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Introduction

Controller synthesis

Can we guide  the system so that it satisfies the property?

Modelling = = = = = == = o o o o o - -

Controller synthesis

[0 modeled as two player games
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Timed automata [Alur & Dill 90's]

x,y : clocks

x<5b,5 a y:=0

y>1 b, x:=0

Introduction
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Model of weighted/priced timed automata [HSCC'01]
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Introduction

Model of weighted/priced timed automata [HSCC'01]

cost rate discrete cost
S
4 4
g,a C:=0
» a configuration: (¢, v)
» two kinds of transitions:
(.v) 29 (0, v + d)
a / viEg g,a,C:=0
4, v) — (é,v)where{ V' = [C — Qv for some ¢ ==/
Cost ((z v) 29D v+ d)) — P.d Cost ((z, v) 2 (¢, v’)) —p

Cost(p) = accumulated cost along run p
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Introduction

An example

[Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn — CAV'01]

approaching
cost =1 cl>=waitl1
c2>=wait21
== land17?

cl:=0
late
t<=L S0
cost’==|

cl>=waitl2
c2>=wait22
land2?

0 E T L (a) done (b) c2:=0 (C)

cost=1 (+-T)+d >=E

landX!

cost=e (T-t)

Fig. 2. Figure (a) depicts the cost of landing a plane at time ¢. Figure (b) shows an
LPTA modelling the landing costs. Figure (c) shows an LPTA model of the runway.
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Introduction

An example

cost(¢2) =10

x>2;c;,cost =1

cost({g) =5
x >2;c;cost =7

cost(¢3) =1
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Introduction

An example

cost(¢2) =10

x>2;c;,cost =1

cost({g) =5
x >2;c;cost =7

cost(¢3) =1
Question: what is the optimal cost for reaching the happy state?

inf i 10(2 — 1 2 — =
oinf, min (5t +10(2—t)+1,5t+(2—-t)+7)=9

[ strategy: leave immediately /g, go to /3, and wait there 2 t.u.
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» Model-checking problems

» reachability with an optimization criterium on the cost
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Several issues on weighted timed automata

cost rate discrete cost
\ l
P p P’
L 4
O g, a C:=0 O

» Model-checking problems

» reachability with an optimization criterium on the cost

» safety with a mean-cost optimization criterium

Introduction

» model-checking WCTL, an extension of CTL with cost constraints

» Optimal timed games

> optimal reachability timed games
» optimal mean-cost timed games
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Model-checking weighted timed automata

Outline

2. Model-checking weighted timed automata
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Model-checking weighted timed automata

Model-checking weighted timed automata

» Reachability with an optimization criterium on the cost
[Behrmann, Brinksma, Fehnker, Hune, Larsen, Pettersson,
Romijn, Vaandrager — HSCC'01, TACAS'01, CAV'01]
[Alur, La Torre, Pappas — HSCC'01]
[Bouyer, Brihaye, Bruyére, Raskin — Subm. 2006]

» Safety with a mean-cost optimization criterium
[Bouyer, Brinksma, Larsen — HSCC'04]

» Model-checking WCTL, an extension of CTL with cost constraints

A G (problem = A G<s repair) J

[Brihaye, Bruyére, Raskin — FORMATS+FTRTFT'04]
[Bouyer, Brihaye, Markey — IPL'06]
[Bouyer, Laroussinie, Larsen, Markey, Rasmussen — 2006]
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Model-checking weighted timed automata

The classical region abstraction

...... > reset to 0
-— -— - . .
‘ - — »  time elapsing
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The corner-point abstraction

Idea: reduction to the discrete case
» region abstraction: not sufficient
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Model-checking weighted timed automata

The corner-point abstraction

. . - time elapsin
Idea: reduction to the discrete case > psing

» region abstraction: not sufficient
» corner-point abstraction/weighted discrete graph A:

..... » resetto 0

--—

3
4
I
)

-——
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9_ discrete cost: 7
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Model-checking weighted timed automata

The corner-point abstraction

. . - time elapsin
Idea: reduction to the discrete case > psing

» region abstraction: not sufficient
» corner-point abstraction/weighted discrete graph A:

..... » resetto 0

--—

3
4
I
)

-—— -
- -

0 discrete cost: 7

0 00 - S~ =7
i 3
7
This abstraction is correct! 0 PSPACE

» for computing optimal paths

» for computing optimal stationary behaviours

0
~ 0 0 -
~ - - - \)._
T :' : cost rate: 3 p.u.
7
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Model-checking weighted timed automata

Optimal reachability

O optimal reachability along a given path can be viewed as a linear
programming problem

Let Z be a bounded zone and f be a function

oty tn) — Zc,-t,- +c
=1

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.

