Quantitative timed games

Patricia Bouyer

LSV - CNRS & ENS Cachan - France

Based on joint works with Thomas Brihaye, Ed Brinksma, Véronique Bruyère, Uli Fahrenberg, Kim G. Larsen, Nicolas Markey, Jean-François Raskin, Jiří Srba, and Jacob Illum Rasmussen

A (difficult) choice

When sending the title, I didn't know if I would speak about:

• timed automata with costs,

- timed automata with costs, or
- timed automata with probabilities

- timed automata with costs, or
- timed automata with probabilities

- timed automata with costs, or
- timed automata with probabilities

 \rightsquigarrow talk of Vojtěch Forejt in the next session

Outline

1. Introduction

- 2. Weighted/priced timed automata
- 3. (Optimal) timed games
- 4. "Safe" timed games
- 5. Conclusion

A starting example

Introduction

Natural questions

Introduction

Natural questions

• Can I reach Pontivy from Oxford?

• What is the minimal time to reach Pontivy from Oxford?

Natural questions

• Can I reach Pontivy from Oxford?

- What is the minimal time to reach Pontivy from Oxford?
- What is the minimal fuel consumption to reach Pontivy from Oxford?

Natural questions

• Can I reach Pontivy from Oxford?

- What is the minimal time to reach Pontivy from Oxford?
- What is the minimal fuel consumption to reach Pontivy from Oxford?
- What if there is an unexpected event?

Natural questions

• Can I reach Pontivy from Oxford?

- What is the minimal time to reach Pontivy from Oxford?
- What is the minimal fuel consumption to reach Pontivy from Oxford?
- What if there is an unexpected event?
- Can I use my computer all the way?

A first model of the system

Can I reach Pontivy from Oxford?

This is a reachability question in a finite graph: Yes, I can!

A second model of the system

How long will that take?

It is a reachability (and optimization) question in a timed automaton: at least 350mn = 5h50mn!

- X 0
- y 0

	safe	$\xrightarrow{23}$	safe
х	0		23
у	0		23

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm
х	0		23		0
у	0		23		23

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm
х	0		23		0		15.6
у	0		23		23		38.6

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

failsafe

... 15.6

0

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

failsafe	$\xrightarrow{2.3}$	failsafe
 15.6		17.9
0		23

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

	failsafe	$\xrightarrow{2.3}$	failsafe	$\xrightarrow{\text{repair}}$	repairing
•••	15.6		17.9		17.9
	0		2.3		0

	safe 🚽	$\xrightarrow{23}$ safe	e	aları	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0	23		0		15.6		15.6	
у	0	23		23		38.6		0	
		2.3		repair		22.1			
	failsafe	\longrightarrow	failsafe	\longrightarrow	repairing	\longrightarrow	repairing		
	15.6		17.9		17.9		40		
	0		2.3		0		22.1		

	safe	$\xrightarrow{23}$	safe	prob	lem →	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23			0		15.6		15.6	
у	0		23			23		38.6		0	
	failsaf	e	$\xrightarrow{3}$	failsafe	repa		repairing	$\xrightarrow{22.1}$	repairing	$\xrightarrow{\text{done}}$	safe
	15.6			17.9			17.9		40		40
	0			2.3			0		22.1		22.1

Timed automata

Theorem [AD90]

The reachability problem is decidable (and PSPACE-complete) for timed automata.

Timed automata

Theorem [AD90]

The reachability problem is decidable (and PSPACE-complete) for timed automata.

• "compatibility" between regions and constraints

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

→ an equivalence of finite index a time-abstract bisimulation

Time-optimal reachability

Theorem [CY92]

The time-optimal reachability problem is decidable (and PSPACE-complete) for timed automata.
1. Introduction

2. Weighted/priced timed automata

- 3. (Optimal) timed games
- 4. "Safe" timed games
- 5. Conclusion

A third model of the system

How much fuel will I use?

It is a quantitative (optimization) problem in a priced/weighted timed automaton: at least 68 anti-planet units!

