
1

Zone-based verification of timed
automata: Extrapolations,

simulations and what next?

Patricia Bouyer

Laboratoire Méthodes Formelles
Université Paris-Saclay, CNRS, ENS Paris-Saclay

France

Based on a survey paper written with Paul Gastin,
Frédéric Herbreteau, Ocan Sankur and B. Srivathsan

Partly supported by ANR projet Ticktac

2

Timed Automata

q1 q2 q3 q4

x ≤ 2
a

y ≥ 1

b, x := 0

y ≤ 3,x ≥ 1
c

[AD90] Alur, Dill: Automata For Modeling Real-Time Systems (ICALP’90)
[AD94] Alur, Dill: A Theory of Timed Automata (TCS)

[AD90,AD94]

2

‣ Infinitely many configurations!

‣ Decidability proven using regions

‣ Reachability is PSPACE-complete

Timed Automata

q1 q2 q3 q4

x ≤ 2
a

y ≥ 1

b, x := 0

y ≤ 3,x ≥ 1
c

[AD90] Alur, Dill: Automata For Modeling Real-Time Systems (ICALP’90)
[AD94] Alur, Dill: A Theory of Timed Automata (TCS)

[AD90,AD94]

3

Zones and DBMs

Enumerative approach: not possible
Region construction: not feasible in general

Alternative: zone-based symbolic computation

3

‣ Zone = symbolic representation

Zones and DBMs

Enumerative approach: not possible
Region construction: not feasible in general

Alternative: zone-based symbolic computation

Z = (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

+∞ −3 0
+∞ +∞ 4

5 +∞ +∞

3

‣ Zone = symbolic representation

‣ DBM = data structure

Zones and DBMs

Enumerative approach: not possible
Region construction: not feasible in general

Alternative: zone-based symbolic computation

Z = (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x0 x1 x2
x0
x1
x2

+∞ −3 0
+∞ +∞ 4

5 +∞ +∞

3

‣ Zone = symbolic representation

‣ DBM = data structure

Zones and DBMs

Enumerative approach: not possible
Region construction: not feasible in general

Alternative: zone-based symbolic computation

Z = (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x0 x1 x2
x0
x1
x2

x1 − x2 = 4

0 1 2 3 4 5 6 7 8 9 x1

1
2
3
4
5

x2

+∞ −3 0
+∞ +∞ 4

5 +∞ +∞

3

‣ Zone = symbolic representation

‣ DBM = data structure

Zones and DBMs

Enumerative approach: not possible
Region construction: not feasible in general

Alternative: zone-based symbolic computation

Z = (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x0 x1 x2
x0
x1
x2 x0

x1 x2
+4

+5−3
0

+∞ −3 0
+∞ +∞ 4

5 +∞ +∞

3

‣ Zone = symbolic representation

‣ DBM = data structure

Zones and DBMs

Enumerative approach: not possible
Region construction: not feasible in general

Alternative: zone-based symbolic computation

Z = (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x0 x1 x2
x0
x1
x2 x0

x1 x2

4

5−3

0 0

0
2
9

0

+∞ −3 0
+∞ +∞ 4

5 +∞ +∞

3

‣ Zone = symbolic representation

‣ DBM = data structure

Zones and DBMs

Enumerative approach: not possible
Region construction: not feasible in general

Alternative: zone-based symbolic computation

Z = (x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x0 x1 x2
x0
x1
x2

0

0
4

2
9

Normal form
x0

x1 x2

4

5−3

0 0

0
2
9

0

0

4

Operations on zones

0 −3 0
9 0 4
5 2 0

x0 x1 x2
x0
x1
x2

⇝

0 1 2 3 4 5 6 7 8 9 x1

1
2
3
4
5

x2

Z

Z
0 −3 0

+∞ 0 4
+∞ 2 0

x0 x1 x2
x0
x1
x2 +∞

+∞

4

Operations on zones

0 −3 0
9 0 4
5 2 0

x0 x1 x2
x0
x1
x2

⇝

0 1 2 3 4 5 6 7 8 9 x1

1
2
3
4
5

x2

Z

g

0 −3 0
9 0 4
5 2 0

x0 x1 x2
x0
x1
x2

⇝

0 1 2 3 4 5 6 7 8 9 x1

1
2
3
4
5

x2

Z

Z
0 −3 0

+∞ 0 4
+∞ 2 0

x0 x1 x2
x0
x1
x2 +∞

+∞

0 −3 0
5 0 4
2 −1 0

x0 x1 x2
x0
x1
x2

5
2 −1

5

Operations on zones

0 −3 0
9 0 4
5 2 0

x0 x1 x2
x0
x1
x2

⇝

0 1 2 3 4 5 6 7 8 9 x1

1
2
3
4
5

x2

Z

[x2]Z

0 −3 0
9 0 9
0 −3 0

x0 x1 x2
x0
x1
x2 −30

9

5

Operations on zones

0 −3 0
9 0 4
5 2 0

x0 x1 x2
x0
x1
x2

⇝

0 1 2 3 4 5 6 7 8 9 x1

1
2
3
4
5

x2

Z

[x2]Z

If is a zone, then is a zoneZ Z′ = [Y](Z ∩ g)

