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Roadmap

e Timed automata, decidability issues

o Some extensions of the model

e Implementation of timed automata
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Timed automata, decidability issues

6 presentation of the model
6® decidability of the model

6 the region automaton construction
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Timed automata

x, y: clocks [Alur & Dill - 1990’s]

guard action reset

N

y<4,a, x:=0

O (I Dere

r=25,0b
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Timed automata

x, y: clocks [Alur & Dill - 1990’s]

Chennai - january 2003

guard action reset

N

y<4,a, x:=0

O Dk
r=>5,0b
a c b
p 3.2 q 5.1 q 8.2 p
value of z 0 0 1.9 5
value of y 0 3.2 0 3.1

[ timed word (a, 3.2)(¢,5.1)(b, 8.2)...
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Emptiness checking

Emptiness problem: is the language accepted by a timed automaton empty?

6 reachability properties (final states)

6@ basic liveness properties (Biichi (or other) conditions)
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Emptiness checking

Emptiness problem: is the language accepted by a timed automaton empty?

6 reachability properties (final states)

6@ basic liveness properties (Biichi (or other) conditions)

Theorem: The emptiness problem for timed automata is decidable.
It is PSPACE-complete.

[Alur & Dill 1990’s]
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The region abstraction

Y A
Equivalence of finite index
2 -
1 +
I I I >
0 1 2 3 T
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The region abstraction

Y A
Equivalence of finite index
2
1
>
0 1 2 3 T

6 “compatibility” between regions and constraints
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The region abstraction

/

>
X

Equivalence of finite index

6 “compatibility” between regions and constraints

6 “compatibility” between regions and time elapsing
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The region abstraction

Equivalence of finite index

0 1 2 3 x
6 “compatibility” between regions and constraints

6 “compatibility” between regions and time elapsing
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The region abstraction

Equivalence of finite index

A

0 1 2 3 T

6 “compatibility” between regions and constraints

6 “compatibility” between regions and time elapsing

[ a bisimulation property
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The region abstraction

Equivalence of finite index
2

/ region defined by
1 I, =]1;2[, I, =]0; 1]
/ {r} <{y}

0 1 2 3 T

6 “compatibility” between regions and constraints

6 “compatibility” between regions and time elapsing

[ a bisimulation property
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The region automaton

timed automaton (X) region partition

,a,C:=0 . .
g —2 > ¢’ is transformed into:

(¢, R) —%— (¢/, R') if there exists R” € Succ; (R) s.t.
@ R// g g

6 [C—O0R'CR

L(reg. aut.) = UNTIME(L (timed aut.))
where UNTIME((CLl, tl)(az, tg) L..)=a1a9 ...
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An example [AD 90’s]

d, (x>1)7?

a, (y<1)?,y:=0

1 L—————
I sl
S /
0 I /7 I
x=y=0 kL - L _— —_
0 1 T
a s a b
e
b b S
=3 Sy % LB ) B
D=y<x<1 y=0, x=1 y=0, x>1 l=y<x

D<y<x<l D<y<l<x d l=y<x x>1,y>1
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Partial conclusion

[J a timed model interesting for verification purposes

Numerous works have been (and are) devoted to:

6 the “theoretical” comprehension of timed automata

6 extensions of the model (to ease the modelling)
— expressiveness

— analyzability

6 algorithmic problems and implementation
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Some extensions of the model

6 adding constraints of the formz —y ~ ¢
6 adding silent actions
6 adding constraints of the form z + y ~ ¢

6 adding new operations on clocks
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Adding diagonal constraints

[az—ywc and ch}

6 Decidability: yes, using the region abstraction

Yy

|

/

/

d

6 Expressiveness: no additional expressive power

Chennai - january 2003
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Adding diagonal constraints (cont.)

c is positive copywherex —y < c /—\

[1 proof in [Bérard,Diekert,Gastin,Petit 1998]

copy wherex —y > ¢
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Adding diagonal constraints (cont.)

4 )

Open question: is this construction “optimal”?

