
Quantitative timed games

Patricia Bouyer

LSV – CNRS & ENS Cachan – France

Based on joint works with Thomas Brihaye, Ed Brinksma,
Véronique Bruyère, Uli Fahrenberg, Kim G. Larsen, Nicolas Markey,

Jean-François Raskin, Jǐŕı Srba, and Jacob Illum Rasmussen

1/52

A (difficult) choice

When sending the title, I didn’t know if I would speak about:

timed automata with costs,

or

timed automata with probabilities

; talk of Vojtěch Forejt in the next session

2/52

A (difficult) choice

When sending the title, I didn’t know if I would speak about:

timed automata with costs,

or

timed automata with probabilities
; talk of Vojtěch Forejt in the next session

2/52

A (difficult) choice

When sending the title, I didn’t know if I would speak about:

timed automata with costs, or

timed automata with probabilities

; talk of Vojtěch Forejt in the next session

2/52

A (difficult) choice

When sending the title, I didn’t know if I would speak about:

timed automata with costs, or

timed automata with probabilities

; talk of Vojtěch Forejt in the next session

2/52

A (difficult) choice

When sending the title, I didn’t know if I would speak about:

timed automata with costs, or

timed automata with probabilities
; talk of Vojtěch Forejt in the next session

2/52

Introduction

Outline

1. Introduction

2. Weighted/priced timed automata

3. (Optimal) timed games

4. “Safe” timed games

5. Conclusion

3/52

Introduction

A starting example

4/52

Introduction

Natural questions

Can I reach Pontivy from Oxford?

What is the minimal time to reach
Pontivy from Oxford?

What is the minimal fuel consumption to
reach Pontivy from Oxford?

What if there is an unexpected event?

Can I use my computer all the way?

5/52

Introduction

Natural questions

Can I reach Pontivy from Oxford?

What is the minimal time to reach
Pontivy from Oxford?

What is the minimal fuel consumption to
reach Pontivy from Oxford?

What if there is an unexpected event?

Can I use my computer all the way?

5/52

Introduction

Natural questions

Can I reach Pontivy from Oxford?

What is the minimal time to reach
Pontivy from Oxford?

What is the minimal fuel consumption to
reach Pontivy from Oxford?

What if there is an unexpected event?

Can I use my computer all the way?

5/52

Introduction

Natural questions

Can I reach Pontivy from Oxford?

What is the minimal time to reach
Pontivy from Oxford?

What is the minimal fuel consumption to
reach Pontivy from Oxford?

What if there is an unexpected event?

Can I use my computer all the way?

5/52

Introduction

Natural questions

Can I reach Pontivy from Oxford?

What is the minimal time to reach
Pontivy from Oxford?

What is the minimal fuel consumption to
reach Pontivy from Oxford?

What if there is an unexpected event?

Can I use my computer all the way?

5/52

Introduction

A first model of the system

Oxford

Pontivy

Dover

Calais

Paris

London

Stansted

Nantes

Poole

St Malo

6/52

Introduction

Can I reach Pontivy from Oxford?

Oxford

Pontivy

Dover

Calais

Paris

London

Stansted

Nantes

Poole

St Malo

This is a reachability question in a finite graph: Yes, I can!

7/52

Introduction

A second model of the system

Oxford

Pontivy

Dover

Calais

Paris

London

Stansted

Nantes

Poole

St Malo

x :=0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12≤
x≤

14

8/52

Introduction

How long will that take?

Oxford

Pontivy

Dover

Calais

Paris

London

Stansted

Nantes

Poole

St Malo

x :=0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12≤
x≤

14

It is a reachability (and optimization) question
in a timed automaton: at least 350mn = 5h50mn!

9/52

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0

23 0 15.6 15.6 ···

y 0

23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

10/52

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe

23−→ safe
problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0

23 0 15.6 15.6 ···

y 0

23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

10/52

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23

0 15.6 15.6 ···

y 0 23

23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

10/52

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm

15.6−−→ alarm
delayed−−−−−→ failsafe

x 0 23 0

15.6 15.6 ···

y 0 23 23

38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

10/52

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6

15.6 ···

y 0 23 23 38.6

0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

10/52

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe

2.3−−→ failsafe
repair−−−−→ repairing

22.1−−→ repairing
done−−−→ safe

··· 15.6

17.9 17.9 40 40

0

2.3 0 22.1 22.1

10/52

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9

17.9 40 40

0 2.3

0 22.1 22.1

10/52

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing

22.1−−→ repairing
done−−−→ safe

··· 15.6 17.9 17.9

40 40

0 2.3 0

22.1 22.1

10/52

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40

40

0 2.3 0 22.1

22.1

10/52

Introduction

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir

, x≤15

y :=0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ···

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

··· 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1

10/52

Introduction

Timed automata

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).

Theorem [AD90]

The reachability problem is decidable (and PSPACE-complete) for timed
automata.

timed automaton

finite bisimulation

large (but finite) automaton
(region automaton)

11/52

Introduction

Timed automata

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).

Theorem [AD90]

The reachability problem is decidable (and PSPACE-complete) for timed
automata.

timed automaton

finite bisimulation

large (but finite) automaton
(region automaton)

11/52

Introduction

The region abstraction

y

0 x1 2 3

1

2

3

•
•

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; an equivalence of finite index
a time-abstract bisimulation

12/52

Introduction

The region abstraction

y

0 x1 2 3

1

2

3

•
•

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; an equivalence of finite index
a time-abstract bisimulation

12/52

Introduction

The region abstraction

y

0 x1 2 3

1

2

3

•
•

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; an equivalence of finite index
a time-abstract bisimulation

12/52

Introduction

The region abstraction

y

0 x1 2 3

1

2

3

•
•

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; an equivalence of finite index
a time-abstract bisimulation

12/52

Introduction

The region abstraction

y

0 x1 2 3

1

2

3

•
•

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; an equivalence of finite index
a time-abstract bisimulation

12/52

Introduction

The region abstraction

time elapsing

reset to 0

13/52

Introduction

Time-optimal reachability

[CY92] Courcoubetis, Yannakakis. Minimum and maximum delay problems in real-time systems (Formal Methods in System Design).

Theorem [CY92]

The time-optimal reachability problem is decidable (and
PSPACE-complete) for timed automata.