The computation can be
made in 𝒪(|X |2 ⋅ |g |)

0 −3 0
9 0 9
0 −3 0

x0 x1 x2
x0
x1
x2 −30

9

‣ Initialize with

‣ Repeat until saturation:

• If , then add to ,
where is the successor via
unless there is s.t.

𝒮 (q0, 0)

(q, Z) ∈ 𝒮 (q′ , Z′) 𝒮
Z′ = [Y](Z ∩ g) q g,Y q′

(q′ , Z′ ′) ∈ 𝒮 Z′ ⊆ Z′ ′

6

Standard forward
computation

Inclusion test
Can be made in 𝒪(|X |2)

‣ Initialize with

‣ Repeat until saturation:

• If , then add to ,
where is the successor via
unless there is s.t.

𝒮 (q0, 0)

(q, Z) ∈ 𝒮 (q′ , Z′) 𝒮
Z′ = [Y](Z ∩ g) q g,Y q′

(q′ , Z′ ′) ∈ 𝒮 Z′ ⊆ Z′ ′

6

Standard forward
computation

Inclusion test
Can be made in 𝒪(|X |2)

‣ Initialize with

‣ Repeat until saturation:

• If , then add to ,
where is the successor via
unless there is s.t.

𝒮 (q0, 0)

(q, Z) ∈ 𝒮 (q′ , Z′) 𝒮
Z′ = [Y](Z ∩ g) q g,Y q′

(q′ , Z′ ′) ∈ 𝒮 Z′ ⊆ Z′ ′

Three properties

‣ Soundness: for every , there is s.t. reachable(q, Z) ∈ 𝒮 v ∈ Z (q, v)

6

Standard forward
computation

Inclusion test
Can be made in 𝒪(|X |2)

‣ Initialize with

‣ Repeat until saturation:

• If , then add to ,
where is the successor via
unless there is s.t.

𝒮 (q0, 0)

(q, Z) ∈ 𝒮 (q′ , Z′) 𝒮
Z′ = [Y](Z ∩ g) q g,Y q′

(q′ , Z′ ′) ∈ 𝒮 Z′ ⊆ Z′ ′

Three properties

‣ Soundness: for every , there is s.t. reachable(q, Z) ∈ 𝒮 v ∈ Z (q, v)
‣ Completeness: for every reachable , there is s.t. (q, v) (q, Z) ∈ 𝒮 v ∈ Z

6

Standard forward
computation

Inclusion test
Can be made in 𝒪(|X |2)

‣ Initialize with

‣ Repeat until saturation:

• If , then add to ,
where is the successor via
unless there is s.t.

𝒮 (q0, 0)

(q, Z) ∈ 𝒮 (q′ , Z′) 𝒮
Z′ = [Y](Z ∩ g) q g,Y q′

(q′ , Z′ ′) ∈ 𝒮 Z′ ⊆ Z′ ′

Three properties

‣ Soundness: for every , there is s.t. reachable(q, Z) ∈ 𝒮 v ∈ Z (q, v)
‣ Completeness: for every reachable , there is s.t. (q, v) (q, Z) ∈ 𝒮 v ∈ Z
‣ Termination: saturation eventually happens

6

Standard forward
computation

Inclusion test
Can be made in 𝒪(|X |2)

‣ Initialize with

‣ Repeat until saturation:

• If , then add to ,
where is the successor via
unless there is s.t.

𝒮 (q0, 0)

(q, Z) ∈ 𝒮 (q′ , Z′) 𝒮
Z′ = [Y](Z ∩ g) q g,Y q′

(q′ , Z′ ′) ∈ 𝒮 Z′ ⊆ Z′ ′

Three properties

‣ Soundness: for every , there is s.t. reachable(q, Z) ∈ 𝒮 v ∈ Z (q, v)
‣ Completeness: for every reachable , there is s.t. (q, v) (q, Z) ∈ 𝒮 v ∈ Z
‣ Termination: saturation eventually happens

6

Standard forward
computation

The computation does not terminate in general

7

Two approaches

‣ Extrapolation

‣ Simulation

8

The extrapolation approach

9

‣ Initialize with

‣ Repeat until saturation:

• If , then add to ,
where is the successor via
unless there is s.t.