In the sense that timed automata with diagonal constraints

_ are explonentially more concise than diagonal-free timed automata. Y.
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Adding silent actions

g, e, C:=0
> [Bérard,Diekert, Gastin,Petit 1998]

6 Decidability: yes (actions has no influence on the previous construction)

6 Expressiveness: strictly more expressive!

—+ 9
\}

w L
IR

a
|
0
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Adding constraints of the formz + y ~ ¢

[ r+y~c and x~c } [Bérard, Dufourd 2000]

6 Decidability: - for two clocks, decidable using the abstraction

'y
5 /
. /
0 1 2 T

- for four clocks (or more), undecidable!

6@ Expressiveness: more expressive! (even using two clocks)

r+y=1,a, z:=0

{(an,tl.--tn)|n21andti:1—%} ‘_@
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The two-counter machine

Definition. A two-counter machine is a finite set of instructions over two
counters (x and y):

6 Incrementation:
(p): x:=x+1; goto (q)

® Decrementation:
(p): if >0 then x:=x —1; goto (q) else goto (r)

Theorem. [Minsky 67] The emptiness problem for two counter machines is
undecidable.

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.15



Undecidability proof

. clsunchanged ~  cisincremented =
Ccé d ddl Ccé d dd Ccéc d dd
A A O ! R 0 1 R A 2 T A 1! A A 17 .
20 21 22 23 24 25 20 time

d is decremented

[1 simulation of e decrement of d
e increment of ¢

We will use 4 clocks: e u, “tic” clock (each time unit)
e 1o, T1, 2. reference clocks for the two counters

“x; reference for ¢” “the last time x; has been reset is

the last time action c has been performed”

[Bérard,Dufourd 2000]
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Undecidability proof (cont.)

® Increment of counter c:

ro <2, ut+x2=1,c, x2 :=0

To 1= xo > 2, ¢, xo :=0
u=1, %, u:=0 Vv u+x2 =1 ]

ref for cis xzg ref for cis zo

® Decrement of counter c:

ro < 2,u+x2=1,¢c, 20 :=0

To 1= xo =2, ¢ x2:=0
u+xo =1
u=1, 0 =2, x, u:=0, 220 : =0 @
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Adding constraints of the formz + y ~ ¢

6 Two clocks: decidable! using the abstraction

©® Four clocks (or more): undecidable!

Chennai - january 2003
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Adding constraints of the formz + y ~ ¢

6 Two clocks: decidable! using the abstraction

Y,
5 /
. /
0 1 2 g

6 [Three clocks: open question}

©® Four clocks (or more): undecidable!
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Adding new operations on clocks

Several types of updates: = := y + ¢, x : < ¢, x :> ¢, etc...
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Adding new operations on clocks

Several types of updates: = := y + ¢, x : < ¢, x :> ¢, etc...

6 The general model is undecidable.

(simulation of a two-counter machine)
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Adding new operations on clocks

Several types of updates: = := y + ¢, x : < ¢, x :> ¢, etc...

6 The general model is undecidable.

(simulation of a two-counter machine)

6 Only decrementation also leads to undecidability

— Incrementation of counter z

e e e e e e e e e e R B e B s B

— Decrementation of counter x

e e e e e e e e R T e e BN

Z:O x> 1
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Decidability

y:=20 Y r—y<l1
—( ~O ~O O

Y

imagebyy :=1

| [] the bisimulation property is not met

The classical region automaton construction is not correct.
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Decidability (cont.)

A~ Diophantine linear inequations system
~+ is there a solution?

~» if yes, belongs to a decidable class

Examples:
©® constraintz ~ ¢ ¢ < maxy
©® constraintz —y ~ ¢ c < maxy 4
® updatez :~ y+c max; < maxy +c
and for each clock z, max, . > max, . + ¢, max. ; > max, , — C
©® updatez:<c c < maxy

and for each clock z, max, > ¢ 4+ max. ,

The constants (max, ) and (max, ,) define a set of regions.
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Decidability (cont.)

Y

y:=0 y =1 z—y<l
—O O O O

,

max, > 0 p
max, = 2
max, > 0+ maxg ,
max, = 1
{ max, > 1 — <
max,; , = 1
max, > 1 + max; ,

- | maxy , = —1
| maxXgy, =
y A
1
The bisimulation property is met. N
0 1 2 x
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What’s wrong when undecidable?

Decrementationz ;= ¢ — 1

Y
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What’s wrong when undecidable?