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).

Question: what is the optimal cost for reaching \bigcirc ?

Question: what is the optimal cost for reaching \bigcirc ?

5t + 10(2 - t) + 1

Question: what is the optimal cost for reaching \bigcirc ?

5t + 10(2 - t) + 1, 5t + (2 - t) + 7

Question: what is the optimal cost for reaching \bigcirc ?

min
$$(5t + 10(2 - t) + 1, 5t + (2 - t) + 7)$$

Question: what is the optimal cost for reaching \bigcirc ?

$$\inf_{0 \le t \le 2} \min \left(5t + 10(2-t) + 1 , 5t + (2-t) + 7 \right) = 9$$

Question: what is the optimal cost for reaching \bigcirc ?

$$\inf_{0 \le t \le 2} \min \left(5t + 10(2-t) + 1 , 5t + (2-t) + 7 \right) = 9$$

→ strategy: leave immediately ℓ_0 , go to ℓ_3 , and wait there 2 t.u.

Optimal reachability

The idea "go through corners" extends in the general case.

Theorem [ALP01,BFH+01,BBBR07]

Optimal reachability is decidable (and PSPACE-complete) in timed automata.

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01). [BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01). [BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem (*Formal Methods in System Design*).

The region abstraction is not fine enough

The corner-point abstraction

The corner-point abstraction

We can somehow discretize the behaviours...

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \cdots$$

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \cdots \qquad \left\{ \begin{array}{c} t_i \leq t_{i+1} \\ \end{array} \right.$$

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \cdots \qquad \begin{cases} t_i \leq t_{i+1} \\ t_2 \leq 2 \end{cases}$$

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \cdots \qquad \begin{cases} t_i \le t_{i+1} \\ t_2 \le 2 \\ t_4 - t_1 \ge 5 \end{cases}$$

Optimal reachability as a linear programming problem

$$\circ \underbrace{t_1}_{y:=0} \circ \underbrace{t_2}_{x\leq 2} \circ \underbrace{t_3}_{y\geq 5} \circ \underbrace{t_4}_{y\geq 5} \circ \underbrace{t_5}_{y\geq 5} \circ \cdots \qquad \begin{cases} t_i \leq t_{i+1} \\ t_2 \leq 2 \\ t_4 - t_1 > 5 \end{cases}$$

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \sum_{i=1}^n c_it_i+c$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

Optimal reachability as a linear programming problem

$$\circ \underbrace{t_1}_{y:=0} \circ \underbrace{t_2}_{x \le 2} \circ \underbrace{t_3}_{y \ge 5} \circ \underbrace{t_5}_{y \ge 5} \circ \cdots \qquad \begin{cases} t_i \le t_{i+1} \\ t_2 \le 2 \\ t_4 - t_1 > 5 \end{cases}$$

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \sum_{i=1}^n c_it_i+c$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

 \rightarrow for every finite path π in \mathcal{A} , there exists a path Π in \mathcal{A}_{cp} such that

 $cost(\Pi) \leq cost(\pi)$

[Π is a "corner-point projection" of π]

Approximation of abstract paths:

For any path Π of $\mathcal{A}_{\mathsf{cp}}$,

Approximation of abstract paths:

For any path Π of $\mathcal{A}_{\sf cp}$, for any $\varepsilon > 0,$

Approximation of abstract paths:

For any path Π of A_{cp} , for any $\varepsilon > 0$, there exists a path π_{ε} of A s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$

Approximation of abstract paths:

For any path Π of \mathcal{A}_{cp} , for any $\varepsilon>0$, there exists a path π_{ε} of \mathcal{A} s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$

For every $\eta > 0$, there exists $\varepsilon > 0$ s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon \Rightarrow |\mathsf{cost}(\Pi) - \mathsf{cost}(\pi_{\varepsilon})| < \eta$$

