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IntrodutionController synthesisCan we guide the systemModelling so that it satis�es
ϕ

the property?
|=‖Controller synthesis

➜ modeled as two player games 4/41



IntrodutionTimed automata [Alur & Dill 90's℄x , y : loks
ℓ0 ℓ1 ℓ2x ≤ 5, a, y := 0 y > 1, b, x := 0

ℓ0 δ(4.1) ℓ0 a ℓ1 δ(1.4) ℓ1 b ℓ2x 0 4.1 4.1 5.5 0y 0 4.1 0 1.4 1.4
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◮ a on�guration: (ℓ, v)
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(ℓ, v)
δ(d)
−−−−→ (ℓ, v + d)

(ℓ, v)
a
−−→ (ℓ′, v ′) where{ v |= gv ′ = [C ← 0]v for some ℓ

g ,a,C :=0
−−−−−−−→ ℓ′Cost((ℓ, v)

δ(d)
−−−−→ (ℓ, v + d)

)

= P .d Cost((ℓ, v)
a
−−→ (ℓ′, v ′)) = pCost(ρ) = aumulated ost along run ρ 6/41
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ℓ0ost(ℓ0) = 5 ℓ1y = 0 ℓ2ost(ℓ2) = 10

ℓ3ost(ℓ3) = 1x ≤ 2; ; y := 0 uu x ≥ 2; ; ost = 1x ≥ 2; ; ost = 7Question: what is the optimal ost for reahing the happy state?inf0≤t≤2 min ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 9
➜ strategy: leave immediately ℓ0, go to ℓ3, and wait there 2 t.u. 8/41
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IntrodutionSeveral issues on weighted timed automata
ℓ ℓ′g , a, C := 0pP P ′

ost rate disrete ost
◮ Model-heking problems

◮ reahability with an optimization riterium on the ost
◮ safety with a mean-ost optimization riterium
◮ model-heking WCTL, an extension of CTL with ost onstraints

◮ Optimal timed games
◮ optimal reahability timed games
◮ optimal mean-ost timed games 9/41
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Model-heking weighted timed automataModel-heking weighted timed automata
◮ Reahability with an optimization riterium on the ost[Behrmann, Brinksma, Fehnker, Hune, Larsen, Pettersson,Romijn, Vaandrager � HSCC'01, TACAS'01, CAV'01℄[Alur, La Torre, Pappas � HSCC'01℄[Bouyer, Brihaye, Bruyère, Raskin � Subm. 2006℄
◮ Safety with a mean-ost optimization riterium[Bouyer, Brinksma, Larsen � HSCC'04℄
◮ Model-heking WCTL, an extension of CTL with ost onstraintsAG (problem⇒ AG≤5 repair)[Brihaye, Bruyère, Raskin � FORMATS+FTRTFT'04℄[Bouyer, Brihaye, Markey � IPL'06℄[Bouyer, Laroussinie, Larsen, Markey, Rasmussen � 2006℄11/41
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Model-heking weighted timed automataThe orner-point abstrationIdea: redution to the disrete ase
◮ region abstration: not su�ient
◮ orner-point abstration/weighted disrete graph Ap:time elapsingreset to 03 0 0 0

3 00 07 7
ost rate: 3 p.u.disrete ost: 7

This abstration is orret! ➜ PSPACE
◮ for omputing optimal paths
◮ for omputing optimal stationary behaviours 13/41



Model-heking weighted timed automataOptimal reahability
➜ optimal reahability along a given path an be viewed as a linearprogramming problemLemmaLet Z be a bounded zone and f be a funtionf : (t1 , ..., tn) 7→

n
Xi=1 i ti + well-de�ned on Z . Then infZ f is obtained on the border of Z with integer oordinates.Then, abstrat paths in Ap an be approximated by real path �ε-lose�to the abstrat path
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Model-heking weighted timed automataIn�nite stationary behaviours: An exampleA prodution system:
Low
Highx ≤ DC = PR = G

C = pR = g
att? x := 0x := 0att?x = D

Single mahine M(D,G ,P , g , p)

att!z ≥ S z := 0Operator O(S)
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Low
Highx ≤ DC = PR = G

C = pR = g
att? x := 0x := 0att?x = D

Single mahine M(D,G ,P , g , p)

att!z ≥ S z := 0Operator O(S)

Question: How to minimizelimn→+∞
aumulated ost(n)aumulated reward(n)?