14/52

Weighted/priced timed automata

Outline

1. Introduction

2. Weighted/priced timed automata

3. (Optimal) timed games

4. “Safe” timed games

5. Conclusion

15/52

Weighted/priced timed automata

A third model of the system

Oxford

Pontivy

Dover

Calais

Paris
+2

London +2

Stansted

Nantes

Poole

St Malo

+3

+3

+3

+3

+3

+3

+3

+3

+2

+2

+7

+1

+2

x :=0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12≤
x≤

14

16/52

Weighted/priced timed automata

How much fuel will I use?

Oxford

Pontivy

Dover

Calais

Paris
+2

London +2

Stansted

Nantes

Poole

St Malo

+3

+3

+3

+3

+3

+3

+3

+3

+2

+2

+7

+1

+2

x :=0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12≤
x≤

14

It is a quantitative (optimization) problem
in a priced/weighted timed automaton: at least 68 anti-planet units!

17/52

Weighted/priced timed automata

HSCC’01: weighted/priced timed automata

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

18/52

Weighted/priced timed automata

HSCC’01: weighted/priced timed automata

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7 = 14.2

18/52

Weighted/priced timed automata

HSCC’01: weighted/priced timed automata

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost :

6.5 + 0 + 0 + 0.7 + 7 = 14.2

18/52

Weighted/priced timed automata

HSCC’01: weighted/priced timed automata

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5

+ 0 + 0 + 0.7 + 7 = 14.2

18/52

Weighted/priced timed automata

HSCC’01: weighted/priced timed automata

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0

+ 0 + 0.7 + 7 = 14.2

18/52

Weighted/priced timed automata

HSCC’01: weighted/priced timed automata

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0

+ 0.7 + 7 = 14.2

18/52

Weighted/priced timed automata

HSCC’01: weighted/priced timed automata

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7

+ 7 = 14.2

18/52

Weighted/priced timed automata

HSCC’01: weighted/priced timed automata

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7

= 14.2

18/52

Weighted/priced timed automata

HSCC’01: weighted/priced timed automata

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

`0
1.3−−→ `0

c−−→ `1
u−−→ `3

0.7−−−→ `3
c−−→ ,

x 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7

cost : 6.5 + 0 + 0 + 0.7 + 7 = 14.2

18/52

Weighted/priced timed automata

HSCC’01: weighted/priced timed automata

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 9

Ü strategy: leave immediately `0, go to `3, and wait there 2 t.u.

18/52

Weighted/priced timed automata

HSCC’01: weighted/priced timed automata

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 9

Ü strategy: leave immediately `0, go to `3, and wait there 2 t.u.

18/52

Weighted/priced timed automata

HSCC’01: weighted/priced timed automata

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (

5t + 10(2− t) + 1 , 5t + (2− t) + 7

) = 9

Ü strategy: leave immediately `0, go to `3, and wait there 2 t.u.

18/52

Weighted/priced timed automata

HSCC’01: weighted/priced timed automata

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7)

= 9

Ü strategy: leave immediately `0, go to `3, and wait there 2 t.u.

18/52

Weighted/priced timed automata

HSCC’01: weighted/priced timed automata

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 9

Ü strategy: leave immediately `0, go to `3, and wait there 2 t.u.

18/52

Weighted/priced timed automata

HSCC’01: weighted/priced timed automata

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost for reaching,?

inf
0≤t≤2

min (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 9

Ü strategy: leave immediately `0, go to `3, and wait there 2 t.u.

18/52

Weighted/priced timed automata

Optimal reachability

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC’01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC’01).
[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem (Formal Methods in System Design).

The idea “go through corners” extends in the general case.

Theorem [ALP01,BFH+01,BBBR07]

Optimal reachability is decidable (and PSPACE-complete) in timed
automata.

19/52

Weighted/priced timed automata

The region abstraction is not fine enough

time elapsing

reset to 0

20/52

Weighted/priced timed automata

The corner-point abstraction

3
0 0

0

0 0
3

7

7

We can somehow discretize the behaviours...

21/52

Weighted/priced timed automata

The corner-point abstraction

3
0 0

0

0 0
3

7

7

We can somehow discretize the behaviours...

21/52

Weighted/priced timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
···

8>><>>:

ti≤ti+1

t2≤2

t4−t1≥5

x≤2y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
nX

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

Ü for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

22/52

Weighted/priced timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
···

8>><>>:

ti≤ti+1

t2≤2

t4−t1≥5

x≤2y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
nX

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

Ü for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

22/52

Weighted/priced timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
···

8>><>>:
ti≤ti+1

t2≤2

t4−t1≥5
x≤2y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
nX

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

Ü for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

22/52

Weighted/priced timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
···

8>><>>:
ti≤ti+1

t2≤2

t4−t1≥5

x≤2

y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
nX

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

Ü for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

22/52

Weighted/priced timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
···

8>><>>:
ti≤ti+1

t2≤2

t4−t1≥5
x≤2y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
nX

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

Ü for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

22/52

Weighted/priced timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
···

8>><>>:
ti≤ti+1

t2≤2

t4−t1≥5
x≤2y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
nX

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

Ü for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

22/52

Weighted/priced timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem

t1 t2 t3 t4 t5
···

8>><>>:
ti≤ti+1

t2≤2

t4−t1≥5
x≤2y :=0 y≥5

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
nX

i=1

ci ti + c

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

Ü for every finite path π in A, there exists a path Π in Acp such that

cost(Π) ≤ cost(π)

[Π is a “corner-point projection” of π]

22/52

Weighted/priced timed automata

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp ,

for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε ⇒ |cost(Π)− cost(πε)| < η

23/52

Weighted/priced timed automata

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any ε > 0,

there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε ⇒ |cost(Π)− cost(πε)| < η

23/52

Weighted/priced timed automata

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε ⇒ |cost(Π)− cost(πε)| < η

23/52

Weighted/priced timed automata

From discrete to timed behaviours

Approximation of abstract paths:

For any path Π of Acp , for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε ⇒ |cost(Π)− cost(πε)| < η

23/52

Weighted/priced timed automata

Going further 1: mean-cost optimization

[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

Low
Ċ=p

Ṙ=g
High(x≤D)