Then, abstract paths in Ac, can be approximated by real path “c-close”
to the abstract path
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Infinite stationary behaviours: An example

A production system:

att?

p
g

Single machine M(D, G, P, g, p)

Model-checking weighted timed automata

Operator O(S)
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Infinite stationary behaviours

A production system:

att?

p
g

Single machine M(D, G, P, g, p)

Model-checking weighted timed automata

. An example

Question: How to minimize

accumulated cost(n) -

llm"_""‘oo accumulated reward(n) *

Operator O(S)
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Model-checking weighted timed automata

Infinite stationary behaviours: An example

Two machines My(D =3,P=3,G=4,p="5,g = 3),
My(D =6,P=3,G=2,p=05,g =2) and an Operator O(4).
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Infinite stationary behaviours: An example

Model-checking weighted timed automata

Two machines My(D =3,P=3,G=4,p="5,g = 3),
My(D =6,P=3,G=2,p=05,g =2) and an Operator O(4).

(H,H),x1 =x2 =z =0)

(

(

((L H) X1 =xo =z =24)
(H,H),x1 =z=0,x2 = 4)
(H,L),x1 =z=2,x2 = 6)
(L, L),x1 =z2=3,x =T7)
(L, L), xs =z=4,x2 =8)
(H,L),x1 =z=0,x2 =8)
( ),x1 =z=23,x =11)
(
(
(
(

(L L

(L,L),xs =z=4,x2 =12)
(L,H),x1 =4, =2z =0)
(L,
(

L H) x1 =8, XZ_Z_4)
HH) x1=z2=0,x =4)
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Model-checking weighted timed automata

Infinite stationary behaviours: An example

Two machines My(D =3,P=3,G=4,p=5,g = 3),
My(D=6,P=3,G=2,p="5,g =2) and an Operator O(4).

(H,H),x1 =x2 =z =0)

limit —Sost_ — 9 ~ 1 455 (L, H)7X1 =8,x, =z=4)

reward 66 — RN

(
18,18 ((LyH)yx1 = xg = z=13)
5 (LH)yxu=xa=2z=4)
— ((H,H),x1 =z=0,x2 = 4)
4 12,12
—0 ——  ((H,L),x1 =z=2,x =6)
0 B0 (L L)y =z =3,% =7)
25 (L L),xa =z =4,x =8)
—  ((H,L),x1 =z=0,x2 =8)
I (L L), x = z = 3,x; = 11)
5 (L L)yx =z = 4,x = 12)
—  ((L,H),x1 =4,x0 =2z=0)
32,20
(
(
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Model-checking weighted timed automata

Infinite stationary behaviours: An example

Two machines My(D =3,P=3,G=4,p="5,g = 3),
My(D =6,P=3,G=2,p=05,g =2) and an Operator O(4).

¥ . ; . ;
! ! | ! ! !

" T m I
L — — —+— L — — — —

I I I I I I I I

Iy HF——— | | — Iy H ™ | | |
2 L | . | i | 2 L | : | | |

I ] i I I ] ] i
0 0
I I I I I I I I

Time I I I I Time I I I I
4 8 12 16 4 8 12 16

(a) Schedule with mean-cost 1,455 (b) Schedule with mean-cost 1,478
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Model-checking weighted timed automata

From timed to discrete behaviours (1)

» Finite behaviours: based on the following property

Let Z be a bounded zone and f be a function

Yilacititc
Siarititr

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.

fo(ty,....tn) —
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From timed to discrete behaviours (1)

» Finite behaviours: based on the following property

Let Z be a bounded zone and f be a function

Yilacititc
Siarititr

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.

fo(ty,....tn) —

O for any finite path 7 in A, there exists a path [1in Ac, such that

mean-cost(I1) < mean-cost(r)
[M is a “corner-point projection” of 7]

O optimal finite behaviours are not prefix-closed
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Model-checking weighted timed automata

From timed to discrete behaviours (2)

» Infinite behaviours: decompose each sufficiently long projection
into cycles
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Model-checking weighted timed automata

From timed to discrete behaviours (2)

» Infinite behaviours: decompose each sufficiently long projection
into cycles

The linear part will be negligible!

O the optimal cycle of Ac, is better than any infinite path of A
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Model-checking weighted timed automata

From discrete to timed behaviours

Approximation of abstract paths:

Ry
....
....
....
....
..................................