15/41
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limit ostreward = 9666 ≃ 1, 455 16/41



Model-heking weighted timed automataIn�nite stationary behaviours: An exampleTwo mahines M1(D = 3,P = 3,G = 4, p = 5, g = 3),M2(D = 6,P = 3,G = 2, p = 5, g = 2) and an Operator O(4).
Time 4 8 12 16OM2M1 HLHL 1 1 2 1(a) Shedule with mean-ost 1,455 Time 4 8 12 16OM2M1 HLHL 1 1 1 1(b) Shedule with mean-ost 1,47817/41
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Model-heking weighted timed automataFrom timed to disrete behaviours (1)
◮ Finite behaviours: based on the following propertyLemmaLet Z be a bounded zone and f be a funtionf : (t1 , ..., tn) 7→

Pni=1 i ti + 
Pni=1 ri ti + rwell-de�ned on Z . Then infZ f is obtained on the border of Z with integer oordinates.

➜ for any �nite path π in A, there exists a path Π in Ap suh thatmean-ost(Π) ≤ mean-ost(π)[Π is a �orner-point projetion� of π℄
☞ optimal �nite behaviours are not pre�x-losed18/41
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Model-heking weighted timed automataFrom timed to disrete behaviours (2)
◮ In�nite behaviours: deompose eah su�iently long projetioninto yles

The linear part will be negligible!
➜ the optimal yle of Ap is better than any in�nite path of A
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Model-heking weighted timed automataFrom disrete to timed behavioursApproximation of abstrat paths:
ε

εFor any path Π of Ap , for any ε > 0, there exists a path πε of A s.t.
‖Π− πε‖∞ < ε

➜ This is su�ient under the positive strongly diverging reward.For every η > 0, there exists ε > 0 s.t.
‖Π− πε‖∞ < ε⇒ |mean-ost(Π)−mean-ost(πε)| < η 20/41



Model-heking weighted timed automataApproximation of abstrat pathsDiameter of a valuation: int�v(z)� �v(x)�δ(v)

21/41



Model-heking weighted timed automataApproximation of abstrat pathsDiameter of a valuation: int�v(z)� �v(x)�δ(v)Computing suessors:
δ(v)

δ(v ′) = δ(v)
Time elapsing

21/41



Model-heking weighted timed automataApproximation of abstrat pathsDiameter of a valuation: int�v(z)� �v(x)�δ(v)Computing suessors:
δ(v)

δ(v ′) = δ(v)
Time elapsing

δ(v)

δ(v ′) = δ(v) 21/41



Model-heking weighted timed automataHypothesis: strongly non-Zeno reward0/0 0/0 11/1 0/0y > 0, y := 03/2 x = 1, x := 00/0 y = 1, y := 00/0x = 1, x := 00/0
πd,n: path s.t. the �rst transition is taken at date d and the loop is takenn times.
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Model-heking weighted timed automataHypothesis: strongly non-Zeno reward0/0 0/0 11/1 0/0y > 0, y := 03/2 x = 1, x := 00/0 y = 1, y := 00/0x = 1, x := 00/0
πd,n: path s.t. the �rst transition is taken at date d and the loop is takenn times.reward(πd,n) = 2 + d .n and ost(πd,n) = 3 + 11d .nFor any real in�nite path πd , mean-ost(πd ) = 11 butmean-ost(π0) = 32 .

➜ this automaton is not strongly reward diverging22/41



Model-heking weighted timed automataModel-heking WCTL
AG (problem⇒ AG≤5 repair)

◮ With more than �ve loks, model-heking WCTL is undeidable[Brihaye, Bruyère, Raskin � FORMATS+FTRTFT'04℄
◮ With more than three loks, model-heking WCTL is undeidable[Bouyer, Brihaye, Markey � IPL'06℄