Ċ=P

Ṙ=G
att?x :=0

x=D
att?,x :=0

Op

att!

z:=0z≥S

; compute optimal infinite schedules that minimize

mean-cost(π) = lim sup
n→+∞

cost(πn)

reward(πn)

24/52

Weighted/priced timed automata

Going further 1: mean-cost optimization

[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

Low
Ċ=p

Ṙ=g
High(x≤D)

Ċ=P

Ṙ=G
att?x :=0

x=D
att?,x :=0

Op

att!

z:=0z≥S

; compute optimal infinite schedules that minimize

mean-cost(π) = lim sup
n→+∞

cost(πn)

reward(πn)

24/52

Weighted/priced timed automata

Going further 1: mean-cost optimization

[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

Low
Ċ=p

Ṙ=g
High(x≤D)

Ċ=P

Ṙ=G
att?x :=0

x=D
att?,x :=0

Op

att!

z:=0z≥S

; compute optimal infinite schedules that minimize

mean-cost(π) = lim sup
n→+∞

cost(πn)

reward(πn)

Time

1 1 2 1

H
L

M2

H
L

M1

4 8 12 16

O

Schedule with ratio ≈1.455

Time

1 1 1 1

H
L

M2

H
L

M1

4 8 12 16

O

Schedule with ratio ≈1.478

24/52

Weighted/priced timed automata

Going further 1: mean-cost optimization

[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

Low
Ċ=p

Ṙ=g
High(x≤D)

Ċ=P

Ṙ=G
att?x :=0

x=D
att?,x :=0

Op

att!

z:=0z≥S

; compute optimal infinite schedules that minimize

mean-cost(π) = lim sup
n→+∞

cost(πn)

reward(πn)

Theorem [BBL08]

The mean-cost optimization problem is decidable (and
PSPACE-complete) for priced timed automata.

; the corner-point abstraction can be used

24/52

Weighted/priced timed automata

Mean-cost optimization: from timed to discrete behaviours
Finite behaviours: based on the following property

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
Pn

i=1 ci ti + cPn
i=1 ri ti + r

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp such
that

mean-cost(Π) ≤ mean-cost(π)
Infinite behaviours: decompose each sufficiently long projection
into cycles

The linear part will be negligible!

; the optimal cycle of Acp is better than any infinite path of A!

25/52

Weighted/priced timed automata

Mean-cost optimization: from timed to discrete behaviours
Finite behaviours: based on the following property

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
Pn

i=1 ci ti + cPn
i=1 ri ti + r

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp such
that

mean-cost(Π) ≤ mean-cost(π)

Infinite behaviours: decompose each sufficiently long projection
into cycles

The linear part will be negligible!

; the optimal cycle of Acp is better than any infinite path of A!

25/52

Weighted/priced timed automata

Mean-cost optimization: from timed to discrete behaviours
Finite behaviours: based on the following property

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
Pn

i=1 ci ti + cPn
i=1 ri ti + r

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp such
that

mean-cost(Π) ≤ mean-cost(π)
Infinite behaviours: decompose each sufficiently long projection
into cycles

The linear part will be negligible!

; the optimal cycle of Acp is better than any infinite path of A!

25/52

Weighted/priced timed automata

Mean-cost optimization: from timed to discrete behaviours
Finite behaviours: based on the following property

Lemma
Let Z be a bounded zone and f be a function

f : (t1, ..., tn) 7→
Pn

i=1 ci ti + cPn
i=1 ri ti + r

well-defined on Z . Then infZ f is obtained on the border of Z with integer coordinates.

; for every finite path π in A, there exists a path Π in Acp such
that

mean-cost(Π) ≤ mean-cost(π)
Infinite behaviours: decompose each sufficiently long projection
into cycles

The linear part will be negligible!

; the optimal cycle of Acp is better than any infinite path of A!
25/52

Weighted/priced timed automata

Mean-cost optimization: from discrete to timed behaviours

For any path Π of Acp , for any ε > 0, there exists a path πε of A s.t.

‖Π− πε‖∞ < ε

For every η > 0, there exists ε > 0 s.t.

‖Π− πε‖∞ < ε ⇒ |mean-cost(Π)−mean-cost(πε)| < η

26/52

Weighted/priced timed automata

Going further 2: concavely-priced cost functions

[JT08] Judziński, Trivedi. Concavely-priced timed automata (FORMATS’08).

; A general abstract framework for quantitative timed systems

Theorem [JT08]

Optimal cost in concavely-priced timed automata is computable, if we
restrict to quasi-concave price functions. For the following cost functions,
the (decision) problem is even PSPACE-complete:

optimal-time and optimal-cost reachability;

optimal discrete discounted cost;

optimal average-time and average-cost;

optimal mean-cost.

; a slight extension of the corner-point abstraction can be used

27/52

Weighted/priced timed automata

Going further 3: discounted-time cost optimization

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).

Low +9Med

(x≤3)

+5High

(x≤3)

+2

x=3,x :=0

deg

x=3

deg

z≥2,z:=0

att
+1

z≥2,x,z:=0

att
+2

Globally, (z≤8)

; compute optimal infinite schedules that minimize

28/52

Weighted/priced timed automata

Going further 3: discounted-time cost optimization

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).

Low +9Med

(x≤3)

+5High

(x≤3)

+2

x=3,x :=0

deg

x=3

deg

z≥2,z:=0

att
+1

z≥2,x,z:=0

att
+2

Globally, (z≤8)

; compute optimal infinite schedules that minimize
discounted cost over time

28/52

Weighted/priced timed automata

Going further 3: discounted-time cost optimization

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).

Low +9Med

(x≤3)

+5High

(x≤3)

+2

x=3,x :=0

deg

x=3

deg

z≥2,z:=0

att
+1

z≥2,x,z:=0

att
+2

Globally, (z≤8)

; compute optimal infinite schedules that minimize

discounted-costλ(π) =
∑
n≥0

λTn

∫ τn+1

t=0

λtcost(`n) dt+λTn+1cost(`n
an+1−−→ `n+1)

if π = (`0, v0)
τ1,a1−−−→ (`1, v1)

τ2,a2−−−→ · · · and Tn =
∑

i≤n τi

28/52

Weighted/priced timed automata

Going further 3: discounted-time cost optimization

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).