For any path N of A, ,
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Model-checking weighted timed automata

From discrete to timed behaviours

Approximation of abstract paths:

For any path I of A, , for any € > 0, there exists a path 7, of A s.t.

N — 7)o < &

O This is sufficient under the positive strongly diverging reward.

For every n > 0, there exists € > 0 s.t.

I — 7]|oo < & = |mean-cost(I1) — mean-cost(r.)| < n

20/41



Model-checking weighted timed automata

Approximation of abstract paths

Diameter of a valuation:
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Model-checking weighted timed automata

Approximation of abstract paths

Diameter of a valuation:

v'z)”'|r|]t - v('x)

: Time elapsing 5(‘/,) _ 5(V)
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Model-checking weighted timed automata

Approximation of abstract paths

Diameter of a valuation:

v'z)”'|r|]t - v('x)
Computing successors:
5(v)
: Time elapsing 5(‘/,) _ 5(V)

S() =6(v)
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Model-checking weighted timed automata

Hypothesis: strongly non-Zeno reward

y=1y:=0
y>0,y:=0,"~x=1 x:=0 0/0 @
0/0 0/0 11/1
/ 3/2 /) 0/0 / 0/0
x=1 x:=0

Td,n: path s.t. the first transition is taken at date d and the loop is taken
n times.
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Td,n: path s.t. the first transition is taken at date d and the loop is taken
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Model-checking weighted timed automata

Hypothesis: strongly non-Zeno reward

y=1y:=0
y>0,y:=0,"~x=1 x:=0 0/0 @
0/0 0/0 11/1
/ 3/2 /) 0/0 / 0/0
x=1 x:=0

Td,n: path s.t. the first transition is taken at date d and the loop is taken
n times.

reward(mqg ,) =2+ d.n and cost(mg.n) =3+ 11d.n

For any real infinite path g4, mean-cost(my) = 11 but
mean-cost(mo) = 3.

O this automaton is not strongly reward diverging
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Model-checking weighted timed automata

Model-checking WCTL

A G (problem = A G<s repair) J

» With more than five clocks, model-checking WCTL is undecidable
[Brihaye, Bruyére, Raskin — FORMATS+FTRTFT'04]

» With more than three clocks, model-checking WCTL is undecidable
[Bouyer, Brihaye, Markey — IPL'06]

(0 Short explanation at the end of the talk
» With one clock, model-checking WCTL is decidable

[Bouyer, Laroussinie, Larsen, Markey, Rasmussen — 2006]
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Optimal timed games

Outline

3. Optimal timed games
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Optimal timed games

Decidability of timed games

Safety and reachability control in timed automata are decidable and
EXPTIME-complete.

(the attractor is computable...)

O classical regions are sufficient for solving such problems

25/41



Optimal timed games

An example

c: controllable action

u: uncontrollable action cost(£2) =10

x>2;c;,cost =1

. x<2 c,y:=0 .\

cost({g) =5 y=0 0> -
x >2;c;cost =7
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c: controllable action

u: uncontrollable action cost(£2) =10

x>2;c;,cost =1

. x<2 c,y:=0 .\

cost({g) =5 y=0 0> -
x >2;c;cost =7

cost(43) =1

Question: what is the optimal cost we can ensure in state (o7

max (5t +102—t)+1,5t+(2—-1t)+7)
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Optimal timed games

An example

c: controllable action

u: uncontrollable action cost(£2) =10

x>2;c;,cost =1

. x<2 c,y:=0 .\

cost({g) =5 y=0 0> -
x >2;c;cost =7

cost(43) =1

Question: what is the optimal cost we can ensure in state (o7
1
inf  max (5t+10(2—1t)+1, 5t+(2—1t)+7):14+5

0<t<2

O strategy: wait in {o, and when t = %, go to {4
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Optimal timed games

An example

c: controllable action

u: uncontrollable action cost(£2) =10

x>2;c;,cost =1

' x<2 c,y:=0 .\

cost({g) =5 y=0 0> -
x >2;c;cost =7

cost(43) =1

Question: what is the optimal cost we can ensure in state (o7

. 1
O%r;fgz max(5t+10(2—t)+1,5t+(2—t)—|—7)—14—|—§

O strategy: wait in {o, and when t = %, go to {4

» How to automatically compute such optimal costs?

» How to synthesize optimal strategies (if one exists)?
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Optimal timed games

A hot topic!

» [Asarin, Maler - HSCC'99]:
> optimal time is computable in timed games
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Optimal timed games

A hot topic!

