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Time!

Context: verification and control of embedded critical systems

Time:
naturally appears in real systems
appears in properties (for ex. bounded response time)
systems continuously interact with environment

➜ We need to take care of timing aspects
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An example, the car periphery supervision

Embedded system
Hostile environment
Sensors

distances
speeds

c© Society of Automative Engineers Inc.
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Preliminaries on timed systems The model of timed automata

Timed automata [Alur & Dill 90’s]

A finite control structure + variables (clocks)

A transition is of the form:

g , a, C := 0

Enabling condition Reset to zero

An enabling condition (or guard) is:

g ::= x ∼ c | g ∧ g

where ∼∈ {<,≤,=,≥, >}
An invariant in each location
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Preliminaries on timed systems The model of timed automata

Timed automata (example)

x , y : clocks

�0 �1 �2

x ≤ 5, a, y := 0 y > 1, b, x := 0
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Timed automata (example)

x , y : clocks

�0 �1 �2

x ≤ 5, a, y := 0 y > 1, b, x := 0

�0
δ(4.1) �0 a �1

δ(1.4) �1 b �2
x 0 4.1 4.1 5.5 0
y 0 4.1 0 1.4 1.4
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Preliminaries on timed systems The model of timed automata

Timed automata (example)

x , y : clocks

�0 �1 �2

x ≤ 5, a, y := 0 y > 1, b, x := 0

�0
δ(4.1) �0 a �1

δ(1.4) �1 b �2
x 0 4.1 4.1 5.5 0
y 0 4.1 0 1.4 1.4

(clock) valuation

➜ timed word (a, 4.1)(b, 5.5)
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Preliminaries on timed systems The model of timed automata

Timed automata semantics

A = (Σ, L,X , ) is a TA

Configurations: (�, v) ∈ L × TX where T is the time domain

Timed Transition System:

action transition: (�, v) a (�′, v ′) if ∃� g,a,r �′ ∈ A s.t.
v |= g
v ′ = v [r ← 0]

delay transition: (�, v) δ(d) (�, v + d) if d ∈ T
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Preliminaries on timed systems The model of timed automata

Timed languages

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0
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Preliminaries on timed systems The model of timed automata

Timed languages

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0

Dense-time:
Ldense = {((ab)ω , τ) | ∀i , τ2i−1 = i and τ2i − τ2i−1 > τ2i+2 − τ2i+1}

Discrete-time: Ldiscrete = ∅
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Preliminaries on timed systems The model of timed automata

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

reachability properties (final states)

basic liveness properties (Büchi (or other) conditions)
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Preliminaries on timed systems The model of timed automata

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Theorem [Alur & Dill 1990’s]

The emptiness problem for timed automata is decidable.
It is PSPACE-complete.
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Preliminaries on timed systems The model of timed automata

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Theorem [Alur & Dill 1990’s]

The emptiness problem for timed automata is decidable.
It is PSPACE-complete.

Method: construct a finite abstraction
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Preliminaries on timed systems The region abstraction

The region abstraction
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The region abstraction
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1
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Equivalence of finite index

region defined by
Ix =]1; 2[, Iy =]0; 1[

{x} < {y}

delay successors

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing
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Preliminaries on timed systems The region abstraction

The region abstraction

0 1 2 3 x

1

2

y
Equivalence of finite index

region defined by
Ix =]1; 2[, Iy =]0; 1[

{x} < {y}

delay successors

successor by reset

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

➜ a bisimulation property
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Preliminaries on timed systems The region abstraction

The region automaton

timed automaton
⊗

region abstraction

� g ,a,C :=0 �′ is transformed into:

(�,R) a (�′,R ′) if there exists R ′′ ∈ Succ∗t (R) s.t.

R ′′ ⊆ g
[C ← 0]R ′′ ⊆ R ′

➜ time-abstract bisimulation

L(reg. aut.) = UNTIME(L(timed aut.))

where UNTIME((a1, t1)(a2, t2) . . . ) = a1a2 . . .
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Preliminaries on timed systems The region abstraction

Time-abstract bisimulation

∀ a

Spring School GAMES Synthesis of Timed Systems 14 / 80



Preliminaries on timed systems The region abstraction

Time-abstract bisimulation

∀ a

∃ a

Spring School GAMES Synthesis of Timed Systems 14 / 80



Preliminaries on timed systems The region abstraction

Time-abstract bisimulation

∀ a

∃ a

∀d > 0
δ(d)

Spring School GAMES Synthesis of Timed Systems 14 / 80



Preliminaries on timed systems The region abstraction

Time-abstract bisimulation

∀ a

∃ a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

Spring School GAMES Synthesis of Timed Systems 14 / 80



Preliminaries on timed systems The region abstraction

Time-abstract bisimulation

∀ a

∃ a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

(�0, v0)
a1,t1 (�1, v1)

a2,t2 (�2, v2)
a3,t3 . . .
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Time-abstract bisimulation

∀ a

∃ a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

(�0, v0)
a1,t1 (�1, v1)

a2,t2 (�2, v2)
a3,t3 . . .

(�0,R0)
a1 (�1,R1)

a2 (�2,R2)
a3 . . .

with vi ∈ Ri for all i .
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Preliminaries on timed systems The region abstraction

An example [Alur & Dill 1990’s]

0 1 x

1

y
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Preliminaries on timed systems The region abstraction

Consequence of region automata construction

Region automata: correct finite abstraction for checking
reachability/Büchi-like properties
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Preliminaries on timed systems The region abstraction

Consequence of region automata construction

Region automata: correct finite abstraction for checking
reachability/Büchi-like properties

However, everything can not be reduced to finite automata...
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Preliminaries on timed systems Everything is not that nice!

A model not far from undecidability

Properties
Universality is undecidable [Alur & Dill 90’s]

Inclusion is undecidable [Alur & Dill 90’s]

Determinizability is undecidable [Tripakis 2003]

Complementability is undecidable [Tripakis 2003]

...
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Preliminaries on timed systems Everything is not that nice!

A model not far from undecidability

Properties
Universality is undecidable [Alur & Dill 90’s]

Inclusion is undecidable [Alur & Dill 90’s]

Determinizability is undecidable [Tripakis 2003]

Complementability is undecidable [Tripakis 2003]

...

Example

A non-determinizable/non-complementable timed automaton:

a

a, x := 0

a

x = 1, a

a
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Preliminaries on timed systems Everything is not that nice!

The two-counter machine

Definition
A two-counter machine is a finite set of instructions over two counters (x
and y):

Incrementation:
(p): x := x + 1; goto (q)

Decrementation:
(p): if x > 0 then x := x − 1; goto (q) else goto (r)

Theorem [Minsky 67]

The halting problem and the recurring problem for two-counter machines
are undecidable.
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Preliminaries on timed systems Everything is not that nice!

