Optimal Reachability Timed Games

Patricia Bouyer

LSV - CNRS & ENS de Cachan - France

Timed automata

[Alur & Dill 90's]

x, y : clocks

x, y : clocks

x, y : clocks

Model of priced timed automata

[HSCC'01]

 $cost \equiv price$

Model of priced timed automata

- a configuration: (ℓ, v)
- two kinds of transitions:

$$\begin{cases} (\ell, v) \xrightarrow{\delta(d)} (\ell, v + d) \\ (\ell, v) \xrightarrow{a} (\ell', v') \text{ where } \begin{cases} v \models g \\ v' = [C \leftarrow 0]v \end{cases} \text{ for some } \ell \xrightarrow{g, a, C :=} \ell' \end{cases}$$

Model of priced timed automata

 $cost \equiv price$

[HSCC'01]

- a configuration: (ℓ, v)
- two kinds of transitions:

$$\begin{cases} (\ell, v) \xrightarrow{\delta(d)} (\ell, v+d) \\ (\ell, v) \xrightarrow{a} (\ell', v') \text{ where } \begin{cases} v \models g \\ v' = [C \leftarrow 0]v \end{cases} \text{ for some } \ell \xrightarrow{g,a,C:=} \ell' \end{cases}$$

$$\begin{array}{c} \left(\mathsf{Cost}\left((\ell, v) \xrightarrow{\delta(d)} (\ell, v + d) \right) = P.d \qquad \mathsf{Cost}\left((\ell, v) \xrightarrow{a} (\ell', v') \right) = p \\ \\ \mathsf{Cost}(\rho) = \mathsf{accumulated \ cost \ along \ run \ \rho} \end{array} \right)$$

 $cost \equiv price$

- one player problems:
 - reachability with an optimization criterium on the price

[BFH+01a,BFH+01b,LBB+01,ALTP01]

• safety with a mean-cost optimization criterium

[BBL04]

 $cost \equiv price$

- one player problems:
 - reachability with an optimization criterium on the price

[BFH+01a,BFH+01b,LBB+01,ALTP01]

safety with a mean-cost optimization criterium

[BBL04]

• what if an opponent?

 $cost \equiv price$

- one player problems:
 - reachability with an optimization criterium on the price

[BFH+01a,BFH+01b,LBB+01,ALTP01]

safety with a mean-cost optimization criterium

[BBL04]

• what if an opponent?

→ optimal reachability timed game

$$5t + 10(2 - t) + 1$$

$$5t + 10(2 - t) + 1$$
, $5t + (2 - t) + 7$

max
$$(5t+10(2-t)+1, 5t+(2-t)+7)$$

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

$$\inf_{0 \le t \le 2} \max (5t + 10(2 - t) + 1, 5t + (2 - t) + 7) = 14 + \frac{1}{3}$$

$$\Rightarrow \text{ strategy: wait in } \ell_0, \text{ and when } t = \frac{4}{3}, \text{ go to } \ell_1$$

Question: what is the optimal price we can ensure in state ℓ_0 ?

$$\inf_{0 \le t \le 2} \max (5t + 10(2 - t) + 1, 5t + (2 - t) + 7) = 14 + \frac{1}{3}$$

$$\Rightarrow \text{ strategy: wait in } \ell_0, \text{ and when } t = \frac{4}{3}, \text{ go to } \ell_1$$

• How to automatically compute such optimal prices?

Question: what is the optimal price we can ensure in state ℓ_0 ?

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

→ strategy: wait in ℓ_0 , and when $t = \frac{4}{3}$, go to ℓ_1

- How to automatically compute such optimal prices?
- How to synthesize optimal strategies (if one exists)?