» [Asarin, Maler - HSCC'99]:
> optimal time is computable in timed games

» [La Torre, Mukhopadhyay, Murano — TCS@02]:
» case of acyclic games

» [Alur, Bernadsky, Madhusudan — ICALP'04]:
» complexity of k-step games
» under a strongly non-Zeno assumption, optimal cost is computable

» [Bouyer, Cassez, Fleury, Larsen — FSTTCS'04]:
» structural properties of strategies (e.g. memory)
> under a strongly non-Zeno assumption, optimal cost is computable
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Optimal timed games

A hot topic!

» [Asarin, Maler - HSCC'99]:
> optimal time is computable in timed games

v

[La Torre, Mukhopadhyay, Murano — TCS@02]:
» case of acyclic games

v

[Alur, Bernadsky, Madhusudan — ICALP'04]:
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» under a strongly non-Zeno assumption, optimal cost is computable

v

[Bouyer, Cassez, Fleury, Larsen — FSTTCS'04]:
» structural properties of strategies (e.g. memory)
> under a strongly non-Zeno assumption, optimal cost is computable

v

[Brihaye, Bruyére, Raskin — FORMATS'05]:
» with five clocks, optimal cost is not computable!
» with one clock and one stopwatch cost, optimal cost is computable

v

[Bouyer, Brihaye, Markey — IPL'06]:
» with three clocks, optimal cost is not computable

v

[Bouyer, Larsen, Markey, Rasmussen — Subm.’06]:
» with one clock, optimal cost is computable 0 See Kim's talk
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Optimal timed games

Do optimal strategies always exist?

cost =1 cost = 2
x<1;c x=1;c
~® ® @
x <1 x <1
f(lo,x <1)= X
f(li,x<1)= X
f-(él,X:l):C

28/41



Optimal timed games

Do optimal strategies always exist?

cost =1 cost = 2
x<1;c x=1;c
—{&) &) -W)
x <1 x <1
f(lo,x <1)= X f(lo,x <1—g)=A
. f-(lp,1—e<x<1l)=c
f(é],X < 1) =\ fg(él,x < 1) =\
f(li,x=1)=c f-(li,x=1)=c

28/41



Optimal timed games

Do optimal strategies always exist?

cost =1 cost = 2
x<1;c x=1;c
—{&) &) -W)
x <1 x <1
f(lo,x <1)= X f(lo,x <1—g)=A
. f-(l,1—e<x<1l)=c
f(é],X < 1) =\ fg(él,x < 1) =\
f(li,x=1)=c f-(li,x=1)=c

O no optimal strategy exists, but rather a family (£-)c>0
of e-approximating strategies (cost(f;) =1+ ¢)
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Optimal timed games

An encoding (1)

Idea: tranform the cost into a decreasing linear hybrid variable

g g’
g, a, Y:=0 g, a Y:=0
. cost =1 . . cost := cost — 1 .
cost =5 cost = —5
Winning: W Winning: W A cost > 0
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Optimal timed games

An encoding (1)

Idea: tranform the cost into a decreasing linear hybrid variable

g a, Y 0 gl a, Y 0
g7 ) = g7 2 =
. cost =1 . . cost := cost — 1 .
cost =5 cost = —5
Winning: W Winning: W A cost > 0

For priced timed games (under some hypotheses),

3f winning strategy in G

. D
s.t. cost(f, (¢, v)) < v } < (¢4, v,cost =+) winning in G

+ constructive proof
.
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Optimal timed games

An encoding (2)

The set of winning states in G’ is upward-closed for the cost, i.e. of the form

U (P; A cost =; ki) (with >; either > or >)
icl
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Optimal timed games
An encoding (2)
The set of winning states in G’ is upward-closed for the cost, i.e. of the form

U (P; A cost =; ki) (with >; either > or >)
icl

For priced timed games (under some hypotheses),

» ‘“reachable” optimal cost, or not (cost > ~ or cost > )
» existence of an optimal strategy decidable

+ constructive proof

Nature of the strategy:

» state-based for the hybrid game, thus cost-dependent for the timed
game

» cost-dependence is unavoidable in general!

» cost-independent strategies for syntactical restrictions of the games

c: large constraints, u: strict constraints
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Memoryless strategies are not powerful enough

cost =2

» optimal cost: 2

» optimal strategy:

Optimal timed games
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Optimal timed games

Memoryless strategies are not powerful enough

cost =2

x<1, u, x,y:=0

cost =1

» optimal cost: 2

» optimal strategy: if d is the time before a u occurs, and d’ is the
time waited in ¢4, the cost of the run is 2.d + d".
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Optimal timed games

Memoryless strategies are not powerful enough

cost =2

x<1, u, x,y:=0

cost =1

» optimal cost: 2

» optimal strategy: if d is the time before a u occurs, and d’ is the
time waited in ¢4, the cost of the run is 2.d + d".

