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Timed Automata
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[AD94] Alur, Dill: A Theory of Timed Automata (TCS)

[AD90,AD94]



2

‣ Infinitely many configurations! 

‣ Decidability proven using regions 

‣ Reachability is PSPACE-complete
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Zones and DBMs

Enumerative approach: not possible 
Region construction: not feasible in general 

Alternative: zone-based symbolic computation
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‣ Zone = symbolic representation
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‣ DBM = data structure

Zones and DBMs
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Region construction: not feasible in general 
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‣ Zone = symbolic representation

‣ DBM = data structure

Zones and DBMs

Enumerative approach: not possible 
Region construction: not feasible in general 

Alternative: zone-based symbolic computation

Z = (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)
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Operations on zones
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Operations on zones
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If  is a zone, then  is a zoneZ Z′ = [Y](Z ∩ g)

The computation can be 
made in 𝒪( |X |2 ⋅ |g | )
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‣ Initialize  with  

‣ Repeat until saturation: 

• If , then add  to , 
where  is the successor via  
unless there is  s.t. 

𝒮 (q0, 0 )

(q, Z) ∈ 𝒮 (q′ , Z′ ) 𝒮
Z′ = [Y ](Z ∩ g) q g,Y q′ 

(q′ , Z′ ′ ) ∈ 𝒮 Z′ ⊆ Z′ ′ 

6

Standard forward 
computation
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The computation does not terminate in general
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Two approaches

‣ Extrapolation 

‣ Simulation
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The extrapolation approach
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‣ Initialize  with  

‣ Repeat until saturation: 

• If , then add  to , 
where  is the successor via  
unless there is  s.t. 

𝒮 (q0, 0 )

(q, Z) ∈ 𝒮 (q′ , extra(Z′ )) 𝒮
Z′ = [Y ](Z ∩ g) q g,Y q′ 

(q′ , Z′ ′ ) ∈ 𝒮 extra(Z′ ) ⊆ Z′ ′ 

The extrapolation approach

Operator  defined s.t.extra

‣Termination is ensured (  has finite range) 
‣Completeness is obvious 
‣Soundness is challenging

extra

Inclusion can be decided 
in 𝒪( |X |2 )

NF after extrapolation can 
be computed in 𝒪( |X |3 )
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Extrapolation

Remove « irrelevant » 
constants w.r.t. the automaton 

 syntactic on the DBM⇝
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Extrapolation
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Extrapolation

Remove « irrelevant » 
constants w.r.t. the automaton 

 syntactic on the DBM⇝

‣ Extrapolation [DT98,Bou03,Bou04] 
‣ State-dependent extrapolation [BBFL03] 
‣ LU-extrapolation [BBLP04,BBLP06]

➡ Soundness requires to show that  is a simulation-based 
abstraction: 

extra
∀v′ ∈ extra(Z) ∃v ∈ Z s.t. v′ ⪯ v

[DT98] Daws, Tripakis: Model-checking of real-time reachability properties using abstractions (TACAS’98)  
[Bou03] Bouyer: Untameable timed automata! (STACS’03) 
[Bou04] Bouyer: Forward analysis of updatable timed automata (FMSD) 
[BBFL03] Behrmann, Bouyer, Fleury, Larsen: Static guard analysis in timed automata verification (TACAS’03) 
[BBLP04] Behrmann, Bouyer, Larsen, Pelánek: Lower and upper bounds in zone based abstractions of timed automata (TACAS’04) 
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek: Zone-based abstractions for timed automata exploiting lower and upper bounds (STTT) 

Standard (resp. 
LU-)extrapolation is sound 

thanks to the region equivalence 
(resp. LU-simulation)
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Limits of the extrapolation 
approach

[Bou03] Bouyer: Untameable timed automata! (STACS’03) 
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek: Zone-based abstractions for timed automata exploiting lower and upper bounds (STTT) 
[HKSW11] Herbreteau, Kini, Srivathsan, Walukiewicz: Using non-convex approximations for efficient analysis of timed automata (FSTTCS’11)
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Limits of the extrapolation 
approach

➡ The extrapolation is required to transform a zone into a zone
➡ It does not benefit from the coarsest abstractions of zones [HKSW11]

• The region closure would in principle be sound, but it is not convex
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Limits of the extrapolation 
approach

➡ The extrapolation is required to transform a zone into a zone
➡ It does not benefit from the coarsest abstractions of zones [HKSW11]

• The region closure would in principle be sound, but it is not convex

• The LU-abstraction  
would in principle be sound [BBLP06], but it is not convex

𝔞LU(Z) = {v′ ∣ ∃v ∈ Z s.t. v′ ⪯LU v}

➡ The approach does not apply to timed automata with diagonal 
constraints [Bou03]