Low +9Med

(x≤3)

+5High

(x≤3)

+2

x=3,x :=0

deg

x=3

deg

z≥2,z:=0

att
+1

z≥2,x,z:=0

att
+2

Globally, (z≤8)

; compute optimal infinite schedules that minimize
discounted cost over time

28/52

Weighted/priced timed automata

Going further 3: discounted-time cost optimization

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).

Low +9Med

(x≤3)

+5High

(x≤3)

+2

x=3,x :=0

deg

x=3

deg

z≥2,z:=0

att
+1

z≥2,x,z:=0

att
+2

Globally, (z≤8)

; compute optimal infinite schedules that minimize
discounted cost over time

0 3 6 7 9

L

M

H
if λ = e−1, the discounted cost of
that infinite schedule is ≈ 2.16

28/52

Weighted/priced timed automata

Going further 3: discounted-time cost optimization

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY’08).

Low +9Med

(x≤3)

+5High

(x≤3)

+2

x=3,x :=0

deg

x=3

deg

z≥2,z:=0

att
+1

z≥2,x,z:=0

att
+2

Globally, (z≤8)

; compute optimal infinite schedules that minimize
discounted cost over time

Theorem [FL08]

The optimal discounted cost is computable in EXPTIME in priced timed
automata.

; the corner-point abstraction can be used

28/52

(Optimal) timed games

Outline

1. Introduction

2. Weighted/priced timed automata

3. (Optimal) timed games

4. “Safe” timed games

5. Conclusion

29/52

(Optimal) timed games

What if an unexpected event happens?

Oxford

Pontivy

Dover

Calais

Paris
+2

London +2

Stansted

Nantes

Poole

St Malo

+3

+3

+3

+3

+3

+3

+3

+3

+2

+2

+7

+1

+2

x :=0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12≤
x≤

14

Flight
cancelled!

On strike!!!

; modelled as timed games

30/52

(Optimal) timed games

What if an unexpected event happens?

Oxford

Pontivy

Dover

Calais

Paris
+2

London +2

Stansted

Nantes

Poole

St Malo

+3

+3

+3

+3

+3

+3

+3

+3

+2

+2

+7

+1

+2

x :=0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12≤
x≤

14

Flight
cancelled!

On strike!!!

; modelled as timed games

30/52

(Optimal) timed games

What if an unexpected event happens?

Oxford

Pontivy

Dover

Calais

Paris
+2

London +2

Stansted

Nantes

Poole

St Malo

+3

+3

+3

+3

+3

+3

+3

+3

+2

+2

+7

+1

+2

x :=0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12≤
x≤

14

Flight
cancelled!

On strike!!!

; modelled as timed games

30/52

(Optimal) timed games

A simple example of timed game

`0 `1

(y=0)

`2

`3

,x≤2,c,y :=0

u

u

u

u

x=2,c
+1

x=2,c
+7

31/52

(Optimal) timed games

A simple example of timed game

`0 `1

(y=0)

`2

`3

,x≤2,c,y :=0

u

u

u

u

x=2,c
+1

x=2,c
+7

31/52

(Optimal) timed games

Another example

`0

(x≤2)

`1

`2

`3

,

/
x≤1

x<1

x<1,x :=0

x≤1

x≥2

x≥1

32/52

(Optimal) timed games

Decidability of timed games

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC’98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and
EXPTIME-complete.

(the attractor is computable...)

; classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

33/52

(Optimal) timed games

Decidability of timed games

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC’98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and
EXPTIME-complete.

(the attractor is computable...)

; classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

33/52

(Optimal) timed games

Decidability of timed games

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC’98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and
EXPTIME-complete.

(the attractor is computable...)

; classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

33/52

(Optimal) timed games

Decidability of timed games

[AM99] Asarin, Maler. As soon as possible: time optimal control for timed automata (HSCC’99).
[BHPR07] Brihaye, Henzinger, Prabhu, Raskin. Minimum-time reachability in timed games (ICALP’07).
[JT07] Jurdzinński, Trivedi. Reachability-time games on timed automata (ICALP’07).

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and
EXPTIME-complete.

(the attractor is computable...)

; classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

33/52

(Optimal) timed games

Back to the first simple example

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure from `0?

inf
0≤t≤2

max (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 14 +
1

3

Ü strategy: wait in `0, and when t = 4
3 , go to `1

How to automatically compute such optimal costs?

How to synthesize optimal strategies (if one exists)?

34/52

(Optimal) timed games

Back to the first simple example

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure from `0?

inf
0≤t≤2

max (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 14 +
1

3

Ü strategy: wait in `0, and when t = 4
3 , go to `1

How to automatically compute such optimal costs?

How to synthesize optimal strategies (if one exists)?

34/52

(Optimal) timed games

Back to the first simple example

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure from `0?

inf
0≤t≤2

max (

5t + 10(2− t) + 1

, 5t + (2− t) + 7) = 14 +
1

3

Ü strategy: wait in `0, and when t = 4
3 , go to `1

How to automatically compute such optimal costs?

How to synthesize optimal strategies (if one exists)?

34/52

(Optimal) timed games

Back to the first simple example

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure from `0?

inf
0≤t≤2

max (

5t + 10(2− t) + 1 , 5t + (2− t) + 7

) = 14 +
1

3

Ü strategy: wait in `0, and when t = 4
3 , go to `1

How to automatically compute such optimal costs?

How to synthesize optimal strategies (if one exists)?

34/52

(Optimal) timed games

Back to the first simple example

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure from `0?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7)

= 14 +
1

3

Ü strategy: wait in `0, and when t = 4
3 , go to `1

How to automatically compute such optimal costs?

How to synthesize optimal strategies (if one exists)?

34/52

(Optimal) timed games

Back to the first simple example

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure from `0?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 14 +
1

3

Ü strategy: wait in `0, and when t = 4
3 , go to `1

How to automatically compute such optimal costs?

How to synthesize optimal strategies (if one exists)?

34/52

(Optimal) timed games

Back to the first simple example

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure from `0?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 14 +
1

3

Ü strategy: wait in `0, and when t = 4
3 , go to `1

How to automatically compute such optimal costs?

How to synthesize optimal strategies (if one exists)?