Going further 1: mean-cost optimization

[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

Going further 1: mean-cost optimization

 \rightsquigarrow compute optimal infinite schedules that minimize

$$\operatorname{mean-cost}(\pi) = \limsup_{n \to +\infty} \frac{\operatorname{cost}(\pi_n)}{\operatorname{reward}(\pi_n)}$$

[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

Going further 1: mean-cost optimization

 \rightsquigarrow compute optimal infinite schedules that minimize

[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).
Going further 1: mean-cost optimization

 \rightsquigarrow compute optimal infinite schedules that minimize

$$\mathsf{mean-cost}(\pi) = \limsup_{n \to +\infty} \frac{\mathsf{cost}(\pi_n)}{\mathsf{reward}(\pi_n)}$$

Theorem [BBL08]

The mean-cost optimization problem is decidable (and PSPACE-complete) for priced timed automata.

 \rightsquigarrow the corner-point abstraction can be used

[BBL08] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto rac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto rac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

 \rightsquigarrow for every finite path π in ${\cal A},$ there exists a path Π in ${\cal A}_{\rm cp}$ such that

mean-cost(Π) \leq mean-cost(π)

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto rac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

 \rightsquigarrow for every finite path π in $\mathcal A,$ there exists a path Π in $\mathcal A_{\rm cp}$ such that

$$mean-cost(\Pi) \le mean-cost(\pi)$$

• Infinite behaviours: decompose each sufficiently long projection into cycles

The linear part will be negligible!

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto rac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

 \rightsquigarrow for every finite path π in $\mathcal A,$ there exists a path Π in $\mathcal A_{\rm cp}$ such that

$$mean-cost(\Pi) \le mean-cost(\pi)$$

• Infinite behaviours: decompose each sufficiently long projection into cycles

The linear part will be negligible!

 \rightsquigarrow the optimal cycle of \mathcal{A}_{cp} is better than any infinite path of \mathcal{A} !

Mean-cost optimization: from discrete to timed behaviours

For any path Π of $\mathcal{A}_{\mathsf{cp}}$, for any $\varepsilon > \mathsf{0},$ there exists a path π_ε of \mathcal{A} s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$$

For every $\eta > 0$, there exists $\varepsilon > 0$ s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon \Rightarrow |\mathsf{mean-cost}(\Pi) - \mathsf{mean-cost}(\pi_{\varepsilon})| < \eta$

Going further 2: concavely-priced cost functions

 \rightsquigarrow A general abstract framework for quantitative timed systems

Theorem [JT08]

Optimal cost in concavely-priced timed automata is computable, if we restrict to quasi-concave price functions. For the following cost functions, the (decision) problem is even PSPACE-complete:

- optimal-time and optimal-cost reachability;
- optimal discrete discounted cost;
- optimal average-time and average-cost;
- optimal mean-cost.

 \rightsquigarrow a slight extension of the corner-point abstraction can be used

 \rightsquigarrow compute optimal infinite schedules that minimize discounted cost over time

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).

 \rightsquigarrow compute optimal infinite schedules that minimize

discounted-cost_{$$\lambda$$}(π) = $\sum_{n\geq 0} \lambda^{T_n} \int_{t=0}^{\tau_{n+1}} \lambda^t \operatorname{cost}(\ell_n) dt + \lambda^{T_{n+1}} \operatorname{cost}(\ell_n \xrightarrow{a_{n+1}} \ell_{n+1})$

if
$$\pi = (\ell_0, v_0) \xrightarrow{\tau_1, a_1} (\ell_1, v_1) \xrightarrow{\tau_2, a_2} \cdots$$
 and $T_n = \sum_{i \leq n} \tau_i$

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).

 \rightsquigarrow compute optimal infinite schedules that minimize discounted cost over time

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).

 \rightsquigarrow compute optimal infinite schedules that minimize discounted cost over time

if $\lambda = e^{-1}$, the discounted cost of that infinite schedule is ≈ 2.16

[FL08] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).

 \sim compute optimal infinite schedules that minimize discounted cost over time

Theorem [FL08]

The optimal discounted cost is computable in EXPTIME in priced timed automata.

