Energy consumption in timed systems

Patricia Bouyer

LSV – CNRS & ENS Cachan

November 13, 2008

Systems that need to be verified

ightarrow include reactive, embedded systems, (communication) protocols, \ldots

Systems that need to be verified

ightarrow include reactive, embedded systems, (communication) protocols, . . .

Important characteristics

They have to meet numerous quantitative constraints such as:

• timing constraints

"Will the airbag open within 5ms after the car crashes?"

Systems that need to be verified

ightarrow include reactive, embedded systems, (communication) protocols, . . .

Important characteristics

They have to meet numerous quantitative constraints such as:

timing constraints

"Will the airbag open within 5ms after the car crashes?"

• energy/cost/resource constraints

"Can an autonomous robot with solar cells explore a fixed area?" "How should one optimize the profit in a factory?" "Can we schedule those tasks on two processors?"

A rather general solution: hybrid systems

[Henzinger 1996]

What is a hybrid system?

- a discrete control (the mode of the system)
- + a continuous evolution within a mode (given by variables)

A rather general solution: hybrid systems

[Henzinger 1996]

What is a hybrid system?

- a discrete control (the mode of the system)
- + a continuous evolution within a mode (given by variables)

Example (The thermostat)

A simple thermostat, where T (the temperature) depends on the time:

The thermostat example

The thermostat example

The new variable c represents the cost to be paid.

The new variable c represents the cost to be paid.

Question

Is that possible to pay no more than $3 \in$ per hour to maintain the temperature between $18^{\circ}C$ and $22^{\circ}C$?

The new variable c represents the cost to be paid.

Of course, this is a complex question, and simpler questions can be asked...

The variable x measures the time elapsing in mode On.

The variable x measures the time elapsing in mode On.

Question

Is location Crash reachable from state (Off, T = 20, x = 0)?

6/25

Easy...

Easy...

Easy...

Ok... but?

Ok... but?

What we do	What we don't do

What we do	What we don't do
- exhaustive search	- partial simulation

What we do	What we don't do
 exhaustive search exact and symbolic computation (no round-off errors) 	 partial simulation approximate computation

What we do	What we don't do
- exhaustive search	- partial simulation
- exact and symbolic computation	- approximate computation
(no round-off errors)	
- fully-automated methods	- <i>ad-hoc</i> methods
(for large classes of systems)	

What we do	What we don't do
- exhaustive search	- partial simulation
- exact and symbolic computation	- approximate computation
(no round-off errors)	
- fully-automated methods	- <i>ad-hoc</i> methods
(for large classes of systems)	

Theorem [Henzinger 1996]

The hybrid system model is undecidable as soon as we use:

- differential equations of the form $\dot{x} = 0$ or $\dot{x} = 1$;
- constraints of the form $x \in [a, b]$;
- resets of the variables to 0.

 \rightsquigarrow There is no general algorithm (or program) to verify hybrid systems.

What is undecidability? The Post correspondence problem

What is undecidability? The Post correspondence problem

What is undecidability? The Post correspondence problem

Theorem [Post 1946]

PCP is undecidable.

 \rightsquigarrow There is no general algorithm (or program) to solve PCP.

Another example

http://www.theory.informatik.uni-kassel.de/~stamer/pcp/

http://www.theory.informatik.uni-kassel.de/~stamer/pcp/

Further undecidability

Hilbert's tenth problem

Given a multivariate polynomial $P(X_1, \ldots, X_n) \in \mathbb{Q}[X_1, \ldots, X_n]$, do there exist integers $(a_1, \ldots, a_n) \in \mathbb{Z}^n$ such that $P(a_1, \ldots, a_n) = 0$.

Further undecidability

Hilbert's tenth problem

Given a multivariate polynomial $P(X_1, \ldots, X_n) \in \mathbb{Q}[X_1, \ldots, X_n]$, do there exist integers $(a_1, \ldots, a_n) \in \mathbb{Z}^n$ such that $P(a_1, \ldots, a_n) = 0$.