34/52

(Optimal) timed games

Back to the first simple example

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure from `0?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 14 +
1

3

Ü strategy: wait in `0, and when t = 4
3 , go to `1

How to automatically compute such optimal costs?

How to synthesize optimal strategies (if one exists)?

34/52

(Optimal) timed games

Back to the first simple example

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,c,y :=0

u

u

x=2,c
+1

x=2,c
+7

Question: what is the optimal cost we can ensure from `0?

inf
0≤t≤2

max (5t + 10(2− t) + 1 , 5t + (2− t) + 7) = 14 +
1

3

Ü strategy: wait in `0, and when t = 4
3 , go to `1

How to automatically compute such optimal costs?

How to synthesize optimal strategies (if one exists)?

34/52

(Optimal) timed games

Results

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
[ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP’04).
[BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS’04).

This topic has been fairly hot these last couple of years...
e.g. [LMM02,ABM04,BCFL04]

Theorem [BBR05,BBM06]

Optimal timed games are undecidable, as soon as automata have three
clocks or more.

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when
automata have a single clock. They are P-hard.

35/52

(Optimal) timed games

Results

[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS’05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

This topic has been fairly hot these last couple of years...
e.g. [LMM02,ABM04,BCFL04]

Theorem [BBR05,BBM06]

Optimal timed games are undecidable, as soon as automata have three
clocks or more.

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when
automata have a single clock. They are P-hard.

35/52

(Optimal) timed games

Results

[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS’05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS’06).

This topic has been fairly hot these last couple of years...
e.g. [LMM02,ABM04,BCFL04]

Theorem [BBR05,BBM06]

Optimal timed games are undecidable, as soon as automata have three
clocks or more.

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when
automata have a single clock. They are P-hard.

35/52

(Optimal) timed games

The positive side

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when
automata have a single clock. They are P-hard.

Key: resetting the clock somehow resets the history...

Memoryless strategies can be non-optimal...

`0

+2

(x≤1)

`1

+1

,x=1

x<1
x :=0

x>0

However, we can synthesize memoryless almost-optimal winning
strategies.

Rather involved proof (by unfolding and removing one by one
locations) of correctness for a simple algorithm.

36/52

(Optimal) timed games

The positive side

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when
automata have a single clock. They are P-hard.

Key: resetting the clock somehow resets the history...

Memoryless strategies can be non-optimal...

`0

+2

(x≤1)

`1

+1

,x=1

x<1
x :=0

x>0

However, we can synthesize memoryless almost-optimal winning
strategies.

Rather involved proof (by unfolding and removing one by one
locations) of correctness for a simple algorithm.

36/52

(Optimal) timed games

The positive side

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when
automata have a single clock. They are P-hard.

Key: resetting the clock somehow resets the history...

Memoryless strategies can be non-optimal...

`0

+2

(x≤1)

`1

+1

,x=1

x<1
x :=0

x>0

However, we can synthesize memoryless almost-optimal winning
strategies.

Rather involved proof (by unfolding and removing one by one
locations) of correctness for a simple algorithm.

36/52

(Optimal) timed games

The positive side

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when
automata have a single clock. They are P-hard.

Key: resetting the clock somehow resets the history...

Memoryless strategies can be non-optimal...

`0

+2

(x≤1)

`1

+1

,x=1

x<1
x :=0

x>0

However, we can synthesize memoryless almost-optimal winning
strategies.

Rather involved proof (by unfolding and removing one by one
locations) of correctness for a simple algorithm.

36/52

(Optimal) timed games

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

37/52

(Optimal) timed games

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

0 1

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by x0

Add+(x)

1 0

x=1,x :=0

y=1,y :=0 y=1,y :=0

z=1,z:=0z:=0

The cost is increased by 1−x0

Add−(x)

37/52

(Optimal) timed games

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/52

(Optimal) timed games

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/52

(Optimal) timed games

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/52

(Optimal) timed games

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3

if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/52

(Optimal) timed games

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3

if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/52

(Optimal) timed games

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/52

(Optimal) timed games

The negative side: why is that hard?

Given two clocks x and y , we can check whether y = 2x .

Add−(x) Add−(x) Add+(y) ,z=0

+1

Add+(x) Add+(x) Add−(y) ,z=0

+2

z:=0

z:=0

In,, cost = 2x0 + (1− y0) + 2

In,, cost = 2(1− x0) + y0 + 1

if y0 < 2x0, player 2 chooses the first branch: cost > 3
if y0 > 2x0, player 2 chooses the second branch: cost > 3
if y0 = 2x0, in both branches, cost = 3

Player 1 has a winning strategy with cost ≤ 3 iff y0 = 2x0

37/52

(Optimal) timed games

The negative side: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the values c1 and c2 of the counters are encoded by the values of
two clocks:

x =
1

2c1
and y =

1

3c2

when entering the corresponding module.

The two-counter machine has an halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

0BB@
x= 1

2c

y= 1

2d

z=?

1CCA

u:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)

0BB@
x= 1

2c

y= 1

2d

z=α

1CCA

u=1,u:=0

Testy (x=2z)

38/52

(Optimal) timed games

The negative side: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the values c1 and c2 of the counters are encoded by the values of
two clocks:

x =
1

2c1
and y =

1

3c2

when entering the corresponding module.

The two-counter machine has an halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

0BB@
x= 1

2c

y= 1

2d

z=?

1CCA

u:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)

0BB@
x= 1

2c

y= 1

2d

z=α

1CCA

u=1,u:=0

Testy (x=2z)

38/52

(Optimal) timed games

The negative side: why is that hard?

Player 1 will simulate a two-counter machine:
each instruction is encoded as a module;
the values c1 and c2 of the counters are encoded by the values of
two clocks:

x =
1

2c1
and y =

1

3c2

when entering the corresponding module.

The two-counter machine has an halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x≤1,y≤1,u≤1)

0BB@
x= 1

2c

y= 1

2d

z=?

1CCA

u:=0 z:=0

x=1,x :=0

∨ y=1,y :=0

x=1,x :=0

∨ y=1,y :=0

(u=0)

0BB@
x= 1

2c

y= 1

2d

z=α

1CCA

u=1,u:=0

Testy (x=2z)

38/52

(Optimal) timed games

Going further: other cost functions

[JT08] Jurdziński, Trivedi. Average-time games (FSTTCS’08).

