Optimal Reachability Timed Games

Patricia Bouyer

LSV — CNRS & ENS de Cachan — France

INFINITY’05 1/20



Timed automata [Alur & Dill 90’s]

x,y : clocks

x<5b, a y:=0 y>1 b, x:=0

—© On

()
&

INFINITY’05 2/2



Introduction

Timed automata [Alur & Dill 90’s]

x,y : clocks

x<5b, a y:=0 y>1 b, x:=0
—®) 0, (—

o O41) gy _a, ¢ 04 g b g,
x 0 4.1 4.1 5.5 0
y O 4.1 0 1.4 1.4

2/20

INFINITY’05



Introduction

Timed automata [Alur & Dill 90’s]

x,y : clocks

x<5b, a y:=0 y>1 b, x:=0
—®) 0, (—

lo 5(4.1) ly _a, 0 o4y b, (y
X 4.1 4.1 0
y O 4.1 0 1.4

(clock) valuation

o

2/20

INFINITY’05



Introduction

Model of priced timed automata [HSCC'01]
price rate discrete price cost = price
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Introduction

Model of priced timed automata [HSCC'01]
price rate discrete price cost = price
|
P e P’
@ g, a C:=0 @
@ a configuration: (¢, v)
@ two kinds of transitions:
(e,v) 29 0 v + d)
(6v) == (¢,V) where{ :,’::g[c — O for some ¢ &=, ¢

Cost <(Z, v) G v+ d)) =P.d Cost ((6, v) = (2, v’)) =p

Cost(p) = accumulated cost along run p
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Model of priced timed automata (cont.)

price rate discrete price cost = price
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Model of priced timed automata (cont.)

price rate discrete price cost = price
P 1 P’
p
© ©

@ one player problems:

@ reachability with an optimization criterium on the price
[BFH+01a,BFH+01b,LBB+01,ALTP01]
o safety with a mean-cost optimization criterium [BBL04]
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Model of priced timed automata (cont.)

price rate discrete price cost = price
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Model of priced timed automata (cont.)

price rate discrete price cost = price
P 1 P’
p
© ©

@ one player problems:

@ reachability with an optimization criterium on the price
[BFH+01a,BFH+01b,LBB+01,ALTP01]
o safety with a mean-cost optimization criterium [BBL04]

@ what if an opponent?
=>» optimal reachability timed game

INFINITY’05 4/20



An example

c: controllable action

u: uncontrollable action cost(f2) = 10

x>2;c,cost=1

u -
‘ x<2,¢c;y:=0 .://
cost({p) =5 y= \u\ N

x>2;,c,cost=7

cost(43) =1

Question: what is the optimal price we can ensure in state /57?
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An example

c: controllable action

u: uncontrollable action cost(f2) = 10

x>2;c,cost=1

‘ x<2,¢c;y:=0 ./

cost({p) =5 y = u>
x>2;,c,cost=7

cost(43) =1

Question: what is the optimal price we can ensure in state /57?
1
inf  max (5t+10(2—1t)+1, 5t+(2—t)+7):14~|—§

0<t<2

= strategy: wait in {o, and when t = 3, go to /1
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An example

c: controllable action

u: uncontrollable action cost(f2) = 10

x>2;c,cost=1

‘ x<2,¢c;y:=0 .

cost({p) =5 y=0 >
x>2;,c,cost=7

cost(43) =1

Question: what is the optimal price we can ensure in state /57?

. 1
0§”11.“f§2 max(5t+10(27t)+1,5t+(27t)+7)—14~|—§

= strategy: wait in {o, and when t = 3, go to /1

@ How to automatically compute such optimal prices?
@ How to synthesize optimal strategies (if one exists)?
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A hot topic!

@ [La Torre, Mukhopadhyay, Murano — TCS 2002]:
9 case of acyclic games
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A hot topic!