 \rightsquigarrow the corner-point abstraction can be used

Outline

- 1. Introduction
- 2. Weighted/priced timed automata
- 3. (Optimal) timed games
- 4. "Safe" timed games
- 5. Conclusion

What if an unexpected event happens?

What if an unexpected event happens?

What if an unexpected event happens?

 \rightsquigarrow modelled as timed games

A simple example of timed game

A simple example of timed game

Another example

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and EXPTIME-complete.

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and EXPTIME-complete.

(the attractor is computable...)

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and EXPTIME-complete.

(the attractor is computable...)

 \rightsquigarrow classical regions are sufficient for solving such problems

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and EXPTIME-complete.

(the attractor is computable...)

 \rightsquigarrow classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and EXPTIME-complete.

[AM99] Asarin, Maler. As soon as possible: time optimal control for timed automata (*HSCC'99*). [BHPR07] Brihaye, Henzinger, Prabhu, Raskin. Minimum-time reachability in timed games (*ICALP'07*). [JT07] Jurdzinński, Trivedi. Reachability-time games on timed automata (*ICALP'07*).

Question: what is the optimal cost we can ensure from ℓ_0 ?

Question: what is the optimal cost we can ensure from ℓ_0 ?

$$5t + 10(2 - t) + 1$$

Question: what is the optimal cost we can ensure from ℓ_0 ?

5t + 10(2 - t) + 1, 5t + (2 - t) + 7

Question: what is the optimal cost we can ensure from ℓ_0 ?

max (5t+10(2-t)+1, 5t+(2-t)+7)

Question: what is the optimal cost we can ensure from ℓ_0 ?

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1 , 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

Question: what is the optimal cost we can ensure from ℓ_0 ?

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1 , 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

→ strategy: wait in ℓ_0 , and when $t = \frac{4}{3}$, go to ℓ_1

1

Question: what is the optimal cost we can ensure from ℓ_0 ?

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1 , 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

→ strategy: wait in ℓ_0 , and when $t = \frac{4}{3}$, go to ℓ_1

• How to automatically compute such optimal costs?

1

Question: what is the optimal cost we can ensure from ℓ_0 ?

$$\inf_{0 \le t \le 2} \max \left(\ 5t + 10(2-t) + 1 \ , \ 5t + (2-t) + 7 \ \right) = 14 + \frac{1}{3}$$

→ strategy: wait in ℓ_0 , and when $t = \frac{4}{3}$, go to ℓ_1

- How to automatically compute such optimal costs?
- How to synthesize optimal strategies (if one exists)?

Results

This topic has been fairly hot these last couple of years... e.g. [LMM02,ABM04,BCFL04]

[LMM02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (*TCS®02*). [ABM04] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (*ICALP'04*). [BCFL04] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (*FSTTCS'04*).

Results

This topic has been fairly hot these last couple of years...

e.g. [LMM02,ABM04,BCFL04]

Theorem [BBR05,BBM06]

Optimal timed games are undecidable, as soon as automata have three clocks or more.

[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS'05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS'06).

Results

This topic has been fairly hot these last couple of years...

e.g. [LMM02,ABM04,BCFL04]

Theorem [BBR05,BBM06]

Optimal timed games are undecidable, as soon as automata have three clocks or more.

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when automata have a single clock. They are P-hard.

[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies (FORMATS'05).
[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMR06] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS'06).
Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when automata have a single clock. They are P-hard.

• Key: resetting the clock somehow resets the history...

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when automata have a single clock. They are P-hard.

- Key: resetting the clock somehow resets the history...
- Memoryless strategies can be non-optimal...

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when automata have a single clock. They are P-hard.

- Key: resetting the clock somehow resets the history...
- Memoryless strategies can be non-optimal...

• However, we can synthesize memoryless almost-optimal winning strategies.

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when automata have a single clock. They are P-hard.

- Key: resetting the clock somehow resets the history...
- Memoryless strategies can be non-optimal...