An easy adaptation of the previous undecidability proof yields:

Theorem
Optimal mean-cost games are undecidable.

Theorem [JT08]

Turn-based optimal average-time games are decidable and
EXPTIME-complete.

; talk of Ashutosh Trivedi
Marcin Jurdziǹski

in the next session

39/52

(Optimal) timed games

Going further: other cost functions

[JT08] Jurdziński, Trivedi. Average-time games (FSTTCS’08).

An easy adaptation of the previous undecidability proof yields:

Theorem
Optimal mean-cost games are undecidable.

Theorem [JT08]

Turn-based optimal average-time games are decidable and
EXPTIME-complete.

; talk of Ashutosh Trivedi
Marcin Jurdziǹski

in the next session

39/52

“Safe” timed games

Outline

1. Introduction

2. Weighted/priced timed automata

3. (Optimal) timed games

4. “Safe” timed games

5. Conclusion

40/52

“Safe” timed games

A fourth model of the system

Oxford
+5

Pontivy
+5

Dover−2

Calais−2

Paris
0

London +5

Stansted +5

Nantes +5

Poole−2

St Malo−2

−2

−2

−2

−2

−2

−2

−2

−2

+5

+5

−2

−2

−2

x :=0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12≤
x≤

14

41/52

“Safe” timed games

Can I work on my computer all the way?

Oxford
+5

Pontivy
+5

Dover−2

Calais−2

Paris
0

London +5

Stansted +5

Nantes +5

Poole−2

St Malo−2

−2

−2

−2

−2

−2

−2

−2

−2

+5

+5

−2

−2

−2

x :=0

10≤x≤12

14≤x≤15
x :=0

27≤x≤30

x :=0

9≤x≤12

x :=
0

21≤x≤24

x=27
x :=0

x=3

x :=0
17≤

x≤
21

x :=
0

3≤
x≤

6

x :=
0

27≤
x≤

32

3≤
x≤

6x :=
0

x=
24

x :=
0

9≤x≤15

x :=0

x=13

x :=0

12≤x≤15

x=17

x :=0

x=6

x :=0

12≤
x≤

14

battery
charge

40

20

2 13 16.5 22.3 45 56 60.4
42/52

“Safe” timed games

The motivation

[BFL+08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS’08).

Energy is not only consumed, but can be regained.

; the aim is to continuously satisfy some energy constraints.

43/52

“Safe” timed games

An example

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x≤1)

Lower-bound problem: can we stay above 0?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

44/52

“Safe” timed games

An example

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem: can we stay above 0?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

44/52

“Safe” timed games

An example

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem: can we stay above 0?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

44/52

“Safe” timed games

An example

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem: can we stay above 0?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

44/52

“Safe” timed games

An example

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem: can we stay above 0?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

44/52

“Safe” timed games

An example

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem: can we stay above 0?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

44/52

“Safe” timed games

An example

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem: can we stay above 0?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

44/52

“Safe” timed games

An example

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem

Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

44/52

“Safe” timed games

An example

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem

Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

44/52

“Safe” timed games

An example

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem

Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

44/52

“Safe” timed games

An example

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem

Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

44/52

“Safe” timed games

An example

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem

Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

44/52

“Safe” timed games

An example

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem

Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

44/52

“Safe” timed games

An example

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem

Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

44/52

“Safe” timed games

An example

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1
lost!

Lower-bound problem

Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

44/52

“Safe” timed games

An example

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem

Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

44/52

“Safe” timed games

An example

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem

Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

44/52

“Safe” timed games

An example

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1
lost!

Lower-bound problem

Lower-upper-bound problem: can we stay within bounds?

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

44/52

“Safe” timed games

An example

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower-bound problem

Lower-upper-bound problem

Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?

44/52

“Safe” timed games

An example

`0

−3

`1

+6

`2

−6

x=1x :=0

Globally (x≤1)

0
0

1

2

3

4

1

Lower–bound problem ; L

Lower-upper-bound problem ; L+U

Lower-weak-upper-bound problem ; L+W

44/52

“Safe” timed games

Results in the untimed case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P
∈ UP ∩ coUP

P-hard

∈ P ∈ P
∈ NP ∩ coNP

P-hard

∈ PSPACE

NP-hard
∈ P EXPTIME-c.

45/52

“Safe” timed games

Results in the untimed case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P
∈ UP ∩ coUP

P-hard

∈ P ∈ P
∈ NP ∩ coNP

P-hard

∈ PSPACE

NP-hard
∈ P EXPTIME-c.

Bellman-Ford algorithm

45/52

“Safe” timed games

Results in the untimed case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P
∈ UP ∩ coUP

P-hard

∈ P ∈ P
∈ NP ∩ coNP

P-hard

∈ PSPACE

NP-hard
∈ P EXPTIME-c.

PSPACE: guess an infinite path in the graph augmented with the
energy level.

NP-hardness: encode SUBSET-SUM:
0

k1

0

k2

−b
0

···

···

45/52

“Safe” timed games

Results in the untimed case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P
∈ UP ∩ coUP

P-hard

∈ P ∈ P
∈ NP ∩ coNP

P-hard

∈ PSPACE

NP-hard
∈ P EXPTIME-c.

EXPTIME: play the game in the graph augmented with the energy
level.

EXPTIME-hardness: encode COUNTDOWN-GAME [JLS07].

45/52

“Safe” timed games

Results in the untimed case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P
∈ UP ∩ coUP

P-hard

∈ P ∈ P
∈ NP ∩ coNP

P-hard

∈ PSPACE

NP-hard
∈ P EXPTIME-c.

Mean-payoff games

45/52

“Safe” timed games

Equivalence with mean-payoff games

Definition
Mean-payoff games: in a weighted game graph, does there exists a
strategy s.t. the mean-cost of any play is nonnegative?

Lemma
L-games and L+W-games are determined, and memoryless strategies are
sufficient to win.

from mean-payoff games to L-games or L+W-games: play in the
same game graph G with initial credit −M ≥ 0 (where M is the sum
of negative costs in G).

from L-games to mean-payoff games: transform the game as follows:
p p

0

to initial state

0;

46/52

“Safe” timed games

Equivalence with mean-payoff games

Definition
Mean-payoff games: in a weighted game graph, does there exists a
strategy s.t. the mean-cost of any play is nonnegative?