Theorem [Matiyasevich 1970]

Hilbert's tenth problem is undecidable.

Undecidability can be understood as follows

Reduction from tenth Hilbert's problem

Given a multivariate polynomial P, one can construct a hybrid system H_P such that H_P is safe iff P has an integral solution.

Undecidability can be understood as follows

Reduction from tenth Hilbert's problem

Given a multivariate polynomial P, one can construct a hybrid system H_P such that H_P is safe iff P has an integral solution.

Reduction from PCP

Given a finite set of tiles S for PCP, one can construct a hybrid system H_S such that H_S is safe iff PCP has a solution with those tiles.

Undecidability can be understood as follows

Reduction from tenth Hilbert's problem

Given a multivariate polynomial P, one can construct a hybrid system H_P such that H_P is safe iff P has an integral solution.

Reduction from PCP

Given a finite set of tiles S for PCP, one can construct a hybrid system H_S such that H_S is safe iff PCP has a solution with those tiles.

Reduction from your favorite difficult problem

Given any instance I of a difficult problem, one can construct a hybrid system H_I such that H_I is safe iff there is a solution to I.

• Design classes of models such that:

- we will be able to analyze them automatically (and efficiently);
- they will be powerful enough to represent numerous systems.

• Design classes of models such that:

- we will be able to analyze them automatically (and efficiently);
- they will be powerful enough to represent numerous systems.
- Design efficient model-checking algorithms

$$\begin{array}{ccc} \ell_0 & \xrightarrow{1.3} & \ell_0 \\ x & 0 & & 1.3 \\ y & 0 & & 1.3 \end{array}$$

$$\begin{array}{cccc} \ell_0 & \xrightarrow{1.3} & \ell_0 & \xrightarrow{c} & \ell_1 \\ x & 0 & & 1.3 & & 1.3 \\ y & 0 & & 1.3 & & 0 \end{array}$$

A timed automaton: a hybrid system with only clocks, *i.e.* variables whose derivative is always 1 ($\dot{x} = 1$) and that can be reset to 0.

Questions Is that possible to reach location (2)? How long will that take to reach location (2)?

safe

- X 0
- y 0

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm
х	0		23		0
у	0		23		23

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm
х	0		23		0		15.6
у	0		23		23		38.6

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

failsafe

... 15.6

0

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

failsafe	$\xrightarrow{2.3}$	failsafe
 15.6		17.9
0		2.3

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

failsafe	$\xrightarrow{2.3}$	failsafe	$\xrightarrow{\text{repair}}$	repairing
 15.6		17.9		17.9
0		2.3		0

	safe -	$\xrightarrow{23}$ safe	probl	^{em} → alar	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}} \rightarrow$	failsafe	
Х	0	23		0		15.6		15.6	
у	0	23		23	3	38.6		0	
	failsafe	$\xrightarrow{2.3}$	failsafe	$\xrightarrow{\text{repair}}$	repairing	$\xrightarrow{22.1}$	repairing		
	15.6		17.9		17.9		40		
	0		2.3		0		22.1		

	safe	$\xrightarrow{23}$	safe	prob	Lem →	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}} \rightarrow$	failsafe	
х	0		23			0		15.6		15.6	
у	0		23			23		38.6		0	
	failsafe	2.3	\rightarrow	failsafe	repai	\xrightarrow{ir}	repairing	$\xrightarrow{22.1}$	repairing	$\xrightarrow{\text{done}}$	safe
	15.6			17.9			17.9		40		40
	0			2.3			0		22.1		22.1

A third example: B&O collision detection protocol

A fourth example

A fundamental result

Theorem [Alur & Dill 1990]

There is a general algorithm (or program) to check whether a timed automaton is safe or not.

A fundamental result

Theorem [Alur & Dill 1990]

There is a general algorithm (or program) to check whether a timed automaton is safe or not.

cost :

cost : 6.5

Question

What is the optimal cost for reaching \bigcirc ?

