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‣ Study stochastic real-time systems, and more generally stochastic continuous-
time (or space) processes 

‣ … with a model-checking approach

Purpose of this work

We want to design algorithms for verifying properties of (complex) 
stochastic real-time systems!

➡ Designed algorithms should give guarantees…

[BBBC18] N. Bertrand, P. Bouyer, Th. Brihaye, P. Carlier. When are stochastic transition systems tameable? (J. Log. Algebraic Methods Program, 2018)
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Motivations

‣ Clock synchronization protocols 
‣ Root contention protocols 
‣ CSMA : random backoff retransmission time 
‣ Molecular reactions 
‣ … 

Needs for models with real-time and probabilities

‣ Continuous-time Markov chains (CTMC) 
‣ Generalized semi-Markov processes (GSMP) 
‣ Stochastic timed automata (STA) 
‣ Stochastic differential equations 
‣ Continuous-space pure jump Markov processes 
‣ …

Numerous models in the literature
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A first GSMP example of a 
two-machine network

 up 
 down

M1
M2

 down  
 up

M1
M2

 up 
 up

M1
M2

 down 
 down

M1
M2

crash2 crash1

crash2crash1

reboot2

reboot2

reboot1

reboot1

{reboot1, crash2}

{crash1, reboot2}

{crash1, crash2} {reboot1, reboot2}

‣  event follows exp. distrib. 

‣  event follows bounded unif. distrib.

crashi

rebooti

‣ At state                          : 

• Events  and  are sampled 

• A race condition applies to select the next state
reboot1 crash2

 up 
 down

M1
M2

This generates an 
infinite non 

denumerable stochastic 
transition system
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Real-time stochastic 
systems

‣ Intricate combination of dense time and probabilities 
‣ Uncountable state-space 
‣ Uncountable branching 
‣ Continuous probability distributions

Challenges

‣ Qualitative model-checking: decide if a property holds almost-surely 
‣ Quantitative model-checking: compute the probability that a property holds, 

or an approximation thereof

Objectives



6

A focus on discrete-time 
Markov chains (DTMC)

Decisiveness
—
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Discrete-time Markov 
chains

s1 s2 …

1 1/4

3/4

1/4

3/43/4

 with  denumerable,  and ℳ = (S, s0, δ) S s0 ∈ S δ : S → Dist(S)

Discrete-time Markov chain (DTMC)

Denumerable Markov chain

s0

s1 s2
1/2

1/4

3/53/4

s3
1/2

s4

1/5

1/5
1

1/2

1

1/2

Finite Markov chain



‣ The least fixpoint characterizes  

‣ For finite DTMCs, it amounts to solving a system of linear equations 
• For not-too-big DTMCs, this can be computed 

‣ What can we do for infinite DTMCs? 
• Exact solutions do not exist in general 
• Ad-hoc approximate solutions are developed

ℙs(F )
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‣ Aim: compute the probability of property      
[Note: very useful even for -regular properties, where analysis amounts to 
computing the probability of reaching good BSCCs] 

‣ For state , let  be such that:

F
ω

s xs

Quantitative model-
checking

xs =
1 if s =
0 if s /⊧ ∃F
∑t ℙ(s → t) ⋅ xt otherwise

 lim
n→∞

ℙ≤n(F ) = ℙ(F )
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‣ Aim: compute probability of      

‣        

F

= {s ∈ S ∣ s /⊧ ∃F }

DTMC: Approximate 
quantitative model-checking

[IN97] P. Iyer, M. Narasimha. Probabilistic lossy channel systems (TAPSOFT'97)

s2

s3

Does it converge?

Given , for every , compute: 

 

until 

ε > 0 n

{
pyes

n = ℙ(F≤n )
pno

n = ℙ(¬ U≤n )
pyes

n + pno
n ≥ 1 − ε

Approximation scheme

s1

pyes1 ≤ ℙ(F ) ≤ 1 − pno1

pyes2 ≤ ℙ(F ) ≤ 1 − pno2

⋮

≤

≤

≤

≤
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Non-converging example 
The unbalanced random walk

s1 s2 …

1 p

1 − p

p

1 − p1 − p

‣         , hence for all ,  

‣ If , then 

• , hence for all ,  

• The sequences  and  are not adjacent 

• The approximation scheme does not converge

= ∅ n ∈ ℕ pno
n = ℙ(F≤n ) = 0

p >
1
2

ℙ(F ) = 1 − η < 1 n ∈ ℕ pyes
n ≤ 1 − η

(pyes
n )n (1 − pno

n )n

 lim
n→∞

ℙ≤n(F ) = ℙ(F )
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‣ Examples of decisive Markov chains: finite Markov chains, probabilistic lossy 
channel systems, probabilistic VASS, noisy Turing machines, … 