𝒮 (q0, 0)

(q, Z) ∈ 𝒮 (q′ , extra(Z′)) 𝒮
Z′ = [Y](Z ∩ g) q g,Y q′

(q′ , Z′ ′) ∈ 𝒮 extra(Z′) ⊆ Z′ ′

The extrapolation approach

9

‣ Initialize with

‣ Repeat until saturation:

• If , then add to ,
where is the successor via
unless there is s.t.

𝒮 (q0, 0)

(q, Z) ∈ 𝒮 (q′ , extra(Z′)) 𝒮
Z′ = [Y](Z ∩ g) q g,Y q′

(q′ , Z′ ′) ∈ 𝒮 extra(Z′) ⊆ Z′ ′

The extrapolation approach

Inclusion can be decided
in 𝒪(|X |2)

NF after extrapolation can
be computed in 𝒪(|X |3)

9

‣ Initialize with

‣ Repeat until saturation:

• If , then add to ,
where is the successor via
unless there is s.t.

𝒮 (q0, 0)

(q, Z) ∈ 𝒮 (q′ , extra(Z′)) 𝒮
Z′ = [Y](Z ∩ g) q g,Y q′

(q′ , Z′ ′) ∈ 𝒮 extra(Z′) ⊆ Z′ ′

The extrapolation approach

Operator defined s.t.extra

‣Termination is ensured (has finite range)
‣Completeness is obvious
‣Soundness is challenging

extra

Inclusion can be decided
in 𝒪(|X |2)

NF after extrapolation can
be computed in 𝒪(|X |3)

10

Extrapolation

Remove « irrelevant »
constants w.r.t. the automaton

 syntactic on the DBM⇝

0 −3 0
9 0 4
5 2 0

x0 x1 x2

x0
x1
x2

10

Extrapolation

Remove « irrelevant »
constants w.r.t. the automaton

 syntactic on the DBM⇝

0 −3 0
9 0 4
5 2 0

x0 x1 x2

x0
x1
x2

0 0
0
2 0

x0 x1 x2

x0
x1
x2

+∞+∞
+∞

−2
⇝

10

Extrapolation

Remove « irrelevant »
constants w.r.t. the automaton

 syntactic on the DBM⇝

0 1 2 3 4 5 6 7 8 9 x1

1
2
3
4
5

x2

extra2(Z)
Z

10

Extrapolation

Remove « irrelevant »
constants w.r.t. the automaton

 syntactic on the DBM⇝

‣ Extrapolation [DT98,Bou03,Bou04]
‣ State-dependent extrapolation [BBFL03]
‣ LU-extrapolation [BBLP04,BBLP06]

0 1 2 3 4 5 6 7 8 9 x1

1
2
3
4
5

x2

extra2(Z)
Z

10

Extrapolation

Remove « irrelevant »
constants w.r.t. the automaton

 syntactic on the DBM⇝

‣ Extrapolation [DT98,Bou03,Bou04]
‣ State-dependent extrapolation [BBFL03]
‣ LU-extrapolation [BBLP04,BBLP06]

➡ Soundness requires to show that is a simulation-based
abstraction:

extra
∀v′ ∈ extra(Z) ∃v ∈ Z s.t. v′ ⪯ v

0 1 2 3 4 5 6 7 8 9 x1

1
2
3
4
5

x2

extra2(Z)
Z

10

Extrapolation

Remove « irrelevant »
constants w.r.t. the automaton

 syntactic on the DBM⇝

‣ Extrapolation [DT98,Bou03,Bou04]
‣ State-dependent extrapolation [BBFL03]
‣ LU-extrapolation [BBLP04,BBLP06]

➡ Soundness requires to show that is a simulation-based
abstraction:

extra
∀v′ ∈ extra(Z) ∃v ∈ Z s.t. v′ ⪯ v

0 1 2 3 4 5 6 7 8 9 x1

1
2
3
4
5

x2

extra2(Z)
Z

10

Extrapolation

Remove « irrelevant »
constants w.r.t. the automaton

 syntactic on the DBM⇝

‣ Extrapolation [DT98,Bou03,Bou04]
‣ State-dependent extrapolation [BBFL03]
‣ LU-extrapolation [BBLP04,BBLP06]

➡ Soundness requires to show that is a simulation-based
abstraction:

extra
∀v′ ∈ extra(Z) ∃v ∈ Z s.t. v′ ⪯ v

Standard (resp.
LU-)extrapolation is sound

thanks to the region equivalence
(resp. LU-simulation)