Lemma
L-games and L+W-games are determined, and memoryless strategies are
sufficient to win.

from mean-payoff games to L-games or L+W-games: play in the
same game graph G with initial credit −M ≥ 0 (where M is the sum
of negative costs in G).

from L-games to mean-payoff games: transform the game as follows:
p p

0

to initial state

0;

46/52

“Safe” timed games

Equivalence with mean-payoff games

Definition
Mean-payoff games: in a weighted game graph, does there exists a
strategy s.t. the mean-cost of any play is nonnegative?

Lemma
L-games and L+W-games are determined, and memoryless strategies are
sufficient to win.

from mean-payoff games to L-games or L+W-games: play in the
same game graph G with initial credit −M ≥ 0 (where M is the sum
of negative costs in G).

from L-games to mean-payoff games: transform the game as follows:
p p

0

to initial state

0;

46/52

“Safe” timed games

Equivalence with mean-payoff games

Definition
Mean-payoff games: in a weighted game graph, does there exists a
strategy s.t. the mean-cost of any play is nonnegative?

Lemma
L-games and L+W-games are determined, and memoryless strategies are
sufficient to win.

from mean-payoff games to L-games or L+W-games: play in the
same game graph G with initial credit −M ≥ 0 (where M is the sum
of negative costs in G).

from L-games to mean-payoff games: transform the game as follows:
p p

0

to initial state

0;

46/52

“Safe” timed games

Results for the single-clock case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P ?

∈ P ∈ P ?

? ? undecidable

47/52

“Safe” timed games

Results for the single-clock case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P ?

∈ P ∈ P ?

? ? undecidable

the corner-point abstraction can be used (wait in the most profitable

location) ... but only if discrete costs are not used!!

`0

+2

`1

+4−3+2

x=1x :=0

0
0

1

2

3

4

1

lost!

47/52

“Safe” timed games

Results for the single-clock case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P ?

∈ P ∈ P ?

? ? undecidable

the corner-point abstraction can be used (wait in the most profitable

location) ... but only if discrete costs are not used!!

`0

+2

`1

+4−3+2

x=1x :=0

0
0

1

2

3

4

1

lost!

47/52

“Safe” timed games

Results for the single-clock case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P ?

∈ P ∈ P ?

? ? undecidable

the corner-point abstraction can be used (wait in the most profitable

location) ... but only if discrete costs are not used!!

`0

+2

`1

+4−3+2

x=1x :=0

0
0

1

2

3

4

1

lost!

47/52

“Safe” timed games

Results for the single-clock case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P ?

∈ P ∈ P ?

? ? undecidable

the corner-point abstraction can be used (wait in the most profitable

location) ... but only if discrete costs are not used!!

`0

+2

`1

+4−3+2

x=1x :=0

0
0

1

2

3

4

1

lost!

47/52

“Safe” timed games

Results for the single-clock case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P ?

∈ P ∈ P ?

? ? undecidable

the corner-point abstraction can be used (wait in the most profitable

location) ... but only if discrete costs are not used!!

`0

+2

`1

+4−3+2

x=1x :=0

0
0

1

2

3

4

1

lost!

47/52

“Safe” timed games

Results for the single-clock case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P ?

∈ P ∈ P ?

? ? undecidable

the corner-point abstraction can be used (wait in the most profitable

location) ... but only if discrete costs are not used!!

`0

+2

`1

+4−3+2

x=1x :=0

0
0

1

2

3

4

1

lost!

47/52

“Safe” timed games

Results for the single-clock case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P ?

∈ P ∈ P ?

? ? undecidable

the corner-point abstraction can be used (wait in the most profitable

location) ... but only if discrete costs are not used!!

`0

+2

`1

+4−3+2

x=1x :=0

0
0

1

2

3

4

1

lost!

47/52

“Safe” timed games

Results for the single-clock case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P ?

∈ P ∈ P ?

? ? undecidable

the corner-point abstraction can be used (wait in the most profitable

location) ... but only if discrete costs are not used!!

`0

+2

`1

+4−3+2

x=1x :=0

0
0

1

2

3

4

1

lost!

47/52

“Safe” timed games

Results for the single-clock case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P ?

∈ P ∈ P ?

? ? undecidable

the corner-point abstraction can be used (wait in the most profitable

location) ... but only if discrete costs are not used!!

`0

+2

`1

+4−3+2

x=1x :=0

0
0

1

2

3

4

1

lost!

47/52

“Safe” timed games

Results for the single-clock case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P ?

∈ P ∈ P ?

? ? undecidable

the corner-point abstraction can be used (wait in the most profitable

location) ... but only if discrete costs are not used!!

`0

+2

`1

+4−3+2

x=1x :=0

0
0

1

2

3

4

1

lost!

47/52

“Safe” timed games

Results for the single-clock case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P ?

∈ P ∈ P ?

? ? undecidable

the corner-point abstraction can be used (wait in the most profitable

location) ... but only if discrete costs are not used!!

`0

+2

`1

+4−3+2

x=1x :=0

0
0

1

2

3

4

1

lost!

47/52

“Safe” timed games

Results for the single-clock case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P ?

∈ P ∈ P ?

? ? undecidable

the corner-point abstraction can be used (wait in the most profitable

location) ... but only if discrete costs are not used!!

`0

+2

`1

+4−3+2

x=1x :=0

0
0

1

2

3

4

1

lost!

47/52

“Safe” timed games

Results for the single-clock case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P ?

∈ P ∈ P ?

? ? undecidable

the corner-point abstraction can be used (wait in the most profitable

location) ... but only if discrete costs are not used!!

`0

+2

`1

+4−3+2

x=1x :=0

0
0

1

2

3

4

1

lost!

47/52

“Safe” timed games

Results for the single-clock case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P ?

∈ P ∈ P ?

? ? undecidable

the corner-point abstraction can be used (wait in the most profitable

location) ... but only if discrete costs are not used!!

`0

+2

`1

+4−3+2

x=1x :=0

0
0

1

2

3

4

1

lost!

47/52

“Safe” timed games

Results for the single-clock case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P ?

∈ P ∈ P ?

? ? undecidable

the corner-point abstraction can be used (wait in the most profitable

location) ... but only if discrete costs are not used!!