- However, we can synthesize memoryless almost-optimal winning strategies.
- Rather involved proof (by unfolding and removing one by one locations) of correctness for a simple algorithm.

• In
$$\bigcirc$$
, cost = $2x_0 + (1 - y_0) + 2$

• In
$$\textcircled{\begin{subarray}{c} \mbox{.}}$$
, $\mbox{cost} = 2x_0 + (1 - y_0) + 2$
In $\textcircled{\begin{subarray}{c} \mbox{.}}$, $\mbox{cost} = 2(1 - x_0) + y_0 + 1$

Given two clocks x and y, we can check whether y = 2x.

• In
$$\textcircled{O}$$
, cost = $2x_0 + (1 - y_0) + 2$
In \textcircled{O} , cost = $2(1 - x_0) + y_0 + 1$

• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3

Given two clocks x and y, we can check whether y = 2x.

• In
$$\textcircled{\begin{subarray}{c} 0 \\ \hline 0$$

• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3

Given two clocks x and y, we can check whether y = 2x.

• In
$$\textcircled{O}$$
, cost = $2x_0 + (1 - y_0) + 2$
In \textcircled{O} , cost = $2(1 - x_0) + y_0 + 1$

• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3 if $y_0 = 2x_0$, in both branches, cost = 3

Given two clocks x and y, we can check whether y = 2x.

• In
$$\textcircled{\begin{subarray}{c} 0 \\ \hline 0$$

• if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3 if $y_0 = 2x_0$, in both branches, cost = 3

• Player 1 has a winning strategy with cost ≤ 3 iff $y_0 = 2x_0$

Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the values of two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{3^{c_2}}$

when entering the corresponding module.

Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the values of two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{3^{c_2}}$

when entering the corresponding module.

The two-counter machine has an halting computation iff player 1 has a winning strategy to ensure a cost no more than 3.

Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the values of two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{3^{c_2}}$

when entering the corresponding module.

The two-counter machine has an halting computation iff player 1 has a winning strategy to ensure a cost no more than 3.

Globally, $(x \le 1, y \le 1, u \le 1)$

Going further: other cost functions

An easy adaptation of the previous undecidability proof yields:

Theorem

Optimal mean-cost games are undecidable.

Going further: other cost functions

An easy adaptation of the previous undecidability proof yields:

Theorem

Optimal mean-cost games are undecidable.

Theorem [JT08]

Turn-based optimal average-time games are decidable and EXPTIME-complete.

→ talk of Ashutosh Trivedi in the next session Marcin Jurdziński

[JT08] Jurdziński, Trivedi. Average-time games (FSTTCS'08).

Outline

- 1. Introduction
- 2. Weighted/priced timed automata
- 3. (Optimal) timed games
- 4. "Safe" timed games
- 5. Conclusion

A fourth model of the system

Can I work on my computer all the way?

The motivation

Energy is not only consumed, but can be regained.

 \rightsquigarrow the aim is to continuously satisfy some energy constraints.

[BFL+08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS'08).

Globally $(x \le 1)$

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem
- Lower-weak-upper-bound problem: can we "weakly" stay within bounds?

- Lower-bound problem \sim L
- Lower-upper-bound problem \rightarrow L+U
- Lower-weak-upper-bound problem \rightarrow L+W

	exist. problem	univ. problem	games
L	∈P	∈P	$\in UP \cap coUP \\ P-hard$
L+W	€P	∈P	$\in NP \cap coNP \\ P-hard$
L+U	$\in PSPACE$ NP-hard	∈P	EXPTIME-c.

	exist. problem	univ. problem	games
L	∈P	∈P	$\in UP \cap coUP \\ P-hard$
L+W	∈P	∈P	$\in NP \cap coNP \\ P-hard$
L+U	$\in PSPACE$ NP-hard	∈P	EXPTIME-c.

• Bellman-Ford algorithm

	exist. problem	univ. problem	games
L	∈P	∈P	$\in UP \cap coUP \\ P-hard$
L+W	∈P	$\in P$	$\in NP \cap coNP \\ P-hard$
L+U	$\in PSPACE$ NP-hard	$\in P$	EXPTIME-c.

