Modelling, analyzing, and managing resources in timed systems

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

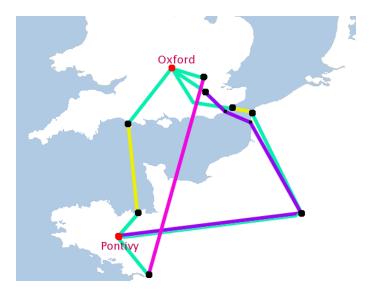
Based on joint works with Thomas Brihaye, Véronique Bruyère, Uli Fahrenberg, Kim G. Larsen, Nicolas Markey, Jean-François Raskin, Jirí Srba, and Jacob Illum Rasmussen

Outline

1. Introduction

- 2. Modelling and optimizing resources in timed systems
- 3. Managing resources
- 4. Conclusion

A starting example

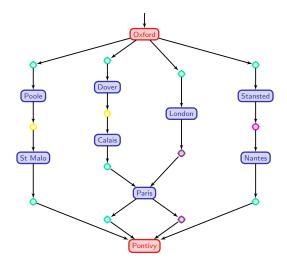


Natural questions

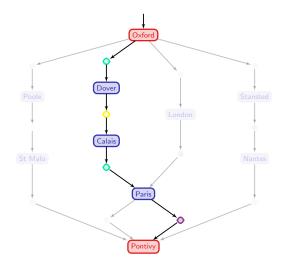
• Can I reach Pontivy from Oxford?

- What is the minimal time to reach Pontivy from Oxford?
- What is the minimal fuel consumption to reach Pontivy from Oxford?
- What if there is an unexpected event?
- Can I use my computer all the way?

A first model of the system

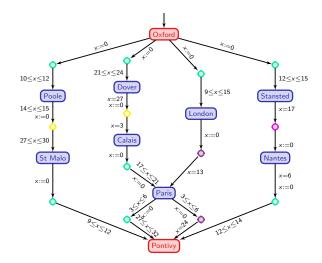


Can I reach Pontivy from Oxford?

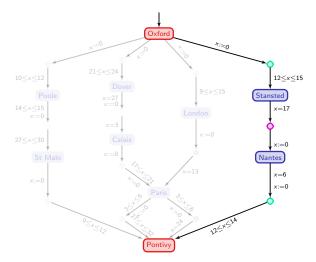


This is a reachability question in a finite graph: Yes, I can!

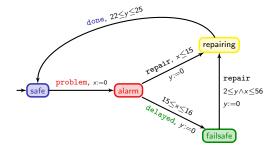
A second model of the system

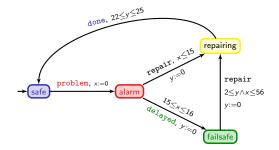


How long will that take?

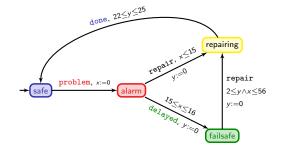


It is a reachability (and optimization) question in a timed automaton: at least 350mn = 5h50mn!

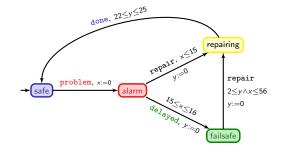




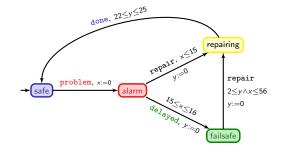
- X 0
- y 0

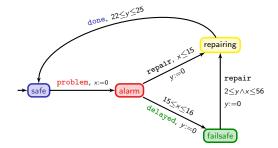


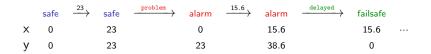
	safe	$\xrightarrow{23}$	safe
х	0		23
у	0		23



	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm
х	0		23		0
у	0		23		23



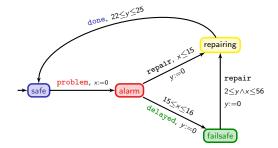




failsafe

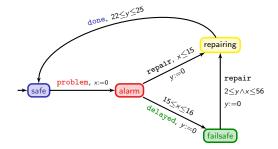
... 15.6

0



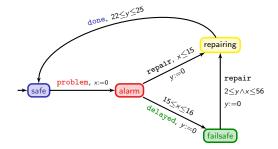
	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

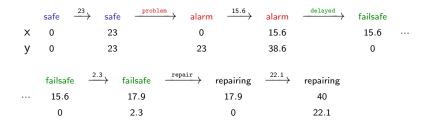
failsafe	$\xrightarrow{2.3}$	failsafe
 15.6		17.9
0		2.3

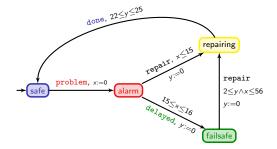


	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

failsafe	$\xrightarrow{2.3}$	failsafe	$\xrightarrow{\text{repair}}$	repairing
 15.6		17.9		17.9
0		2.3		0







	safe	$\xrightarrow{23}$ s	afe	probl	\xrightarrow{em}	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}} \rightarrow$	failsafe	
х	0		23			0		15.6		15.6	
у	0		23			23		38.6		0	
	failsafe	$\xrightarrow{2.3}$	• fa	ilsafe	repa	\xrightarrow{ir}	repairing	$\xrightarrow{22.1}$	repairing	$\xrightarrow{\text{done}}$	safe
	15.6			17.9			17.9		40		40
	0			2.3			0		22.1		22.1

Timed automata

Theorem [AD90,CY92]

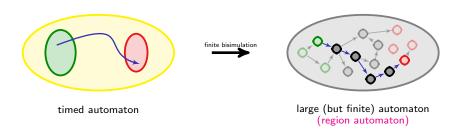
The (time-optimal) reachability problem is decidable (and PSPACE-complete) for timed automata.

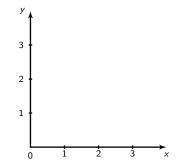
[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90). [CY92] Courcoubetis, Yannakakis. Minimum and maximum delay problems in real-time systems (Formal Methods in System Design).

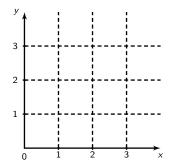
Timed automata

Theorem [AD90,CY92]

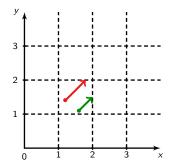
The (time-optimal) reachability problem is decidable (and PSPACE-complete) for timed automata.