- [La Torre, Mukhopadhyay, Murano TCS 2002]:
 - case of acyclic games

- [La Torre, Mukhopadhyay, Murano TCS 2002]:
 - case of acyclic games
- [Alur, Bernadsky, Madhusudan ICALP 2004]:
 - *k*-step games can be solved in exponential time and may need an exponential number of splittings
 - under a strongly non-zeno assumption, optimal cost is computable

- [La Torre, Mukhopadhyay, Murano TCS 2002]:
 - case of acyclic games
- [Alur, Bernadsky, Madhusudan ICALP 2004]:
 - *k*-step games can be solved in exponential time and may need an exponential number of splittings
 - under a strongly non-zeno assumption, optimal cost is computable
- [Bouyer, Cassez, Fleury, Larsen FSTTCS 2004]:
 - structural properties of strategies: may need memory, state-based strategies for a subclass of games
 - under a strongly non-zeno assumption, optimal cost is computable

- [La Torre, Mukhopadhyay, Murano TCS 2002]:
 - case of acyclic games
- [Alur, Bernadsky, Madhusudan ICALP 2004]:
 - *k*-step games can be solved in exponential time and may need an exponential number of splittings
 - under a strongly non-zeno assumption, optimal cost is computable
- [Bouyer, Cassez, Fleury, Larsen FSTTCS 2004]:
 - structural properties of strategies: may need memory, state-based strategies for a subclass of games
 - under a strongly non-zeno assumption, optimal cost is computable
- [Brihaye, Bruyère, Raskin FORMATS 2005]:
 - with five clocks, optimal cost is not computable!
 - with one clock and one stopwatch cost, optimal cost is computable

- ILa Torre, Mukhopadhyay, Murano TCS 2002]:
 - case of acyclic games
- [Alur, Bernadsky, Madhusudan ICALP 2004]:
 - *k*-step games can be solved in exponential time and may need an exponential number of splittings
 - under a strongly non-zeno assumption, optimal cost is computable
- Bouyer, Cassez, Fleury, Larsen FSTTCS 2004]:
 - structural properties of strategies: may need memory, state-based strategies for a subclass of games
 - under a strongly non-zeno assumption, optimal cost is computable
- [Brihaye, Bruyère, Raskin FORMATS 2005]:
 - with five clocks, optimal cost is not computable!
 - with one clock and one stopwatch cost, optimal cost is computable
- [Bouyer, Brihaye, Markey Submitted, 2005]:
 - with three clocks, optimal cost is not computable

```
On the positive side
```

Do optimal strategies always exist?

Do optimal strategies always exist?

Do optimal strategies always exist?

→ no optimal strategy exists, but rather a family (f_ε)_{ε>0} of ε-approximating strategies (cost(f_ε) = 1 + ε)

An encoding

Idea: tranform the cost into a decreasing linear hybrid variable

An encoding

Idea: tranform the cost into a decreasing linear hybrid variable

$$\begin{array}{cccc} \mathcal{G} & & \mathcal{G}' \\ \hline \ell_0 & g, a, Y := 0 \\ \cos t = 5 & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Theorem

For priced timed games (under some hypotheses),

$$\exists f \text{ winning strategy in } \mathcal{G} \\ s.t. \ cost(f,(\ell,v)) \leq \gamma \end{cases} \iff (\ell,v,cost = \gamma) \text{ winning in } \mathcal{G}'$$

+ constructive proof

An encoding (2)

The set of winning states in \mathcal{G}' is upward-closed for the cost, *i.e.* of the form

```
\bigcup_{i \in I} (P_i \land cost \succ_i k_i) \qquad (\text{with} \succ_i \text{ either } > \text{ or } \ge)
```

An encoding (2)

The set of winning states in \mathcal{G}' is upward-closed for the cost, *i.e.* of the form

$$\bigcup_{i \in I} (P_i \land cost \succ_i k_i) \qquad (\text{with} \succ_i \text{ either } > \text{ or } \ge)$$

Corollary

For priced timed games (under some hypotheses),

- "reachable" optimal cost, or not (cost $\geq \gamma$ or cost $> \gamma$)
- existence of an optimal strategy decidable

```
+ constructive proof
```

An encoding (2)

The set of winning states in \mathcal{G}' is upward-closed for the cost, *i.e.* of the form

```
\bigcup_{i \in I} (P_i \land cost \succ_i k_i) \qquad (\text{with } \succ_i \text{ either } > \text{ or } \ge)
```

Corollary

For priced timed games (under some hypotheses),

- "reachable" optimal cost, or not (cost $\geq \gamma$ or cost $> \gamma$)
- existence of an optimal strategy decidable

```
+ constructive proof
```

Nature of the strategy:

- state-based for the hybrid game, thus cost-dependent for the timed game
- cost-dependence is unavoidable in general!
- cost-independent strategies for syntactical restrictions of the games
 - c: large constraints, u: strict constraints

cost = 1

- optimal cost: 2
- optimal strategy:

- optimal cost: 2
- optimal strategy: if d is the time before a u occurs, and d' is the time waited in ℓ₁, the cost of the run is 2.d + d'.