[La Torre, Mukhopadhyay, Murano — TCS 2002]:
9 case of acyclic games

[Alur, Bernadsky, Madhusudan — ICALP 2004]:
o k-step games can be solved in exponential time and may need an
exponential number of splittings
o under a strongly non-zeno assumption, optimal cost is computable

[Bouyer, Cassez, Fleury, Larsen FSTTCS 2004]:
9 structural properties of strategies: may need memory, state-based
strategies for a subclass of games
o under a strongly non-zeno assumption, optimal cost is computable

[Brihaye, Bruyére, Raskin — FORMATS 2005]:

o with five clocks, optimal cost is not computablel
@ with one clock and one stopwatch cost, optimal cost is computable

[Bouyer, Brihaye, Markey — Submitted, 2005]:
o with three clocks, optimal cost is not computable
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Do optimal strategies always exist?

cost =1 cost =2
x<1 c x=1;c
—~® ® @
x<1 x<1
f(lo,x <1)= X
f(l,x<1)= X
f(li,x=1)=c
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Do optimal strategies always exist?

cost =1 cost =2
x<1;c x=1;c
—~® ® @)
x<1 x<1
f(lo,x <1)= X f(lo,x<1l—e)=2A
- f:(lo,l1—e<x<1l)=c
f(l,x<1)= X fo(l1,x <1)= A
f(li,x=1)=c f(li,x=1)=c

=» no optimal strategy exists, but rather a family (£.).>0
of e-approximating strategies (cost(f.) =1+ ¢)

INFINITY’05 7/2



An encoding

Idea: tranform the cost into a decreasing linear hybrid variable

g g
g,a Y:=0 g, a Y:=0
—
. cost =1 . cost := cost — 1
cost =5 cost = —5
Winning: W Winning: W A cost > 0
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An encoding

Idea: tranform the cost into a decreasing linear hybrid variable

g Y:=0 g Y:=0
. g, a, = . . g, a, = .
@ cost =1 @ @ cost := cost — 1 @
cost =5 cost = —5
Winning: W Winning: W A cost > 0
Theorem

For priced timed games (under some hypotheses),

3f winning strategy in G

_ e
s.t. cost(f, (£, v)) <~ } <~ (¢, v,cost =~) winning in G

+ constructive proof

INFINITY’05 8/20



An encoding (2)

The set of winning states in G’ is upward-closed for the cost, i.e. of the form

U (P; A cost =i k;) (with >; either > or >)
icl
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An encoding (2)

The set of winning states in G’ is upward-closed for the cost, i.e. of the form

U (P; A cost =i k;) (with >; either > or >)
icl

Corollary

For priced timed games (under some hypotheses),
@ ‘reachable” optimal cost, or not (cost >« or cost > )
@ existence of an optimal strategy decidable

+ constructive proof

Nature of the strategy:

@ state-based for the hybrid game, thus cost-dependent for the timed
game

@ cost-dependence is unavoidable in general!
@ cost-independent strategies for syntactical restrictions of the games

c: large constraints, u: strict constraints
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Cost-dependence is unavoidable

cost = 2

@ optimal cost: 2
@ optimal strategy:
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INFINITY’05 10 / 20



Cost-dependence is unavoidable

cost = 2

. cost =1
@ optimal cost: 2

@ optimal strategy: if d is the time before a v occurs, and d’ is the
time waited in ¢1, the cost of the run is 2.d + d’.

2d+d <2

INFINITY’05 10 / 20



Cost-dependence is unavoidable

cost = 2

. cost =1
@ optimal cost: 2

@ optimal strategy: if d is the time before a v occurs, and d’ is the
time waited in ¢1, the cost of the run is 2.d + d’.

2d+d <2

(accumulated cost) + d" < 2
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Hypotheses for termination

@ all clocks are bounded (not restrictive)

@ the cost function is strictly non-zeno
— This condition is restrictive, but is decidable
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Complexity bounds

[Alur, Bernadsky, Madhusudan 2004]
=>» consider the k-step optimal game problem
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Complexity bounds

[Alur, Bernadsky, Madhusudan 2004]
=>» consider the k-step optimal game problem

@ can be solved in exponential time!