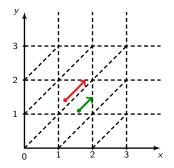




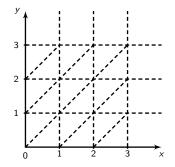
• "compatibility" between regions and constraints



- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

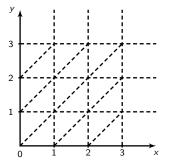


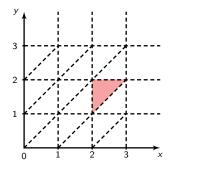
- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing



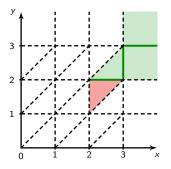
- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

→ an equivalence of finite index a time-abstract bisimulation

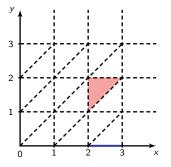




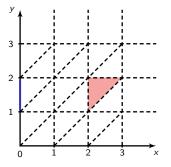
2 < x < 31 < y < 2 $\{x\} < \{y\}$



time successors



reset of clock y



reset of clock x

The region graph

A finite graph representing time elapsing and reset of clocks:

1. Introduction

- 2. Modelling and optimizing resources in timed systems
- 3. Managing resources
- 4. Conclusion

• System resources might be relevant and even crucial information

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - price to pay,
 - bandwidth,
 - ...

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - price to pay,
 - bandwidth,
 - ...

 \rightsquigarrow timed automata are not powerful enough!

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - price to pay,
 - bandwidth,
 - ...

 \rightsquigarrow timed automata are not powerful enough!

- A possible solution: use hybrid automata
 - a discrete control (the mode of the system)
 - $+ \quad$ continuous evolution of the variables within a mode

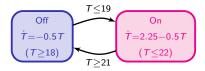
Modelling resources in timed systems

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - price to pay,
 - bandwidth,
 - ...

 \rightsquigarrow timed automata are not powerful enough!

• A possible solution: use hybrid automata

The thermostat example



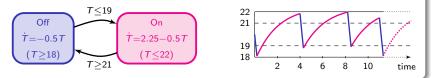
Modelling resources in timed systems

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - price to pay,
 - bandwidth,
 - ...

 \rightsquigarrow timed automata are not powerful enough!

• A possible solution: use hybrid automata

The thermostat example



Modelling and optimizing resources in timed systems

Ok...

Modelling and optimizing resources in timed systems

Ok...

Easy...

Ok...

Easy...

Ok...

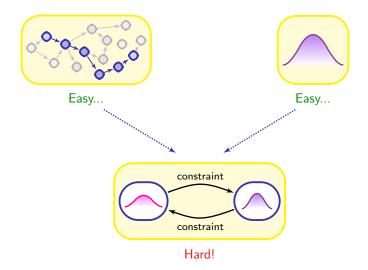
Easy...

Easy...

Ok... but?



Ok... but?



Modelling resources in timed systems

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - price to pay,
 - bandwidth,
 - ...
- \rightsquigarrow timed automata are not powerful enough!
- A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

Modelling resources in timed systems

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - price to pay,
 - bandwidth,
 - ...
- \rightsquigarrow timed automata are not powerful enough!
- A possible solution: use hybrid automata

Theorem [HKPV95]

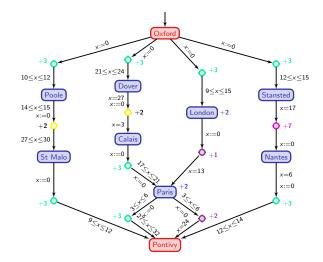
The reachability problem is undecidable in hybrid automata.

 An alternative: weighted/priced timed automata [ALP01,BFH+01]

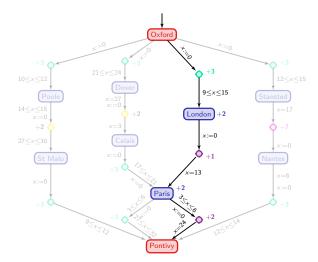
 hybrid variables do not constrain the system hybrid variables are observer variables

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).[ALP01] Alur, La Torre, Pappas. Optimal paths in weigt [BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

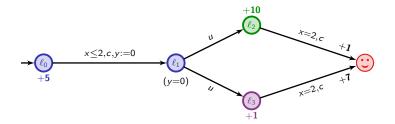
A third model of the system

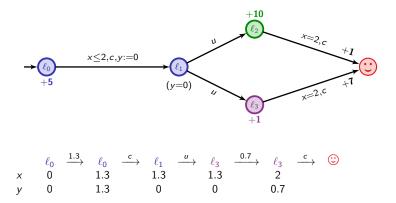


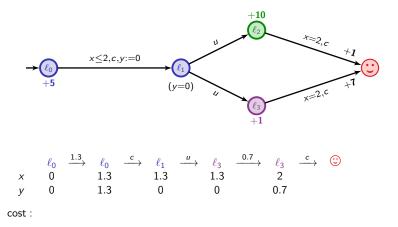
How much fuel will I use?

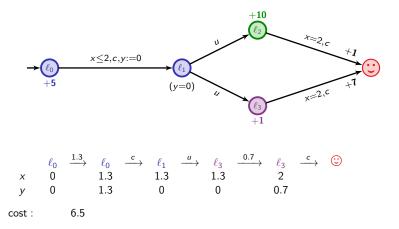


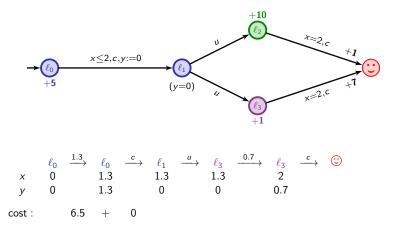
It is a <u>quantitative</u> (optimization) problem in a priced timed automaton: at least 68 anti-planet units!