Undecidability of universality

Theorem [Alur & Dill 90’s]

Universality of timed automata is undecidable.

b1 b2 b3 b4

1 t.u. = 1 config

c c c
value of c

d d d d c c c c d d d d

1 t.u.

c c c c d d d

decrementation of d

one configuration is encoded in one time unit
number of c ’s: value of counter c
number of d ’s: value of counter d
one time unit between two corresponding c ’s (resp. d ’s)

➜ We encode “non-behaviours” of a two-counter machine
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Preliminaries on timed systems Everything is not that nice!

Example
Module to check that if instruction i does not decrease counter c , then
all actions c appearing less than 1 t.u. after bi has to be followed by an
other c 1 t.u. later.

bi , x := 0 x < 1, c , x := 0

x = 1, ¬c

x �= 1
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Preliminaries on timed systems Everything is not that nice!

Example
Module to check that if instruction i does not decrease counter c , then
all actions c appearing less than 1 t.u. after bi has to be followed by an
other c 1 t.u. later.

bi , x := 0 x < 1, c , x := 0

x = 1, ¬c

x �= 1

The union of all small modules is not universal
iff

The two-counter machine has a recurring computation
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Preliminaries on timed systems Everything is not that nice!

Power of ε-transitions

[Bérard, Diekert, Gastin, Petit 1998]

Proposition
ε-transitions can not be removed in timed automata.
Timed automata with ε-transitions are strictly more expressive than
timed automata without ε-transitions.

x = 1, a, x := 0

x = 1, ε, x := 0
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Preliminaries on timed systems Everything is not that nice!

On zeno behaviours

Definition
An infinite timed behaviour (a1, t1)(a2, t2) . . . is zeno whenever the
infinite timed sequence (ti )i≥1 is bounded.

➜ infinitely many discrete events within a bounded amount of time

Example (
a,

1
2

) (
a,

3
4

) (
a,

7
8

)
. . .

(
a, 1 − 1

2n

)
. . .
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Preliminaries on timed systems Everything is not that nice!

On zeno behaviours

Definition
An infinite timed behaviour (a1, t1)(a2, t2) . . . is zeno whenever the
infinite timed sequence (ti )i≥1 is bounded.

➜ infinitely many discrete events within a bounded amount of time

Example (
a,

1
2

) (
a,

3
4

) (
a,

7
8

)
. . .

(
a, 1 − 1

2n

)
. . .

Proposition [Alur & Dill 90’s]

It is decidable whether a timed automaton only generates non-zeno
behaviours, and it is decidable whether there is a non-zeno behaviour
which satisfies a Büchi condition.

(Using the region automaton)

Spring School GAMES Synthesis of Timed Systems 22 / 80



Preliminaries on timed systems Symbolic manipulation of timed automata

A symbolic representation for timed systems
A zone is a set of valuations defined by a constraint of the form

ϕ ::= x ∼ c | x − y ∼ c | ϕ ∧ ϕ

Example

The constraint (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4) defines the zone:

3 4 9

5

2
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Preliminaries on timed systems Symbolic manipulation of timed automata

A symbolic representation for timed systems
A zone is a set of valuations defined by a constraint of the form

ϕ ::= x ∼ c | x − y ∼ c | ϕ ∧ ϕ

Example

The constraint (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4) defines the zone:

3 4 9

5

2

{v + t | v |= ϕ and t ≥ 0} is a zone [Future]

{[Y ← 0]v | v |= ϕ} is a zone [Reset]

{v − t | v |= ϕ and t ≥ 0} is a zone [Past]

. . .
Spring School GAMES Synthesis of Timed Systems 23 / 80



On the semantics of timed games
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On the semantics of timed games

� in the last ten years, a prolific literature
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On the semantics of timed games

� in the last ten years, a prolific literature

� one paper = one definition of timed games
symmetrical games or not
take care of zeno (and zeno-like) behaviours or not
turn-based games or not
. . .

See bibliography for references...
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On the semantics of timed games

Timed games with surprise

The most achieved model of timed games
[de Alfaro, Faella, Henzinger, Majumdar, Stoelinga 2003]

two players
each player i chooses a pair (δi , ai ) Semantics with surprise
each player i chooses either a delay δi , or an action ai

Semantics without surprise
the next move is determined by the following rules:

if δi < δj , wait δi and do ai

if δi = δj , wait δi and do either ai or aj (non-deterministic choice)

classical ω-regular winning condition + time divergence condition
or non-responsible for time divergence
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On the semantics of timed games

Proposition
Reachability and safety timed games are not determined.

Example (Aim: enforce (or avoid) yellow state)

x > 1, a2, x := 0

x > 1, a1

if player 2 proposes move (∆2, a2) with ∆2 > 1, then player 1 can propose move
(1 + ∆2−1

2 , a1)

if player 2 proposes move (∆2, a2) with ∆2 ≤ 1, then player 1 can propose move
(1,⊥)

If player 2 never proposes ∆2 > 1, then it has to be blamed for time convergence.
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On the semantics of timed games

Proposition
Memoryless strategies suffice to win safety games.
Memoryless strategies do not suffice to win reachability games.

Example (Aim: enforce yellow state)

i [x ≤ 0]

x = 0, a1

x = 0, a1

In state (i , x = 0), the strategy has to remember if the other state has already been
visited or not.
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On the semantics of timed games

Proposition
Surprise is sometimes necessary to win...

Example (Aim: enforce yellow state)

a2, x := 0

0 < x < 1, a1

Player 1 has a winning strategy:

after n rounds, his strategy is ( 1
2n+1 , a1)

if yellow state is not reached, then time converges and this is due to player 2

player 1 wins!

Spring School GAMES Synthesis of Timed Systems 29 / 80



On the semantics of timed games

Proposition
“Real” strategies based on regions are not sufficient...

Example

p q0 < x < 1, a1
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Example
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On the semantics of timed games

Proposition
“Real” strategies based on regions are not sufficient...

Example

p q0 < x < 1, a1

0 1

Winning states•
Winning strategy

ε

Time elapsing �= discrete action!