[Bou03] Bouyer: Untameable timed automata! (STACS’03) 
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek: Zone-based abstractions for timed automata exploiting lower and upper bounds (STTT) 
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x2 > x1 + 2
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[Bou03] Bouyer. Untameable timed automata! (STACS’03). 
[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).
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Zα := (1 ≤ x2 − x1 ≤ 3) ∧ (1 ≤ x4 − x3 ≤ 3) ∧ (x4 − x2 = x3 − x1 = 2α + 5)
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x1 := 0

x2 = 2 x2 := 0

x2 = 2
x2 := 0

x1 = 3
x1 := 0

x2 > x1 + 2
x4 < x3 + 2

[Bou03] Bouyer. Untameable timed automata! (STACS’03). 
[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).

After  loops, the zone which is reached at  isα q6

Zα := (1 ≤ x2 − x1 ≤ 3) ∧ (1 ≤ x4 − x3 ≤ 3) ∧ (x4 − x2 = x3 − x1 = 2α + 5)

‣There is no extrapolation, which preserves zones, which is sound and 
finite for this timed automaton with diagonal constraints.
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The simulation approach
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‣ Initialize  with  

‣ Repeat until saturation: 

• If , then add  to , 
where  is the successor via  
unless there is  s.t. 
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Properties

‣Termination is ensured if we require  has a finite-chain property 
‣Soundness is obvious 
‣Completeness relies on a simulation property for 

⪯

⪯

Inclusion « up-
to » simulation

Should be 
computationally 

efficient!
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Simulation ⪯

δ

If      (q, v1) ⪯ (q, v2)

(q, v1 + δ)
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Simulation ⪯

t

(q′ , v′ 1) ⪯ (q′ , v′ 2)then

δ

(q, v1 + δ) ⪯ (q, v2 + δ)then

δ

If      (q, v1) ⪯ (q, v2)

(q, v1 + δ)

t

If      (q, v1) ⪯ (q, v2)

(q′ , v′ 1)

Inclusion « up-to » simulation

  iff  ,  s.t. (q, Z1) ⪯ (q, Z2) ∀v1 ∈ Z1 ∃v2 ∈ Z2 (q, v1) ⪯ (q, v2)

‣ Note:      iff    
                                                   iff   

(q, Z1) ⪯ (q, Z2) Z1 ⊆ Closure⪯(Z2)
Closure⪯(Z1) ⊆ Closure⪯(Z2)
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‣ The region equivalence [HKSW11]

‣ The LU-simulation [HSW12]

‣ The -simulation [GMS18,GMS19,GMS20]𝒢
• It is coarser than the LU-simulation for diagonal-free automata
• It is correct for timed automata with diagonal constraints!
• Adapts to (« decidable ») automata 

with updates

And concretely?

[HKSW11] Herbreteau, Kini, Srivathsan, Walukiewicz: Using non-convex approximations for efficient analysis of timed automata (FSTTCS’11) 
[HSW12] Herbreteau, Srivathsan, Walukiewicz: Better Abstractions for Timed Automata (LICS’12) 
[GMS18] Gastin, Mukherjee, Srivathsan: Reachability in Timed Automata with Diagonal Constraints (CONCUR’18) 
[GMS19] Gastin, Mukherjee, Srivathsan: Fast Algorithms for Handling Diagonal Constraints in Timed Automata (CAV’19) 
[GMS20] Gastin, Mukherjee, Srivathsan: Reachability for Updatable Timed Automata Made Faster and More Effective (FSTTCS’20)

The corresponding 
inclusion « up-to » 

is NP-complete

It has the finite-
chain property

The corresponding 
inclusion « up-to » can be 

decided in 𝒪( |X |2 )
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Constraints relevant at : q 𝒢(q)

q2

q

q1

g2 , Y2

g1, Y1

{{g1, g2} ⊆ 𝒢(q)
pre(𝒢(qi), Yi) ⊆ 𝒢(q)

 

pre(x ⋈ c, Y ) = {{x ⋈ c} if x ∉ Y
∅ if x ∈ Y

pre(x − y ⋈ c, Y ) =

{x − y ⋈ c}if x, y ∉ Y
{x ⋈ c} if x ∉ Y, y ∈ Y
{−y ⋈ c} if x ∈ Y, y ∉ Y
∅ if x, y ∈ Y

‣ Fixpoint computation terminates for timed automata; it also terminates for 
known decidable classes of updatable timed automata
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‣ We say that  whenever for every , for every 
,  implies 