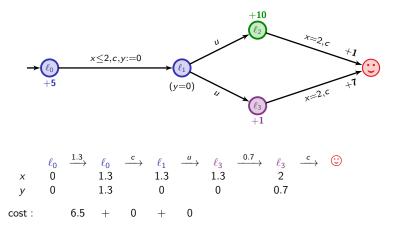




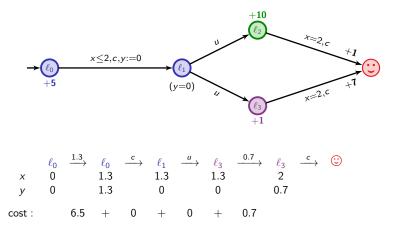




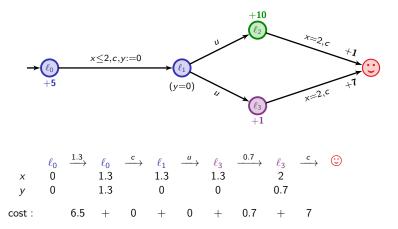




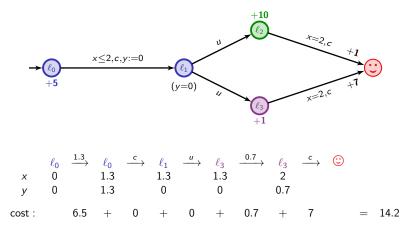
[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).



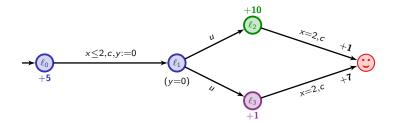
[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).



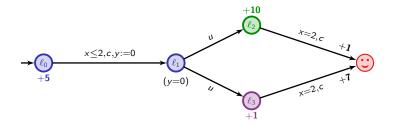
[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).



[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).

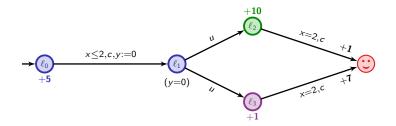


Question: what is the optimal cost for reaching \bigcirc ?



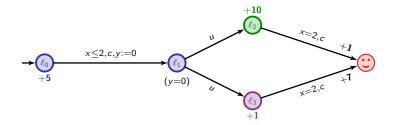
Question: what is the optimal cost for reaching \bigcirc ?

5t + 10(2 - t) + 1



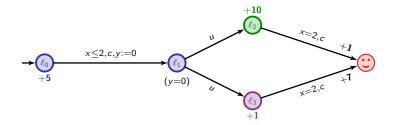
Question: what is the optimal cost for reaching \bigcirc ?

5t + 10(2 - t) + 1, 5t + (2 - t) + 7



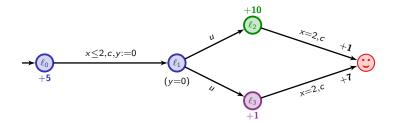
Question: what is the optimal cost for reaching \bigcirc ?

min (5t + 10(2 - t) + 1, 5t + (2 - t) + 7)



Question: what is the optimal cost for reaching \bigcirc ?

$$\inf_{0 \le t \le 2} \min \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 9$$



Question: what is the optimal cost for reaching \bigcirc ?

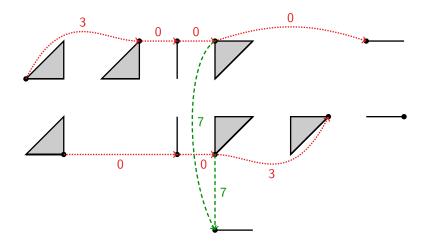
$$\inf_{0 \le t \le 2} \min \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 9$$

 \sim strategy: leave immediately ℓ_0 , go to ℓ_3 , and wait there 2 t.u.

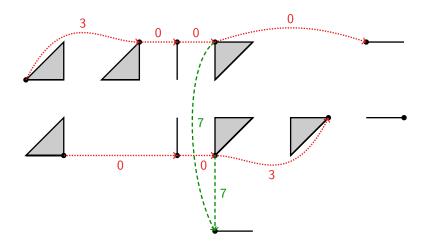
[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).

The region abstraction is not fine enough

The corner-point abstraction



The corner-point abstraction



We can somehow discretize the behaviours...

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \cdots$$

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \cdots \qquad \begin{cases} t_1 + t_2 \le 2 \\ \end{array}$$

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \cdots \qquad \begin{cases} t_1 + t_2 \le 2 \\ t_2 + t_3 + t_4 \ge 5 \end{cases}$$

Optimal reachability as a linear programming problem

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \xrightarrow{t_5} \circ \cdots \qquad \left\{ \begin{array}{c} t_1 + t_2 \le 2 \\ t_2 + t_3 + t_4 \ge 5 \end{array} \right.$$

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \sum_{i=1}^n c_it_i+c$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

Optimal reachability as a linear programming problem

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \xrightarrow{t_5} \circ \cdots \qquad \begin{cases} t_1 + t_2 \leq 2 \\ t_2 + t_3 + t_4 \geq 5 \end{cases}$$

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \sum_{i=1}^n c_it_i+c$$

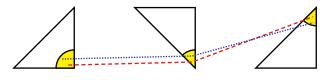
well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

 \sim for every finite path π in \mathcal{A} , there exists a path Π in \mathcal{A}_{cp} such that

 $cost(\Pi) \leq cost(\pi)$

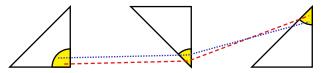
[Π is a "corner-point projection" of π]

Approximation of abstract paths:



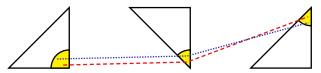
For any path Π of $\mathcal{A}_{\mathsf{cp}}$,

Approximation of abstract paths:



For any path Π of $\mathcal{A}_{\sf cp}$, for any $\varepsilon > 0,$

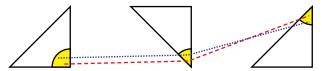
Approximation of abstract paths:



For any path Π of A_{cp} , for any $\varepsilon > 0$, there exists a path π_{ε} of A s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$

Approximation of abstract paths:



For any path Π of A_{cp} , for any $\varepsilon > 0$, there exists a path π_{ε} of A s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$

For every $\eta > 0$, there exists $\varepsilon > 0$ s.t.

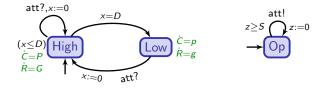
$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon \Rightarrow |\mathsf{cost}(\Pi) - \mathsf{cost}(\pi_{\varepsilon})| < \eta$$

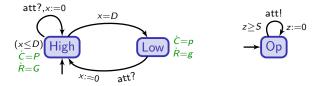
Optimal-cost reachability

Theorem [ALP01,BFH+01,BBBR07]

The optimal-cost reachability problem is decidable (and PSPACE-complete) in (priced) timed automata.

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01). [BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01). [BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem (Formal Methods in System Design).