Spring School GAMES Synthesis of Timed Systems 30 / 80



On the semantics of timed games

Decidability results

[de Alfaro, Faella, Henzinger, Majumdar, Stoelinga 2003]

Theorem
Timed games with a parity winning condition can be solved effectively.
Moreover persistent strategies are sufficient, and history based on visited
regions is sufficient.

time divergence and blameless conditions are expressed as an
untimed parity condition
for such a parity condition, winning only depends on the region
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Control synthesis games
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Control synthesis games Framework of these games

Framework of these games

Environment against controller
(Non-symmetrical game)

some actions are controllable Σc

some actions are uncontrollable Σu

player “environment” can:
interrupt time elapsing,
enforce zeno behaviours
. . .

a plant P is a deterministic timed automaton over alphabet
Σc ∪ Σu (it represents both real system and environment)
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Control synthesis games Framework of these games

Strategies and controllers

A strategy is a partial function

f : Runs(P) −→ Σc ∪ {λ} λ : time elapsing
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Control synthesis games Framework of these games

Strategies and controllers

A strategy is a partial function

f : Runs(P) −→ Σc ∪ {λ} λ : time elapsing

needs to satisfy some continuity property:

f (ρ) = λ =⇒ ∃t > 0, ∀0 ≤ t′ < t, f (ρ
δ(t′)−−−→) = λ

A controller is a deterministic timed automaton over Σc ∪Σu which
will run in parallel with P

How powerful can it be? Not too much!

needs to be non-restricting for uncontrollable actions
needs to be non-blocking: if there is no deadlock in the original
plant, there will be no deadlock in the controlled system
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Control synthesis games Framework of these games

Winning a timed game

the controlled system (or the outcomes of the game) is P ‖ C
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Winning a timed game

the controlled system (or the outcomes of the game) is P ‖ C

specifications (or winning conditions)
Internal specifications: conditions on the states of the plant

safety: the controlled system avoids bad states
reachability: C enforces a good state
. . .

External specifications: given by a timed automaton S
representing desired behaviours

L(P ‖ C) ⊆ L(S)

representing undesired behaviours

L(P ‖ C) ∩ L(S) = ∅

external det. specification ≡ internal specification
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Control synthesis games Framework of these games

An example

�0

[x ≤ 5]

�1

�2

Bad
x ≥ 1; a; y := 0

y ≥ 1; b1 ≤ x ≤ 5; c ; x := 0

3 < x ; u

Aim: control the system in such a way that “Bad” state is avoided.
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Control synthesis games Framework of these games

An example

�0 �1

�2

Bad
x ≥ 1; a; y := 0

y ≥ 1; b1 ≤ x ≤ 5; c ; x := 0

3 < x ; u
[x ≤ 3]

x ≤ 2

[x ≤ 2]

Aim: control the system in such a way that “Bad” state is avoided.
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Control synthesis games Framework of these games

An example

�0

[x ≤ 5]

�1

�2

Bad
x ≥ 1; a; y := 0

y ≥ 1; b1 ≤ x ≤ 5; c ; x := 0

3 < x ; u

Aim: control the system in such a way that “Bad” state is avoided.

A controller:

�0 �1

�2

z ≤ 2; a

bc ; z := 0

[z ≤ 3][z ≤ 2]

u

u
u
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Control synthesis games Framework of these games

An example

�0

[x ≤ 5]

�1

�2

Bad
x ≥ 1; a; y := 0

y ≥ 1; b1 ≤ x ≤ 5; c ; x := 0

3 < x ; u

Aim: control the system in such a way that “Bad” state is avoided.

A controller:

�0 �1

�2

z ≤ 2; a

bc ; z := 0

[z ≤ 3][z ≤ 2]

u

u
u

A winning strategy:
{

f (�0, x < 1) = λ
f (�0, x = 1) = a




f (�1, x < 2) = λ
f (�1, x = 2) = b
f (�2, x = 2) = c
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Control synthesis games Simple control objectives

Computing winning states

Preda(X ) = {s | s a−−→ s ′ with s ′ ∈ X}
controllable and uncontrollable discrete predecessors:

cPred(X ) =
⋃

c∈Σc

Predc(X ) uPred(X ) =
⋃

u∈Σu

Predu(X )
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Control synthesis games Simple control objectives

Computing winning states

Preda(X ) = {s | s a−−→ s ′ with s ′ ∈ X}
controllable and uncontrollable discrete predecessors:

cPred(X ) =
⋃

c∈Σc

Predc(X ) uPred(X ) =
⋃

u∈Σu

Predu(X )

time controllable predecessor of X :

s s ′ ∈ X
t

Xu

t ′ t − t ′

Predδ(X ,Y ) = {s | ∃t ≥ 0, s t−−→ s ′, s ′ ∈ X and Post[0,t](s) ⊆ Y }

where Post[0,t](s) = {s ′ | ∃0 ≤ t ′ ≤ t, s t′−−→ s ′}
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Control synthesis games Simple control objectives

Computing winning states

π(X ) = Predδ(X ∩ cPred(X ), uPred(X ))

Proposition (Attractor)

The greatest fixpoint W ∗ of the equation X = G ∩ π(X ) is the set of
states from which we can stay in G .

Properties of W ∗

if X is a union of regions, then π(X ) is a union of regions
W ∗ is effectively computable using zones
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Control synthesis games Simple control objectives

Exercise

We take R the set of regions of the plant.

Let R be a region, and (Ri )i∈I be regions. Then,
uPred(�,R) is a finite set of regions
cPred(�,R) is a finite set of regions
Predδ((�,R),∪i∈I (�i ,Ri )) is a finite union of regions
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Control synthesis games Simple control objectives

Exercise

We take R the set of regions of the plant.

Let R be a region, and (Ri )i∈I be regions. Then,
uPred(�,R) is a finite set of regions
cPred(�,R) is a finite set of regions
Predδ((�,R),∪i∈I (�i ,Ri )) is a finite union of regions

Why is that true?

Region-equivalence is a time-abstract bisimulation!
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Control synthesis games Simple control objectives

From winning states to winning strategies

From winning states, we can construct a controller (adding invariants to the
plant and restricting guards of the plant)

To synthesize a real strategy, we need a more involved computation:
if R is a thin region on which the strategy is λ, and if on the successor region of
R, say R′, the strategy is defined as being c, then split R′ in two parts, the first
one on which we define the strategy as being λ, and the second one on which
the strategy is defined as being c

cλ
becomes

c

λ

➜ Computations using polyhedra
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Control synthesis games Simple control objectives

Decidability and complexity

Theorem [Henzinger, Kopke 1999]

Safety and reachability control are decidable and are EXPTIME-complete.

➜ simulation of an alternating Turing machine using polynomial space
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Control synthesis games Simple control objectives

Decidability and complexity

Theorem [Henzinger, Kopke 1999]

Safety and reachability control are decidable and are EXPTIME-complete.

➜ simulation of an alternating Turing machine using polynomial space

M ATM using p(·) space, and w input for M.

