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Introduction

Context: verification of timed systems

What are timed systems?

What we want to avoid

; Verification by model-checking

system:

⇒

property:

G (request→F grant)model-checking

algorithm

yes/no
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Context: verification of timed systems

What are timed systems?
What we want to avoid
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; Verification by model-checking

system:

⇒

property:

G (request→F grant)model-checking

algorithm

yes/no

3/48



Introduction

Context: verification of timed systems

What are timed systems?

What we want to avoid

; Verification by model-checking

system:

⇒

property:

G (request→F grant)model-checking

algorithm

yes/no

3/48



Introduction

A running example
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Introduction

A running example: natural questions

Can I reach Pontivy from Oxford?

What is the minimal time to reach Pontivy from
Oxford?

What is the minimal fuel consumption to reach
Pontivy from Oxford?

Can I use my computer all the way?

How likely will I visit Paris and for how long?

...
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Introduction

A first model of the system

Oxford

Pontivy

Dover

Calais

Paris

London

Stansted

Nantes

Poole

St Malo
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Introduction

Can I reach Pontivy from Oxford?

Oxford

Pontivy

Dover

Calais

Paris

London

Stansted

Nantes

Poole

St Malo

This is a reachability question in a finite graph: Yes, I can!
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Introduction

A second model of the system

Oxford

Pontivy

Dover

Calais

Paris

London

Stansted

Nantes

Poole

St Malo

x :=0
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x :=0
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Introduction

How long will that take?

Oxford

Pontivy

Dover

Calais

Paris

London

Stansted

Nantes

Poole

St Malo

x :=0

106x612

146x615
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276x630

x :=0

96x612

x :
=
0

216x624
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x :=0

x=3

x :=0
176

x6
21

x :=
0

36
x6

6

x :
=
0

276
x6

32

36
x6

6x :=
0

x=
24

x :=
0

96x615

x :=0

x=13

x :=0

126x615

x=17

x :=0

x=6

x :=0

12
6x614

It is a reachability (and optimization) question
in a timed automaton: at least 350mn = 5h50mn!
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Introduction

The timed automaton model: an example

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x615

y :=0

delayed, y :=0

156x616

repair

26y∧x656

y :=0

done
, 226y625

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0

23 0 15.6 15.6 ···

y 0

23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1
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Introduction

Basics of timed automata

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Theorem [AD90,AD94]

The reachability problem is decidable (and PSPACE-complete) in timed
automata.

timed automaton

finite bisimulation

large (but finite) automaton
(region automaton)
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Reachability analysis in timed automata

What about the practice?

the region automaton is never computed

instead, symbolic computations are performed using zones

Example of a zone

Z = (x1 > 3) ∧ (x2 6 5) ∧ (x1 − x2 6 4)

x2

x13

5

x1−x2=4

x0 x1 x2

x0

x1

x2

 ∞ −3 ∞
∞ ∞ 4
5 ∞ ∞
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the region automaton is never computed

instead, symbolic computations are performed using zones

Example of a zone

Z = (x1 > 3) ∧ (x2 6 5) ∧ (x1 − x2 6 4)

x2

x13

5

x1−x2=4

94

2

x0 x1 x2

x0

x1

x2

 0 −3 0
9 0 4
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Reachability analysis in timed automata

Backward computation

Final

Init

, the backward computation always terminates!
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Reachability analysis in timed automata

Forward computation

Init

Final

/ the forward computation may not terminate...

; abstractions need to be used, that ensure termination...
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Reachability analysis in timed automata

An abstraction: the extrapolation operator

3

x2

x1

5

2

Z

4 9

 0 −3 0
9 0 4
5 2 0



 0 −2 0
∞ 0 ∞
∞ 2 0

Extra2
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Reachability analysis in timed automata

An abstraction: the extrapolation operator

Extra2(Z)

x2

x1

Z

2

2

 0 −3 0
9 0 4
5 2 0

  0 −2 0
∞ 0 ∞
∞ 2 0

Extra2
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Reachability analysis in timed automata

Results

[Bou03] Bouyer. Untameable Timed Automata! (STACS’03).
[Bou04] Bouyer. Forward Analysis of Updatable Timed Automata (Formal Methods in System Design).