2d+d <2

(accumulated cost) 4+ d' <2
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Optimal timed games

Hypotheses for termination

» all clocks are bounded (not restrictive)

» the cost function is strictly non-Zeno
00 This condition is restrictive, but is decidable
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Optimal timed games

Undecidability — Shape of the reduction
Original reduction: [Brihaye, Bruyére, Raskin — FORMATS'05]
This reduction: [Bouyer, Brihaye, Markey — IPL'06]
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Optimal timed games

Undecidability — Shape of the reduction
Original reduction: [Brihaye, Bruyére, Raskin — FORMATS'05]
This reduction: [Bouyer, Brihaye, Markey — IPL'06]

Simulation of a two-counter machine:
» player 1 simulates the two-counter machine
» player 2 checks that player 1 does not cheat

Encoding of the counters:

» counter ¢ is encoded by a clock x; s.t. x3 = o1

> counter ¢, is encoded by a clock xa s.t. xo = 35
» x; and x will be alternatively x, y or z

The aim of player 1 is to win (reach a W-state) with cost < 3, and

Player 1 has a winning strategy with cost < 3
iff
the two-counter machine halts
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Optimal timed games

Simulation of an incrementation

Instruction i: ¢y + +; goto instruction j
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Optimal timed games

Simulation of an incrementation

Instruction i: ¢y + +; goto instruction j




Adding x or 1 — x to the cost variable

y=Ly:=0 y=L1,y:=0
z:=0 Q x=1,x:=0 Q z=1,z:=0
N N
cost=0 cost=1

The cost is increased by xo

Optimal timed games
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Optimal timed games

Adding x or 1 — x to the cost variable

Add*(x,{z}) Add™ (x,{z})
y=1,y:=0 y=1,y:=0 y=1,y:=0 y=1,y:=0
z:=0 Q x=1,x:=0 Q z=1,z:=0 z:=0 Q x=1,x:=0 Q z=1,z:=0
N N N N
cost=0 cost=1 cost=1 cost=0

The cost is increased by xo

The cost is increased by 1 — xg
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Optimal timed games

Checking y = 2x

In Wi, cost = 2xg + (1 — yo) + 2.
In Wa, cost =2(1 —xp) + yo + 1.
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Optimal timed games

Checking y = 2x

In Wi, cost = 2xg + (1 — yo) + 2.
In Wa, cost =2(1 —xp) + yo + 1.

> if yg < 2xq, player 2 chooses the first branch: in W, cost > 3
> if yo > 2xg, player 2 chooses the second branch: in W5, cost > 3
> if Yo = 2X0, in W1 orin WQ, cost = 3.
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How to get rid of tick clock u?
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Optimal timed games

How to get rid of tick clock u?

We will ensure that:

cost=3
. . —>.Halt
» no cost is accumulated in D-states -
> the delay between the A-state and the D-state is 1 t.u.

> the value of x in D is of the form -
> the value of y in D is of the form =%
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How to get rid of tick clock u?

We will ensure that: cost=3
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> the delay between the A-state and the D-state is 1 t.u.
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> the value of y in D is of the form &
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Optimal timed games

Checking that x is of the form 2 T

——— — >
z:=0
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Optimal timed games

Extension to undecidability of WCTL

We build the same automaton A, and prove that:
the two-counter machine M halts iff Ay = @

where

¢ =E (D — ¢)U <Halt
with o = A\;_; 53 E(DU <opi)

01 =SANEF o4TAEF 51T evaluated in Test(x = 2z,{y})

02 =P, NE((Q2 — E(QU ¢1)) U Ry) evaluated in Powery(x, {y, z})
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Conclusion

Outline

4. Conclusion
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Conclusion and further work

Maodel-checking
» “basic” properties are decidable
» efficient symbolic computations have even been proposed
O implemented in tool Uppaal Cora
» branching-time properties are undecidable
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Conclusion

Conclusion and further work

Maodel-checking
» “basic” properties are decidable
» efficient symbolic computations have even been proposed
O implemented in tool Uppaal Cora
» branching-time properties are undecidable

» what about linear-time properties?
» consider more general cost functions

Optimal timed games
» optimal cost is in general not computable in timed games
under some assumption, it becomes computable
complexity issues and properties of strategies have also been studied

investigate further mean-cost optimal timed games
approximate optimal cost

propose more algorithmics solutions

o-minimal optimal timed games

vV VvyVvVyVvVyVvY VY
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