- optimal cost: 2
- optimal strategy: if d is the time before a u occurs, and d' is the time waited in ℓ₁, the cost of the run is 2.d + d'.

$$2.d+d'\leq 2$$

- optimal cost: 2
- optimal strategy: if d is the time before a u occurs, and d' is the time waited in ℓ₁, the cost of the run is 2.d + d'.

 $2.d + d' \le 2$

(accumulated cost) + $d' \leq 2$

Hypotheses for termination

- all clocks are bounded (not restrictive)
- the cost function is *strictly non-zeno*
 - \rightarrow This condition is restrictive, but is decidable

Hypotheses for termination

- all clocks are bounded (not restrictive)
- the cost function is *strictly non-zeno*
 - \rightarrow This condition is restrictive, but is decidable

[Alur, Bernadsky, Madhusudan 2004]

 \rightarrow consider the *k*-step optimal game problem

[Alur, Bernadsky, Madhusudan 2004]

 \rightarrow consider the *k*-step optimal game problem

• can be solved in exponential time!

(a) A nested partition (b) A tube partition (c) An atomic tube

[Alur, Bernadsky, Madhusudan 2004]

 \rightarrow consider the *k*-step optimal game problem

• can be solved in exponential time!

 within a region, an exponential number of splittings is sometimes necessary

[Alur, Bernadsky, Madhusudan 2004]

 \rightarrow consider the *k*-step optimal game problem

• can be solved in exponential time!

 within a region, an exponential number of splittings is sometimes necessary

Idea:

- environment chooses $r \in [0, 1]$,
- controller has to produce its binary encoding up to k digits

→ Controller must have 2^k different strategies

Original reduction: [Brihaye, Bruyère, Raskin 2005] This reduction: [Bouyer, Brihaye, Markey 2005]

Original reduction: [Brihaye, Bruyère, Raskin 2005] This reduction: [Bouyer, Brihaye, Markey 2005]

Simulation of a two-counter machine:

- player 1 simulates the two-counter machine
- player 2 checks that player 1 does not cheat

Original reduction: [Brihaye, Bruyère, Raskin 2005] This reduction: [Bouyer, Brihaye, Markey 2005]

Simulation of a two-counter machine:

- player 1 simulates the two-counter machine
- player 2 checks that player 1 does not cheat

Encoding of the counters:

- counter c_1 is encoded by a clock x_1 s.t. $x_1 = \frac{1}{2^{c_1}}$
- counter c_2 is encoded by a clock x_2 s.t. $x_2 = \frac{1}{3^{c_2}}$
- x_1 and x_2 will be alternatively x, y or z

Original reduction: [Brihaye, Bruyère, Raskin 2005] This reduction: [Bouyer, Brihaye, Markey 2005]

Simulation of a two-counter machine:

- player 1 simulates the two-counter machine
- player 2 checks that player 1 does not cheat

Encoding of the counters:

- counter c_1 is encoded by a clock x_1 s.t. $x_1 = \frac{1}{2^{c_1}}$
- counter c_2 is encoded by a clock x_2 s.t. $x_2 = \frac{1}{3^{c_2}}$
- x_1 and x_2 will be alternatively x, y or z

The aim of player 1 is to win (reach a *W*-state) with cost \leq 3,

Original reduction: [Brihaye, Bruyère, Raskin 2005] This reduction: [Bouyer, Brihaye, Markey 2005]

Simulation of a two-counter machine:

- player 1 simulates the two-counter machine
- player 2 checks that player 1 does not cheat

Encoding of the counters:

- counter c_1 is encoded by a clock x_1 s.t. $x_1 = \frac{1}{2^{c_1}}$
- counter c_2 is encoded by a clock x_2 s.t. $x_2 = \frac{1}{3^{c_2}}$
- x_1 and x_2 will be alternatively x, y or z

The aim of player 1 is to win (reach a W-state) with cost \leq 3, and

Player 1 has a winning strategy with cost \leq 3 iff the two-counter machine halts

Simulation of an incrementation

Instruction *i*: $c_1 + +$; goto instruction *j*

Adding x or 1 - x to the cost variable

The cost is increased by x_0

Adding x or 1 - x to the cost variable

The cost is increased by x_0

Adding x or 1 - x to the cost variable

Checking
$$y = 2x$$

In W_1 , cost = $2x_0 + (1 - y_0) + 2$. In W_2 , cost = $2(1 - x_0) + y_0 + 1$.

