

Memory complexity for winning games on graphs

Patricia Bouyer

Laboratoire Méthodes Formelles Université Paris-Saclay, CNRS, ENS Paris-Saclay France

école — — — normale — — supérieure — — paris — saclay — —

Motivation — The setting

My field of research: Formal methods

Give guarantees (+ certificates) on functionalities or performances

System

System

Properties

System

Properties

System

Properties

System

Properties

System

Properties

$$\varphi = \mathbf{AG} \operatorname{\neg crash} \wedge \left(\mathbb{P}(\mathbf{F}_{\leq 2\mathsf{h}} \mathrm{arr}) \geq 0.9 \right)$$

System

Properties

$$\varphi = \mathbf{AG} \operatorname{\neg crash} \wedge \left(\mathbb{P}(\mathbf{F}_{\leq 2\mathsf{h}} \mathrm{arr}) \geq 0,9 \right)$$

Properties

Control or synthesis

Control/synthesis algorithm

$$\varphi = \mathbf{AG} \operatorname{\neg crash} \wedge \left(\mathbb{P}(\mathbf{F}_{\leq 2\mathsf{h}} \mathrm{arr}) \geq 0.9 \right)$$

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an antagonistic environment

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an antagonistic environment

Good?

Performance w.r.t. objectives / payoffs / preference relations

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an antagonistic environment

Good?

Performance w.r.t. objectives / payoffs / preference relations

Simple?

Minimal information for deciding the next steps

Strategy synthesis for two-player games

Find good and simple controllers for systems interacting with an antagonistic environment

Good?

Performance w.r.t. objectives / payoffs / preference relations

Simple?

Minimal information for deciding the next steps

When are simple strategies sufficient to play optimally?

Our general approach

[[]Tho95] On the synthesis of strategies in infinite games (STACS'95).

[[]Tho02] Thomas. Infinite games and verification (CAV'02).

[[]GU08] Grädel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives in Games and Interactions, 2008).

[[]BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking).

Our general approach

 Use graph-based game models (state machines) to represent the system and its evolution

[[]Tho95] On the synthesis of strategies in infinite games (STACS'95).

[[]Tho02] Thomas. Infinite games and verification (CAV'02).

[[]GU08] Grädel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives in Games and Interactions, 2008).

[[]BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking).

Our general approach

- Use graph-based game models (state machines) to represent the system and its evolution
- Use game theory concepts to express admissible situations
 - Winning strategies
 - (Pareto-)Optimal strategies
 - Nash equilibria
 - Subgame-perfect equilibria
 - •

```
[Tho95] On the synthesis of strategies in infinite games (STACS'95).
```

[[]Tho02] Thomas. Infinite games and verification (CAV'02).

[[]GU08] Grädel, Ummels. Solution concepts and algorithms for infinite multiplayer games (New Perspectives in Games and Interactions, 2008).

[[]BCJ18] Bloem, Chatterjee, Jobstmann. Graph games and reactive synthesis (Handbook of Model-Checking).

Games What they often are

Goal

Interaction

 Model and analyze (using math. tools) situations of interactive decision making

Goal

 Model and analyze (using math. tools) situations of interactive decision making

Interaction

Ingredients

- Several decision makers (players)
- ▶ Possibly each with different goals
- ▶ The decision of each player impacts the outcome of all

Goal

 Model and analyze (using math. tools) situations of interactive decision making

Interaction

Ingredients

- Several decision makers (players)
- Possibly each with different goals
- ▶ The decision of each player impacts the outcome of all

Wide range of applicability

« [...] it is a context-free mathematical toolbox. »

- Social science: e.g. social choice theory
- ▶ Theoretical economics: e.g. models of markets, auctions
- ▶ Political science: e.g. fair division
- ▶ Biology: e.g. evolutionary biology

...

Goal

 Model and analyze (using math. tools) situations of interactive decision making

Interaction

Ingredients

- Several decision makers (players)
- ▶ Possibly each with different goals
- ▶ The decision of each player impacts the outcome of all

Wide range of applicability

« [...] it is a context-free mathematical toolbox. »

- ▶ Social science: e.g. social choice theory
- ▶ Theoretical economics: e.g. models of markets, auctions
- ▶ Political science: e.g. fair division
- ▶ Biology: e.g. evolutionary biology

+ Computer science

...