We construct the plant P as follows:
set of states contains Q × {1, . . . , p(|w |)}

if q ∈ Q is an AND-node of M, then all outgoing transitions from
some (q, i) will be uncontrollable
if q ∈ Q is an OR-node of M, then all outgoing transitions from
some (q, i) will be controllable

set of clocks is {xi | 1 ≤ i ≤ p(|w |)}
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Control synthesis games Simple control objectives

Cell i of M contains γ ∈ {0, 1, 2} encoded by xi = γ

If (q, γ, q′, γ′, δ) is a transition of M, then defining i ′ = δ(i),

if γ′ = 1

q, i q′, i ′
z = 0, xi = γ

z = 1,
xj = 3,
xj := 0

V
j xj ≤ 2

z = 1, z := 0

z = 1,
xj = 3,
xj := 0

V
j xj ≤ 2

z = 1, z := 0

z = 1,
xj = 3,
xj := 0

V
j xj ≤ 2

z = 1, z := 0
xi := 0

P can be controlled to enforce final state
iff

M accepts w
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Control synthesis games Control for external specifications

External specifications

External specifications: given by a timed automaton S
representing desired behaviours

L(P ‖ C) ⊆ L(S)

representing undesired behaviours

L(P ‖ C) ∩ L(S) = ∅
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Control synthesis games Control for external specifications

Several undecidability results
[D’Souza, Madhusudan 2002]

Theorem
Timed control with an external specification representing desired
behaviours is undecidable.
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Theorem
Timed control with an external specification representing desired
behaviours is undecidable.

➜ by reduction of universality problem for timed automata

take A a timed automaton over Σ

take P universal plant over Σ

assume all actions of Σ are uncontrollable
Note: If C controller, L(P ‖ C) is universal.
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Control synthesis games Control for external specifications

Several undecidability results
[D’Souza, Madhusudan 2002]

Theorem
Timed control with an external specification representing desired
behaviours is undecidable.

➜ by reduction of universality problem for timed automata

take A a timed automaton over Σ

take P universal plant over Σ

assume all actions of Σ are uncontrollable
Note: If C controller, L(P ‖ C) is universal.

There exists a controller for P w.r.t. the positive specification A
iff

A is universal
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Control synthesis games Control for external specifications

Several undecidability results (cont’d)

[D’Souza, Madhusudan 2002]

Theorem
Timed control with an external specification representing undesired
behaviours is undecidable.
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Control synthesis games Control for external specifications

Several undecidability results (cont’d)

[D’Souza, Madhusudan 2002]

Theorem
Timed control with an external specification representing undesired
behaviours is undecidable.

➜ by reduction of non-universality problem for timed automata
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Several undecidability results (cont’d)

[D’Souza, Madhusudan 2002]

Theorem
Timed control with an external specification representing undesired
behaviours is undecidable.

➜ by reduction of non-universality problem for timed automata

take A a timed automaton over Σ

take P universal plant over Σ
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Control synthesis games Control for external specifications

Several undecidability results (cont’d)

[D’Souza, Madhusudan 2002]

Theorem
Timed control with an external specification representing undesired
behaviours is undecidable.

➜ by reduction of non-universality problem for timed automata

take A a timed automaton over Σ

take P universal plant over Σ

assume all actions of Σ are controllable

There exists a controller C such that L(P ‖ C) ∩ L(A) = ∅
iff

A is non-universal

Indeed, any timed word not accepted by A is a controller...
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Control synthesis games Control for external specifications

Some more decidability results

Deterministic specification

Theorem
Timed control with an external deterministic specification is decidable.

A controller however needs to use clocks of the plant and of the
specification...
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Control synthesis games Control for external specifications

Some more decidability results

Deterministic specification

Theorem
Timed control with an external deterministic specification is decidable.

A controller however needs to use clocks of the plant and of the
specification...

Fixing the resources of the controller

Theorem
Timed control with an external specification representing undesired
behaviours is decidable when the resources of the controller are fixed.

(See later)
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Control synthesis games Partial observability

Why partial observation?

Example (The car periphery supervision)

Environment is seen through sensors.
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Why partial observation?

Example (The car periphery supervision)

Environment is seen through sensors.

some actions are non-controllable
some non-controllable actions are even non-observable

[Partial observability]
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Control synthesis games Partial observability

Why partial observation?

Example (The car periphery supervision)

Environment is seen through sensors.

some actions are non-controllable
some non-controllable actions are even non-observable

[Partial observability]

Difficulties:
ε-transitions can not be removed from timed automata
timed automata can not be determinized

Spring School GAMES Synthesis of Timed Systems 47 / 80



Control synthesis games Partial observability

Timed framework: what’s specific?

Clocks of the plant can be readable or unreadable (for the controller)

Plant

Controller

Clocks belonging to the controller

Readable clocks (can not be reset by the controller)

Unreadable clocks
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Timed framework: what’s specific?

Clocks of the plant can be readable or unreadable (for the controller)

Plant

Controller

Clocks belonging to the controller
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Which constants clocks can be compared with? � (X ,m,max )

x ∼ c =⇒ c ∈ ZZ
m

and |c | ≤ max
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Timed framework: what’s specific?

Clocks of the plant can be readable or unreadable (for the controller)

Plant

Controller

Clocks belonging to the controller

Readable clocks (can not be reset by the controller)

Unreadable clocks

Which constants clocks can be compared with? � (X ,m,max )

x ∼ c =⇒ c ∈ ZZ
m

and |c | ≤ max ➜ Resources

Two different problems:
fixing the resources, does there exist a controller s.t. ...?
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Control synthesis games Partial observability

Timed framework: what’s specific?

Clocks of the plant can be readable or unreadable (for the controller)

Plant

Controller

Clocks belonging to the controller

Readable clocks (can not be reset by the controller)

Unreadable clocks

Which constants clocks can be compared with? � (X ,m,max )

x ∼ c =⇒ c ∈ ZZ
m

and |c | ≤ max ➜ Resources

Two different problems:
fixing the resources, does there exist a controller s.t. ...?
do there exist resources s.t. there exists a controller s.t. ...?
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Control synthesis games Partial observability

Summary of previous results

Full observability hypothesis

Resources Det. Spec. (Internal/External) External Non-deterministic Spec.
Desired behaviors Undesired behaviors

Fixed Decidable [WTH91,AMPS98] Undecidable [DM02] Decidable [DM02]
Non-fixed Decidable [DM02] Undecidable [DM02] Undecidable [DM02]
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Summary of previous results

Full observability hypothesis

Resources Det. Spec. (Internal/External) External Non-deterministic Spec.
Desired behaviors Undesired behaviors

Fixed Decidable [WTH91,AMPS98] Undecidable [DM02] Decidable [DM02]
Non-fixed Decidable [DM02] Undecidable [DM02] Undecidable [DM02]

Partial observability hypothesis

Resources Det. Spec. (Internal/External) External Non deterministic Spec.
Desired behaviors Undesired behaviors