0 1 2 3 4 5 6 7 8 9 x1

1
2
3
4
5

x2

extra2(Z)
Z

10

Extrapolation

Remove « irrelevant »
constants w.r.t. the automaton

 syntactic on the DBM⇝

‣ Extrapolation [DT98,Bou03,Bou04]
‣ State-dependent extrapolation [BBFL03]
‣ LU-extrapolation [BBLP04,BBLP06]

➡ Soundness requires to show that is a simulation-based
abstraction:

extra
∀v′ ∈ extra(Z) ∃v ∈ Z s.t. v′ ⪯ v

[DT98] Daws, Tripakis: Model-checking of real-time reachability properties using abstractions (TACAS’98)
[Bou03] Bouyer: Untameable timed automata! (STACS’03)
[Bou04] Bouyer: Forward analysis of updatable timed automata (FMSD)
[BBFL03] Behrmann, Bouyer, Fleury, Larsen: Static guard analysis in timed automata verification (TACAS’03)
[BBLP04] Behrmann, Bouyer, Larsen, Pelánek: Lower and upper bounds in zone based abstractions of timed automata (TACAS’04)
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek: Zone-based abstractions for timed automata exploiting lower and upper bounds (STTT)

Standard (resp.
LU-)extrapolation is sound

thanks to the region equivalence
(resp. LU-simulation)

0 1 2 3 4 5 6 7 8 9 x1

1
2
3
4
5

x2

extra2(Z)
Z

11

Limits of the extrapolation
approach

[Bou03] Bouyer: Untameable timed automata! (STACS’03)
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek: Zone-based abstractions for timed automata exploiting lower and upper bounds (STTT)
[HKSW11] Herbreteau, Kini, Srivathsan, Walukiewicz: Using non-convex approximations for efficient analysis of timed automata (FSTTCS’11)

11

Limits of the extrapolation
approach

➡ The extrapolation is required to transform a zone into a zone

[Bou03] Bouyer: Untameable timed automata! (STACS’03)
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek: Zone-based abstractions for timed automata exploiting lower and upper bounds (STTT)
[HKSW11] Herbreteau, Kini, Srivathsan, Walukiewicz: Using non-convex approximations for efficient analysis of timed automata (FSTTCS’11)

11

Limits of the extrapolation
approach

➡ The extrapolation is required to transform a zone into a zone
➡ It does not benefit from the coarsest abstractions of zones [HKSW11]

• The region closure would in principle be sound, but it is not convex

• The LU-abstraction
would in principle be sound [BBLP06], but it is not convex

𝔞LU(Z) = {v′ ∣ ∃v ∈ Z s.t. v′ ⪯LU v}

[Bou03] Bouyer: Untameable timed automata! (STACS’03)
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek: Zone-based abstractions for timed automata exploiting lower and upper bounds (STTT)
[HKSW11] Herbreteau, Kini, Srivathsan, Walukiewicz: Using non-convex approximations for efficient analysis of timed automata (FSTTCS’11)

11

Limits of the extrapolation
approach

➡ The extrapolation is required to transform a zone into a zone
➡ It does not benefit from the coarsest abstractions of zones [HKSW11]

• The region closure would in principle be sound, but it is not convex

• The LU-abstraction
would in principle be sound [BBLP06], but it is not convex

𝔞LU(Z) = {v′ ∣ ∃v ∈ Z s.t. v′ ⪯LU v}

➡ The approach does not apply to timed automata with diagonal
constraints [Bou03]

[Bou03] Bouyer: Untameable timed automata! (STACS’03)
[BBLP06] Behrmann, Bouyer, Larsen, Pelánek: Zone-based abstractions for timed automata exploiting lower and upper bounds (STTT)
[HKSW11] Herbreteau, Kini, Srivathsan, Walukiewicz: Using non-convex approximations for efficient analysis of timed automata (FSTTCS’11)

12

The buggy automaton

q0 q1 q2 q3

q4q5q6q7

x3 ≤ 3 x2 = 3
x2 := 0x1, x3 := 0

x1 = 2 x1 := 0

x1 = 2
x1 := 0

x2 = 2 x2 := 0

x2 = 2
x2 := 0

x1 = 3
x1 := 0

x2 > x1 + 2
x4 < x3 + 2

[Bou03] Bouyer. Untameable timed automata! (STACS’03).
[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).