- PSPACE: guess an infinite path in the graph augmented with the energy level.
- NP-hardness: encode SUBSET-SUM:

	exist. problem	univ. problem	games
L	∈P	$\in P$	$\in UP \cap coUP \\ P-hard$
L+W	€P	∈P	$\in NP \cap coNP \\ P-hard$
L+U	$\in PSPACE$ NP-hard	€P	EXPTIME-c.

- EXPTIME: play the game in the graph augmented with the energy level.
- EXPTIME-hardness: encode COUNTDOWN-GAME [JLS07].

	exist. problem	univ. problem	games
L	∈P	$\in P$	$\in UP \cap coUP \\ P-hard$
L+W	∈P	∈P	$\in NP \cap coNP \\ P-hard$
L+U	$\in PSPACE$ NP-hard	€P	EXPTIME-c.

• Mean-payoff games

Definition

Mean-payoff games: in a weighted game graph, does there exists a strategy s.t. the mean-cost of any play is nonnegative?

Definition

Mean-payoff games: in a weighted game graph, does there exists a strategy s.t. the mean-cost of any play is nonnegative?

Lemma

 $\ensuremath{\mathsf{L}}\xspace$ and $\ensuremath{\mathsf{L}}\xspace+\ensuremath{\mathsf{W}}\xspace$ are determined, and memoryless strategies are sufficient to win.

Definition

Mean-payoff games: in a weighted game graph, does there exists a strategy s.t. the mean-cost of any play is nonnegative?

Lemma

 $\ensuremath{\mathsf{L}}\xspace$ and $\ensuremath{\mathsf{L}}\xspace+\ensuremath{\mathsf{W}}\xspace$ games and $\ensuremath{\mathsf{L}}\xspace+\ensuremath{\mathsf{W}}\xspace$ sufficient to win.

• from mean-payoff games to L-games or L+W-games: play in the same game graph G with initial credit $-M \ge 0$ (where M is the sum of negative costs in G).

Definition

Mean-payoff games: in a weighted game graph, does there exists a strategy s.t. the mean-cost of any play is nonnegative?

Lemma

 $\ensuremath{\mathsf{L}}\xspace$ and $\ensuremath{\mathsf{L}}\xspace+\ensuremath{\mathsf{W}}\xspace$ games and $\ensuremath{\mathsf{L}}\xspace+\ensuremath{\mathsf{W}}\xspace$ sufficient to win.

- from mean-payoff games to L-games or L+W-games: play in the same game graph G with initial credit $-M \ge 0$ (where M is the sum of negative costs in G).
- from L-games to mean-payoff games: transform the game as follows:

	exist. problem	univ. problem	games
L	$\in P$	$\in P$?
L+W	€P	$\in P$?
L+U	?	?	undecidable