Fixed ? Undecidable ?
Non-fixed ? Undecidable Undecidable
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Control synthesis games Partial observability

Notations

some actions are controllable Σc

some actions are uncontrollable Σu

some uncontrollable actions are observable Σo
u

some uncontrollable actions are non-observable Σn
u

a plant P is a DTA over Σc ∪ Σo
u ∪ Σn

u

a controller C is a DTA over Σc ∪ Σo
u

the controlled system is P ‖ C where synchronization is only over
observable and controllable events
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Control synthesis games Partial observability

Synthesis with non-fixed resources

Full observability hypothesis

Resources Det. Spec. (Internal/External) External Non-deterministic Spec.
Desired behaviors Undesired behaviors

Fixed Decidable [WTH91,AMPS98] Undecidable [DM02] Decidable [DM02]
Non-fixed Decidable [DM02] Undecidable [DM02] Undecidable [DM02]

Partial observability hypothesis

Resources Det. Spec. (Internal/External) External Non deterministic Spec.
Desired behaviors Undesired behaviors

Fixed ? Undecidable ?
Non-fixed Undecidable [BDMP03] Undecidable Undecidable

Remark: reachability and safety control problems are undecidable!
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Control synthesis games Partial observability

Reachability control under partial observability

Theorem
Reachability control under partial observation is undecidable.
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Reachability control under partial observability

Theorem
Reachability control under partial observation is undecidable.

➜ by reduction of universality problem for timed automata

Take A a (complete) timed automaton. Construct P as follows.

� �′
g , a, C := 0

is replaced by � • �′
(�, g , a, C := 0, �′), z := 0 g ∧ z = 0, a, C := 0
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Control synthesis games Partial observability

Reachability control under partial observability

Theorem
Reachability control under partial observation is undecidable.

➜ by reduction of universality problem for timed automata

Take A a (complete) timed automaton. Construct P as follows.

� �′
g , a, C := 0

is replaced by � • �′
(�, g , a, C := 0, �′), z := 0 g ∧ z = 0, a, C := 0

Thus,

P is a deterministic timed automaton, thus a plant
(δ0, t0)(a0, t ′0)(δ1, t1)(a1, t ′1)... is accepted by P iff ti = t ′i for every i
and (a0, t0)(a1, t1)... is accepted by A along the path δ0δ1...

We note ∆ = {(�, g , a,C := 0, �′) transition of A}
and make all actions from ∆ non-observable.
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Control synthesis games Partial observability

Take A a (complete) timed automaton. Construct P as follows.

� �′
g , a, C := 0

is replaced by � • �′
(�, g , a, C := 0, �′), z := 0 g ∧ z = 0, a, C := 0

There exists a controller C which enforces non-final states of P
iff

A is not universal

Spring School GAMES Synthesis of Timed Systems 53 / 80



Control synthesis games Partial observability

Take A a (complete) timed automaton. Construct P as follows.

� �′
g , a, C := 0

is replaced by � • �′
(�, g , a, C := 0, �′), z := 0 g ∧ z = 0, a, C := 0

There exists a controller C which enforces non-final states of P
iff

A is not universal

Indeed, for any timed word γ = (a0, t0)(a1, t1)...,

P ‖ γ represents all the possible runs for γ with transitions in A
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Control synthesis games Partial observability

Safety control under partial observability

Theorem
Safety control under partial observation is undecidable.

We cannot reduce to the universality problem for timed automata. It requires a more
involved proof. We will mimic the proof of the undecidability of the universality
problem for timed automata.

➜ by reduction of the non-halting problem for a two-counter machine
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Control synthesis games Partial observability

Simulation of a two-counter machine

b1 b2 b3 b4

1 t.u. = 1 config

aaaa a c c c
value of c

d d d d aaa a c c c c d d d d

1 t.u.

aa a c c c c d d d

decrementation of d

one configuration is encoded in one time unit
number of c ’s: value of counter c
number of d ’s: value of counter d
one time unit between two corresponding c ’s (resp. d ’s)
a finite number of a’s is generated (which represents the length of a
possible halting computation) at the beginning of the computation,
this number decreases by one at each configuration

a, c , d are supposed controllable
partial observability is used for modelling non-determinism
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Control synthesis games Partial observability

Examples
Module to check that if instruction i does not decrease counter c , then
all actions c appearing less than 1 t.u. after bi has to be followed by an
other c 1 t.u. later.

bi , x := 0 x < 1, c , x := 0

x < 1
x > 1, c

x ≥ 1,¬c
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Control synthesis games Partial observability

Examples
Module to check that if instruction i does not decrease counter c , then
all actions c appearing less than 1 t.u. after bi has to be followed by an
other c 1 t.u. later.

bi , x := 0 x < 1, c , x := 0

x < 1
x > 1, c

x ≥ 1,¬c
Module to check that the number of a’s decreases.

bi , x := 0
c , d

x < 1, a, x := 0 x = 1, a

There is a controller to avoid red states
iff

the two-counter machine halts
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Fixing the resources

Full observability hypothesis

Resources Det. Spec. (Internal/External) External Non-deterministic Spec.
Desired behaviors Undesired behaviors

Fixed Decidable [WTH91,AMPS98] Undecidable [DM02] Decidable [DM02]
Non-fixed Decidable [DM02] Undecidable [DM02] Undecidable [DM02]

Partial observability hypothesis

Resources Det. Spec. (Internal/External) External Non deterministic Spec.
Desired behaviors Undesired behaviors

Fixed Decidable [BDMP03] Undecidable Decidable [BDMP03]
Non-fixed Undecidable Undecidable Undecidable

Spring School GAMES Synthesis of Timed Systems 57 / 80



Control synthesis games Partial observability

Fixing the resources

Theorem
Under partial observability, the controller synthesis problem with fixed
resources is decidable, for deterministic specifications or non deterministic
specifications representing undesired behaviors.
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Fixing the resources

Theorem
Under partial observability, the controller synthesis problem with fixed
resources is decidable, for deterministic specifications or non deterministic
specifications representing undesired behaviors.