‣ Counterexample: unbalanced random walk

Decisiveness — 1

[ABM07] P.A. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007)

s1 s2 …

1
2
3

1
3

2
3

1
3

1
3

Not decisive w.r.t. 
since ℙ(F ∨ F ) < 1

A DTMC is decisive w.r.t.         if for all state , s ℙs(F ∨ F ) = 1

Decisiveness
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Decisiveness — 2

[ABM07] P.A. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007)

Given : 

 

until 

ε > 0

{
pyes

n = ℙ(F≤n )
pno

n = ℙ(¬ U≤n )

pyes
n + pno

n ≥ 1 − ε

Approximation scheme

If  is decisive w.r.t.       then the approximation 
scheme converges and is correct.

ℳ



‣ Aim: compute probability of      

‣        

GF

= {s ∈ S ∣ s /⊧ ∃F }
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Beyond reachability 
Repeated reachability

Does it converge?

qyes1 ≤ ℙ(GF ) ≤ 1 − qno1

qyes2 ≤ ℙ(GF ) ≤ 1 − qno2

⋮

≤

≤

≤

≤

Approximation scheme

Given  for every , compute: 

 

until 

ε > 0 n

{
qyes

n = ℙ(F≤n )
qno

n = ℙ(F≤n )

qyes
n + qno

n ≥ 1 − ε

If  is decisive w.r.t.        and       ,    
then the approximation scheme 

converges and is correct.

ℳ

[ABM07] P.A. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007)
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‣ From  build the graph  and compute its BSCCs 

‣ Identify BSCCs that are good w.r.t. the Muller condition  

‣
Then, 

𝖠𝗍𝗍𝗋 Graph(𝖠𝗍𝗍𝗋)
ℱ

ℙ(𝖨𝗇𝖿 ∈ ℱ) = ∑
C good BSCC

ℙ(FC)

Beyond reachability: 
-regular (Muller) propertiesω

 is an attractor if for every state , 𝖠𝗍𝗍𝗋 s ∈ S ℙs(F𝖠𝗍𝗍𝗋) = 1

Attractor

 admits a finite attractor   is decisive w.r.t. any goal ℳ ⟹ ℳ

[ABM07] P.A. Abdulla, N. Bertrand, A. Rabinovich, Ph. Schnoebelen. Verification of Probabilistic Systems with Faulty Communication (Inf & Comp, 2005) 
[BBBC18] N. Bertrand, P. Bouyer, Th. Brihaye, P. Carlier. When are stochastic transition systems tameable? (J. Log. Algebraic Methods Program, 2018)

 is good if there is  s.t. 
- For all ,  implies  
- For all , 

C F ∈ ℱ
q C →* q q ∈ F
q ∈ F C →* q

Use approximation scheme to compute ℙ(FC)

C1

C2

C3

q ∈ F



15

Real-time stochastic 
systems

—
Decisiveness and 

abstractions



A first GSMP example of a 
two-machine network
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 up 
 down

M1
M2

 down  
 up

M1
M2

 up 
 up

M1
M2

 down 
 down

M1
M2

crash2 crash1

crash2crash1

reboot2

reboot2

reboot1

reboot1

{reboot1, crash2}

{crash1, reboot2}

{crash1, crash2} {reboot1, reboot2}

‣  event follows fixed exp. distrib. with param.  