➜ Short explanation at the end of the talk
◮ With one lok, model-heking WCTL is deidable[Bouyer, Laroussinie, Larsen, Markey, Rasmussen � 2006℄
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Optimal timed gamesOutline1. Introdution2. Model-heking weighted timed automata3. Optimal timed games4. Conlusion
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Optimal timed gamesDeidability of timed games
Theorem [Henzinger, Kopke 1999℄Safety and reahability ontrol in timed automata are deidable andEXPTIME-omplete.(the attrator is omputable...)
➜ lassial regions are su�ient for solving suh problems

25/41



Optimal timed gamesAn example
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ℓ3ost(ℓ3) = 1x ≤ 2; ; y := 0 uu x ≥ 2; ; ost = 1x ≥ 2; ; ost = 7
: ontrollable ationu: unontrollable ation
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Optimal timed gamesAn example
ℓ0ost(ℓ0) = 5 ℓ1y = 0 ℓ2ost(ℓ2) = 10

ℓ3ost(ℓ3) = 1x ≤ 2; ; y := 0 uu x ≥ 2; ; ost = 1x ≥ 2; ; ost = 7
: ontrollable ationu: unontrollable ation

Question: what is the optimal ost we an ensure in state ℓ0?inf0≤t≤2 max ( 5t + 10(2− t) + 1 , 5t + (2− t) + 7 ) = 14 +
13

➜ strategy: wait in ℓ0, and when t = 43 , go to ℓ1
◮ How to automatially ompute suh optimal osts?
◮ How to synthesize optimal strategies (if one exists)? 26/41
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fε(ℓ0, x < 1− ε) = λfε(ℓ0, 1− ε ≤ x < 1) = fε(ℓ1, x < 1) = λfε(ℓ1, x = 1) = 
➜ no optimal strategy exists, but rather a family (fε)ε>0of ε-approximating strategies (ost(fε) = 1 + ε)28/41



Optimal timed gamesAn enoding (1)Idea: tranform the ost into a dereasing linear hybrid variable
G G′

ℓ0 ℓ1g , a, Y := 0ost = 1ost = 5 =⇒ ℓ′0
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∃f winning strategy in Gs.t. ost(f , (ℓ, v)) ≤ γ

}

⇐⇒ (ℓ, v , ost = γ) winning in G′+ onstrutive proof29/41
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[i∈I (Pi ∧ ost ≻i ki ) (with ≻i either > or ≥)

30/41



Optimal timed gamesAn enoding (2)The set of winning states in G′ is upward-losed for the ost, i.e. of the form
[i∈I (Pi ∧ ost ≻i ki ) (with ≻i either > or ≥)CorollaryFor pried timed games (under some hypotheses),

◮ �reahable� optimal ost, or not (ost ≥ γ or ost > γ)
◮ existene of an optimal strategy deidable + onstrutive proof

30/41



Optimal timed gamesAn enoding (2)The set of winning states in G′ is upward-losed for the ost, i.e. of the form
[i∈I (Pi ∧ ost ≻i ki ) (with ≻i either > or ≥)CorollaryFor pried timed games (under some hypotheses),

◮ �reahable� optimal ost, or not (ost ≥ γ or ost > γ)
◮ existene of an optimal strategy deidable + onstrutive proofNature of the strategy:
◮ state-based for the hybrid game, thus ost-dependent for the timedgame
◮ ost-dependene is unavoidable in general!
◮ ost-independent strategies for syntatial restritions of the games: large onstraints, u: strit onstraints 30/41
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x < 1, u, x , y := 0 y > 0, 
◮ optimal ost: 2
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ℓ0ost = 2x ≤ 1 W

ℓ1ost = 1
x = 1, 

x < 1, u, x , y := 0 y > 0, 
◮ optimal ost: 2
◮ optimal strategy: if d is the time before a u ours, and d ′ is thetime waited in ℓ1, the ost of the run is 2.d + d ′.2.d + d ′ ≤ 2

(aumulated ost) + d ′ ≤ 2 31/41
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◮ ounter 1 is enoded by a lok x1 s.t. x1 = 121
◮ ounter 2 is enoded by a lok x2 s.t. x2 = 132
◮ x1 and x2 will be alternatively x , y or zThe aim of player 1 is to win (reah a W -state) with ost ≤ 3, andPlayer 1 has a winning strategy with ost ≤ 3i�the two-ounter mahine halts 33/41
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ost=0 ost=1z:=0y=1,y :=0 y=1,y :=0x=1,x:=0 z=1,z:=0The ost is inreased by x0