- \bigcirc : player P_1
- lacksquare : player P_2

 S_0

$$s_0 \rightarrow s_1$$

1. P_1 chooses the edge (s_0, s_1)

$$s_0 \rightarrow s_1 \rightarrow s_4$$

- 1. P_1 chooses the edge (s_0, s_1)
- 2. P_2 chooses the edge (s_1, s_4)

$$s_0 \rightarrow s_1 \rightarrow s_4 \rightarrow s_2$$

- 1. P_1 chooses the edge (s_0, s_1)
- 2. P_2 chooses the edge (s_1, s_4)
- 3. P_2 chooses the edge (s_4, s_2)

States Edges
$$\mathcal{G} = (S, s_0, S_1, S_2, E)$$
 \bigcirc : player P_1 \bigcirc : player P_2 \bigcirc : $S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \rightarrow S_2 \rightarrow \bigcirc$

- 1. P_1 chooses the edge (s_0, s_1)
- 2. P_2 chooses the edge (s_1, s_4)
- 3. P_2 chooses the edge (s_4, s_2)
- 4. P_1 chooses the edge (s_2, \bigcirc)

States Edges
$$\mathcal{G} = (S, s_0, S_1, S_2, E)$$
 \bigcirc : player P_1 \bigcirc : player P_2 \bigcirc : $player P_2$ \bigcirc : $player P_2$

- 1. P_1 chooses the edge (s_0, s_1)
- 2. P_2 chooses the edge (s_1, s_4)
- 3. P_2 chooses the edge (s_4, s_2)
- 4. P_1 chooses the edge (s_2, \bigcirc)

States Edges
$$\mathscr{G} = (S, s_0, S_1, S_2, E)$$
 \bigcirc : player P_1 \bigcirc : player P_2 \bigcirc : $S_1 \rightarrow S_1 \rightarrow S_2 \rightarrow C$

- 1. P_1 chooses the edge (s_0, s_1)
- 2. P_2 chooses the edge (s_1, s_4)
- 3. P_2 chooses the edge (s_4, s_2)
- 4. P_1 chooses the edge (s_2, \bigcirc)

Players use **strategies** to play.

A strategy for P_i is $\sigma_i: S^*S_i \to E$

$$C = \{a, b\}$$

$$E \subseteq S \times C \times S$$

$$C = \{a, b\}$$

$$E \subseteq S \times C \times S$$

ullet Winning objective for P_i : $W_i \subseteq C^\omega$, e.g. $W_1 = C^* \cdot b \cdot C^\omega$

$$C = \{a, b\}$$

$$E \subseteq S \times C \times S$$

- ullet Winning objective for P_i : $W_i \subseteq C^\omega$, e.g. $W_1 = C^* \cdot b \cdot C^\omega$
- Payoff function: $p_i \colon C^{\omega} \to \mathbb{R}$, e.g. mean-payoff

$$C = \{a, b\}$$

$$E \subseteq S \times C \times S$$

- ullet Winning objective for P_i : $W_i\subseteq C^\omega$, e.g. $W_1=C^*\cdot b\cdot C^\omega$
- Payoff function: $p_i \colon C^{\omega} \to \mathbb{R}$, e.g. mean-payoff
- Preference relation: $\sqsubseteq_i \subseteq C^\omega \times C^\omega$ (total preorder)

Objectives for the players

Zero-sum hypothesis

$$C = \{a, b\}$$

$$E \subseteq S \times C \times S$$

ullet Winning objective for P_i : $W_i \subseteq C^\omega$, e.g. $W_1 = C^* \cdot b \cdot C^\omega$

$$W_2 = W_1^c$$

Payoff function: $p_i \colon C^\omega \to \mathbb{R}$, e.g. mean-payoff

$$p_1 + p_2 = 0$$

• Preference relation: $\sqsubseteq_i \subseteq C^\omega \times C^\omega$ (total preorder)

$$\sqsubseteq_2 = \sqsubseteq_1^{-1}$$

What does it mean to win a game?

What does it mean to win a game?

Play $\rho=s_0s_1s_2...$ is compatible with σ_i whenever $s_j\in S_i$ implies $(s_j,s_{j+1})=\sigma_i\big(s_0s_1...s_j\big)$. We write $\mathrm{Out}(\sigma_i)$.

▶ Strategy σ

- ▶ Strategy *o*
- $ightharpoonup Out(\sigma)$ has two plays, which are both winning

▶ Strategy σ

14

What does it mean to win a game?

- Play $\rho = s_0 s_1 s_2 \dots$ is compatible with σ_i whenever $s_j \in S_i$ implies $(s_j, s_{j+1}) = \sigma_i \big(s_0 s_1 \dots s_j \big)$. We write $\mathrm{Out}(\sigma_i)$.
- $m \sigma_i$ is **winning** if all plays compatible with $m \sigma_i$ belong to W_i

What does it mean to win a game?

