

Forward analysis of TA

g, a, C':=0

_
Zones Z C — 0](Z Ng)
/ /
| |
> > I > ——I—)
Z Z Znyg ly —0](Z Nyg)

[] a termination problem

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.30

Non Termination of the Forward Analysis

Chennai - january 2003

0

//////

[] an infinite number of steps...

Timed Automata — From Theory to Implementation — p.31

“Solutions” to this problem

(f.ex. in [Larsen,Pettersson,Yi 1997] Or in [Daws, Tripakis 1998])

6 inclusion checking: if 7 C 7’ and 7’ still handled, then we don’t need
to handle 7

[] correct w.r.t. reachability

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.32

“Solutions” to this problem

(f.ex. in [Larsen,Pettersson,Yi 1997] Or in [Daws, Tripakis 1998])

6 inclusion checking: if 7 C 7’ and 7’ still handled, then we don’t need

to handle 7
[] correct w.r.t. reachability
6 activity: eliminate redundant clocks [Daws,Yovine 1996]
[J correct w.r.t. reachability
g,a,C:=0 / /
q »qg = Act(q) = clocks(g) U (Act(q’) \ C)

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.32

“Solutions” to this problem (cont.)

6 convex-hull approximation: if 7 and Z’ are computed then we
overapproximate using “Z U Z'”.

[] “semi-correct” w.r.t. reachability

Y

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.33

“Solutions” to this problem (cont.)

6 convex-hull approximation: if 7 and Z’ are computed then we
overapproximate using “Z U Z'”.

[] “semi-correct” w.r.t. reachability

Y

6 extrapolation, a widening operator on zones

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.33

The DBM data structure

DBM (Difference Bounded Matrice) data structure [Dill89]
iy I 9
o +o00 -3 Ho©
(561 Z 3) AN ($2 S 5) AN (ZL‘l — X9 S 4) I1 +0o00 400 4
T9 5 +00 H00

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.34

The DBM data structure

DBM (Difference Bounded Matrice) data structure [Dill89]
iy I 9
o +00 —3 Ho©
(x1>23) A (22 <5) A (1 — 22 < 4) 1 +00 400 4
T9 5 +00 H00

©® Existence of a normal form

° 0 -3 0
,1 9 0 4
-- 5 2 0

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.34

The DBM data structure

DBM (Difference Bounded Matrice) data structure [Dill89]
iy I 9
o +o00 -3 Ho©
(561 Z 3) AN ($2 S 5) AN (ZL‘l — X9 S 4) I1 +0o00 400 4
T9 5 +00 H00

©® Existence of a normal form

° 0 -3 0
,1 9 0 4
-- 5 2 0

6 All previous operations on zones can be computed using DBMs

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.34

The extrapolation operator

Fix an integer k (x represents an integer between —k and +k)

% >|< * |00 | ok

6 “intuitively”, erase non-relevant constraints

» P ensures termination

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.35

The extrapolation operator

Fix an integer k (x represents an integer between —k and +k)

k >|< * |00 | ok

6 “intuitively”, erase non-relevant constraints

» P ensures termination

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.35

The extrapolation operator

Fix an integer k (x represents an integer between —k and +k)

k >|< * |00 | ok

6 “intuitively”, erase non-relevant constraints

» P ensures termination

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.35

Challenge

Propose a good constant for the extrapolation:

6 keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton

6@ Several correctness proofs can be found
6 Implemented in tools like UPPAAL, KRONOS, RT-SPIN...

6 Successtully used on real-life examples

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.36

Challenge

Propose a good constant for the extrapolation:

6 keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton

6@ Several correctness proofs can be found
6 Implemented in tools like UPPAAL, KRONOS, RT-SPIN...

6 Successtully used on real-life examples

However...