12

The buggy automaton

q0 q1 q2 q3

q4q5q6q7

x3 ≤ 3 x2 = 3
x2 := 0x1, x3 := 0

x1 = 2 x1 := 0

x1 = 2
x1 := 0

x2 = 2 x2 := 0

x2 = 2
x2 := 0

x1 = 3
x1 := 0

x2 > x1 + 2
x4 < x3 + 2

[Bou03] Bouyer. Untameable timed automata! (STACS’03).
[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).

After loops, the zone which is reached at isα q6

Zα := (1 ≤ x2 − x1 ≤ 3) ∧ (1 ≤ x4 − x3 ≤ 3) ∧ (x4 − x2 = x3 − x1 = 2α + 5)

12

The buggy automaton

q0 q1 q2 q3

q4q5q6q7

x3 ≤ 3 x2 = 3
x2 := 0x1, x3 := 0

x1 = 2 x1 := 0

x1 = 2
x1 := 0

x2 = 2 x2 := 0

x2 = 2
x2 := 0

x1 = 3
x1 := 0

x2 > x1 + 2
x4 < x3 + 2

[Bou03] Bouyer. Untameable timed automata! (STACS’03).
[Bou04] Bouyer. Forward analysis of updatable timed automata (Formal Methods in System Design).

After loops, the zone which is reached at isα q6

Zα := (1 ≤ x2 − x1 ≤ 3) ∧ (1 ≤ x4 − x3 ≤ 3) ∧ (x4 − x2 = x3 − x1 = 2α + 5)

‣There is no extrapolation, which preserves zones, which is sound and
finite for this timed automaton with diagonal constraints.

13

The simulation approach

14

‣ Initialize with

‣ Repeat until saturation:

• If , then add to ,
where is the successor via
unless there is s.t.

𝒮 (q0, 0)

(q, Z) ∈ 𝒮 (q′ , Z′) 𝒮
Z′ = [Y](Z ∩ g) q g,Y q′

(q′ , Z′ ′) ∈ 𝒮 Z′ ⪯ Z′ ′

The simulation approach

14

‣ Initialize with

‣ Repeat until saturation:

• If , then add to ,
where is the successor via
unless there is s.t.

𝒮 (q0, 0)

(q, Z) ∈ 𝒮 (q′ , Z′) 𝒮
Z′ = [Y](Z ∩ g) q g,Y q′

(q′ , Z′ ′) ∈ 𝒮 Z′ ⪯ Z′ ′

The simulation approach

Properties

‣Termination is ensured if we require has a finite-chain property
‣Soundness is obvious
‣Completeness relies on a simulation property for

⪯

⪯

14

‣ Initialize with

‣ Repeat until saturation:

• If , then add to ,
where is the successor via
unless there is s.t.

𝒮 (q0, 0)

(q, Z) ∈ 𝒮 (q′ , Z′) 𝒮
Z′ = [Y](Z ∩ g) q g,Y q′

(q′ , Z′ ′) ∈ 𝒮 Z′ ⪯ Z′ ′

The simulation approach

Properties

‣Termination is ensured if we require has a finite-chain property
‣Soundness is obvious
‣Completeness relies on a simulation property for

⪯

⪯

Inclusion « up-
to » simulation

14

‣ Initialize with

‣ Repeat until saturation:

• If , then add to ,
where is the successor via
unless there is s.t.

𝒮 (q0, 0)

(q, Z) ∈ 𝒮 (q′ , Z′) 𝒮
Z′ = [Y](Z ∩ g) q g,Y q′

(q′ , Z′ ′) ∈ 𝒮 Z′ ⪯ Z′ ′

The simulation approach

Properties

‣Termination is ensured if we require has a finite-chain property
‣Soundness is obvious
‣Completeness relies on a simulation property for

⪯

⪯

Inclusion « up-
to » simulation

Should be
computationally

efficient!

15

Simulation ⪯

δ

If (q, v1) ⪯ (q, v2)

(q, v1 + δ)

15

Simulation ⪯

δ

(q, v1 + δ) ⪯ (q, v2 + δ)then

δ

If (q, v1) ⪯ (q, v2)

(q, v1 + δ)

15

Simulation ⪯

δ

(q, v1 + δ) ⪯ (q, v2 + δ)then

δ

If (q, v1) ⪯ (q, v2)

(q, v1 + δ)

t

If (q, v1) ⪯ (q, v2)

(q′ , v′ 1)

15

Simulation ⪯

t

(q′ , v′ 1) ⪯ (q′ , v′ 2)then

δ

(q, v1 + δ) ⪯ (q, v2 + δ)then

δ

If (q, v1) ⪯ (q, v2)

(q, v1 + δ)

t

If (q, v1) ⪯ (q, v2)

(q′ , v′ 1)