- Play $\rho = s_0 s_1 s_2 \dots$ is compatible with σ_i whenever $s_j \in S_i$ implies $(s_i, s_{i+1}) = \sigma_i (s_0 s_1 \dots s_j)$. We write $\operatorname{Out}(\sigma_i)$.
- $m \sigma_i$ is **winning** if all plays compatible with $m \sigma_i$ belong to W_i

Martin's determinacy theorem

Turn-based zero-sum games are determined for Borel winning objectives: in every game, either P_1 or P_2 has a winning strategy.

 $lacksymbol{\sigma}_1$ is better than σ_1' whenever $\operatorname{Out}(\sigma_1)^{\uparrow} \subseteq \operatorname{Out}(\sigma_1')^{\uparrow}$

- $lacksymbol{\sigma}_1$ is better than σ_1' whenever $\operatorname{Out}(\sigma_1)^{\uparrow} \subseteq \operatorname{Out}(\sigma_1')^{\uparrow}$
- ullet σ_1 is **optimal** whenever it is better than any other σ_1'

- $lacksymbol{\sigma}_1$ is better than σ_1' whenever $\operatorname{Out}(\sigma_1)^{\uparrow}\subseteq\operatorname{Out}(\sigma_1')^{\uparrow}$
- $lacksymbol{\sigma}_1$ is **optimal** whenever it is better than any other σ_1'

Remark

- Optimal strategies might not exist
- \blacktriangleright If \sqsubseteq given by a payoff function, notion of ϵ -optimal strategies
- Optimality vs subgame-optimality

$$\varphi = \text{Reach}(\bigcirc)$$

$$\varphi = \text{Reach}(\bigcirc)$$

 \blacktriangleright Can P_1 win the game, i.e. does P_1 have a winning strategy? Can P_1 play optimally?

$$\varphi = \text{Reach}(\bigcirc)$$

- \blacktriangleright Can P_1 win the game, i.e. does P_1 have a winning strategy? Can P_1 play optimally?
- Is there an effective (efficient) way of winning?

$$\varphi = \text{Reach}(\bigcirc)$$

- lacktriangle Can P_1 win the game, i.e. does P_1 have a winning strategy? Can P_1 play optimally?
- Is there an effective (efficient) way of winning?
- ▶ How complex is it to win?

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- $ightharpoonup P_1$ starts

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- $ightharpoonup P_1$ starts

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- $ightharpoonup P_1$ starts

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- $ightharpoonup P_1$ starts

P_1 wins

- from all $\equiv 1$ or $2 \mod 3$
 - from all $\equiv 0 \mod 3$

- Players alternate
- Each player can take one or two sticks
- The player who takes the last one wins
- $ightharpoonup P_1$ starts

P_1 wins $\equiv 1 \text{ or } 2 \mod 3$ $\Rightarrow \text{ from all } \equiv 0 \mod 3$

from all $\equiv 0 \mod 3$ from all $\equiv 1 \text{ or } 2 \mod 3$

 P_2 wins

All states are winning for P_1

One state is not winning for P_1 It is winning for P_2

Chess game

[[]Zer13] Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels (Congress Mathematicians, 1912).

Chess game

Zermelo's Theorem

From every position, either White can force a win, or Black can force a win, or both sides can force at least a draw.

[[]Zer13] Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels (Congress Mathematicians, 1912).

Chess game

Zermelo's Theorem

From every position, either White can force a win, or Black can force a win, or both sides can force at least a draw.

 We don't know what is the case for the initial position, and no winning strategy (for either of the players) is known

Chess game

Zermelo's Theorem

From every position, either White can force a win, or Black can force a win, or both sides can force at least a draw.

- We don't know what is the case for the initial position, and no winning strategy (for either of the players) is known
- \blacktriangleright According to Claude Shannon, there are 10^{43} legit positions in chess

Solving the Hex game

First player has always a winning strategy.

Solving the Hex game

First player has always a winning strategy.

Determinacy results (no tie is possible) + strategy stealing argument

Solving the Hex game

First player has always a winning strategy.

- Determinacy results (no tie is possible) + strategy stealing argument
- A winning strategy is not known yet.

What we do not consider

- Concurrent games
- Stochastic games and strategies
- Partial information
- Values
- Determinacy of Blackwell games

école — normale — supérieure — paris — saclay — ...

Families of strategies

école — normale — supérieure — paris — saclay — ...