Abug

x363

x1,x3:=0

x2=3

x2:=0

x1=2,x1:=0

x2=2,x2:=0

x1=2,x1:=0

x2=2

x2:=0

x1=3

x1:=0

x2>x1+2

x4<x3+2

Theorem [Bou03,Bou04]

In Abug, any extrapolation operator is incorrect!

The extrapolation operator is correct in diagonal-free timed
automata.
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Reachability analysis in timed automata

Improving further

[BBFL03] Behrmann, Bouyer, Fleury, Larsen. Static Guard Analysis in Timed Automata Verification (TACAS’03).
[BBLP04] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone Based Abstractions of Timed Automata (TACAS’04).
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek. Lower and Upper Bounds in Zone-Based Abstractions of Timed Automata (International

Journal on Software Tools for Technology Transfer).

the extrapolation operator can be made coarser:

local extrapolation constants [BBFL03];
distinguish between lower- and upper-bounded contraints

[BBLP03,BBLP06]

; has leaded to a practical improvement in of up to 20%!

Since then...

further improvement due to better data structure manipulations...

... but no further algorithmic improvement!
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Model-checking timed temporal logics

Motivation
Checking reachability properties may not be enough:

basically only safety properties can be verified [ABBL98,ABBL03]

what about liveness properties?

And other properties?

“the monkey will eventually write the complete works of Shakespeare”

“every request is eventually granted”

“the machine produces 56 items per day until it needs to be repaired”

Need for specification languages expressing timing constraints...

“the airbag inflates no more than 56ms after the car crashes”

; critical property

“the reponse time of the memory circuit is no more than 10−12s”

; performance, quality of service

... and for algorithms to verify those properties.

We will focus on timed extensions of LTL [Pnu77]
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Need for specification languages expressing timing constraints...

“the airbag inflates no more than 56ms after the car crashes”

; critical property

“the reponse time of the memory circuit is no more than 10−12s”

; performance, quality of service

... and for algorithms to verify those properties.

We will focus on timed extensions of LTL [Pnu77]
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Two classical timed extensions of LTL: MTL and TPTL

[Koy90] Koymans. Specifying real-time properties with Metric Temporal Logic (Real-Time Systems).

[AH89] Alur, Henzinger. A really temporal logic (FoCS’89).

MTL (Metric Temporal Logic) [Koy90]

ψ = G (request→ F61 grant)
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Model-checking timed temporal logics

Expressiveness of these logics

Conjecture (Alur & Henzinger, since 1990)

TPTL is strictly more expressive than MTL, and the TPTL formula

ϕ = G (• → x · F (• ∧ F (• ∧ x 6 2)))

cannot be expressed in MTL.

However...

0 1 2

F=1 •

61

ϕ ≡

G • →


F61 • ∧ F[1,2] •

∨

F61 ( • ∧ F61 • )
∨

F61 ( F61 • ∧ F=1 • )
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Model-checking timed temporal logics

Expressiveness results

[BCM05] Bouyer, Chevalier, Markey. On the expressiveness of TPTL and MTL (FSTTCS’05).

Theorem [BCM05]

The conjecture is correct: TPTL is strictly more expressive than MTL.

Also, MTL+Past is strictly more expressive than MTL.

The formulas

x · F (• ∧ (x 6 1) ∧G ((x 6 1) → ¬•)) ∈ TPTL
F=1 (¬•S •) ∈ MTL+Past

cannot be expressed in MTL.

0 1
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Expressiveness results

[Kam68] Kamp. Tense logic and the theory of linear order (PhD UCLA).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL’80).
[BCM05] Bouyer, Chevalier, Markey. On the expressiveness of TPTL and MTL (FSTTCS’05).

Theorem [BCM05]

The conjecture is correct: TPTL is strictly more expressive than MTL.
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Model-checking timed temporal logics

Back to the model-checking problem

G (request→F grant)model-checking

algorithm

yes/no

tim
ed

aut
om

ato
n MTLTPTL formula

Theorem [AH94,AFH96,OW06...]

The model-checking problem is (mostly) undecidable...

Can be rather easily explained using channel machines...