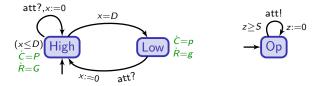




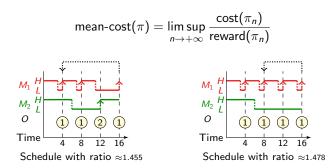
 \rightsquigarrow compute optimal infinite schedules that minimize

$$\operatorname{mean-cost}(\pi) = \limsup_{n \to +\infty} \frac{\operatorname{cost}(\pi_n)}{\operatorname{reward}(\pi_n)}$$

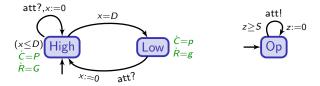
[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).



 \rightsquigarrow compute optimal infinite schedules that minimize



[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).



 \rightsquigarrow compute optimal infinite schedules that minimize

$$\mathsf{mean-cost}(\pi) = \limsup_{n \to +\infty} \frac{\mathsf{cost}(\pi_n)}{\mathsf{reward}(\pi_n)}$$

Theorem [BBL08]

The mean-cost optimization problem is decidable (and PSPACE-complete) for priced timed automata.

 \rightsquigarrow the corner-point abstraction can be used

[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto rac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

 \sim for every finite path π in A, there exists a path Π in A_{cp} s.t. mean-cost(Π) ≤ mean-cost(π)

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

 \sim for every finite path π in \mathcal{A} , there exists a path Π in \mathcal{A}_{cp} s.t. mean-cost(Π) \leq mean-cost(π)

• Infinite behaviours: decompose each sufficiently long projection into cycles:

The (acyclic) linear part will be negligible!

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

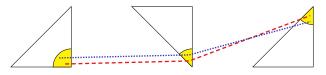
 \sim for every finite path π in \mathcal{A} , there exists a path Π in \mathcal{A}_{cp} s.t. mean-cost(Π) \leq mean-cost(π)

• Infinite behaviours: decompose each sufficiently long projection into cycles:

The (acyclic) linear part will be negligible!

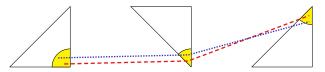
 \rightsquigarrow the optimal cycle of $\mathcal{A}_{\mathsf{cp}}$ is better than any infinite path of $\mathcal{A}!$

Approximation of abstract paths:



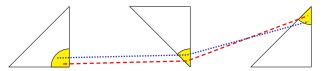
For any path Π of $\mathcal{A}_{\mathsf{cp}}$,

Approximation of abstract paths:



For any path Π of $\mathcal{A}_{\mathsf{cp}}$, for any $\varepsilon > \mathsf{0},$

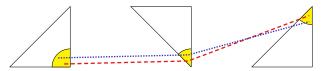
Approximation of abstract paths:



For any path Π of A_{cp} , for any $\varepsilon > 0$, there exists a path π_{ε} of A s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$

Approximation of abstract paths:



For any path Π of A_{cp} , for any $\varepsilon > 0$, there exists a path π_{ε} of A s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$

For every $\eta > 0$, there exists $\varepsilon > 0$ s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon \Rightarrow |\mathsf{mean-cost}(\Pi) - \mathsf{mean-cost}(\pi_{\varepsilon})| < \eta$$

Going further 2: concavely-priced cost functions

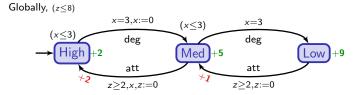
 \rightsquigarrow A general abstract framework for quantitative timed systems

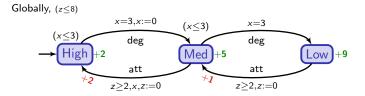
Theorem [JT08]

Optimal cost in concavely-priced timed automata is computable, if we restrict to quasi-concave price functions. For the following cost functions, the (decision) problem is even PSPACE-complete:

- optimal-time and optimal-cost reachability;
- optimal discrete discounted cost;
- optimal average-time and average-cost;
- optimal mean-cost.

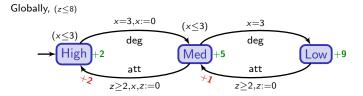
 \rightsquigarrow a slight extension of corner-point abstraction can be used





 \rightsquigarrow compute optimal infinite schedules that minimize discounted cost over time

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).

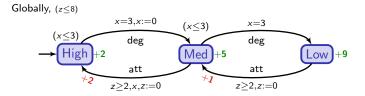


 \rightsquigarrow compute optimal infinite schedules that minimize

discounted-cost_{$$\lambda$$}(π) = $\sum_{n\geq 0} \lambda^{T_n} \int_{t=0}^{t_{n+1}} \lambda^t \operatorname{cost}(\ell_n) dt + \lambda^{T_{n+1}} \operatorname{cost}(\ell_n \xrightarrow{a_{n+1}} \ell_{n+1})$

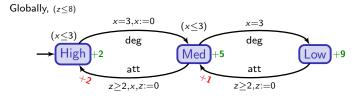
if
$$\pi = (\ell_0, \nu_0) \xrightarrow{\tau_1, a_1} (\ell_1, \nu_1) \xrightarrow{\tau_2, a_2} \cdots$$
 and $T_n = \sum_{i \le n} \tau_i$

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).

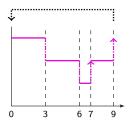


 \rightsquigarrow compute optimal infinite schedules that minimize discounted cost over time

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).

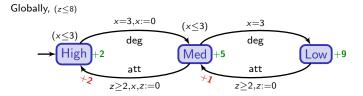


 \rightsquigarrow compute optimal infinite schedules that minimize discounted cost over time



if $\lambda = e^{-1}$, the discounted cost of that infinite schedule is ≈ 2.16

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).



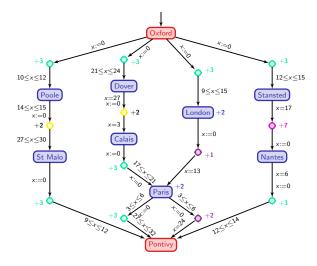
 \sim compute optimal infinite schedules that minimize discounted cost over time

Theorem [FL08]

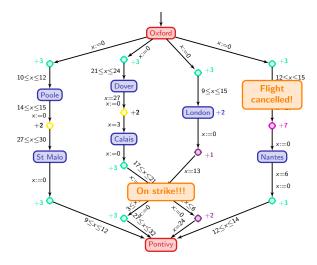
The optimal discounted cost is computable in EXPTIME in priced timed automata.