Decrementationz ;= ¢ — 1

Y

Chennai - january 2003 Timed Automata - From Theory to Implementation — p.23



What’s wrong when undecidable?

Decrementationz ;= ¢ — 1

Y

Chennai - january 2003 Timed Automata - From Theory to Implementation — p.23
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What’s wrong when undecidable?

Decrementationz ;= ¢ — 1

Y
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What’s wrong when undecidable?

Decrementationz ;= ¢ — 1

etc...

Y
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Decidability (cont.)

Diagonal-free constraints General constraints

PSPACE-complete

x:=x+1 PspACE-complete
r:=y—+c Undecidable
r:=x—1 Undecidable
x:< c PSPACE-complete
T .>cC
PSPACE-complete
Tr:~1Yy—+c .
Undecidable
y+e<x:<y+d
y+e<izx:<z-+d Undecidable

[Bouyer,Dufourd,Fleury,Petit 2000]
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Implementation of Timed Automata

6 analysis algorithms

©® the DBM data structure

6 abugin the forward analysis
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Notice

The region automaton is not used for implementation:

6 suffers from a combinatorics explosion

(the number of regions is exponential in the number of clocks)

6 no really adapted data structure
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Notice

The region automaton is not used for implementation:

6 suffers from a combinatorics explosion

(the number of regions is exponential in the number of clocks)

6 no really adapted data structure

Algorithms for “minimizing” the region automaton have been proposed...
[Alur & Co 1992] [Tripakis,Yovine 2001]
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Notice

The region automaton is not used for implementation:

6 suffers from a combinatorics explosion

(the number of regions is exponential in the number of clocks)

6 no really adapted data structure

Algorithms for “minimizing” the region automaton have been proposed...
[Alur & Co 1992] [Tripakis,Yovine 2001]

...but on-the-fly technics are preferred.
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Reachability analysis

6 forward analysis algorithm:
compute the successors of initial configurations
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Reachability analysis

6 forward analysis algorithm:
compute the successors of initial configurations
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Reachability analysis

6 forward analysis algorithm:
compute the successors of initial configurations

6 backward analysis algorithm:
compute the predecessors of final configurations
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Reachability analysis

6 forward analysis algorithm:
compute the successors of initial configurations

6 backward analysis algorithm:
compute the predecessors of final configurations
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Note on the backward analysis of TA

g, a, C':=0

IC— 0 YZNn(C=0)ng Z
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Note on the backward analysis of TA

g, a, C':=0

IC— 0 YZNn(C=0)ng Z

(/

Y
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Note on the backward analysis of TA

g, a, C':=0
IC— 0 YZNn(C=0)ng Z
Z (C —0]-1(ZN(C =0))
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Note on the backward analysis of TA

g, a, C':=0
C— 0 (Zn(C=0)ng z
Y 4
’ 4
A A A ,
y 4
4
| ; d
Z (C —0]"1(Z N (C =0))
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Note on the backward analysis of TA

g, a, C':=0
IC— 0 YZNn(C=0)ng 7
4
4
A A A , A
Y 4
, /
( d
Z [C—0]""(ZNn(C=0) [C—0"1(ZN(C=0)Ng
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Note on the backward analysis of TA

g, a, C':=0
IC— 0 YZNn(C=0)ng 7
4
4
A A A , A
Y 4
, /
( d
Z [C—0]""(ZNn(C=0) [C—0"1(ZN(C=0)Ng

The exact backward computation terminates and is correct!
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Note on the backward analysis of TA (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”
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Note on the backward analysis of TA (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

But, the backward computation is not so nice, when also dealing with
integer variables...

1:=j.k+£L.m
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Forward analysis of TA

g, a, C':=0

N
Zones Z C — 0](Z Ng)

A zone is a set of valuations defined by a clock constraint

g i=x~c|lrx—y~c| oAy
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Forward analysis of TA

g, a, C':=0

O,

zones Z

Y
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Forward analysis of TA

g, a, C':=0
©
zones Z
Z 7
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Forward analysis of TA

g, a, C':=0

N
Zones Z C — 0](Z Ng)
Q /
/
|
> > I >
Z 7 7 Ng
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Forward analysis of TA

g, a, C':=0

_
Zones Z C — 0](Z Ng)
/ /
| |
> > | > ——I—)
Z 7 Zng [y — 0)(Z Ng)
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Forward analysis of TA

g, a, C':=0

_
Zones Z C — 0](Z Ng)
/ /
| |
> > I > ——I—)
Z Z Znyg ly —0](Z Nyg)