15

Simulation ⪯

t

(q′ , v′ 1) ⪯ (q′ , v′ 2)then

δ

(q, v1 + δ) ⪯ (q, v2 + δ)then

δ

If (q, v1) ⪯ (q, v2)

(q, v1 + δ)

t

If (q, v1) ⪯ (q, v2)

(q′ , v′ 1)

Inclusion « up-to » simulation

 iff , s.t. (q, Z1) ⪯ (q, Z2) ∀v1 ∈ Z1 ∃v2 ∈ Z2 (q, v1) ⪯ (q, v2)

15

Simulation ⪯

t

(q′ , v′ 1) ⪯ (q′ , v′ 2)then

δ

(q, v1 + δ) ⪯ (q, v2 + δ)then

δ

If (q, v1) ⪯ (q, v2)

(q, v1 + δ)

t

If (q, v1) ⪯ (q, v2)

(q′ , v′ 1)

Inclusion « up-to » simulation

 iff , s.t. (q, Z1) ⪯ (q, Z2) ∀v1 ∈ Z1 ∃v2 ∈ Z2 (q, v1) ⪯ (q, v2)

‣ Note: iff
 iff

(q, Z1) ⪯ (q, Z2) Z1 ⊆ Closure⪯(Z2)
Closure⪯(Z1) ⊆ Closure⪯(Z2)

16

And concretely?

16

‣ The region equivalence [HKSW11]

And concretely?

The corresponding
inclusion « up-to » can be

decided in 𝒪(|X |2)

It has the finite-
chain property

16

‣ The region equivalence [HKSW11]

‣ The LU-simulation [HSW12]

And concretely?
It has the finite-

chain property

The corresponding
inclusion « up-to » can be

decided in 𝒪(|X |2)

16

‣ The region equivalence [HKSW11]

‣ The LU-simulation [HSW12]

‣ The -simulation [GMS18,GMS19,GMS20]𝒢

And concretely?
It has the finite-

chain property

The corresponding
inclusion « up-to » can be

decided in 𝒪(|X |2)

16

‣ The region equivalence [HKSW11]

‣ The LU-simulation [HSW12]

‣ The -simulation [GMS18,GMS19,GMS20]𝒢
• It is coarser than the LU-simulation for diagonal-free automata

And concretely?
It has the finite-

chain property

The corresponding
inclusion « up-to » can be

decided in 𝒪(|X |2)

16

‣ The region equivalence [HKSW11]

‣ The LU-simulation [HSW12]

‣ The -simulation [GMS18,GMS19,GMS20]𝒢
• It is coarser than the LU-simulation for diagonal-free automata
• It is correct for timed automata with diagonal constraints!

And concretely?

The corresponding
inclusion « up-to »

is NP-complete

It has the finite-
chain property

The corresponding
inclusion « up-to » can be

decided in 𝒪(|X |2)

16

‣ The region equivalence [HKSW11]

‣ The LU-simulation [HSW12]

‣ The -simulation [GMS18,GMS19,GMS20]𝒢
• It is coarser than the LU-simulation for diagonal-free automata
• It is correct for timed automata with diagonal constraints!
• Adapts to (« decidable ») automata

with updates

And concretely?

The corresponding
inclusion « up-to »

is NP-complete

It has the finite-
chain property

The corresponding
inclusion « up-to » can be

decided in 𝒪(|X |2)

16

‣ The region equivalence [HKSW11]

‣ The LU-simulation [HSW12]

‣ The -simulation [GMS18,GMS19,GMS20]𝒢
• It is coarser than the LU-simulation for diagonal-free automata
• It is correct for timed automata with diagonal constraints!
• Adapts to (« decidable ») automata

with updates

And concretely?

[HKSW11] Herbreteau, Kini, Srivathsan, Walukiewicz: Using non-convex approximations for efficient analysis of timed automata (FSTTCS’11)
[HSW12] Herbreteau, Srivathsan, Walukiewicz: Better Abstractions for Timed Automata (LICS’12)
[GMS18] Gastin, Mukherjee, Srivathsan: Reachability in Timed Automata with Diagonal Constraints (CONCUR’18)
[GMS19] Gastin, Mukherjee, Srivathsan: Fast Algorithms for Handling Diagonal Constraints in Timed Automata (CAV’19)
[GMS20] Gastin, Mukherjee, Srivathsan: Reachability for Updatable Timed Automata Made Faster and More Effective (FSTTCS’20)

The corresponding
inclusion « up-to »

is NP-complete

It has the finite-
chain property

The corresponding
inclusion « up-to » can be

decided in 𝒪(|X |2)