 \rightsquigarrow the corner-point abstraction can be used

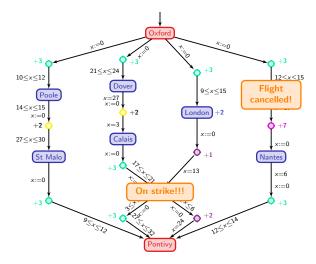
A fourth model of the system What if there is an unexpected event?



A fourth model of the system What if there is an unexpected event?

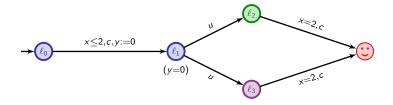


A fourth model of the system What if there is an unexpected event?

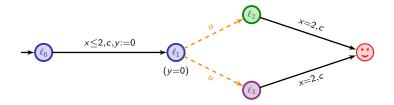


 \rightsquigarrow modelled as timed games

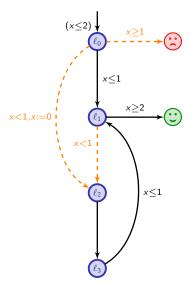
A simple example of timed game



A simple example of timed game



Another example



[CDL+05] Cassez, David, Fleury, Larsen, Lime. Efficient On-The-Fly Algorithms for the Analysis of Timed Games (CONCUR'05).

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and EXPTIME-complete.

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and EXPTIME-complete.

(the attractor is computable...)

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and EXPTIME-complete.

(the attractor is computable...)

 \sim classical regions are sufficient for solving such problems

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and EXPTIME-complete.

(the attractor is computable...)

 \rightsquigarrow classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and EXPTIME-complete.

[AM99] Asarin, Maler. As soon as possible: time optimal control for timed automata (*HSCC'99*). [BHPR07] Brihaye, Henzinger, Prabhu, Raskin. Minimum-time reachability in timed games (*ICALP'07*). [JT07] Jurdzinński, Trivedi. Reachability-time games on timed automata (*ICALP'07*).

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and EXPTIME-complete.

(the attractor is computable...)

 \rightsquigarrow classical regions are sufficient for solving such problems

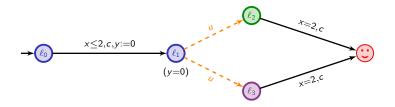
Theorem [AM99,BHPR07,JT07]

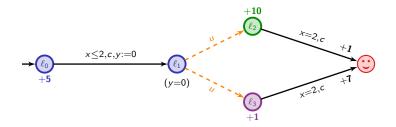
Optimal-time reachability timed games are decidable and EXPTIME-complete.

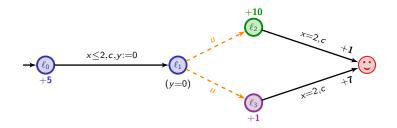
implemented in the tool Uppaal Tiga [BCD+07]

[BCD+07] Behrmann, Cougnard, David, Fleury, Larsen, Lime. Uppaal-Tiga: Time for playing games! (CAV'07).

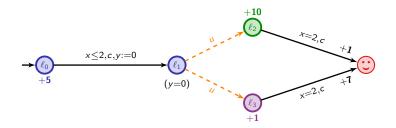
Back to the simple example





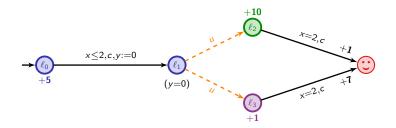


Question: what is the optimal cost we can ensure while reaching \bigcirc ?



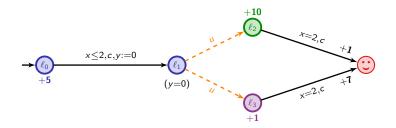
Question: what is the optimal cost we can ensure while reaching \bigcirc ?

5t + 10(2 - t) + 1



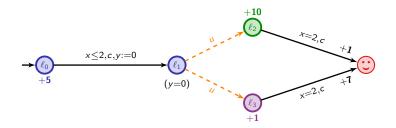
Question: what is the optimal cost we can ensure while reaching \bigcirc ?

5t + 10(2 - t) + 1, 5t + (2 - t) + 7



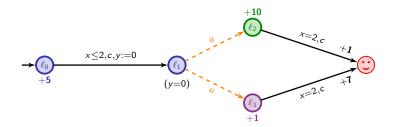
Question: what is the optimal cost we can ensure while reaching \bigcirc ?

max (5t + 10(2 - t) + 1 , 5t + (2 - t) + 7)



Question: what is the optimal cost we can ensure while reaching \bigcirc ?

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1 , 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$



Question: what is the optimal cost we can ensure while reaching \bigcirc ?

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

\$\sim strategy: wait in \$\ell_0\$, and when \$t = \frac{4}{2}\$, go to \$\ell_1\$}

Optimal reachability in priced timed games

This topic has been fairly hot these last couple of years...

e.g. [LMM02,ABM04,BCFL04]

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS002). [ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP'04). [BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS'04).

Optimal reachability in priced timed games

This topic has been fairly hot these last couple of years...

e.g. [LMM02,ABM04,BCFL04]

Theorem [BBR05,BBM06]

Optimal timed games are undecidable, as soon as automata have three clocks or more.

Optimal reachability in priced timed games

This topic has been fairly hot these last couple of years...

e.g. [LMM02,ABM04,BCFL04]

Theorem [BBR05,BBM06]

Optimal timed games are undecidable, as soon as automata have three clocks or more.

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when automata have a single clock. They are PTIME-hard.

[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS'05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS'06).

Theorem [BLMR06]

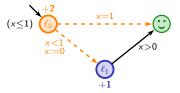
Turn-based optimal timed games are decidable in 3EXPTIME when automata have a single clock. They are PTIME-hard.

• Key: resetting the clock somehow resets the history...

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when automata have a single clock. They are PTIME-hard.

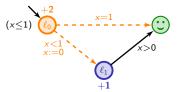
- Key: resetting the clock somehow resets the history...
- Memoryless strategies can be non-optimal...



Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when automata have a single clock. They are PTIME-hard.

- Key: resetting the clock somehow resets the history...
- Memoryless strategies can be non-optimal...

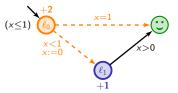


• However, by unfolding and removing one by one the locations, we can synthesize memoryless almost-optimal winning strategies.