(q, v) ⪯𝒢 (q, v′ ) φ ∈ 𝒢
δ ≥ 0 v + δ ⊧ φ v′ + δ ⊧ φ

The -simulation𝒢

Let  be the previous mapping𝒢

‣  is a simulation relation 
‣ It satisfies the finite-chain property on zones

⪯𝒢

Theorem
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An example

q0 q1 q2 q3

q4q5q6q7

x3 ≤ 3 x2 = 3
x2 := 0x1, x3 := 0

x1 = 2 x1 := 0

x1 = 2
x1 := 0

x2 = 2 x2 := 0

x2 = 2
x2 := 0

x1 = 3
x1 := 0

x2 > x1 + 2
x4 < x3 + 2

{x3 ≤ 3,x2 = 3,x4 < 2} {x1 = 1,x2 = 3,x4 < x3 + 2}

{x1 = 2,x2 = 2,x4 < x3 + 2}

{x1 = 2,x2 = 2,x4 < x3 + 2}

{x2 = 2,x1 = 3,x4 < x3 + 2}

{x1 = 3,x2 > 2,x4 < x3 + 2}

{x2 > x1 + 2,x4 < x3 + 2} is not reachableq7
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An example

‣On this automaton, any extrapolation-based method fails [Bou04] 

‣The -simulation approach terminates at the second iteration⪯𝒢

q0 q1 q2 q3

q4q5q6q7
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‣ Liveness properties [HSWT16,HSWT20]

‣ Weighted timed automata [BCM16]

‣ Pushdown timed automata [AGP21] 
(talk of Akshay at SNR)

‣ Event-clock automata [AGGS22]

Going further

[BCM16] Bouyer, Colange, Markey: Symbolic Optimal Reachability in Weighted Timed Automata (CAV'16) 
[HSTW20] Herbreteau, Srivathsan, Tran, Walukiewicz: Why Liveness for Timed Automata Is Hard, and What We Can Do About It (ACM Trans. 
Comput. Log) 
[AGP21] Akshay, Gastin, Prakash: Fast Zone-Based Algorithms for Reachability in Pushdown Timed Automata (CAV’21) 
[AGGS22] Akshay, Gastin, Govind, Srivathsan: Simulations for Event-Clock Automata (CONCUR’22)
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Tools

• Uppaal https://uppaal.org 

• Tchecker https://github.com/ticktac-project/tchecker 
• Red https://sites.google.com/site/redlibtw/ 
• Pat https://pat.comp.nus.edu.sg 
• Rabbit https://www.sosy-lab.org/people/beyer/Rabbit/ 
• MCTA http://gki.informatik.uni-freiburg.de/tools/mcta/ 
• …
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‣ Developed since 1995 

‣ Successfully used in the industry, with many case studies 

‣ Many extensions:  
• games, weighted timed automata, testing, statistical 

model-checking, … 

‣ Implements extrapolation-based algorithms

Tool UPPAAL
https://uppaal.org
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‣ Developed since a couple of years, under development 

‣ Fully open-source verification tool for timed automata 

‣ Implements extrapolation and simulation-based algorithms 

‣ Made also as a framework to develop new verification 
algorithms or data structures

Tool TChecker
https://github.com/ticktac-project/tchecker
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Conclusion
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‣ Much algorithmic effort has been made to reduce the impact of the 
timing aspects (reduce the number of zones to visit) 
• Need to push the ideas to larger classes of models 
• In each case, one of the the difficulties lies in the proof of efficiency of 

inclusion « up-to »
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‣ Much algorithmic effort has been made to reduce the impact of the 
timing aspects (reduce the number of zones to visit) 
• Need to push the ideas to larger classes of models 
• In each case, one of the the difficulties lies in the proof of efficiency of 

inclusion « up-to »

‣ A major bottleneck: the state explosion due to control states 
• Use of BDD/SAT technics, bounded model-checking, … 

 No technics overwrites the other, they are useful and 
complementary 

• Local-time semantics + POR (talk of Sri at SNR) [GHSW22]

→

What next?

[GHSW22] Govind, Herbreteau, Srivathsan, Walukiewicz: Abstractions for the local-time semantics of timed automata: a foundation 
for partial-order methods (LICS’22)



26

‣ Domain-specific algorithms: 
• Funnel automata for robotic systems [BMPS15,BMPS17]

What next?

[BMPS15] Bouyer, Markey, Perrin, Schlehuber-Caissier:Timed-Automata Abstraction of Switched Dynamical Systems Using Control 
Funnels (FORMATS’15) 
[BMPS17] Bouyer, Markey, Perrin, Schlehuber-Caissier:Timed-automata abstraction of switched dynamical systems using control 
invariants (Real Time Syst.)
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Thank you for 
your attention!