[] a termination problem

Chennai - january 2003 Timed Automata — From Theory to Implementation — p.30



Non Termination of the Forward Analysis

Chennai - january 2003

0

//////

[] an infinite number of steps...
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“Solutions” to this problem

(f.ex. in [Larsen,Pettersson,Yi 1997] Or in [Daws, Tripakis 1998])

6 inclusion checking: if 7 C 7’ and 7’ still handled, then we don’t need
to handle 7

[] correct w.r.t. reachability
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“Solutions” to this problem

(f.ex. in [Larsen,Pettersson,Yi 1997] Or in [Daws, Tripakis 1998])

6 inclusion checking: if 7 C 7’ and 7’ still handled, then we don’t need

to handle 7
[] correct w.r.t. reachability
6 activity: eliminate redundant clocks [Daws,Yovine 1996]
[J correct w.r.t. reachability
g,a,C:=0 / /
q »qg = Act(q) = clocks(g) U (Act(q’) \ C)
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“Solutions” to this problem (cont.)

6 convex-hull approximation: if 7 and Z’ are computed then we
overapproximate using “Z U Z'”.

[] “semi-correct” w.r.t. reachability

Y
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“Solutions” to this problem (cont.)

6 convex-hull approximation: if 7 and Z’ are computed then we
overapproximate using “Z U Z'”.

[] “semi-correct” w.r.t. reachability

Y

6 extrapolation, a widening operator on zones
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The DBM data structure

DBM (Difference Bounded Matrice) data structure [Dill89]
iy I 9
o +o00 -3 Ho©
(561 Z 3) AN ($2 S 5) AN (ZL‘l — X9 S 4) I1 +0o00 400 4
T9 5 +00 H00
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The DBM data structure

DBM (Difference Bounded Matrice) data structure [Dill89]
iy I 9
o +00 —3 Ho©
(x1>23) A (22 <5) A (1 — 22 < 4) 1 +00 400 4
T9 5 +00 H00

©® Existence of a normal form

° 0 -3 0
,1 9 0 4
-- 5 2 0
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The DBM data structure

DBM (Difference Bounded Matrice) data structure [Dill89]
iy I 9
o +o00 -3 Ho©
(561 Z 3) AN ($2 S 5) AN (ZL‘l — X9 S 4) I1 +0o00 400 4
T9 5 +00 H00

©® Existence of a normal form

° 0 -3 0
,1 9 0 4
-- 5 2 0

6 All previous operations on zones can be computed using DBMs
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The extrapolation operator

Fix an integer k (x represents an integer between —k and +k)

% >|< * |00 | ok

6 “intuitively”, erase non-relevant constraints

» P ensures termination
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The extrapolation operator

Fix an integer k (x represents an integer between —k and +k)

k >|< * |00 | ok

6 “intuitively”, erase non-relevant constraints

» P ensures termination
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Challenge

Propose a good constant for the extrapolation:

6 keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton

6@ Several correctness proofs can be found
6 Implemented in tools like UPPAAL, KRONOS, RT-SPIN...

6 Successtully used on real-life examples
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Challenge

Propose a good constant for the extrapolation:

6 keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton

6@ Several correctness proofs can be found
6 Implemented in tools like UPPAAL, KRONOS, RT-SPIN...

6 Successtully used on real-life examples

However...
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A problematic automaton

L1,I3 =0 ZIZQI:O
113222,332!:0
I 2
xl—O |
e w9 3 5 | The loop
O(@ L1 O< L1 = O< L2 = O
Ty — 3 < 2 T = To 1=

Chennai - january 2003
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A problematic automaton

5131,333220 ZIZQI:O
113222,332!:0
I 2
xl—O |
To —T1 > 2 1 =3 Ty = 2 The loop

Ta — T3 < 2 T = Lo =
Error
[ v(z) =0
v(xy) =d
< v(r3) =2a+5
| v(z4) =200+ 5+d
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A problematic automaton