Question

What is the optimal cost for reaching \bigcirc ?

5t + 10(2 - t) + 1, 5t + (2 - t) + 7

Question

What is the optimal cost for reaching \bigcirc ?

min (5t+10(2-t)+1, 5t+(2-t)+7)

Question

What is the optimal cost for reaching \bigcirc ?

$$\inf_{0 \le t \le 2} \min \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 9$$

Question

What is the optimal cost for reaching \bigcirc ?

$$\inf_{0 \le t \le 2} \min \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 9$$

 \sim strategy: leave immediately ℓ_0 , go to ℓ_3 , and wait there 2 t.u.

Safe bounds problems

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

- Lower-bound problem
- Lower-upper-bound problem
- Lower-weak-upper-bound problem: can we "weakly" stay within bounds?

Games over timed automata

[Asarin, Maler, Pnueli, Sifakis 1998]

Games over timed automata

[Asarin, Maler, Pnueli, Sifakis 1998]

Question

Can we reach our goal whatever does the adversary?

A further example

Question

What is the optimal cost we can ensure from ℓ_0 ?

Question

What is the optimal cost we can ensure from ℓ_0 ?

5t + 10(2 - t) + 1

Question

What is the optimal cost we can ensure from ℓ_0 ?

$$5t + 10(2 - t) + 1$$
, $5t + (2 - t) + 7$

Question

What is the optimal cost we can ensure from ℓ_0 ?

max (5t+10(2-t)+1, 5t+(2-t)+7)

Question

What is the optimal cost we can ensure from ℓ_0 ?

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1 , 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

-

Games over timed automata with costs

Question

What is the optimal cost we can ensure from ℓ_0 ?

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

 \rightsquigarrow strategy: wait in ℓ_0 , and when $t=rac{4}{3}$, go to ℓ_1

• Timed automata: systems with constraints on delays between events, on durations of tasks, *etc*.

"Is any message delivered in no more than 5 minutes?"

• Timed automata: systems with constraints on delays between events, on durations of tasks, *etc*.

"Is any message delivered in no more than 5 minutes?"

• no real energy constraints can be expressed

• Timed automata: systems with constraints on delays between events, on durations of tasks, *etc*.

"Is any message delivered in no more than 5 minutes?"

- no real energy constraints can be expressed
- Timed automata with costs: energy consumption, resources \sim observe the quality of the system

• Timed automata: systems with constraints on delays between events, on durations of tasks, *etc*.

"Is any message delivered in no more than 5 minutes?"

- no real energy constraints can be expressed
- Timed automata with costs: energy consumption, resources \sim observe the quality of the system
 - Optimization questions: minimal energy consumption, mean-cost optimization, minimization of the resources

"Can we minimize the power consumption w.r.t. the production?"

• Timed automata: systems with constraints on delays between events, on durations of tasks, *etc*.

"Is any message delivered in no more than 5 minutes?"

- no real energy constraints can be expressed
- Timed automata with costs: energy consumption, resources \sim observe the quality of the system
 - Optimization questions: minimal energy consumption, mean-cost optimization, minimization of the resources

"Can we minimize the power consumption w.r.t. the production?"

• Safe bounds constraints: check whether a system can stay alive with some amount of energy (that can possibly be regained) ex: laptop battery, autonomous robot

• Timed automata: systems with constraints on delays between events, on durations of tasks, *etc*.

"Is any message delivered in no more than 5 minutes?"

- no real energy constraints can be expressed
- Timed automata with costs: energy consumption, resources \sim observe the quality of the system
 - Optimization questions: minimal energy consumption, mean-cost optimization, minimization of the resources

"Can we minimize the power consumption w.r.t. the production?"

- Safe bounds constraints: check whether a system can stay alive with some amount of energy (that can possibly be regained) ex: laptop battery, autonomous robot
- Games over timed automata: interaction with an environment (open systems)

• Timed automata: systems with constraints on delays between events, on durations of tasks, *etc*.