Families of strategies

General strategies

$$\sigma_i: S^*S_i \to E$$

- May use any information of the past execution
- Information used is therefore potentially infinite
- Not adequate if one targets implementation

From $\sigma_i: S^*S_i \to E$ to $\sigma_i: S_i \to E$

From
$$\sigma_i: S^*S_i \to E$$
 to $\sigma_i: S_i \to E$

Positional = memoryless

From
$$\sigma_i: S^*S_i \to E$$
 to $\sigma_i: S_i \to E$

- Positional = memoryless
- Reachability, parity, mean-payoff, positive energy, ...
 - \rightarrow positional strategies are sufficient to win

From
$$\sigma_i: S^*S_i \to E$$
 to $\sigma_i: S_i \to E$

- Positional = memoryless
- Reachability, parity, mean-payoff, positive energy, ...
 - → positional strategies are sufficient to win

Example: mean-payoff

Example: mean-payoff

 $ightharpoonup P_1$ maximizes, P_2 minimizes

$$\overline{MP} = \limsup_{n} \frac{\sum_{i \neq n} c_i}{n}$$

Example: mean-payoff

- $ightharpoonup P_1$ maximizes, P_2 minimizes
- Positional strategies are sufficient to win

$$\overline{MP} = \limsup_{n} \frac{\sum_{i \neq n} c_i}{n}$$

Do we need more?

« See infinitely often both a and b » Büchi(a) \wedge Büchi(b)

« See infinitely often both a and b » Büchi $(a) \land$ Büchi(b)

Winning strategy

- \blacktriangleright At each visit to s_1 , loop once in s_1 and then go to s_2
- \blacktriangleright At each visit to s_2 , loop once in s_2 and then go to s_1
- Generates the sequence $(acbc)^{\omega}$

« See infinitely often both a and b » Büchi(a) \wedge Büchi(b)

Winning strategy

- \blacktriangleright At each visit to s_1 , loop once in s_1 and then go to s_2
- \blacktriangleright At each visit to s_2 , loop once in s_2 and then go to s_1
- Generates the sequence $(acbc)^{\omega}$

« Reach the target with energy level 0 » \mathbf{FG} (EL = 0)

« See infinitely often both a and b » Büchi(a) \wedge Büchi(b)

Winning strategy

- \blacktriangleright At each visit to s_1 , loop once in s_1 and then go to s_2
- \blacktriangleright At each visit to s_2 , loop once in s_2 and then go to s_1
- Generates the sequence $(acbc)^{\omega}$

« Reach the target with energy level 0 »

$$FG$$
 (EL = 0)

Winning strategy

- lacksquare Loop five times in s_0
- Then go to the target
- Generates the sequence of colors

$$1\ 1\ 1\ 1\ 1\ -5\ 0\ 0\ 0...$$

« See infinitely often both a and b » Büchi(a) \wedge Büchi(b)

Winning strategy

- \blacktriangleright At each visit to s_1 , loop once in s_1 and then go to s_2
- \blacktriangleright At each visit to s_2 , loop once in s_2 and then go to s_1
- lacktriangle Generates the sequence $(acbc)^\omega$

« Reach the target with energy level 0 »

$$\mathbf{FG}$$
 (EL = 0)

Winning strategy

- lacksquare Loop five times in s_0
- Then go to the target
- Generates the sequence of colors

$$1\ 1\ 1\ 1\ 1\ -5\ 0\ 0\ 0...$$

These two strategies require only **finite** memory

Example: multi-dimensional mean-payoff

« Have a (limsup) mean-payoff ≥ 0 on both dimensions » So-called *multi-dimensional mean-payoff*

Example: multi-dimensional mean-payoff

« Have a (limsup) mean-payoff ≥ 0 on both dimensions » So-called *multi-dimensional mean-payoff*

Winning strategy

- lacksquare After k-th switch between s_1 and s_2 , loop 2k-1 times and then switch back
- Generates the sequence

```
(-1,-1)(-1,+1)(-1,-1)(+1,-1)(+1,-1)(+1,-1)(-1,-1)

(-1,+1)(-1,+1)(-1,+1)(-1,+1)(-1,+1)(-1,-1)

(+1,-1)(+1,-1)(+1,-1)(+1,-1)(+1,-1)(+1,-1)(+1,-1)(-1,-1)...
```

Example: multi-dimensional mean-payoff

« Have a (limsup) mean-payoff ≥ 0 on both dimensions » So-called *multi-dimensional mean-payoff*

Winning strategy

- lacksquare After k-th switch between s_1 and s_2 , loop 2k-1 times and then switch back
- Generates the sequence

```
(-1,-1)(-1,+1)(-1,-1)(+1,-1)(+1,-1)(+1,-1)(-1,-1)

(-1,+1)(-1,+1)(-1,+1)(-1,+1)(-1,+1)(-1,-1)

(+1,-1)(+1,-1)(+1,-1)(+1,-1)(+1,-1)(+1,-1)(+1,-1)(-1,-1)...
```

This strategy requires **infinite** memory, and this is unavoidable

We focus on finite memory!