‣  event follows fixed unif. distrib. over 

crashi λi

rebooti [0,Ui]

‣ At state                          : 

• Events  and  are sampled 

• A race condition applies to select the next state
reboot1 crash2

 up 
 down

M1
M2

This generates an 
infinite non 

denumerable stochastic 
transition system
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Stochastic transition 
systems (STS)

 with  a measurable space and  a Markov 
kernel such that for all , 

𝒯 = (S, Σ, κ) (S, Σ) κ : S × Σ → [0,1]
s ∈ S κ(s, ⋅ ) ∈ 𝖣𝗂𝗌𝗍(S)

Stochastic transition systems (STS)

ℙμ(A0, A1, …, An) = ∫s0∈A0
∫s1∈A1

…∫sn−1∈An−1

κ(s0, ds1)κ(s1, ds2)…κ(sn−2, dsn−1)κ(sn−1, An) μ(ds0)

‣ This defines a probability measure over infinite paths

⋯
A1

A2

A3

s0

A0

s1

s2



‣ Examples: 
• Countable Markov chains 
• Continuous-time Markov chains (CTMC) 
• Stochastic timed automata (STA) 
• Generalized semi-Markov processes (GSMP) 
• Stochastic Petri nets (SPN) 
• Etc…

 Σ = 2S

κ(s, {s′�}) = p(s, s′�)

18

Some examples



19

Continuous-time Markov 
chains (CTMC)

• Arrival time parameter:  
(i.e. exponential distrib. with parameter ) 

• Serving time parameter:  
(i.e. exponential distrib. with parameter )

λ
λ

ν
ν

‣ Semantics from state  where  is the absolute time: 

• Apply a race condition to available events  (with an exp. distrib. with 
param. ) 

‣ Kernel at  for :

γ = (s, t) t
e ∈ E(s)

λe

γ = (s, t) B = {s′�} × [t + d1, t + d2]

κ(γ, B) =
λe

∑e′�∈E(s) λe′� ∫
d2

d1

exp( − ( ∑
e′�∈E(s)

λe′�))dτ

s0

ν

s1 s2 …

λ

ν

λ λ

ν

A simple queueing system:
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Generalized semi-Markov 
Processes (GSMP)

Distributions on activated events: 

• Bounded-support distrib. for  

• Exponential distrib. for 

e1

e2

‣ Semantics from state  with if  and  otherwise (the 
remaining time before expiring): 

• Pick the event  with the shortest expiring delay 

• Go to state  s.t.  and set  

• Shift all remaining delays:  if  and 
sample newly activated events using their nominal distributions 

‣ Kernel at  for :

γ = (s, ν) ν(e) = ⊥ e ∉ E(s) ν(e) ∈ ℝ+

e0

s′� s
e0 s′� γ′� = (s′�, ν′ �)

ν′�(e) = ν(e) − ν(e0) e ∈ (E(s′�) ∩ E(s))∖{e0}

γ = (s, ν) B = {s′�} × B′�

κ(γ, B) = δ(s, e0)(s′�)∫(t1,…,tp)∈B′�
( ∏

e∈E(s′�)

ge(te)) dte1
⋯dtep

s2s1

0 1

s0

{e1, e2}

e1 e2

{e1, e3}{e4}
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‣ Stochastic timed automata = timed automata with random delays

Stochastic timed automata 
(STA)

Distributions on possible delays: 

• Bounded-support distrib. in  

• Exponential distrib. in 

s0

s1

‣ Semantics from state : 

• Pick a delay  according to distribution  in  at  
• Choose at random an available edge 

‣ Kernel at :

γ = (s, v)
d μ s v

γ = (s, v)

s0 s1

s2

x ≤ 1

s3

x ≤ 1; x := 0

0 1

x ≤ 1

x > 1

[BBB+14] N. Bertrand, P. Bouyer, Th. Brihaye, Q. Menet, C. Baier, M. Größer, M. Jurdzinski. Stochastic Timed Automata (LMCS, 2014)

κ(γ, B) = ∑
e=(s,g,Y,s′ �)

∫τ
𝕀B((s′�, [Y ](v + τ))) ⋅ pγ+τ(e) dμ(τ)
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Decisiveness of STSs

An STS  is decisive w.r.t.       if for all 
distribution , 

𝒯
μ ℙμ(F ∨ F ) = 1

Decisiveness of STSs

‣ New        needs to be defined 

‣      = {s ∈ S ∣ ℙs(F ) = 0}

‣ How to perform approximate quantitative analysis of decisive STSs?
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Analysis of decisive STSs

Given : 

 

until 

ε > 0

{
pyes

n = ℙ(F≤n )
pno

n = ℙ(¬ U≤n )

pyes
n + pno

n ≥ 1 − ε

Approximation scheme for reach.