... and more tractable fragments need be defined!
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Model-checking timed temporal logics

The quest for tractable fragments of MTL

MTL

LTL

MITL

Safety-MTL

Bounded-MTL

coFlat-MTLLTL

coFlat-MTLMITL
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Model-checking timed temporal logics

The quest for tractable fragments of MTL

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing unctuality (Journal of the ACM).

MTL

LTL

MITL

Safety-MTL

Bounded-MTL

coFlat-MTLLTL

coFlat-MTLMITL

MITL [AFH96]: ban punctuality

timed regularity
verification in exponential space
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Model-checking timed temporal logics

The quest for tractable fragments of MTL

[OW05] Ouaknine, Worrell. On the decidability of Metric Temporal Logic (LICS’05).
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LTL

MITL

Safety-MTL
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Safety-MTL [OW05]: restrict to safety properties
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Model-checking timed temporal logics

The quest for tractable fragments of MTL

[OW05] Ouaknine, Worrell. On the decidability of Metric Temporal Logic (LICS’05).
[OW08] Ouaknine, Worrell. Some recent results in Metric Temporal Logic (FORMATS’08).

MTL

LTL

MITL

Safety-MTL

Bounded-MTL

coFlat-MTLLTL

coFlat-MTLMITL

Safety-MTL [OW05]: restrict to safety properties

only finite counter-examples need be looked for
verification using alternating timed automata
decidable, but non-primitive recursive [OW08]
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The quest for tractable fragments of MTL

[BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS’07).
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[BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS’07).
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coFlat-MTLMITL

Bounded-MTL [BMOW07]: restrict to bounded future

expresses non-regular properties
only time-bounded prefixes need to be verified
verification in exponential space
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The quest for tractable fragments of MTL

[BMOW07] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS’07).
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The quest for tractable fragments of MTL

[BMOW08] Bouyer, Markey, Ouaknine, Worrell. On expressiveness and complexity in real-time model checking (ICALP’08).
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Model-checking timed temporal logics

The quest for tractable fragments of MTL

[BMOW08] Bouyer, Markey, Ouaknine, Worrell. On expressiveness and complexity in real-time model checking (ICALP’08).

MTL

LTL

MITL

Safety-MTL

Bounded-MTL

coFlat-MTLLTL

coFlat-MTLMITL

coFlat-MTLMITL [BMOW08]: a flatness condition on the formula

only counter-examples of the following form need to be looked for:

non-punctual non-punctual non-punctual non-punctual

punctualpunctualpunctualpunctual

the largest (known) fragment for which...
... verification in exponential space!
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Model-checking timed temporal logics

The quest for tractable fragments of MTL

MTL

LTL

MITL

Safety-MTL

Bounded-MTL

coFlat-MTLLTL

coFlat-MTLMITL

PSPACE-c.

undec./NPR

EXPSPACE-c.

Algorithmics needs now to be worked out!
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Modelling resources in timed systems

Outline

1. Introduction

2. Reachability analysis in timed automata

3. Model-checking timed temporal logics

4. Modelling resources in timed systems
Optimizing resources
Managing resources

5. Probabilistic analysis of timed automata

6. Summary and perspectives
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Modelling resources in timed systems

Motivation

System resources might be relevant and even crucial information

energy consumption,
memory usage,
price to pay,
bandwidth,
...

; timed automata are not powerful enough!

A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

An alternative: weighted/priced timed automata [ALP01,BFH+01]

; hybrid variables do not constrain the system
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Modelling resources in timed systems

Motivation

[HKPV95] Henzinger, Kopke, Puri, Varaiya. What’s decidable wbout hybrid automata? (SToC’95).

System resources might be relevant and even crucial information
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price to pay,
bandwidth,
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; timed automata are not powerful enough!
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Theorem [HKPV95]
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Modelling resources in timed systems

Motivation

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

System resources might be relevant and even crucial information

energy consumption,
memory usage,
price to pay,
bandwidth,
...

; timed automata are not powerful enough!