	exist. problem	univ. problem	games
L	€P	€P	?
L+W	∈P	∈P	?
L+U	?	?	undecidable

	exist. problem	univ. problem	games
L	€P	∈P	?
L+W	∈P	∈P	?
L+U	?	?	undecidable

	exist. problem	univ. problem	games
L	€P	∈P	?
L+W	∈P	∈P	?
L+U	?	?	undecidable

	exist. problem	univ. problem	games
L	€P	∈P	?
L+W	∈P	∈P	?
L+U	?	?	undecidable

	exist. problem	univ. problem	games
L	€P	∈P	?
L+W	∈P	∈P	?
L+U	?	?	undecidable

	exist. problem	univ. problem	games
L	€P	€P	?
L+W	∈P	∈P	?
L+U	?	?	undecidable

	exist. problem	univ. problem	games
L	€P	∈P	?
L+W	∈P	∈P	?
L+U	?	?	undecidable

	exist. problem	univ. problem	games
L	€P	€P	?
L+W	∈P	∈P	?
L+U	?	?	undecidable

	exist. problem	univ. problem	games
L	€P	€P	?
L+W	∈P	∈P	?
L+U	?	?	undecidable

	exist. problem	univ. problem	games
L	€P	€P	?
L+W	∈P	∈P	?
L+U	?	?	undecidable

	exist. problem	univ. problem	games
L	€P	€P	?
L+W	∈P	∈P	?
L+U	?	?	undecidable

	exist. problem	univ. problem	games
L	€P	€P	?
L+W	∈P	∈P	?
L+U	?	?	undecidable

	exist. problem	univ. problem	games
L	€P	∈P	?
L+W	∈P	∈P	?
L+U	?	?	undecidable

	exist. problem	univ. problem	games
L	€P	€P	?
L+W	∈P	∈P	?
L+U	?	?	undecidable

	exist. problem	univ. problem	games
L	€P	∈P	?
L+W	∈P	∈P	?
L+U	?	?	undecidable

	exist. problem	univ. problem	games
L	€P	∈P	?
L+W	∈P	∈P	?
L+U	?	?	undecidable

	exist. problem	univ. problem	games
L	$\in P$	$\in P$?
L+W	€P	$\in P$?
L+U	?	?	undecidable

• simulation of a two-counter machine

Single-clock L+U-games

Theorem

The single-clock **L**+**U**-games are undecidable.

Single-clock L+U-games

Theorem

The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the energy level

$$e = 5 - \frac{1}{2^{c_1} \cdot 3^{c_2}}$$

when entering the corresponding module.

Single-clock L+U-games

Theorem

The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the energy level

$$e = 5 - \frac{1}{2^{c_1} \cdot 3^{c_2}}$$

when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a strategy in the single-clock timed game under which the energy level remains between 0 and 5.
Single-clock L+U-games

Theorem

The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the energy level

$$e = 5 - \frac{1}{2^{c_1} \cdot 3^{c_2}}$$

when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a strategy in the single-clock timed game under which the energy level remains between 0 and 5.

 → We present a generic construction for incrementing/decrementing the counters.

- n=3: increment c1
- n=2: increment c₂
- n=12: decrement c₁
- n=18: decrement c₂

Results for the general case

	exist. problem	univ. problem	games
L	?	?	?
L+W	?	?	?
L+U	?	?	undecidable

Outline

1. Introduction

- 2. Weighted/priced timed automata
- 3. (Optimal) timed games
- 4. "Safe" timed games
- 5. Conclusion

Conclusion

- Priced/weighted timed automata, a model for representing quantitative constraints on timed systems:
 - useful in embedded systems verification
 - natural (optimization) questions have been posed...
 - \ldots and not all of them have been answered yet!

Conclusion

- Priced/weighted timed automata, a model for representing quantitative constraints on timed systems:
 - useful in embedded systems verification
 - natural (optimization) questions have been posed...
 - \ldots and not all of them have been answered yet!
- Not mentioned here:
 - all works on model-checking issues (extensions of CTL, LTL)
 - models based on hybrid automata
 - weighted o-minimal hybrid games
 - weighted strong reset hybrid games

[BBC07] [BBJLR07]

 \rightsquigarrow talk of Michał Rutkowski in the next session

• various tools have been developed:

Uppaal, Uppaal Cora, Uppaal Tiga

[BBJLR07]

Conclusion

- Priced/weighted timed automata, a model for representing quantitative constraints on timed systems:
 - useful in embedded systems verification
 - natural (optimization) questions have been posed...
 - \ldots and not all of them have been answered yet!
- Not mentioned here:
 - all works on model-checking issues (extensions of CTL, LTL)
 - models based on hybrid automata
 - weighted o-minimal hybrid games
 - weighted strong reset hybrid games

→ talk of Michał Rutkowski in the next session

• various tools have been developed:

Uppaal, Uppaal Cora, Uppaal Tiga

- Current and further work:
 - computation of approximate optimal values
 - further investigation of safe games + several cost variables?
 - discounted-time optimal games
 - link between discounted-time games and mean-cost games?

• ...