Memory skeleton

$$\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$$
 with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

Memory skeleton

$$\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$$
 with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

Not yet a strategy!

$$\sigma_i: S^*S_i \to E$$

Memory skeleton

$$\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$$
 with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

Not yet a strategy!

$$\sigma_i: S^*S_i \to E$$

Strategy with memory ${\mathscr M}$

Additional next-move function $\alpha_{\text{next}}: M \times S_i \to E$

 $(\mathcal{M}, \alpha_{\mathsf{next}})$ defines a strategy!

Memory skeleton

 $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

Not yet a strategy!

 $\sigma_i: S^*S_i \to E$

Strategy with memory ${\mathscr M}$

Additional next-move function $\alpha_{\text{next}}: M \times S_i \to E$ $(\mathcal{M}, \alpha_{\text{next}})$ defines a strategy!

Remark: positional strategies are $\mathcal{M}_{\mathrm{triv}}$ -strategies, where $\mathcal{M}_{\mathrm{triv}}$ is

Memory skeleton

$$\mathcal{M} = (M, m_{\mathsf{init}}, \alpha_{\mathsf{upd}})$$
 with $m_{\mathsf{init}} \in M$ and $\alpha_{\mathsf{upd}} : M \times S \to M$

Not yet a strategy!

 $\sigma_i: S^*S_i \to E$

Chaotic* memory

Strategy with memory ${\mathscr M}$

Additional next-move function $\alpha_{\text{next}}: M \times S_i \to E$ $(\mathcal{M}, \alpha_{\text{next}})$ defines a strategy!

Remark: positional strategies are $\mathcal{M}_{\mathrm{triv}}$ -strategies, where $\mathcal{M}_{\mathrm{triv}}$ is

This skeleton is sufficient for the winning condition $B\ddot{u}chi(a) \wedge B\ddot{u}chi(b)$

This skeleton is sufficient for the winning condition $B\ddot{u}chi(a) \wedge B\ddot{u}chi(b)$

This skeleton is sufficient for the winning condition $B\ddot{u}chi(a) \wedge B\ddot{u}chi(b)$

This skeleton is sufficient for the winning condition $B\ddot{u}chi(a) \wedge B\ddot{u}chi(b)$

This skeleton is sufficient for the winning condition $B\ddot{u}chi(a) \wedge B\ddot{u}chi(b)$

Ourgoal

Understand well low-memory specifications

Ourgoal

Understand well low-memory specifications

Positional / finite-memory determinacy

Is it the case that positional (resp. finite-memory) strategies suffice to win/be optimal when winning/optimal strategies exist?

Ourgoal

Understand well low-memory specifications

Positional / finite-memory determinacy

Is it the case that positional (resp. finite-memory) strategies suffice to win/be optimal when winning/optimal strategies exist?

Our goal

Understand well low-memory specifications

Positional / finite-memory determinacy

Is it the case that positional (resp. finite-memory) strategies suffice to win/be optimal when winning/optimal strategies exist?

Finite vs infinite games

école — normale — supérieure — paris — saclay — ...

Characterizing positional and chromatic finite-memory determinacy in finite games

 Characterize winning objectives ensuring memoryless determinacy, that is, the existence of positional winning strategies (for both players) in all finite games

- Characterize winning objectives ensuring memoryless determinacy, that is, the existence of positional winning strategies (for both players) in all finite games
- Should apply to reachability/safety objectives, mean-payoff, parity, ...

- Characterize winning objectives ensuring memoryless determinacy, that is, the existence of positional winning strategies (for both players) in all finite games
- Should apply to reachability/safety objectives, mean-payoff, parity, ...
- Fundamental reference: [GZ05]

- Let \sqsubseteq be a preference relation (for P_1).
- Let $W \subseteq C^{\omega}$ be a winning objective (for P_1).

- Let \sqsubseteq be a preference relation (for P_1).
- Let $W \subseteq C^{\omega}$ be a winning objective (for P_1).
- ▶ It is said **monotone** whenever:

- Let \sqsubseteq be a preference relation (for P_1).
- Let $W \subseteq C^{\omega}$ be a winning objective (for P_1).
- ▶ It is said monotone whenever:

- Let \sqsubseteq be a preference relation (for P_1).
- Let $W \subseteq C^{\omega}$ be a winning objective (for P_1).
- ▶ It is said **monotone** whenever:

▶ It is said **selective** whenever:

If this is in W

then one of those is in $oldsymbol{W}$

Let \sqsubseteq be a preference relation (for P_1).

Characterization - Two-player games

- 1. All finite games have positional optimal strategies for both players;
- 2. Both \sqsubseteq and \sqsubseteq^{-1} are monotone and selective.

Let \sqsubseteq be a preference relation (for P_1).

Characterization - Two-player games

The two following assertions are equivalent:

- 1. All finite games have positional optimal strategies for both players;
- 2. Both \sqsubseteq and \sqsubseteq^{-1} are monotone and selective.