‣ Applicability: the approximation scheme is effective when 
•         can be computed 

• One can evaluate the values  and , i.e. one can compute (or 
approximate) probabilities of cylinders of the form  and 

pyes
n pno

n
𝖢𝗒𝗅(SS…S )

𝖢𝗒𝗅(¬ …¬ )

If  is decisive w.r.t.        then the 
approximation scheme converges and is 

correct: 
 and  both converge to 

𝒯

(pyes
n )n (1 − pno

n )n
ℙ(F )

Other approximation schemes also apply
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‣ Decisiveness is hard to check in general 

‣ One needs: 
• To design methods to avoid proving directly decisiveness 
• And/or to identify subclasses of systems which are decisive 

‣ Standard approach for real-time systems: 
• Use of abstractions?

Is that all?



25

Abstractions

For two STSs  and , and 
 a measurable function:

𝒯1 = (S1, Σ1, κ1) 𝒯2 = (S2, Σ2, κ2)
α : (S1, Σ1) → (S2, Σ2)

p1 > 0 p2 > 0q1 = 1 q2 = 1 {⋯

⋯

⋯

⋯

⋯

⋯

⋯

α

𝒯1 𝒯2

‣  is an -abstraction of  whenever  is equivalent to  

‣  is a sound -abstraction of  whenever for each :

𝒯2 α 𝒯1 p1 > 0 p2 > 0

𝒯2 α 𝒯1 B ∈ Σ2

 implies q2 = ℙ𝒯2(FB) = 1 q1 = ℙ𝒯1(Fα−1(B)) = 1
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Abstractions, decisiveness 
and attractors

If  is a sound -abstraction of , then: 

•  decisive w.r.t.        implies  decisive w.r.t.  

•  attractor for  implies  attractor for 

𝒯2 α 𝒯1

𝒯2 𝒯1 α−1( )
𝖠𝗍𝗍𝗋 𝒯2 α−1(𝖠𝗍𝗍𝗋) 𝒯1

⋯

⋯

⋯

⋯

⋯

p1 > 0 q1 = 1

⋯

⋯

p2 > 0 q2 = 1 {
α

𝒯1 𝒯2



‣ How to model-check Muller properties? 

• Almost-sure model checking of a Muller property in  reduces to 
almost-sure model checking of a reachability property in  

• Computation of the probability of Muller properties in  reduces to 
computation of a reachability probability in 

𝒯1
𝒯2

𝒯1
𝒯1
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Example of application of 
the approach

ℙ𝒯1
(𝖨𝗇𝖿 ∈ ℱ) = ∑

C good BSCC in 𝒯2

ℙ𝒯1
(Fα−1(C))

‣ Setting: 

•  general STS 

•  countable Markov chain with a finite attractor 

•  sound -abstraction of 

𝒯1

𝒯2

𝒯2 α 𝒯1
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Specific results for real-time 
stochastic systems

‣ If  is almost-surely non-Zeno, then  is an 
attractor. 

‣  is decisive w.r.t. time-bounded sets.

𝒯 AΔ = {(s, t) ∈ ̂S ∣ t > Δ}

𝒯

‣ The state-space includes a time component:  

‣ Time elapses almost-surely: 

̂S = S × ℝ+

κ((s, t), {(s′�, t′ �) ∈ ̂S ∣ t′� > t}) = 1

‣ One gets immediately approximation schemes for time-bounded properties 
like  where  is a bounded interval.B1 UI B2 I
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Applications

—
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‣ Natural abstraction: 
• Markov chain built on region automaton 

‣ STA with an attractor, hence decisive 
• Single-clock STA: 

 
• Reactive STA, i.e. complete w.r.t. delays 

 

‣ Model-checking STA 
• We recover all known decidability/approximability results… 
• … and extend them, e.g. for Muller properties

𝖠𝗍𝗍𝗋 = {(ℓ,0)} ∪ {(ℓ, r) ∣ r = (M, + ∞)}

𝖠𝗍𝗍𝗋 = {(ℓ, r) ∣ ∀x, x = 0 or x > M in r}

Application to 
Stochastic Timed Automata
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STA — A counterexample

0

1

Proba of edges:

1 − yn

2 − yn

1
2 − yn

1 − ν
2 − ν

1
2 − ν

Can be close to 0

s0

s3

s1

s1

s4

y < 1

1 < y < 2

y = 1

y := 0

y = 2y := 0
x > 2 ∧ y < 1

x := 0

x > 1 ∧ y < 1
x := 0

0 < y < 1
x = 0

One can show that this STA is not decisive, and 
standard region automaton does not correctly 

evaluate the probability of reaching  

y0

y1

y2

y3

y4

⋮

ν
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‣ We consider GSMP with no fixed-delay events 

‣ Natural abstraction: 
• Markov chain built on a refined region abstraction 

‣ An attractor based on these refined regions exist 
• The abstraction is sound! 
• Hence GSMP with no fixed-delay events are decisive! 