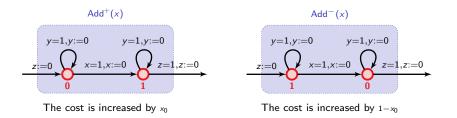
Theorem [BLMR06]

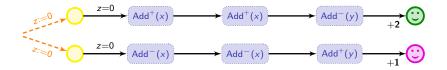
Turn-based optimal timed games are decidable in 3EXPTIME when automata have a single clock. They are PTIME-hard.

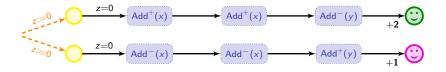
- Key: resetting the clock somehow resets the history...
- Memoryless strategies can be non-optimal...



- However, by unfolding and removing one by one the locations, we can synthesize memoryless almost-optimal winning strategies.
- Rather involved proof of correctness for a simple algorithm.

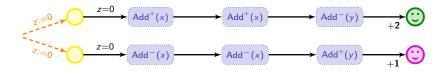






• In
$$\bigcirc$$
, cost = $2x_0 + (1 - y_0) + 2$

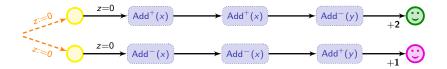
Given two clocks x and y, we can check whether y = 2x.



• In
$$\textcircled{\begin{subarray}{c} \mbox{...}}$$
, cost = $2x_0 + (1 - y_0) + 2$
In $\textcircled{\begin{subarray}{c} \mbox{...}}$, cost = $2(1 - x_0) + y_0 + 1$

• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3

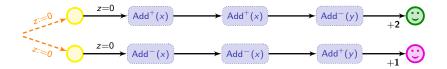
Given two clocks x and y, we can check whether y = 2x.



• In
$$\textcircled{\begin{subarray}{c} \mbox{...}}$$
, $\mbox{cost} = 2x_0 + (1 - y_0) + 2$
In $\textcircled{\begin{subarray}{c} \mbox{...}}$, $\mbox{cost} = 2(1 - x_0) + y_0 + 1$

• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3

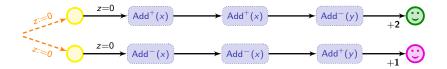
Given two clocks x and y, we can check whether y = 2x.



• In
$$\textcircled{i}$$
, cost = $2x_0 + (1 - y_0) + 2$
In \textcircled{i} , cost = $2(1 - x_0) + y_0 + 1$

• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3 if $y_0 = 2x_0$, in both branches, cost = 3

Given two clocks x and y, we can check whether y = 2x.



• In
$$\textcircled{i}$$
, cost = $2x_0 + (1 - y_0) + 2$
In \textcircled{i} , cost = $2(1 - x_0) + y_0 + 1$

• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3 if $y_0 = 2x_0$, in both branches, cost = 3

• Player 1 has a winning strategy with cost ≤ 3 iff $y_0 = 2x_0$

Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the values of two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{3^{c_2}}$

when entering the corresponding module.

Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the values of two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{3^{c_2}}$

when entering the corresponding module.

The two-counter machine has an halting computation iff player 1 has a winning strategy to ensure a cost no more than 3.

Player 1 will simulate a two-counter machine:

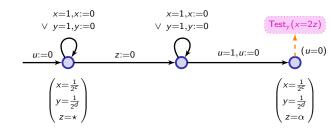
- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the values of two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{3^{c_2}}$

when entering the corresponding module.

The two-counter machine has an halting computation iff player 1 has a winning strategy to ensure a cost no more than 3.

Globally, $(x \le 1, y \le 1, u \le 1)$



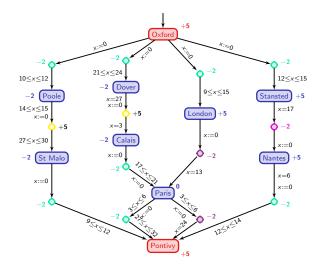
Outline

1. Introduction

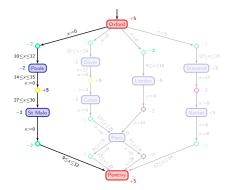
2. Modelling and optimizing resources in timed systems

- 3. Managing resources
- 4. Conclusion

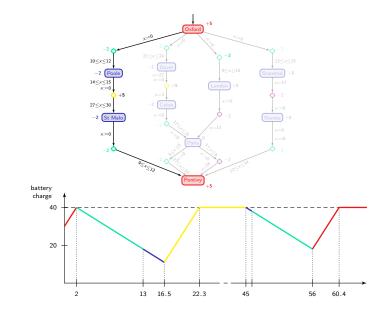
A fifth model of the system



Can I work with my computer all the way?

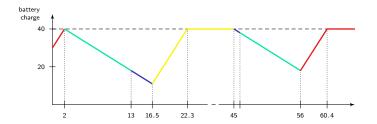


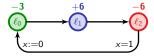
Can I work with my computer all the way?

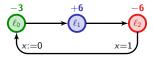


Can I work with my computer all the way?

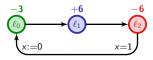
Energy is not only consumed, but can be regained. \sim the aim is to continuously satisfy some energy constraints.

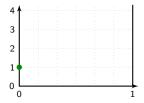




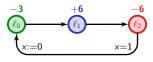


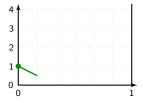
• Lower-bound problem: can we stay above 0?



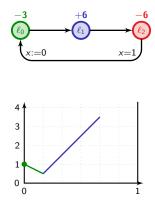


• Lower-bound problem: can we stay above 0?

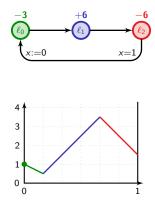




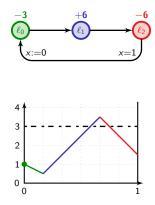
• Lower-bound problem: can we stay above 0?



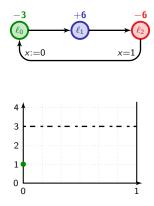
• Lower-bound problem: can we stay above 0?



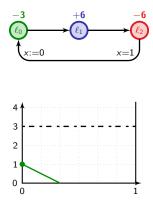
• Lower-bound problem: can we stay above 0?



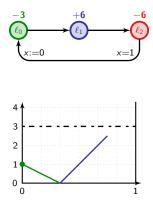
• Lower-bound problem: can we stay above 0?