Characterization - One-player games

- 1. All finite $P_{
 m 1}$ -games have positional optimal strategies;
- 2. \sqsubseteq is monotone and selective.

Applications

Lifting theorem

 P_i has positional optimal strategies in all finite P_i -games

Both players have positional optimal strategies in all finite 2-player games.

Applications

Lifting theorem

 P_i has positional optimal strategies in all finite P_i -games

Both players have positional optimal strategies in all finite 2-player games.

Very powerful and extremely useful in practice

- Easy to analyse the one-player case (graph analysis)
 - Mean-payoff, average-energy [BMRLL15]

Discussion of examples

- Reachability, safety:
 - Monotone (though not prefix-independent)
 - Selective
- Parity, mean-payoff:
 - Prefix-independent hence monotone
 - Selective
- Average-energy games [BMRLL15]
 - Lifting theorem!!

- Let \sqsubseteq be a preference relation (for P_1). Let $\mathscr M$ be a memory skeleton.
- ▶ It is said **M**-monotone whenever:

- Let \sqsubseteq be a preference relation (for P_1). Let \mathscr{M} be a memory skeleton.
- ▶ It is said **M**-monotone whenever:

- Let \sqsubseteq be a preference relation (for P_1). Let \mathscr{M} be a memory skeleton.
- ▶ It is said *M*-monotone whenever:

- Let \sqsubseteq be a preference relation (for P_1). Let \mathscr{M} be a memory skeleton.
- It is said \mathcal{M} -monotone whenever:

- Let \sqsubseteq be a preference relation (for P_1). Let \mathscr{M} be a memory skeleton.
- It is said \mathcal{M} -monotone whenever:

- Let \sqsubseteq be a preference relation (for P_1). Let \mathscr{M} be a memory skeleton.
- ▶ It is said **M**-monotone whenever:

Let \sqsubseteq be a preference relation (for P_1) and $\mathscr M$ be a memory skeleton.

Characterization - Two-player games

- 1. All finite games have \mathcal{M} -based optimal strategies for both players;
- 2. Both \sqsubseteq and \sqsubseteq^{-1} are \mathscr{M} -monotone and \mathscr{M} -selective.

Let \sqsubseteq be a preference relation (for P_1) and $\mathscr M$ be a memory skeleton.

Characterization - Two-player games

The two following assertions are equivalent:

- 1. All finite games have \mathcal{M} -based optimal strategies for both players;
- 2. Both \sqsubseteq and \sqsubseteq^{-1} are \mathscr{M} -monotone and \mathscr{M} -selective.

Characterization - One-player games

- 1. All finite P_1 -games have \mathcal{M} -based optimal strategies;
- 2. \sqsubseteq is \mathcal{M} -monotone and \mathcal{M} -selective.

Let \sqsubseteq be a preference relation (for P_1) and $\mathscr M$ be a memory skeleton.

Characterization - Two-player games

The two following assertions are equivalent:

- 1. All finite games have \mathcal{M} -based optimal strategies for both players;
- 2. Both \sqsubseteq and \sqsubseteq^{-1} are \mathscr{M} -monotone and \mathscr{M} -selective.

Characterization - One-player games

- 1. All finite P_1 -games have \mathcal{M} -based optimal strategies;
- 2. \sqsubseteq is \mathscr{M} -monotone and \mathscr{M} -selective.

Applications

Lifting theorem

 P_i has \mathcal{M}_i -based optimal strategies in all finite P_i -games

Both players have $(\mathcal{M}_1 \times \mathcal{M}_2)$ -based optimal strategies in all finite two-player games.

Applications

Lifting theorem

 P_i has \mathcal{M}_i -based optimal strategies in all finite P_i -games

Both players have $(\mathcal{M}_1 \times \mathcal{M}_2)$ -based optimal strategies in all finite two-player games.

Very powerful and extremely useful in practice

- Easy to analyse the one-player case (graph analysis)
 - Conjunction of ω -regular objectives

$$W = \text{Reach}(a) \land \text{Reach}(b)$$

$$W = \text{Reach}(a) \land \text{Reach}(b)$$

$$\sqsubseteq_W$$
 is \mathcal{M}_1 -monotone but not \mathcal{M}_1 -selective

$$W = \text{Reach}(a) \land \text{Reach}(b)$$

 \sqsubseteq_W is \mathcal{M}_1 -monotone but not \mathcal{M}_1 -selective

$$W = \text{Reach}(a) \land \text{Reach}(b)$$

 \sqsubseteq_W is \mathcal{M}_1 -monotone but not \mathcal{M}_1 -selective

 \sqsubseteq_W is \mathscr{M}_2 -selective

$$W = \operatorname{Reach}(a) \wedge \operatorname{Reach}(b)$$

 \sqsubseteq_W is \mathcal{M}_1 -monotone but not \mathcal{M}_1 -selective

 \sqsubseteq_W is \mathcal{M}_2 -selective

- \sqsubseteq_W is \mathcal{M}_1 -monotone and \mathcal{M}_2 -selective \sqsubseteq_W^{-1} is \mathcal{M}_1 -monotone and $\mathcal{M}_{\text{triv}}$ -selective

$$W = \text{Reach}(a) \land \text{Reach}(b)$$

 \rightarrow Memory \mathcal{M}_2 is sufficient for both players in all finite games