17

Constraints relevant at : q 𝒢(q)

q2

q

q1

g2 , Y2

g1, Y1

17

Constraints relevant at : q 𝒢(q)

q2

q

q1

g2 , Y2

g1, Y1

{{g1, g2} ⊆ 𝒢(q)
pre(𝒢(qi), Yi) ⊆ 𝒢(q)

17

Constraints relevant at : q 𝒢(q)

q2

q

q1

g2 , Y2

g1, Y1

{{g1, g2} ⊆ 𝒢(q)
pre(𝒢(qi), Yi) ⊆ 𝒢(q)

pre(x ⋈ c, Y) = {{x ⋈ c} if x ∉ Y
∅ if x ∈ Y

pre(x − y ⋈ c, Y) =

{x − y ⋈ c}if x, y ∉ Y
{x ⋈ c} if x ∉ Y, y ∈ Y
{−y ⋈ c} if x ∈ Y, y ∉ Y
∅ if x, y ∈ Y

17

Constraints relevant at : q 𝒢(q)

q2

q

q1

g2 , Y2

g1, Y1

{{g1, g2} ⊆ 𝒢(q)
pre(𝒢(qi), Yi) ⊆ 𝒢(q)

pre(x ⋈ c, Y) = {{x ⋈ c} if x ∉ Y
∅ if x ∈ Y

pre(x − y ⋈ c, Y) =

{x − y ⋈ c}if x, y ∉ Y
{x ⋈ c} if x ∉ Y, y ∈ Y
{−y ⋈ c} if x ∈ Y, y ∉ Y
∅ if x, y ∈ Y

‣ Fixpoint computation terminates for timed automata; it also terminates for
known decidable classes of updatable timed automata

18

The -simulation𝒢

18

‣ We say that whenever for every , for every
, implies

(q, v) ⪯𝒢 (q, v′) φ ∈ 𝒢
δ ≥ 0 v + δ ⊧ φ v′ + δ ⊧ φ

The -simulation𝒢

Let be the previous mapping𝒢

18

‣ We say that whenever for every , for every
, implies

(q, v) ⪯𝒢 (q, v′) φ ∈ 𝒢
δ ≥ 0 v + δ ⊧ φ v′ + δ ⊧ φ

The -simulation𝒢

Let be the previous mapping𝒢

‣ is a simulation relation
‣ It satisfies the finite-chain property on zones

⪯𝒢

Theorem

19

An example

q0 q1 q2 q3

q4q5q6q7

x3 ≤ 3 x2 = 3
x2 := 0x1, x3 := 0

x1 = 2 x1 := 0

x1 = 2
x1 := 0

x2 = 2 x2 := 0

x2 = 2
x2 := 0

x1 = 3
x1 := 0

x2 > x1 + 2
x4 < x3 + 2

{x3 ≤ 3,x2 = 3,x4 < 2} {x1 = 1,x2 = 3,x4 < x3 + 2}

{x1 = 2,x2 = 2,x4 < x3 + 2}

{x1 = 2,x2 = 2,x4 < x3 + 2}

{x2 = 2,x1 = 3,x4 < x3 + 2}

{x1 = 3,x2 > 2,x4 < x3 + 2}

{x2 > x1 + 2,x4 < x3 + 2} is not reachableq7

19

An example

q0 q1 q2 q3

q4q5q6q7

x3 ≤ 3 x2 = 3
x2 := 0x1, x3 := 0

x1 = 2 x1 := 0

x1 = 2
x1 := 0

x2 = 2 x2 := 0

x2 = 2
x2 := 0

x1 = 3
x1 := 0

x2 > x1 + 2
x4 < x3 + 2

{x3 ≤ 3,x2 = 3,x4 < 2} {x1 = 1,x2 = 3,x4 < x3 + 2}

{x1 = 2,x2 = 2,x4 < x3 + 2}

{x1 = 2,x2 = 2,x4 < x3 + 2}

{x2 = 2,x1 = 3,x4 < x3 + 2}

{x1 = 3,x2 > 2,x4 < x3 + 2}

{x2 > x1 + 2,x4 < x3 + 2} is not reachableq7

The mapping𝒢

19

An example

‣On this automaton, any extrapolation-based method fails [Bou04]