A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.
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Optimizing resources

A third model of the system
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Optimizing resources
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It is a quantitative (optimization) question
in a weighted timed automaton: at least 68 anti-planet units!
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Optimizing resources

Weighted/priced timed automata [ALP01,BFH+01]

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).
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Optimizing resources

Optimization problems in weighted timed automata

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).
[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem (Formal Methods in System Design).

Theorem [ALP01,BFH+01,BBBR07]

The optimal reachability problem is decidable (and PSPACE-complete) in
(weighted) timed automata.

Theorem [BBL04,BBL08]

The optimal mean-cost problem is decidable (and PSPACE-complete) in
(weighted) timed automata.

; In both cases, the corner-point abstraction can be used

(a refinement of the region automaton)
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[BBL04] Bouyer, Brinksma, Larsen. Staying alive as cheaply as possible (HSCC’04).
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Optimizing resources

What if an unexpected event happens?
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Optimizing resources

Weighted timed games
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Question: what is the optimal cost we can ensure while reaching,?

inf
06t62

max (

5t + 10(2− t) + 1

, 5t + (2− t) + 7 ) = 14 +
1

3

; strategy: wait in `0, and when t = 4
3 , go to `1
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Optimizing resources

Optimal reachability in weighted timed games

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
[ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP’04).
[BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS’04).

This topic has been fairly hot these last couple of years...
e.g. [LMM02,ABM04,BCFL04]

Theorem [BBR05,BBM06]

Optimal timed games are undecidable, as soon as automata have three
clocks or more.

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when
automata have a single clock. They are PTIME-hard.
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[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS’05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
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[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS’05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).
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Managing resources

A fourth model of the system
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Managing resources

An example of resource management

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x61)

Lower-bound problem: can we stay above 0?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?
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Managing resources

Only partial results so far [BFLMS08]

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS’08).

0 clock!

L

L+W

L+U

exist. problem univ. problem games

∈ PTIME ∈ PTIME
∈ UP ∩ co-UP

PTIME-hard

∈ PTIME ∈ PTIME
∈ NP ∩ co-NP

PTIME-hard

∈ PSPACE

NP-hard
∈ PTIME EXPTIME-c.
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Managing resources

Single-clock L+U-games

Theorem
The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

each instruction is encoded as a module;

the values c1 and c2 of the counters are encoded by the energy level

e = 5− 1

2c1 · 3c2

when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a
strategy in the single-clock timed game under which the energy level
remains between 0 and 5.

; We present a generic construction
for incrementing/decrementing the counters.
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Managing resources

Generic module for incrementing/decrementing
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Managing resources

Partial conclusion and perspectives

Weighted timed automata, an interesting model for representing
resources in timed systems

, some optimization problems are (fully) decidable
(with a reasonable complexity)

; algorithmics needs to be further developed

/ many problems are undecidable in general
(we did not mention the model-checking problem, but it is mostly undecidable)

restriction of the underlying timed automaton to one clock and
development of specific algorithms
development of approximation schemes

Many open problems to be solved, e.g. in resource management

Compute equilibria in weighted timed games
; towards a theory of timed games
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Probabilistic analysis of timed automata

Outline

1. Introduction

2. Reachability analysis in timed automata

3. Model-checking timed temporal logics

4. Modelling resources in timed systems
Optimizing resources
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Probabilistic analysis of timed automata

Motivation

The goal

Define a (meaningful) measure on runs of timed automata that will tell
us how likely properties are satisfied.

In the running example: “how likely will I visit Paris?”

“how long should I expect be waiting in Paris?”

A relaxed semantics for timed automata

removes behaviours that are unlikely to happen and could unfairly
violate/validate a property
relaxes (some of the) assumptions made in timed automata, like the
infinite precision of the clocks
related works include implementability issues, robust semantics, etc.

A new timed and probabilistic model

models a purely probabilistic environment
related models include continuous-time Markov chains, and
probabilistic timed automata
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probabilistic timed automata
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Probabilistic analysis of timed automata

Methodology

Rough idea

Build a stochastic process based on a timed automaton by randomizing
all possible evolutions of the system.

We put (continuous) distributions over delays...

... and discrete distributions over transitions.

; this naturally defines a probability measure P over sets of runs.