Add+(x , {z})
ost=1 ost=0z:=0y=1,y :=0 y=1,y :=0x=1,x:=0 z=1,z:=0The ost is inreased by 1− x0

Add−(x , {z})

35/41



Optimal timed gamesCheking y = 2xAdd+(x , {z}) Add+(x , {z}) Add−(y , {z}) W1ost=0 ost=0z:=0 z=0 ost=2Add−(x , {z}) Add−(x , {z}) Add+(y , {z}) W2ost=0 ost=0z:=0 z=0 ost=1In W1, ost = 2x0 + (1− y0) + 2.In W2, ost = 2(1− x0) + y0 + 1.
36/41



Optimal timed gamesCheking y = 2xAdd+(x , {z}) Add+(x , {z}) Add−(y , {z}) W1ost=0 ost=0z:=0 z=0 ost=2Add−(x , {z}) Add−(x , {z}) Add+(y , {z}) W2ost=0 ost=0z:=0 z=0 ost=1In W1, ost = 2x0 + (1− y0) + 2.In W2, ost = 2(1− x0) + y0 + 1.
◮ if y0 < 2x0, player 2 hooses the �rst branh: in W1, ost > 3

36/41



Optimal timed gamesCheking y = 2xAdd+(x , {z}) Add+(x , {z}) Add−(y , {z}) W1ost=0 ost=0z:=0 z=0 ost=2Add−(x , {z}) Add−(x , {z}) Add+(y , {z}) W2ost=0 ost=0z:=0 z=0 ost=1In W1, ost = 2x0 + (1− y0) + 2.In W2, ost = 2(1− x0) + y0 + 1.
◮ if y0 < 2x0, player 2 hooses the �rst branh: in W1, ost > 3
◮ if y0 > 2x0, player 2 hooses the seond branh: in W2, ost > 3 36/41



Optimal timed gamesCheking y = 2xAdd+(x , {z}) Add+(x , {z}) Add−(y , {z}) W1ost=0 ost=0z:=0 z=0 ost=2Add−(x , {z}) Add−(x , {z}) Add+(y , {z}) W2ost=0 ost=0z:=0 z=0 ost=1In W1, ost = 2x0 + (1− y0) + 2.In W2, ost = 2(1− x0) + y0 + 1.
◮ if y0 < 2x0, player 2 hooses the �rst branh: in W1, ost > 3
◮ if y0 > 2x0, player 2 hooses the seond branh: in W2, ost > 3
◮ if y0 = 2x0, in W1 or in W2, ost = 3. 36/41
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Optimal timed gamesHow to get rid of tik lok u?
Aix,y ,z D ix,y ,z Ajz,y ,xTest(x = 2z , {y})Power2(x , {y , z})Power3(y , {x , z})

ost=1x=1,x:=0 z:=0y=1,y :=0 y=1,y :=0
Haltost=3We will ensure that:
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Optimal timed gamesCheking that x is of the form 12n
WTest(y = 2x , {z})z:=0 y :=0 x=1x:=0 z=1∧x≤1z:=0z=0,x:=y z=0x=1,z=0
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Optimal timed gamesExtension to undeidability of WCTLWe build the same automaton AM, and prove that:the two-ounter mahineM halts i� AM |= Φwhere
Φ ≡ E (D → ϕ)U ≤0Haltwith ϕ ≡

∧i=1,2,3 E (DU ≤0ϕi )
ϕ1 ≡ S ∧ EF ≤1T ∧ EF ≥1T evaluated in Test(x = 2z , {y})

ϕ2 ≡ P2 ∧ E ((Q2 → E (Q2U ϕ1))U R2) evaluated in Power2(x , {y , z})
39/41
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➜ implemented in tool Uppaal Cora
◮ branhing-time properties are undeidable
◮ what about linear-time properties?
◮ onsider more general ost funtionsOptimal timed games
◮ optimal ost is in general not omputable in timed games
◮ under some assumption, it beomes omputable
◮ omplexity issues and properties of strategies have also been studied
◮ investigate further mean-ost optimal timed games
◮ approximate optimal ost
◮ propose more algorithmis solutions
◮ o-minimal optimal timed games
◮ . . . 41/41
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