`0

+2

`1

+4−3+2

x=1x :=0

0
0

1

2

3

4

1

lost!

47/52

“Safe” timed games

Results for the single-clock case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P ?

∈ P ∈ P ?

? ? undecidable

the corner-point abstraction can be used (wait in the most profitable

location) ... but only if discrete costs are not used!!

`0

+2

`1

+4−3+2

x=1x :=0

0
0

1

2

3

4

1

lost!

47/52

“Safe” timed games

Results for the single-clock case

L

L+W

L+U

exist. problem univ. problem games

∈ P ∈ P ?

∈ P ∈ P ?

? ? undecidable

simulation of a two-counter machine

47/52

“Safe” timed games

Single-clock L+U-games

Theorem
The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

each instruction is encoded as a module;

the values c1 and c2 of the counters are encoded by the energy level

e = 5− 1

2c1 · 3c2

when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a
strategy in the single-clock timed game under which the energy level
remains between 0 and 5.

; We present a generic construction
for incrementing/decrementing the counters.

48/52

“Safe” timed games

Single-clock L+U-games

Theorem
The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

each instruction is encoded as a module;

the values c1 and c2 of the counters are encoded by the energy level

e = 5− 1

2c1 · 3c2

when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a
strategy in the single-clock timed game under which the energy level
remains between 0 and 5.

; We present a generic construction
for incrementing/decrementing the counters.

48/52

“Safe” timed games

Single-clock L+U-games

Theorem
The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

each instruction is encoded as a module;

the values c1 and c2 of the counters are encoded by the energy level

e = 5− 1

2c1 · 3c2

when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a
strategy in the single-clock timed game under which the energy level
remains between 0 and 5.

; We present a generic construction
for incrementing/decrementing the counters.

48/52

“Safe” timed games

Single-clock L+U-games

Theorem
The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

each instruction is encoded as a module;

the values c1 and c2 of the counters are encoded by the energy level

e = 5− 1

2c1 · 3c2

when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a
strategy in the single-clock timed game under which the energy level
remains between 0 and 5.

; We present a generic construction
for incrementing/decrementing the counters.

48/52

“Safe” timed games

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

m′

−n
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5− ne
6

n=3: increment c1

n=2: increment c2

n=12: decrement c1

n=18: decrement c2

49/52

“Safe” timed games

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

m′

−n
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5− ne
6

n=3: increment c1

n=2: increment c2

n=12: decrement c1

n=18: decrement c2

49/52

“Safe” timed games

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

m′

−n
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5− ne
6

n=3: increment c1

n=2: increment c2

n=12: decrement c1

n=18: decrement c2

49/52

“Safe” timed games

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

m′

−n
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5− ne
6

n=3: increment c1

n=2: increment c2

n=12: decrement c1

n=18: decrement c2

49/52

“Safe” timed games

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

m′

−n
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5− ne
6

n=3: increment c1

n=2: increment c2

n=12: decrement c1

n=18: decrement c2

49/52

“Safe” timed games

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

m′

−n
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5− ne
6

n=3: increment c1

n=2: increment c2

n=12: decrement c1

n=18: decrement c2

49/52

“Safe” timed games

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

m′

−n
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5− ne
6

n=3: increment c1

n=2: increment c2

n=12: decrement c1

n=18: decrement c2

49/52

“Safe” timed games

Generic module for incrementing/decrementing

m

−6

m1

−6

+5

module ok

m2

+30

m3

+30

−5

module ok

m′

−n
x :=0

x :=0

x=1

x=1

x :=0

x=1

energy

x
0 1

5−e

5−e
6

5− ne
6

n=3: increment c1

n=2: increment c2

n=12: decrement c1

n=18: decrement c2

49/52

“Safe” timed games

Results for the general case

L

L+W

L+U

exist. problem univ. problem games

? ? ?

? ? ?

? ? undecidable

50/52

Conclusion

Outline

1. Introduction

2. Weighted/priced timed automata

3. (Optimal) timed games

4. “Safe” timed games

5. Conclusion

51/52

Conclusion

Conclusion

Priced/weighted timed automata, a model for representing
quantitative constraints on timed systems:

useful in embedded systems verification
natural (optimization) questions have been posed...

... and not all of them have been answered yet!

Not mentioned here:

all works on model-checking issues (extensions of CTL, LTL)
models based on hybrid automata

weighted o-minimal hybrid games [BBC07]
weighted strong reset hybrid games [BBJLR07]

; talk of Micha l Rutkowski in the next session

various tools have been developed:

Uppaal, Uppaal Cora, Uppaal Tiga

Current and further work:

computation of approximate optimal values
further investigation of safe games + several cost variables?
discounted-time optimal games
link between discounted-time games and mean-cost games?
...

52/52

Conclusion

Conclusion

Priced/weighted timed automata, a model for representing
quantitative constraints on timed systems:

useful in embedded systems verification
natural (optimization) questions have been posed...

... and not all of them have been answered yet!

Not mentioned here:

all works on model-checking issues (extensions of CTL, LTL)
models based on hybrid automata

weighted o-minimal hybrid games [BBC07]
weighted strong reset hybrid games [BBJLR07]

; talk of Micha l Rutkowski in the next session

various tools have been developed:

Uppaal, Uppaal Cora, Uppaal Tiga

Current and further work:

computation of approximate optimal values
further investigation of safe games + several cost variables?
discounted-time optimal games
link between discounted-time games and mean-cost games?
...

52/52

Conclusion

Conclusion

Priced/weighted timed automata, a model for representing
quantitative constraints on timed systems:

useful in embedded systems verification
natural (optimization) questions have been posed...

... and not all of them have been answered yet!

Not mentioned here:

all works on model-checking issues (extensions of CTL, LTL)
models based on hybrid automata

weighted o-minimal hybrid games [BBC07]
weighted strong reset hybrid games [BBJLR07]

; talk of Micha l Rutkowski in the next session

various tools have been developed:

Uppaal, Uppaal Cora, Uppaal Tiga

Current and further work:

computation of approximate optimal values
further investigation of safe games + several cost variables?
discounted-time optimal games
link between discounted-time games and mean-cost games?
...

52/52

	Introduction
	Weighted/priced timed automata
	(Optimal) timed games
	``Safe'' timed games
	Conclusion