P
(
A |= ϕ

)
measures “how likely A satisfies ϕ”

Two natural questions:

; decide whether P
(
A |= ϕ

)
= 1 (qualitative question)

; compute (an approximation of) P
(
A |= ϕ

)
(quantitative question)
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Probabilistic analysis of timed automata

An example

`0

(x61)

`1 `2

(x61)

`3

(x61)

e2, x61

e3, x=1

e4, x>3, x :=0

e5, x61

e6, x=0

e1, x61 e7, x61

A 6|= G (• ⇒ F •) but P
(
A |= G (• ⇒ F •)

)
= 1

Indeed, almost surely, paths are of the form e∗1 e2

(
e4e5

)ω
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Probabilistic analysis of timed automata

The classical region automaton

`0,0

`0,(0,1)

`0,1

`1,0

`1,(0,1)

`1,1

`2,0 `3,0

`3,(0,1)

`3,1

e1

e1

e1

e1

e1

e1

e2

e2

e2e2

e2

e2

e3

e4

e 4

e 4

e5

e5

e 5

e6

e7

e7

e7

e7

e7

e1

... viewed as a finite Markov chain MC (A)

Proposition

For single-clock timed automata,

P
(
A |= ϕ

)
= 1 iff P

(
MC (A) |= ϕ

)
= 1

(this is independent of the choice of the distributions...)
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Probabilistic analysis of timed automata

The pruned region automaton
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Probabilistic analysis of timed automata

Probabilistic model-checking

[BBBBG08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS’08).
[BBBM08] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST’08).

Theorem [BBBBG08]

For single-clock timed automata, the almost-sure model-checking

of LTL is PSPACE-complete;

of ω-regular properties is NLOGSPACE-complete;

of the non-zenoness property is in NLOGSPACE.

Theorem [BBBM08]

In single-clock timed automata, we can compute (an approximation of)
the probability of satisfying an LTL/ω-regular property (for exponential
distributions).

; none of these results extend to two-clock timed automata...

43/48



Probabilistic analysis of timed automata

Probabilistic model-checking
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Probabilistic analysis of timed automata

Perspectives

Further study this timed and probabilistic model

timed automata with an arbitrary number of clocks
(hint: restrict the distributions)
model-checking timed properties like those in MTL

measurability of MTL properties
can we get a better complexity than NPR?

performance analysis (expected time, mean waiting time, etc.)
(this model, a 1

2
-player model, generalizes continuous-time Markov chains)

Study the 1 1
2 - and 2 1

2 -player models
(to model non-determinism and interaction)

preliminary result: quantitative model-checking of the 2 1
2
-player

model is undecidable

Design an irrefutable example
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Summary and perspectives

Outline

1. Introduction

2. Reachability analysis in timed automata

3. Model-checking timed temporal logics

4. Modelling resources in timed systems
Optimizing resources
Managing resources

5. Probabilistic analysis of timed automata

6. Summary and perspectives
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Summary and perspectives

Summary

A progressive lift from qualitative to quantitative considerations:

quantitative
verification

qualitative
verification

untimed
properties

timed
properties

resource-based
properties

Reachability
(2.)

Timed prop.
(3.)

Resources
(4.)

Proba. analysis
of LTL (5.)
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Summary and perspectives

Perspectives

Modelling resources in timed systems

study further the resource management problem

develop approximation schemes
(undecidability relies on the infinite precision of the system)

compute equilibria

Probabilities and timed automata

investigate further the 1
2 -player model

model with several clocks
(hint: restrict the allowed distributions)

quantitative properties (time and resources)
performance analysis: expected time, etc.

add non-determinism and interaction (1 1
2 - and 2 1

2 -player models)
(preliminary results: undecidability rather far away...)

design an irrefutable example
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Summary and perspectives

Perspectives

[BMR08] Bouyer, Markey, Reynier. Robust analysis of timed automata via channel machines (FoSSaCS’08).

Adequation of timed models to timed systems

Two main approaches: relaxed satisfaction
robust satisfaction

Relaxed satisfaction: cf probabilities and timed automata

Robust satisfaction:

develop further the purely channel-machine approach of [BMR08]
synthesize systems that are robustly correct by construction
further think of other notions of robustness
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