Finite games

Finite games

 Complete characterization of winning objectives (and even preference relations) that ensure chromatic finite-memory determinacy for both players

Finite games

- Complete characterization of winning objectives (and even preference relations) that ensure chromatic finite-memory determinacy for both players
- One-to-two-player lifts
 (requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic finite memory determinacy in two-players games for both players)

Finite games

- Complete characterization of winning objectives (and even preference relations) that ensure chromatic finite-memory determinacy for both players
- One-to-two-player lifts
 (requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic finite memory determinacy in two-players games for both players)
- Further questions:
 - Can we reduce/optimize the memory?
 - What about chaotic finite memory?
 - Can we focus on one player (so-called half-positionality)?

école — — — normale — — supérieure — paris — saclay — —

Characterizing positional and chromatic finite-memory determinacy in infinite games

The case of mean-payoff

- lacktriangle Objective for P_1 : get non-negative (limsup) mean-payoff
- In finite games: positional strategies are sufficient to win
- ▶ In infinite games: **infinite memory** is required to win

lacktriangle Let W be a prefix-independent objective.

lacktriangleright Let W be a prefix-independent objective.

Characterization - Two-player games

The two following assertions are equivalent:

- 1. Positional optimal strategies are sufficient for W in all (infinite) games for both players;
- 2. W is a parity condition That is, there are $n \in \mathbb{N}$ and $\gamma: C \to \{0,1,\ldots,n\}$ such that $W = \{c_1c_2\ldots \in C^\omega \mid \limsup_i \gamma(c_i) \text{ is even}\}$

lacktriangle Let W be a prefix-independent objective.

Limitations

Characterization - Two-player games

The two following assertions are equivalent:

- 1. Positional optimal strategies are sufficient for W in all (infinite) games for both players;
- 2. W is a parity condition That is, there are $n \in \mathbb{N}$ and $\gamma: C \to \{0,1,\ldots,n\}$ such that $W = \{c_1c_2\ldots\in C^\omega\mid \limsup_i \gamma(c_i) \text{ is even}\}$

lacktriangle Let W be a prefix-independent objective.

Limitations

Characterization - Two-player games

The two following assertions are equivalent:

- 1. Positional optimal strategies are sufficient for W in all (infinite) games for both players;
- 2. W is a parity condition That is, there are $n \in \mathbb{N}$ and $\gamma: C \to \{0,1,\ldots,n\}$ such that $W = \{c_1c_2\ldots \in C^\omega \mid \limsup_i \gamma(c_i) \text{ is even}\}$

Some language theory (1)

Let $L \subseteq C^*$ be a language of finite words

Right congruence

Given
$$x, y \in C^*$$
,
$$x \sim_L y \Leftrightarrow \forall z \in C^*, \left(x \cdot z \in L \Leftrightarrow y \cdot z \in L\right)$$

Some language theory (1)

Let $L \subseteq C^*$ be a language of finite words

Right congruence

• Given $x, y \in C^*$,

$$x \sim_L y \Leftrightarrow \forall z \in C^*, (x \cdot z \in L \Leftrightarrow y \cdot z \in L)$$

Myhill-Nerode Theorem

- ullet L is regular if and only if \sim_L has finite index;
 - There is an automaton whose states are classes of \sim_L , which recognizes L.

Some language theory (2)

Let $L \subseteq C^{\omega}$ be a language of infinite words

Right congruence

Given
$$x, y \in C^*$$
,
$$x \sim_L y \Leftrightarrow \forall z \in C^\omega, \left(x \cdot z \in L \Leftrightarrow y \cdot z \in L\right)$$

Some language theory (2)

Let $L \subseteq C^{\omega}$ be a language of infinite words

Right congruence

• Given $x, y \in C^*$,

$$x \sim_L y \Leftrightarrow \forall z \in C^{\omega}, \left(x \cdot z \in L \Leftrightarrow y \cdot z \in L \right)$$

Link with ω -regularity?