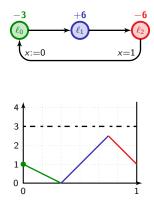
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



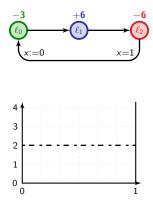
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



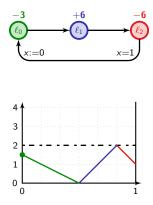
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



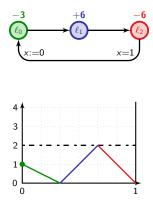
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



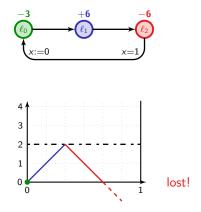
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



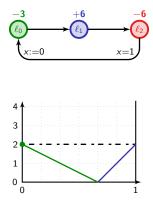
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



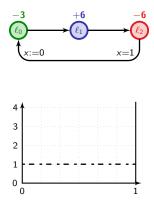
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



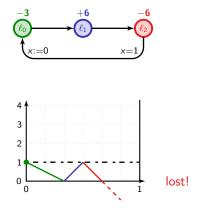
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



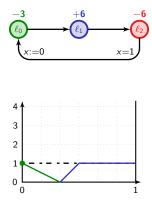
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

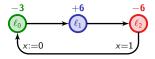


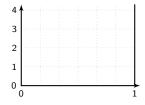
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



- Lower-bound problem
- Lower-upper-bound problem
- Lower-weak-upper-bound problem: can we "weakly" stay within bounds?

Globally ($x \le 1$)





- Lower-bound problem \rightsquigarrow L
- Lower-upper-bound problem \rightsquigarrow L+U
- Lower-weak-upper-bound problem ~~ \sim

∽ L+W

Only partial results so far [BFLMS08]

0 clock!	exist. problem	univ. problem	games
L	∈ PTIME	∈ PTIME	$\in UP \cap co-UP$ PTIME-hard
L+W	∈ PTIME	∈ PTIME	$\in NP \cap co\text{-}NP$ $PTIME\text{-}hard$
L+U	$\in PSPACE$ NP-hard	∈ PTIME	EXPTIME-c.

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS'08).

Only partial results so far [BFLMS08]

1 clock	exist. problem	univ. problem	games
L	∈ PTIME	∈ PTIME	?
L+W	∈ PTIME	∈ PTIME	?
L+U	?	?	undecidable

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS'08).

Only partial results so far [BFLMS08]

n clocks	exist. problem	univ. problem	games
L	?	?	?
L+W	?	?	?
L+U	?	?	undecidable

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS'08).

Definition

Mean-payoff games: in a weighted game graph, does there exists a strategy s.t. the mean-cost of any play is nonnegative?

Definition

Mean-payoff games: in a weighted game graph, does there exists a strategy s.t. the mean-cost of any play is nonnegative?

Lemma

 $\ensuremath{\mathsf{L}}\xspace$ and $\ensuremath{\mathsf{L}}\xspace+\ensuremath{\mathsf{W}}\xspace$ are determined, and memoryless strategies are sufficient to win.

Definition

Mean-payoff games: in a weighted game graph, does there exists a strategy s.t. the mean-cost of any play is nonnegative?

Lemma

 $\ensuremath{\mathsf{L}}\xspace$ and $\ensuremath{\mathsf{L}}\xspace+\ensuremath{\mathsf{W}}\xspace$ games and $\ensuremath{\mathsf{L}}\xspace+\ensuremath{\mathsf{W}}\xspace$ sufficient to win.

• from mean-payoff games to L-games or L+W-games: play in the same game graph G with initial credit $-M \ge 0$ (where M is the sum of negative costs in G).

Definition

Mean-payoff games: in a weighted game graph, does there exists a strategy s.t. the mean-cost of any play is nonnegative?

Lemma

 $\ensuremath{\mathsf{L}}\xspace$ and $\ensuremath{\mathsf{L}}\xspace+\ensuremath{\mathsf{W}}\xspace$ are determined, and memoryless strategies are sufficient to win.

- from mean-payoff games to L-games or L+W-games: play in the same game graph G with initial credit $-M \ge 0$ (where M is the sum of negative costs in G).
- from L-games to mean-payoff games: transform the game as follows:

[DGR09] Doyen, Gentilini, Raskin. Faster Pseudo-Polynomial Algorithms for Mean-Payoff Games.

Definition

Mean-payoff games: in a weighted game graph, does there exists a strategy s.t. the mean-cost of any play is nonnegative?

Lemma

 $\ensuremath{\mathsf{L}}\xspace$ and $\ensuremath{\mathsf{L}}\xspace+\ensuremath{\mathsf{W}}\xspace$ are determined, and memoryless strategies are sufficient to win.

Corollary

Mean-payoff games (and hence parity games) and ${\sf L}\mbox{-}{\sf games}$ have the same complexity (log-space reducibility).

 \sim a way to improve complexity of mean-payoff games [DGR09]

[DGR09] Doyen, Gentilini, Raskin. Faster Pseudo-Polynomial Algorithms for Mean-Payoff Games.

Theorem

The single-clock L+U-games are undecidable.

Theorem

The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the energy level

$$e = 5 - \frac{1}{2^{c_1} \cdot 3^{c_2}}$$

when entering the corresponding module.

Theorem

The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the energy level

$$e = 5 - \frac{1}{2^{c_1} \cdot 3^{c_2}}$$

when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a strategy in the single-clock timed game under which the energy level remains between 0 and 5.

Theorem

The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

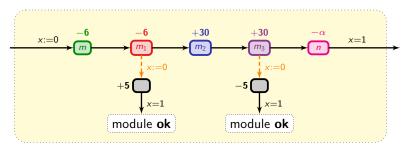
- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the energy level

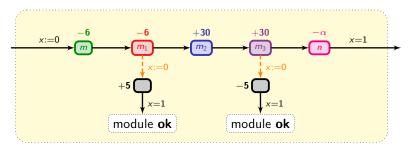
$$e = 5 - \frac{1}{2^{c_1} \cdot 3^{c_2}}$$

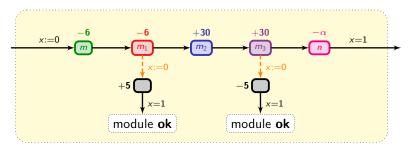
when entering the corresponding module.

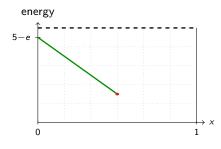
There is an infinite execution in the two-counter machine iff there is a strategy in the single-clock timed game under which the energy level remains between 0 and 5.