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.36

A problematic automaton

L1,I3 =0 ZIZQI:O
113222,332!:0
I 2
xl—O |
e w9 3 5 | The loop
O(@ L1 O< L1 = O< L2 = O
Ty — 3 < 2 T = To 1=

Chennai - january 2003

Timed Automata — From Theory to Implementation — p.37

A problematic automaton

5131,333220 ZIZQI:O
113222,332!:0
I 2
xl—O |
To —T1 > 2 1 =3 Ty = 2 The loop

Ta — T3 < 2 T = Lo =
Error
[v(z) =0
v(xy) =d
< v(r3) =2a+5
| v(z4) =200+ 5+d

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.37

A problematic automaton

L1,T3 =0 U I =0 k
Xy — 2, L2 =0
I 2
I =0 |
-9 3 5 The loop
To — T T = x Y
O O0——-0O0—"0
Ta — T3 < 2 T1 = ~/ Ty =0
Error
[v(z) =0 15 3] 200 + 5]
| e = e
— 9 1 L3 L4
v(rs) =2a+5 90 1 5] 3
| v(z4) =200+ 5+d

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.37

The problematic zone

[1; 3] 2a 4 5]
e
L1 Wﬂ%‘fm
2 + 5] - [1;3] implies 1 — 22 = 23 — 4.
T T T Rat22a+4
T T T T T T T Rat62ars T ”

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.38

The problematic zone

[1; 3] 2a 4 5]
e
L1 Wﬂ?s‘%
2 + 5] - [1;3] implies 1 — 22 = 23 — 4.
T T T Rat22a+4
T T T T T T T Rat62ars T ”

If « is sufficiently large, after extrapolation:

1; 3]
T2 .
11 xMx 4 does not imply
' - L1 — L2 = XT3 — T4.

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.38

General abstractions

Criteria for a good abstraction operator Abs:

[Bouyer03]

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.39

General abstractions

Criteria for a good abstraction operator Abs:

6 easy computation [Effectiveness]
Abs(Z) is azone if Z is a zone

[Bouyer03]

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.39

General abstractions

Criteria for a good abstraction operator Abs:

6 easy computation [Effectiveness]
Abs(Z) is azone if Z is a zone

© finiteness of the abstraction [Termination]
{Abs(Z) | Z zone} is finite

[Bouyer03]

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.39

General abstractions

Criteria for a good abstraction operator Abs:

@ easy computation
Abs(Z) is azone if Z is a zone

©® finiteness of the abstraction
{Abs(Z) | Z zone} is finite

6 completeness of the abstraction
Z C Abs(Z)

Chennai - january 2003

[Effectiveness]

[Termination]

[Completeness]

[Bouyer03]

Timed Automata — From Theory to Implementation — p.39

General abstractions

Criteria for a good abstraction operator Abs:

@ easy computation
Abs(Z) is azone if Z is a zone

©® finiteness of the abstraction
{Abs(Z) | Z zone} is finite

6 completeness of the abstraction
Z C Abs(Z)

6 soundness of the abstraction
the computation of (Abs o Post)* is correct w.r.t. reachability

[Effectiveness]

[Termination]

[Completeness]

[Soundness]

[Bouyer03]

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.39

General abstractions

Criteria for a good abstraction operator Abs:

6 easy computation [Effectiveness]

Abs(Z) is azone if Z is a zone

©® finiteness of the abstraction [Termination]

{Abs(Z) | Z zone} is finite

6 completeness of the abstraction [Completeness]
Z C Abs(Z2)
6 soundness of the abstraction [Soundness]

the computation of (Abs o Post)* is correct w.r.t. reachability

For the previous automaton,
no abstraction operator can satisfy all these criteria!

[Bouyer03]

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.39

Why that?

Assume there is a “nice” operator Abs.

The set {M DBM representing a zone Abs(Z)} is finite.

] k the max. constant defining one of the previous DBMs
We get that, for every zone 7,

Z C Extrag(Z) C Abs(Z)

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.40

Problem!

[Open questions: - which conditions can be made weaker? R
- find a clever termination criterium?
9 - use an other data structure than zones/DBMs? y

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.41

What can we cling to?

Diagonal-free: only guardsz ~ ¢
(noguard x — y ~ ¢)

Theorem: the classical algorithm is correct for diagonal-free timed
automata.

[Bouyer03]

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.42

What can we cling to?

Diagonal-free: only guardsz ~ ¢
(noguard x — y ~ ¢)

Theorem: the classical algorithm is correct for diagonal-free timed
automata.

General: both guardsx ~candz — y ~ ¢

Proposition: the classical algorithm is correct for timed automata that use
less than 3 clocks.