L1,T3 =0 U I =0 k
Xy — 2, L2 =0
I 2
I =0 |
-9 3 5 The loop
To — T T = x Y
O O0——-0O0—"0
Ta — T3 < 2 T1 = ~/ Ty =0
Error
[ v(z) =0 15 3] 200 + 5]
| e = e
— 9 1 L3 L4
v(rs) =2a+5 90 1 5] 3
| v(z4) =200+ 5+d
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The problematic zone

[1; 3] 2a 4 5]
e
L1 Wﬂ%‘fm
2 + 5] - [1;3] implies 1 — 22 = 23 — 4.
T T T Rat22a+4
T T T T T T T Rat62ars T ”
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The problematic zone

[1; 3] 2a 4 5]
e
L1 Wﬂ?s‘%
2 + 5] - [1;3] implies 1 — 22 = 23 — 4.
T T T Rat22a+4
T T T T T T T Rat62ars T ”

If « is sufficiently large, after extrapolation:

1; 3]
T2 .
11 xMx 4 does not imply
' - L1 — L2 = XT3 — T4.
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General abstractions

Criteria for a good abstraction operator Abs:

[Bouyer03]
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General abstractions

Criteria for a good abstraction operator Abs:

6 easy computation [Effectiveness]
Abs(Z) is azone if Z is a zone

[Bouyer03]
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General abstractions

Criteria for a good abstraction operator Abs:

6 easy computation [Effectiveness]
Abs(Z) is azone if Z is a zone

© finiteness of the abstraction [Termination]
{Abs(Z) | Z zone} is finite

[Bouyer03]
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General abstractions

Criteria for a good abstraction operator Abs:

@ easy computation
Abs(Z) is azone if Z is a zone

©® finiteness of the abstraction
{Abs(Z) | Z zone} is finite

6 completeness of the abstraction
Z C Abs(Z)

Chennai - january 2003

[Effectiveness]

[Termination]

[Completeness]

[Bouyer03]
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General abstractions

Criteria for a good abstraction operator Abs:

@ easy computation
Abs(Z) is azone if Z is a zone

©® finiteness of the abstraction
{Abs(Z) | Z zone} is finite

6 completeness of the abstraction
Z C Abs(Z)

6 soundness of the abstraction
the computation of (Abs o Post)* is correct w.r.t. reachability

[Effectiveness]

[Termination]

[Completeness]

[Soundness]

[Bouyer03]
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General abstractions

Criteria for a good abstraction operator Abs:

6 easy computation [Effectiveness]

Abs(Z) is azone if Z is a zone

©® finiteness of the abstraction [Termination]

{Abs(Z) | Z zone} is finite

6 completeness of the abstraction [Completeness]
Z C Abs(Z2)
6 soundness of the abstraction [Soundness]

the computation of (Abs o Post)* is correct w.r.t. reachability

For the previous automaton,
no abstraction operator can satisfy all these criteria!

[Bouyer03]
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Why that?

Assume there is a “nice” operator Abs.

The set {M DBM representing a zone Abs(Z)} is finite.

] k the max. constant defining one of the previous DBMs
We get that, for every zone 7,

Z C Extrag(Z) C Abs(Z)
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Problem!

[Open questions: - which conditions can be made weaker? R
- find a clever termination criterium?
9 - use an other data structure than zones/DBMs? y
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What can we cling to?

Diagonal-free: only guardsz ~ ¢
(noguard x — y ~ ¢)

Theorem: the classical algorithm is correct for diagonal-free timed
automata.

[Bouyer03]
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What can we cling to?

Diagonal-free: only guardsz ~ ¢
(noguard x — y ~ ¢)

Theorem: the classical algorithm is correct for diagonal-free timed
automata.

General: both guardsx ~candz — y ~ ¢

Proposition: the classical algorithm is correct for timed automata that use
less than 3 clocks.

[Bouyer03]
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Conclusion & Further Work

6 Decidability is quite well understood.

6 Arather big problem with the forward analysis of timed automata

needs to be solved.
— avery unsatisfactory solution for dealing with diagonal

constraints.
— maybe the zones are not the “optimal” objects that we can deal

with.
To be continued...
6 Some other current challenges:

— adding C macros to timed automata
— reducing the memory consumption via new data structures
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