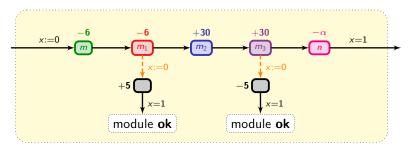
 → We present a generic construction for incrementing/decrementing the counters.

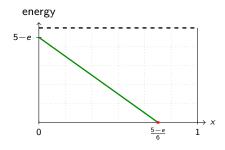


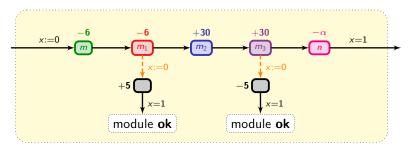


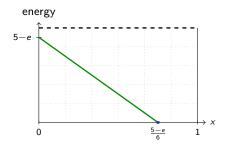


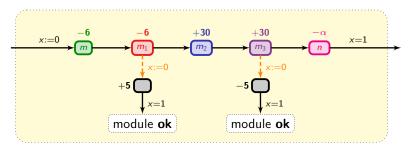


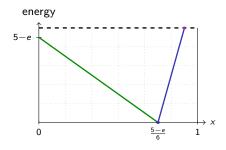


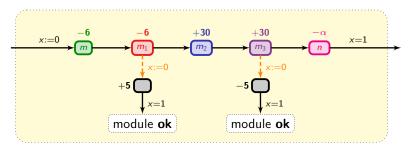


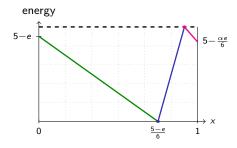


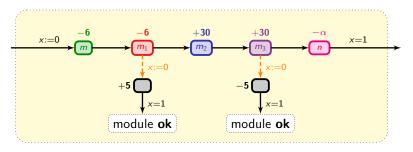


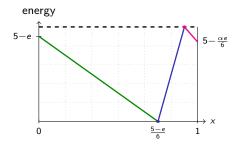












- $\alpha=3$: increment c_1
- $\alpha=2$: increment c_2
- $\alpha = 12$: decrement c_1
- α=18: decrement c₂

Outline

1. Introduction

2. Modelling and optimizing resources in timed systems

- 3. Managing resources
- 4. Conclusion

Some applications

Tools

- Uppaal (timed automata)
- Uppaal Cora (priced timed automata)
- Uppaal Tiga (timed games)

Case studies

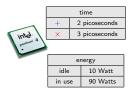
- A lacquer production scheduling problem [BBHM05]
- Task graph scheduling problems [AKM03]
- An oil pump control problem [CJL+09]

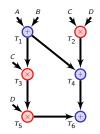
Task graph scheduling problems

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

 P_1 (fast):

 P_2 (slow):



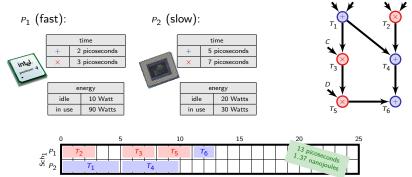


C D

A B

Task graph scheduling problems

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

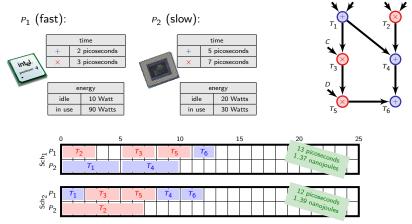


C D

A B

Task graph scheduling problems

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

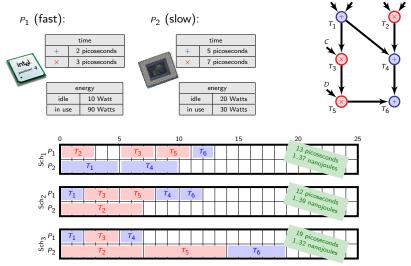


C D

A B

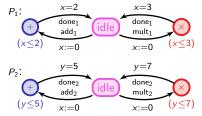
Task graph scheduling problems

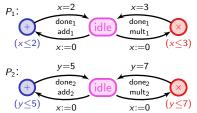
Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:



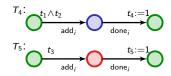
[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata.

Processors

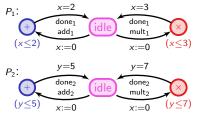




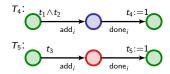
Tasks



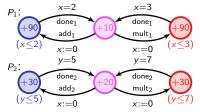
Processors

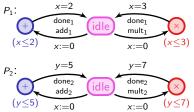


Tasks

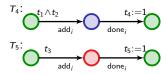


Modelling energy

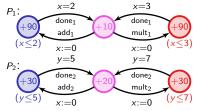




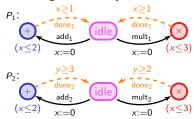
Tasks



Modelling energy



Modelling uncertainty



Conclusion

- Priced/weighted timed automata, a model for representing quantitative constraints on timed systems:
 - useful for modelling resources in timed systems
 - natural (optimization/management) questions have been posed...
 - ... and not all of them have been answered!

[BBC07]

[BBJLR07

Conclusion

- Priced/weighted timed automata, a model for representing quantitative constraints on timed systems:
 - useful for modelling resources in timed systems
 - natural (optimization/management) questions have been posed...
 - ... and not all of them have been answered!

- Not mentioned here:
 - all works on model-checking issues (extensions of CTL, LTL)
 - models based on hybrid automata
 - weighted o-minimal hybrid games
 - weighted strong reset hybrid games
 - various tools have been developed:

Uppaal, Uppaal Cora, Uppaal Tiga

Conclusion

- Priced/weighted timed automata, a model for representing quantitative constraints on timed systems:
 - useful for modelling resources in timed systems
 - natural (optimization/management) questions have been posed...
 - ... and not all of them have been answered!

- Not mentioned here:
 - all works on model-checking issues (extensions of CTL, LTL)
 - models based on hybrid automata
 - weighted o-minimal hybrid games
 - weighted strong reset hybrid games
 - various tools have been developed:

Uppaal, Uppaal Cora, Uppaal Tiga

- Current and further work:
 - further cost functions (e.g. exponential)
 - computation of approximate optimal values
 - further investigation of safe games + several cost variables?
 - discounted-time optimal games
 - Ink between discounted-time games and mean-cost games?
 - computation of equilibria

• ...

[BBC07] [BBJLR07]