‣The -simulation approach terminates at the second iteration⪯𝒢

q0 q1 q2 q3

q4q5q6q7

x3 ≤ 3 x2 = 3
x2 := 0x1, x3 := 0

x1 = 2 x1 := 0

x1 = 2
x1 := 0

x2 = 2 x2 := 0

x2 = 2
x2 := 0

x1 = 3
x1 := 0

x2 > x1 + 2
x4 < x3 + 2

{x3 ≤ 3,x2 = 3,x4 < 2} {x1 = 1,x2 = 3,x4 < x3 + 2}

{x1 = 2,x2 = 2,x4 < x3 + 2}

{x1 = 2,x2 = 2,x4 < x3 + 2}

{x2 = 2,x1 = 3,x4 < x3 + 2}

{x1 = 3,x2 > 2,x4 < x3 + 2}

{x2 > x1 + 2,x4 < x3 + 2} is not reachableq7

The mapping𝒢

20

Going further

20

‣ Liveness properties [HSWT16,HSWT20]

Going further

20

‣ Liveness properties [HSWT16,HSWT20]

‣ Weighted timed automata [BCM16]

‣ Pushdown timed automata [AGP21]
(talk of Akshay at SNR)

‣ Event-clock automata [AGGS22]

Going further

20

‣ Liveness properties [HSWT16,HSWT20]

‣ Weighted timed automata [BCM16]

‣ Pushdown timed automata [AGP21]
(talk of Akshay at SNR)

‣ Event-clock automata [AGGS22]

Going further

[BCM16] Bouyer, Colange, Markey: Symbolic Optimal Reachability in Weighted Timed Automata (CAV'16)
[HSTW20] Herbreteau, Srivathsan, Tran, Walukiewicz: Why Liveness for Timed Automata Is Hard, and What We Can Do About It (ACM Trans.
Comput. Log)
[AGP21] Akshay, Gastin, Prakash: Fast Zone-Based Algorithms for Reachability in Pushdown Timed Automata (CAV’21)
[AGGS22] Akshay, Gastin, Govind, Srivathsan: Simulations for Event-Clock Automata (CONCUR’22)

21

Tools

• Uppaal https://uppaal.org

• Tchecker https://github.com/ticktac-project/tchecker
• Red https://sites.google.com/site/redlibtw/
• Pat https://pat.comp.nus.edu.sg
• Rabbit https://www.sosy-lab.org/people/beyer/Rabbit/
• MCTA http://gki.informatik.uni-freiburg.de/tools/mcta/
• …

22

‣ Developed since 1995

‣ Successfully used in the industry, with many case studies

‣ Many extensions:
• games, weighted timed automata, testing, statistical

model-checking, …

‣ Implements extrapolation-based algorithms

Tool UPPAAL
https://uppaal.org

23

‣ Developed since a couple of years, under development

‣ Fully open-source verification tool for timed automata

‣ Implements extrapolation and simulation-based algorithms

‣ Made also as a framework to develop new verification
algorithms or data structures

Tool TChecker
https://github.com/ticktac-project/tchecker

24

Conclusion

25

What next?

25

‣ Much algorithmic effort has been made to reduce the impact of the
timing aspects (reduce the number of zones to visit)
• Need to push the ideas to larger classes of models
• In each case, one of the the difficulties lies in the proof of efficiency of

inclusion « up-to »

What next?

25

‣ Much algorithmic effort has been made to reduce the impact of the
timing aspects (reduce the number of zones to visit)
• Need to push the ideas to larger classes of models
• In each case, one of the the difficulties lies in the proof of efficiency of

inclusion « up-to »

‣ A major bottleneck: the state explosion due to control states
• Use of BDD/SAT technics, bounded model-checking, …

 No technics overwrites the other, they are useful and
complementary

• Local-time semantics + POR (talk of Sri at SNR) [GHSW22]

→

What next?

[GHSW22] Govind, Herbreteau, Srivathsan, Walukiewicz: Abstractions for the local-time semantics of timed automata: a foundation
for partial-order methods (LICS’22)

26

‣ Domain-specific algorithms:
• Funnel automata for robotic systems [BMPS15,BMPS17]

What next?

[BMPS15] Bouyer, Markey, Perrin, Schlehuber-Caissier:Timed-Automata Abstraction of Switched Dynamical Systems Using Control
Funnels (FORMATS’15)
[BMPS17] Bouyer, Markey, Perrin, Schlehuber-Caissier:Timed-automata abstraction of switched dynamical systems using control
invariants (Real Time Syst.)

26

‣ Domain-specific algorithms:
• Funnel automata for robotic systems [BMPS15,BMPS17]

What next?

[BMPS15] Bouyer, Markey, Perrin, Schlehuber-Caissier:Timed-Automata Abstraction of Switched Dynamical Systems Using Control
Funnels (FORMATS’15)
[BMPS17] Bouyer, Markey, Perrin, Schlehuber-Caissier:Timed-automata abstraction of switched dynamical systems using control
invariants (Real Time Syst.)

27

Thank you for
your attention!