"Is any message delivered in no more than 5 minutes?"

- no real energy constraints can be expressed
- Timed automata with costs: energy consumption, resources \sim observe the quality of the system
 - Optimization questions: minimal energy consumption, mean-cost optimization, minimization of the resources

"Can we minimize the power consumption w.r.t. the production?"

- Safe bounds constraints: check whether a system can stay alive with some amount of energy (that can possibly be regained) ex: laptop battery, autonomous robot
- Games over timed automata: interaction with an environment (open systems)
- Games over timed automata with costs: when the above-mentioned features are combined

Which are the results?

A taste of the results

- Adding cost (observer) variables to timed automata incredibly increases the difficulty of the problems
 - Many problems become undecidable
 - (Proofs of) algorithms become pretty much complex for restrictive decidable cases

Which are the results?

A taste of the results

- Adding cost (observer) variables to timed automata incredibly increases the difficulty of the problems
 - Many problems become undecidable
 - (Proofs of) algorithms become pretty much complex for restrictive decidable cases

In several cases, algorithms have been developed, and case studies have been handled.

Which are the results?

A taste of the results

- Adding cost (observer) variables to timed automata incredibly increases the difficulty of the problems
 - Many problems become undecidable
 - (Proofs of) algorithms become pretty much complex for restrictive decidable cases

In several cases, algorithms have been developed, and case studies have been handled.

Tools that we use

- Automata theory
- Fixpoint computation
- Game reasoning

- Abstractions
- Linear programming
- etc...

Various tools are being developedHybrid systems: HyTech

- Timed automata: Uppaal
- Timed automata with costs: Uppaal Cora
- Games on timed automata: Uppaal Tiga

since 1995 since 1995 since 2001

since 2005

Various tools are being developed	
• Hybrid systems: HyTech	since 1995
• Timed automata: Uppaal	since 1995
• Timed automata with costs: Uppaal Cora	since 2001
• Games on timed automata: Uppaal Tiga	since 2005
Case studies (a selection)	

Various tools are being developed	
• Hybrid systems: HyTech	since 1995
 Timed automata: Uppaal 	since 1995
 Timed automata with costs: Uppaal Cora 	since 2001
 Games on timed automata: Uppaal Tiga 	since 2005
Case studies (a selection)	
 Purely timed systems: 	
• An audio/video protocol (Bang & Olufsen)	1997
Verification of SPSMALL (STMicroelectronics)	2008
 Games on timed automata: A climate controller in a pig stable (Skov A/S) 	2007

Various tools are being developed	
Hybrid systems: HyTech	since 1995
• Timed automata: Uppaal	since 1995
 Timed automata with costs: Uppaal Cora 	since 2001
 Games on timed automata: Uppaal Tiga 	since 2005
Case studies (a selection)	
• Purely timed systems:	
• An audio/video protocol (Bang & Olufsen)	1997
Verification of SPSMALL (STMicroelectronics)	2008
 Games on timed automata: 	
 A climate controller in a pig stable (Skov A/S) 	2007
 Timed automata with costs: 	
• Optimization questions (EU project Ametist)	
A lacquer production planning problem (AXXOM)	2004

Various tools are being developed	
• Hybrid systems: HyTech	since 1995
 Timed automata: Uppaal 	since 1995
 Timed automata with costs: Uppaal Cora 	since 2001
• Games on timed automata: Uppaal Tiga	since 2005
Case studies (a selection)	
• Purely timed systems:	
• An audio/video protocol (Bang & Olufsen)	1997
• Verification of SPSMALL (STMicroelectronics)	2008
• Games on timed automata:	
 A climate controller in a pig stable (Skov A/S) 	2007
 Timed automata with costs: 	
 Optimization questions (EU project Ametist) 	
A lacquer production planning problem (AXXOM)	2004
• Safe bounds constraints (EU project Quasimodo)	
A pump system (Hydac Electronic GmbH) theory	[,] not yet understood