Controller synthesis problem as a (syntactic) timed game
Solving a timed game

construction of an untimed arena
construction of an untimed winning condition

Apply results on untimed games
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Resources: µ = (X ,m,max )

x ∼ c =⇒ c ∈ ZZ
m

and |c | ≤ max

A controller will be an automaton over symbolic alphabet

Γ = G(µ) × (Σc ∪ Σo
u) × 2X

where G(µ) represents all atomic constraints over µ

Example (µ = ({x , y}, 1, 2))
0 < x < 1 ∧ y = 1 is an atomic constraint
1 < x < 2 ∧ y > 2 is an atomic constraint
x = 0 ∧ y ≥ 1 is not an atomic constraint

A transition of the controller is thus of the form

�
0<x<1∧y>2, a, x :=0−−−−−−−−−−−−−−−→ �′
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Timed games

On the same symbolic alphabet Γ as the controller:

•
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•
•

•
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Control synthesis games Partial observability

Timed games

On the same symbolic alphabet Γ as the controller:

•
•

•
...

whether the play γ is winning or not depends on the synchronization
of the plant with γ:

L(P ‖ γ) ∩ L(S) = ∅
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Control synthesis games Partial observability

Timed games

On the same symbolic alphabet Γ as the controller:

•
•

•
...

whether the play γ is winning or not depends on the synchronization
of the plant with γ:

L(P ‖ γ) ∩ L(S) = ∅

usual notion of strategy, with additional hypotheses for the
non-blocking and non-restricting hypotheses
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Control synthesis games Partial observability

Untimed games

Construction of the arena: universal automaton UΓ over Γ
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Control synthesis games Partial observability

Untimed games

Construction of the arena: universal automaton UΓ over Γ

Construction of the winning condition: based on the fact that
the set

{γ ∈ Γ∞ | L(P ‖ γ) ∩ L(S) = ∅}
is regular (where Γ is the symbolic alphabet for the controller).
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Control synthesis games Partial observability

Untimed games

Construction of the arena: universal automaton UΓ over Γ

additional condition for non-restricting hypothesis
what about non-blocking hypothesis?
➜ we need a more involved construction with information on P

(projection of the region automaton of P ‖ UΓ onto observable actions and clocks)

Construction of the winning condition: based on the fact that
the set

{γ ∈ Γ∞ | L(P ‖ γ) ∩ L(S) = ∅}
is regular (where Γ is the symbolic alphabet for the controller).

➜ classical untimed game

➜ the problem is 2EXPTIME-complete
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Control synthesis games Partial observability

Resources µ = ({y}, 1, 0).

q0 q1

q3

q2

a, x := 0

x > 0, b

x = 0, b

q0
x =y =0

q1
x =y =0

q1
y >0=x

q3
x >0=y

q3
x, y >0

q2
x =y =0

q2 q3
x =y =0 x >0=y

q2 q3
y >0=x x, y >0

y = 0, a

y > 0, a

y := 0

y := 0

y > 0, b

y = 0, b

y > 0, b

y := 0

y := 0

y := 0

Spring School GAMES Synthesis of Timed Systems 62 / 80



Control synthesis games Partial observability

Resources µ = ({y}, 1, 0).

q0 q1

q3

q2

a, x := 0

x > 0, b

x = 0, b

q0
x =y =0

q1
x =y =0

q1
y >0=x

q3
x >0=y

q3
x, y >0

q2
x =y =0

q2 q3
x =y =0 x >0=y

q2 q3
y >0=x x, y >0

ε

ε

if a is non-observable
y > 0, b

y = 0, b

y > 0, b

y := 0

y := 0

y := 0
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Troubles with dense-time control

Outline

1 Preliminaries on timed systems
The model of timed automata
The region abstraction
Everything is not that nice!
Symbolic manipulation of timed automata

2 On the semantics of timed games

3 Control synthesis games
Framework of these games
Simple control objectives
Control for external specifications
Partial observability

4 Troubles with dense-time control
Sampling time control
Implementability of controllers

5 Conclusion and current developments
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Troubles with dense-time control Sampling time control

Zenoness...

is often avoided (by assuming the plant is strictly non-zeno)
[AMPS98,...]

is incorporated in the winning condition [dAFH+03]

Is that sufficient?
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Troubles with dense-time control Sampling time control

Problems with dense-time control

x :=]0, 1[
y := 0

�0

[x ≤ 2]

�1

�2

Bad
x = 1 x := 0

a

y = 1
z := 0

b
z > 0
y := 0

c

u; x > 1

u
x > 1
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Problems with dense-time control

x :=]0, 1[
y := 0

�0

[x ≤ 2∧x ≤ 1]

�1

[y ≤ 1]

�2

[x ≤ 1]

Bad
x = 1 x := 0

a

y = 1
z := 0

b
z > 0
y := 0

c

u; x > 1

u
x > 1
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Problems with dense-time control

x :=]0, 1[
y := 0

�0

[x ≤ 2∧x ≤ 1]

�1

[y ≤ 1]

�2

[x ≤ 1]

Bad
x = 1 x := 0

a

y = 1
z := 0

b
z > 0
y := 0

c

u; x > 1

u
x > 1

δi : time in �2 during loop i
The controller must ensure:

∑i=+∞
i=1 δi < 1 − x0
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Troubles with dense-time control Sampling time control

Problems with dense-time control

x :=]0, 1[
y := 0

�0

[x ≤ 2∧x ≤ 1]

�1

[y ≤ 1]

�2

[x ≤ 1]

Bad
x = 1 x := 0

a

y = 1
z := 0

b
z > 0
y := 0

c

u; x > 1

u
x > 1

δi : time in �2 during loop i
The controller must ensure:

∑i=+∞
i=1 δi < 1 − x0

This is impossible with a sampling-time controller, no matter how fast it is!
[Cassez, Henzinger, Raskin 2002]
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Troubles with dense-time control Sampling time control

Sampling-time control

[Cassez, Henzinger, Raskin 2002]

system (within environment) evolves continuously with time
controller can enforce controllable actions only at discrete dates
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Troubles with dense-time control Sampling time control

Sampling-time control

[Cassez, Henzinger, Raskin 2002]

system (within environment) evolves continuously with time
controller can enforce controllable actions only at discrete dates

Question: is there a sampling rate sufficient for controlling the system?

Theorem
Unknown sampling rate safety control is undecidable.

➜ reduction of the halting problem for a two-counter machine.
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Troubles with dense-time control Sampling time control

Idea: if n is the length of a halting computation for the machine, then 1
n

will be a sampling rate for the control problem

Encoding of the value of a counter:

y x

0 1

The value of counter c is:
(x − y).n
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Troubles with dense-time control Sampling time control

Idea: if n is the length of a halting computation for the machine, then 1
n

will be a sampling rate for the control problem

Encoding of the value of a counter:

y x

y x

y x

x y

0 1

The value of counter c is:
(x − y).n if x ≥ y
[1 − (y − x)].n if y > x
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Troubles with dense-time control Sampling time control

Idea: if n is the length of a halting computation for the machine, then 1
n

will be a sampling rate for the control problem

Encoding of the value of a counter:

y x Normal form

y x

y x

x y

x y

0 1

The value of counter c is:
(x − y).n if x ≥ y
[1 − (y − x)].n if y > x
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Troubles with dense-time control Sampling time control

Zero testing widget

x < 1, y < 1

x = 1, y = 1
x := 0, y := 0
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Troubles with dense-time control Sampling time control