() A nested partition  (b) A tube partition (c) An atomic tube

@ within a region, an exponential number of splittings is sometimes
necessary
Idea:
@ environment chooses r € [0, 1],
@ controller has to produce its binary encoding up to k digits

=» Controller must have 2~ different strategies
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Shape of the reduction

Original reduction: [Brihaye, Bruyére, Raskin 2005]
This reduction: [Bouyer, Brihaye, Markey 2005]
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Optimal cost is not computable

Shape of the reduction

Original reduction: [Brihaye, Bruyére, Raskin 2005]
This reduction: [Bouyer, Brihaye, Markey 2005]

Simulation of a two-counter machine:
@ player 1 simulates the two-counter machine

@ player 2 checks that player 1 does not cheat

Encoding of the counters:
@ counter ¢ is encoded by a clock x; s.t. x3 = 2%1

@ counter ¢, is encoded by a clock x; s.t. xp = 35

@ x; and x; will be alternatively x, y or z

The aim of player 1 is to win (reach a W-state) with cost < 3, and

Player 1 has a winning strategy with cost < 3 iff the two-counter machine halts
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Optimal cost is not computable

Simulation of an incrementation

Instruction i: ¢; + +; goto instruction j
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Adding x or 1 — x to the cost variable

y=Ly:=0 y=L,y:=0
z:=0 Q x=1,x:=0 Q z=1,z:=0
-/ NN
cost=0 cost=1

The cost is increased by xo

INFINITY’05 15 / 20



Adding x or 1 — x to the cost variable

y=Ly:=0 y=L,y:=0 y=L,y:=0 y=1,y:=0
z:=0 R x=1,x:=0 Q\ z=1,z2:=0 z:=0 R x=1,x:=0 p\ z=1,z:=0
-/ NN -/ /
cost=0 cost=1 cost=1 cost=0

The cost is increased by xo

The cost is increased by 1 — xo

INFINITY’05

15 / 20



Adding x or 1 — x to the cost variable

Jr —
Add™ (x, {z}) Add™ (x,{z})
y=Ly:=0 y=L,y:=0 y=L,y:=0 y=1,y:=0
z:=0 R x=1,x:=0 Q\ z=1,z:=0 z:=0 R x=1,x:=0 p\ z=1,z:=0
-/ NN -/ /
cost=0 cost=1 cost=1 cost=0

The cost is increased by xo

The cost is increased by 1 — xo

INFINITY’05

15 / 20



Checking y = 2x

In Wi, cost =2xg + (1 — yo) + 2.
In Wh, cost = 2(1 — xp) + yo + 1.
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Optimal cost is not computable

Checking y = 2x

In Wi, cost =2xg + (1 — yo) + 2.
In Wh, cost = 2(1 — xp) + yo + 1.

@ if yo < 2xg, player 2 chooses the first branch: in Wy, cost > 3
@ if yo > 2xp, player 2 chooses the second branch: in W5, cost > 3
@ if yo = 2x0, in Wy or in W, cost = 3.

INFINITY’05 16 / 20



Optimal cost is not computable

How to get rid of tick clock u?
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Optimal cost is not computable

Checking that x is of the form
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Conclusion & Further work

Conclusion
@ Optimal cost is in general not computable in timed games.
@ Under a strongly non-zeno hypothesis for the cost, optimal cost is
computable
@ A much involved complexity bound for the number of splittings of
regions
@ Properties of winning strategies
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Conclusion & Further work

Conclusion
@ Optimal cost is in general not computable in timed games.
@ Under a strongly non-zeno hypothesis for the cost, optimal cost is
computable
@ A much involved complexity bound for the number of splittings of
regions

@ Properties of winning strategies

Further work
@ Compute e-optimal winning strategies
@ Further understand this problem: provide decidable subclasses?

@ And from an algorithmics point of view, what can be done?
(integrate ideas from [ABMO04] into encoding of [BCFL04]?)

@ Adapt the forward algorithm presented in [CDFLL - CONCUR’05]

@ Mean-cost optimal safety timed games
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