‣ Model-checking GSMP: 
• Decidability of qualitative analysis for rich properties 
• Approximate analysis for rich properties as well 

‣ Warning: with fixed-delay events, this is no more the case!  
This was pinpointed in [BKKR11]

Application to 
Generalized Semi-Markov 

Processes

[BKKR11] T. Brázdil, J. Krcál, J. Kretínský, V. Rehák. Fixed-Delay Events in Generalized Semi-Markov Processes Revisited (CONCUR’11)
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GSMP — Counterexample

[BKKR11] T. Brázdil, J. Krcál, J. Kretínský, V. Rehák. Fixed-Delay Events in Generalized Semi-Markov Processes Revisited (CONCUR’11)
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‣ Petri nets in which stochastic delays are attached to transitions [ACB84] 

‣ Restricted setting to fit our framework: 
• Bounded Petri net 
• Markov regenerative: regeneration points are encountered infinitely often 

almost-surely [HPRV12,PHV16] 

‣ Regeneration points form a finite attractor 
‣ Abstraction: standard state-class graph  
‣ Regenerative Petri nets are decisive! 

‣ Approximate analysis can be done, provided numerical computations are amenable 
‣ We recover the classes that were analyzed (though the authors had a focus on 

efficient computations)

Stochastic Petri nets

[ACB84]  M. Ajmone Marsan, G. Conte, G. Balbo, A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor  
systems (ACM Trans. Comput. Syst. 1984) 
[HPRV12] A. Horváth, M. Paolieri, L. Ridi, E. Vicario, Transient analysis of non-Markovian models using stochastic state classes (Perform. Eval. 2012) 
[PHV16] M. Paolieri, A. Horváth, E. Vicario, Probabilistic model checking of regenerative concurrent systems (IEEE Trans. Softw. 2016)

The remaining 
durations of enabled 
transitions are all 

memoryless
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Conclusion

—
Thoughts on SMC
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‣ A generic approach to approximate analysis of stochastic processes with possibly 
continuous state-space, based on finite-horizon computations 
• With hypotheses (existence of an attractor, decisiveness, …) and guarantees! 

‣ It requires numerical computability properties to be effective 
(that we did not consider here) 

‣ It applies to many classes of real-time stochastic systems 
• Classes of STA 
• Classes of GSMPs 
• Regenerative Petri nets 
• … 

‣ The decisiveness property is in the core of the approach 
• Tools like attractors and abstractions are very helpful to ensure decisiveness

What we did

[BBBC18] N. Bertrand, P. Bouyer, Th. Brihaye, P. Carlier. When are stochastic transition systems tameable? (J. Log. Algebraic Methods Program, 2018)



37

‣ Monte-Carlo simulation: 

• Sample a large number of realizations of a random variable , and compute the mean 

• This is an estimator of , with guarantees given as confidence intervals 
‣ In our case: 

• A realization = an (infinite) execution 

•   evaluates a property  over executions

X
𝔼(X)

X ϕ

Going further: statistical 
model-checking

[YS06]  H.L.S. Younes and R.G. Simmons, Statistical probabilistic model checking with a focus on time-bounded properties (Inf. & Comp. 2006) 
[YCZ11] H.L.S. Younes, E.M. Clarke and P. Zuliani, Statistical Verification of Probabilistic Properties with Unbounded Until (SBMF’11)

‣ Everything works fine with time-bounded properties [YS06] 
• Finite executions are sufficient 

‣ Time-unbounded properties require some attention [YCZ11] 
• Compute        prior to simulations 
• The executions will almost-surely be finite (and end in       or in       ) 
• This is applicable to finite Markov chains only

The only 
required assumption 
is a decisiveness 

property!