Zero testing widget

x < 1, y < 1

x = 1, y = 1
x := 0, y := 0

Idling widget
x = 1, y < 1

x := 0

x < 1, y = 1
y := 0

x = 1, y = 1
x , y := 0
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Troubles with dense-time control Sampling time control

Normalization and incrementation widget

x < 1, y < 1

x = 1, y < 1; x := 0

y < 1

y = 1; y := 0

x < 1, y = 1; y := 0

x = 1, y = 1; x , y := 0

x > 1

x ≤ 1; y := 0
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Troubles with dense-time control Sampling time control

Normalization and incrementation widget

x < 1, y < 1

x = 1, y < 1; x := 0

y < 1

y = 1; y := 0

x < 1, y = 1; y := 0

x = 1, y = 1; x , y := 0

x > 1

x ≤ 1; y := 0

The two-counter machine has an halting computation
iff

there is a sampled time controller for the above systems
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Troubles with dense-time control Implementability of controllers

Notion of implementability

[De Wulf, Doyen, Raskin 2004]

An implementable controller C
has finite precision (digital clock)
may delay responses and communications
(relaxes synchrony hypothesis)
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[De Wulf, Doyen, Raskin 2004]

An implementable controller C
has finite precision (digital clock)
may delay responses and communications
(relaxes synchrony hypothesis)

➜ defines a TTS �C�∆ (where ∆ is a parameter)

Proposition

If ∆1 ≥ ∆2 and �C�∆1 controls P to avoid bad states, then �C�∆2

controls P to avoid bad states.
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Troubles with dense-time control Implementability of controllers

Notion of implementability

[De Wulf, Doyen, Raskin 2004]

An implementable controller C
has finite precision (digital clock)
may delay responses and communications
(relaxes synchrony hypothesis)

➜ defines a TTS �C�∆ (where ∆ is a parameter)

Proposition

If ∆1 ≥ ∆2 and �C�∆1 controls P to avoid bad states, then �C�∆2

controls P to avoid bad states.

Proposition

If �C�∆ controls P, then C can be implemented on a sufficiently fast
hardware.

➜ it is sufficient to study the ∆-enlarged semantics
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Troubles with dense-time control Implementability of controllers

An example: standard semantics

[De Wulf, Doyen, Markey, Raskin 2004]

0
x

y

1

1

2

2

b ca
x=1

y :=0

x≤2

x :=0

y :=0

y≥2
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Troubles with dense-time control Implementability of controllers

An example with ∆ > 0

[De Wulf, Doyen, Markey, Raskin 2004]

0
x

y

1

1

2

2

b ca
x∈[1−∆;1+∆]

y :=0

x≤2+∆

x :=0

y :=0

y≥2−∆
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An example with ∆ > 0

[De Wulf, Doyen, Markey, Raskin 2004]
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Troubles with dense-time control Implementability of controllers

An example with ∆ > 0

[De Wulf, Doyen, Markey, Raskin 2004]

0
x

y

1

1

2

2

2+2∆ b ca
x∈[1−∆;1+∆]

y :=0

x≤2+∆

x :=0

y :=0

y≥2−∆
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Troubles with dense-time control Implementability of controllers

An example with ∆ > 0

[De Wulf, Doyen, Markey, Raskin 2004]

0
x

y

1

1

2

2

1−3∆

b ca
x∈[1−∆;1+∆]

y :=0

x≤2+∆

x :=0

y :=0

y≥2−∆
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Troubles with dense-time control Implementability of controllers

An example with ∆ > 0

[De Wulf, Doyen, Markey, Raskin 2004]

0
x

y

1

1

2

2
2+4∆

b ca
x∈[1−∆;1+∆]

y :=0

x≤2+∆

x :=0

y :=0

y≥2−∆
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Troubles with dense-time control Implementability of controllers

An example with ∆ > 0

[De Wulf, Doyen, Markey, Raskin 2004]

0
x

y

1

1

2

2

1−5∆
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y :=0
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Troubles with dense-time control Implementability of controllers

An example with ∆ > 0

[De Wulf, Doyen, Markey, Raskin 2004]

0
x

y

1

1

2

2

2+6∆
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x∈[1−∆;1+∆]

y :=0

x≤2+∆

x :=0

y :=0

y≥2−∆
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0
x

y

1

1

2

2

b ca
x∈[1−∆;1+∆]

y :=0

x≤2+∆

x :=0

y :=0

y≥2−∆
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Troubles with dense-time control Implementability of controllers

An example with ∆ very small

[De Wulf, Doyen, Markey, Raskin 2004]
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x

y
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1

2

2

b ca
x∈[1−∆;1+∆]

y :=0

x≤2+∆

x :=0

y :=0

y≥2−∆
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Troubles with dense-time control Implementability of controllers

An example with ∆ very small

[De Wulf, Doyen, Markey, Raskin 2004]
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1
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x∈[1−∆;1+∆]

y :=0
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x :=0

y :=0
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Troubles with dense-time control Implementability of controllers

An example with ∆ very small

[De Wulf, Doyen, Markey, Raskin 2004]

0
x

y

1

1

2

2

1−∆1+∆

b ca
x∈[1−∆;1+∆]

y :=0

x≤2+∆

x :=0

y :=0

y≥2−∆
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Troubles with dense-time control Implementability of controllers

An example with ∆ very small

[De Wulf, Doyen, Markey, Raskin 2004]
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1−∆1+∆

b ca
x∈[1−∆;1+∆]

y :=0
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x :=0

y :=0
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Troubles with dense-time control Implementability of controllers

An example with ∆ very small

[De Wulf, Doyen, Markey, Raskin 2004]

0
x

y

1

1

2

2

2+2∆

b ca
x∈[1−∆;1+∆]

y :=0

x≤2+∆

x :=0

y :=0

y≥2−∆
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Troubles with dense-time control Implementability of controllers

An example with ∆ very small

[De Wulf, Doyen, Markey, Raskin 2004]
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2+2∆

b ca
x∈[1−∆;1+∆]

y :=0

x≤2+∆

x :=0

y :=0

y≥2−∆
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Troubles with dense-time control Implementability of controllers

An example with ∆ very small

[De Wulf, Doyen, Markey, Raskin 2004]

0
x

y

1

1

2

2

1−3∆

b ca
x∈[1−∆;1+∆]

y :=0

x≤2+∆

x :=0

y :=0

y≥2−∆
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Troubles with dense-time control Implementability of controllers

An example with ∆ very small

[De Wulf, Doyen, Markey, Raskin 2004]
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1
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2

1−3∆

b ca
x∈[1−∆;1+∆]

y :=0

x≤2+∆

x :=0

y :=0

y≥2−∆
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Troubles with dense-time control Implementability of controllers