Checking
$$y = 2x$$

• if $y_0 < 2x_0$, player 2 chooses the first branch: in W_1 , cost > 3

Checking
$$y = 2x$$

In W_1 , cost = $2x_0 + (1 - y_0) + 2$. In W_2 , cost = $2(1 - x_0) + y_0 + 1$.

• if $y_0 < 2x_0$, player 2 chooses the first branch: in W_1 , cost > 3

• if $y_0 > 2x_0$, player 2 chooses the second branch: in W_2 , cost > 3

Checking
$$y = 2x$$

In W_1 , cost = $2x_0 + (1 - y_0) + 2$. In W_2 , cost = $2(1 - x_0) + y_0 + 1$.

• if $y_0 < 2x_0$, player 2 chooses the first branch: in W_1 , cost > 3

• if $y_0 > 2x_0$, player 2 chooses the second branch: in W_2 , cost > 3

• if
$$y_0 = 2x_0$$
, in W_1 or in W_2 , cost = 3.

We will ensure that:

• no cost is accumulated in *D*-states

We will ensure that:

- no cost is accumulated in D-states
- the delay between the A-state and the D-state is 1 t.u.

We will ensure that:

- no cost is accumulated in D-states
- the delay between the A-state and the D-state is 1 t.u.
 - the value of x in D is of the form $\frac{1}{2^n}$

cost=3 Halt

We will ensure that:

- no cost is accumulated in D-states
- the delay between the A-state and the D-state is 1 t.u.
 - the value of x in D is of the form $\frac{1}{2^n}$
 - the value of y in D is of the form $\frac{1}{3^m}$

 $\xrightarrow{\text{cost}=3}$ Halt

We will ensure that:

- no cost is accumulated in D-states
- the delay between the A-state and the D-state is 1 t.u.
 - the value of x in D is of the form $\frac{1}{2^n}$
 - the value of y in D is of the form $\frac{1}{3^m}$

_____→<mark>_____Halt</mark>

Checking that x is of the form $\frac{1}{2^n}$

Conclusion

- Optimal cost is in general not computable in timed games.
- Under a strongly non-*zeno* hypothesis for the cost, optimal cost is computable
- A much involved complexity bound for the number of splittings of regions
- Properties of winning strategies

Conclusion

- Optimal cost is in general not computable in timed games.
- Under a strongly non-*zeno* hypothesis for the cost, optimal cost is computable
- A much involved complexity bound for the number of splittings of regions
- Properties of winning strategies

Further work

- Compute ε -optimal winning strategies
- Further understand this problem: provide decidable subclasses?
- And from an algorithmics point of view, what can be done? (integrate ideas from [ABM04] into encoding of [BCFL04]?)
- Adapt the forward algorithm presented in [CDFLL CONCUR'05]
- Mean-cost optimal safety timed games

Bibliography

- [ABM04] Alur, Bernadsky, Madhusudan. Optimal Reachability in Weighted Timed Games. ICALP'04 (LNCS 3142).
- [BBM05] Bouyer, Brihaye, Markey. Improved Undecidability Results on Weighted Timed Automata. Submitted to IPL.
- [BBR05] Brihaye, Bruyère, Raskin. On Optimal Timed Strategies. FORMATS'05 (to appear).
- [BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal Strategies in Priced Timed Game Automata. FSTTCS'04 (LNCS 3328).
- [BCFL05] Bouyer, Cassez, Fleury, Larsen. Synthesis of Optimal Strategies Using HyTech. GDV'04 (ENTCS 119(1)).
- [LMM02] La Torre, Mukhopadhyay, Murano. Optimal-Reachability and Control for Acyclic Weighted Timed Automata. TCS'02 (IFIP 223).