[Bouyer03]

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.42

Conclusion & Further Work

6 Decidability is quite well understood.

6 Arather big problem with the forward analysis of timed automata

needs to be solved.
— avery unsatisfactory solution for dealing with diagonal

constraints.
— maybe the zones are not the “optimal” objects that we can deal

with.
To be continued...
6 Some other current challenges:

— adding C macros to timed automata
— reducing the memory consumption via new data structures

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.43

Bibliography

[ACD+92]

[AD90]
[AD94]
[ALO2]

[BDOO]
[BDFPO00a]
[BDFPOOD]

[BDGP98]

[BF99]

Alur, Courcoubetis, Dill, Halbwachs, Wong-Toi. Minimization of Timed Transition
Systems. CONCUR’92 (LNCS 630).

Alur, Dill. Automata for Modeling Real-Time Systems. ICALP’90 (LNCS 443).
Alur, Dill. A Theory of Timed Automata. TCS 126(2), 1994.

Aceto, Laroussinie. Is your Model-Checker on Time? On the Complexity of
Model-Checking for Timed Modal Logics. To appear in JLAP 2002.

Bérard, Dufourd. Timed Automata and Additive Clock Constraints. IPL 75(1-2), 2000.
Bouyer, Dufourd, Fleury, Petit. Are Timed Automata Updatable? CAV’00 (LNCS 1855).

Bouyer, Dufourd, Fleury, Petit. Expressiveness of Updatable Timed Automata. MFCS’00
(LNCS 1893).

Bérard, Diekert, Gastin, Petit. Characterization of the Expressive Power of Silent
Transitions in Timed Automata. Fundamenta Informaticae 36(2-3), 1998.

Bérard, Fribourg. Automatic Verification of a Parametric Real-Time Program: the ABR
Conformance Protocol. CAV’'99 (LNCS 1633).

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.44

Bibliography (cont.)

[Bouyer03] Bouyer. Untameable Timed Automata! To appear in STACS’03.

[Dill89] Dill. Timing Assumptions and Verification of Finite-State Concurrent Systems. Aut.
Verif. Methods for Fin. State Sys. (LNCS 1989).

[DT98] Daws, Tripakis. Model-Checking of Real-Time Reachability Properties using
Abstractions. TACAS’98 (LNCS 1384).

[DY96] Daws, Yovine. Reducing the Number of Clock Variables of Timed Automata. RTSS’96.

[LPY97] Larsen, Pettersson, Yi. UPPAAL in a Nutshell. Software Tools for Technology Transfer
1(1-2), 1997.

[Minsky67] Minsky. Computation: Finite and Infinite Machines. 1967.

[TYO1] Tripakis, Yovine. Analysis of Timed Systems using Time-Abstracting Bisimulations.
FMSD 18(1), 2001.

Hytech: http://www-cad.eecs.berkeley.edu:80/ tah/HyTech/
Kronos: http://www-verimag.imag.fr/TEMPORISE/kronos/
Uppaal: http://www.uppaal.com/

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.45

	Roadmap
	
	Timed automata
	Emptiness checking
	The region abstraction
	The region automaton
	An example 	extcolor {Maroon}{{
ormalsize [AD 90's]}}
	Partial conclusion
	
	Adding diagonal constraints
	Adding diagonal constraints (cont.)
	Adding silent actions
	Adding constraints of the form $x+y sim c$
	The two-counter machine
	Undecidability proof
	Undecidability proof (cont.)
	Adding constraints of the form $x+y sim c$
	Adding new operations on clocks
	Decidability
	Decidability (cont.)
	Decidability (cont.)
	What's wrong when undecidable?
	Decidability (cont.)
	
	{large Notice}
	{large Reachability analysis}
	Note on the backward analysis of TA
	Note on the backward analysis of TA (cont.)
	Forward analysis of TA
	Non Termination of the Forward Analysis
	{``Solutions'' to this problem}
	{``Solutions'' to this problem (cont.)}
	The DBM data structure
	The extrapolation operator
	Challenge
	A problematic automaton
	The problematic zone
	General abstractions
	Why that?
	Problem!
	What can we cling to?
	Conclusion & Further Work
	{large Bibliography}
	{large Bibliography (cont.)}