An example with ∆ very small

[De Wulf, Doyen, Markey, Raskin 2004]

0
x

y

1

1

2

2

2+4∆

b ca
x∈[1−∆;1+∆]

y :=0

x≤2+∆

x :=0

y :=0

y≥2−∆
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Troubles with dense-time control Implementability of controllers

An example with ∆ very small

[De Wulf, Doyen, Markey, Raskin 2004]
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2+4∆

b ca
x∈[1−∆;1+∆]

y :=0

x≤2+∆

x :=0

y :=0

y≥2−∆
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Troubles with dense-time control Implementability of controllers

An example with ∆ very small

[De Wulf, Doyen, Markey, Raskin 2004]
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1

2

2

1−5∆

b ca
x∈[1−∆;1+∆]

y :=0

x≤2+∆

x :=0

y :=0

y≥2−∆
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An example with ∆ very small

[De Wulf, Doyen, Markey, Raskin 2004]
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x :=0

y :=0

y≥2−∆
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Troubles with dense-time control Implementability of controllers

An example with ∆ very small

[De Wulf, Doyen, Markey, Raskin 2004]
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An example with ∆ very small

[De Wulf, Doyen, Markey, Raskin 2004]
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Troubles with dense-time control Implementability of controllers

An example with ∆ very small

[De Wulf, Doyen, Markey, Raskin 2004]

0
x

y

1

1

2

2

b ca
x∈[1−∆;1+∆]

y :=0

x≤2+∆

x :=0

y :=0

y≥2−∆
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Troubles with dense-time control Implementability of controllers

Deciding implementability

[De Wulf, Doyen, Markey, Raskin 2004]

Implementability problem: given a timed automaton A and a set of
bad states “Bad”, does there exists ∆ > 0 such that

�A∆� ∩ Bad = ∅

Theorem
Implementability is decidable for timed automata.

(Using an extension of region automaton construction)
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Conclusion and current developments

Outline

1 Preliminaries on timed systems
The model of timed automata
The region abstraction
Everything is not that nice!
Symbolic manipulation of timed automata

2 On the semantics of timed games

3 Control synthesis games
Framework of these games
Simple control objectives
Control for external specifications
Partial observability

4 Troubles with dense-time control
Sampling time control
Implementability of controllers

5 Conclusion and current developments
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Conclusion & current developments

Conclusion
Much literature about timed control/games these last ten years
Structural properties of winning strategies highly depend on
semantics which is chosen
We have presented here “control timed games”, a framework suitable
to model open systems, and several (un)decidability results

Spring School GAMES Synthesis of Timed Systems 76 / 80
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Conclusion & current developments

Conclusion
Much literature about timed control/games these last ten years
Structural properties of winning strategies highly depend on
semantics which is chosen
We have presented here “control timed games”, a framework suitable
to model open systems, and several (un)decidability results

Current developments
Synthesis of optimal controllers

time-optimal controllers [Asarin, Maler 1999]

cost-optimal controllers (see after)

Synthesis of implementable controllers
Better understand partial observability

Concentrate on fault diagnosis
Link with testing
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Conclusion and current developments

Synthesis of optimal controllers [LMM02,ABM04,BCFL04,BCFL05]

�0

cost(�0) = 5

�1

[y = 0]

�2

cost(�2) = 10

�3

cost(�3) = 1

W
x ≤ 2; c1; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2; cost = 7

ci : controllable action
u: uncontrollable action

Question: what is the optimal price we can ensure in state �0?
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Conclusion and current developments

Synthesis of optimal controllers [LMM02,ABM04,BCFL04,BCFL05]

�0

cost(�0) = 5

�1

[y = 0]

�2

cost(�2) = 10

�3

cost(�3) = 1

W
x ≤ 2; c1; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2; cost = 7

ci : controllable action
u: uncontrollable action

Question: what is the optimal price we can ensure in state �0?

5t + 10(2 − t) + 1
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Conclusion and current developments

Synthesis of optimal controllers [LMM02,ABM04,BCFL04,BCFL05]

�0

cost(�0) = 5

�1

[y = 0]

�2

cost(�2) = 10

�3

cost(�3) = 1

W
x ≤ 2; c1; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2; cost = 7

ci : controllable action
u: uncontrollable action

Question: what is the optimal price we can ensure in state �0?

5t + 10(2 − t) + 1 , 5t + (2 − t) + 7
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Conclusion and current developments

Synthesis of optimal controllers [LMM02,ABM04,BCFL04,BCFL05]

�0

cost(�0) = 5

�1

[y = 0]

�2

cost(�2) = 10

�3

cost(�3) = 1

W
x ≤ 2; c1; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2; cost = 7

ci : controllable action
u: uncontrollable action

Question: what is the optimal price we can ensure in state �0?

max ( 5t + 10(2 − t) + 1 , 5t + (2 − t) + 7 )
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Conclusion and current developments

Synthesis of optimal controllers [LMM02,ABM04,BCFL04,BCFL05]

�0

cost(�0) = 5

�1

[y = 0]

�2

cost(�2) = 10

�3

cost(�3) = 1

W
x ≤ 2; c1; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2; cost = 7

ci : controllable action
u: uncontrollable action

Question: what is the optimal price we can ensure in state �0?

inf
0≤t≤2

max ( 5t + 10(2 − t) + 1 , 5t + (2 − t) + 7 ) = 14 +
1
3
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Conclusion and current developments

Synthesis of optimal controllers [LMM02,ABM04,BCFL04,BCFL05]

�0

cost(�0) = 5

�1

[y = 0]

�2

cost(�2) = 10

�3

cost(�3) = 1

W
x ≤ 2; c1; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2; cost = 7

ci : controllable action
u: uncontrollable action

Question: what is the optimal price we can ensure in state �0?

inf
0≤t≤2

max ( 5t + 10(2 − t) + 1 , 5t + (2 − t) + 7 ) = 14 +
1
3

➜ strategy: wait in �0, and when t = 4
3 , go to �1
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Conclusion and current developments

Synthesis of optimal controllers [LMM02,ABM04,BCFL04,BCFL05]

�0

cost(�0) = 5

�1

[y = 0]

�2

cost(�2) = 10

�3

cost(�3) = 1

W
x ≤ 2; c1; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2; cost = 7

ci : controllable action
u: uncontrollable action

Question: what is the optimal price we can ensure in state �0?

inf
0≤t≤2

max ( 5t + 10(2 − t) + 1 , 5t + (2 − t) + 7 ) = 14 +
1
3

➜ strategy: wait in �0, and when t = 4
3 , go to �1

region partitioning is not sufficient
optimal winning strategies may need memory
computability with no assumption on cost is an open problem
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