- $lacktriangleright If L is ω-regular, then \sim_L has finite index;}$
 - ullet The automaton based on $ullet_L$ is a so-called prefix-classifier;
- ▶ The converse does not hold (e.g. all prefix-independent languages are such that \sim_L has only one element).

Four examples

Objective	Prefix classifier ${\mathscr M}_{\sim}$	Suffcient memory
Parity objective	$\rightarrow \bigcirc \bigcirc$	$\rightarrow \bigcirc \bigcirc C$
Mean-payoff ≥ 0	$\rightarrow \bigcirc \bigcirc C$	No finite automaton
$C = \{a, b\}$ $W = b*ab*aC^{\omega}$	$\xrightarrow{b} \xrightarrow{a} \xrightarrow{b} \xrightarrow{a} C$	$\rightarrow \bigcirc \bigcirc C$
$C = \{a, b\}$		

 $W = C^*(ab)^\omega$

50

Characterization

Let $W \subseteq C^{\omega}$ be a winning objective.

Characterization - Two-player games

If a finite memory structure \mathcal{M} suffices to play optimally in one-player infinite arenas for both players, then the prefix-classifier \mathcal{M}_{\sim} is finite and W is recognized by a parity automaton $(\mathcal{M}_{\sim} \otimes \mathcal{M}, \gamma)$, with $\gamma \colon M \times C \to \{0,1,\ldots,n\}$.

 \rightarrow Generalizes [CN06] where both \mathcal{M} and \mathcal{M}_{\sim} are trivial

Four examples

Objective	Prefix classifier \mathcal{M}_{\sim}	One-player memory
Parity objective	$\rightarrow \bigcirc \bigcirc C$	$\rightarrow \bigcirc \bigcirc C \mapsto \{0,1,\ldots,n\}$
Mean-payoff ≥ 0	$\rightarrow C$	No finite automaton
$C = \{a, b\}$ $W = b*ab*aC^{\omega}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rightarrow \bigcirc \bigcirc C$
$C = \{a, b\}$. 15	

 $W = C^*(ab)^\omega$

Corollaries

Lifting theorem

If W and W^c are finite-memory-determined in one-player infinite games, then W and W^c are finite-memory-determined in two-player infinite games.

Corollaries

Lifting theorem

If W and W^c are finite-memory-determined in one-player infinite games, then W and W^c are finite-memory-determined in two-player infinite games.

Characterization

W is finite-memory-determined in (two-player) infinite games if and only if W is ω -regular.

Some consequences

- Mean-payoff ≥ 0 is not ω -regular (even though it is positionally determined in finite games)
- Some discounted objectives are ω -regular: e.g. condition $\mathsf{DS}^{\geq 0}_\lambda$ (with $\lambda \in (0,1) \cap \mathbb{Q}$, $C = [-k,k] \cap \mathbb{Z}$) is ω -regular if and only if $k < \frac{1}{\lambda} 1$ or $\lambda = \frac{1}{n}$ for some $n \in \mathbb{N}_{>0}$

Infinite games

Infinite games

lacktriangle Complete characterization of winning objectives that ensure chromatic finite-memory determinacy in infinite games = ω -regular

Infinite games

- Complete characterization of winning objectives that ensure chromatic finite-memory determinacy in infinite games = ω -regular
- One-to-two-player lift
 (requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic finite memory determinacy in two-players games for both players)

Infinite games

- Complete characterization of winning objectives that ensure chromatic finite-memory determinacy in infinite games = ω -regular
- One-to-two-player lift
 (requires chromatic finite memory determinacy in one-player games for both players; ensures chromatic finite memory determinacy in two-players games for both players)
- Further questions:
 - Can be reduce/optimize the memory? E.g. is \mathcal{M}_{\sim} necessary in the memory for two players?
 - What about chaotic finite memory?
 - Can we focus on one player (so-called half-positionality)?
 - What about finite branching?

école — — — normale — — supérieure — — paris — saclay — —

Conclusion

 Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)

- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- These concepts (like winning strategies) require manipulating information
 - For simpler strategies, use low memory!
 - ... even though low memory does not mean it is easy...

- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- These concepts (like winning strategies) require manipulating information
 - For simpler strategies, use low memory!
 - ... even though low memory does not mean it is easy...
- Understand chromatic finite-memory determined objectives

- Use of models and concepts from game theory in formal methods (e.g. controller in reactive systems)
- These concepts (like winning strategies) require manipulating information
 - For simpler strategies, use low memory!
 - ... even though low memory does not mean it is easy...
- Understand chromatic finite-memory determined objectives

- Going further:
 - Games under partial observation, e.g. players with their own knowledge (of the game, of the other's choices, ...)
 - Half-positionality or half-finite-memory of objectives (preliminary result [BCRV22])