Weighted Timed Automata: Model-Checking and Games

Patricia Bouyer

LSV - CNRS & ENS de Cachan - France

Based on joint works with Thomas Brihaye, Ed Brinksma, Véronique Bruyère, Franck Cassez, Emmanuel Fleury, François Laroussinie, Kim G. Larsen, Nicolas Markey, Jean-François Raskin, and Jacob Illum Rasmussen

1. Introduction

- 2. Model-checking weighted timed automata
- 3. Optimal timed games
- 4. Conclusion

Introduction

Model-checking

Introduction

Model-checking

Controller synthesis

Controller synthesis

Controller synthesis

Controller synthesis

Controller synthesis

→ modeled as two player games

Timed automata

[Alur & Dill 90's]

x, y : clocks

[HSCC'01]

Model of weighted/priced timed automata

[HSCC'01]

Model of weighted/priced timed automata

- ▶ a configuration: (ℓ, v)
- two kinds of transitions:

$$\begin{cases} (\ell, v) \xrightarrow{\delta(d)} (\ell, v + d) \\ (\ell, v) \xrightarrow{a} (\ell', v') \text{ where } \begin{cases} v \models g \\ v' = [C \leftarrow 0]v \end{cases} \text{ for some } \ell \xrightarrow{g, a, C := 0} \ell' \end{cases}$$

[HSCC'01]

Model of weighted/priced timed automata

- a configuration: (ℓ, v)
- two kinds of transitions:

$$\begin{cases} (\ell, v) \xrightarrow{\delta(d)} (\ell, v+d) \\ (\ell, v) \xrightarrow{a} (\ell', v') \text{ where } \begin{cases} v \models g \\ v' = [C \leftarrow 0]v \end{cases} \text{ for some } \ell \xrightarrow{g, a, C := 0} \ell' \end{cases}$$

$$\operatorname{Cost}\left((\ell, v) \xrightarrow{\delta(d)} (\ell, v+d)\right) = P.d \quad \operatorname{Cost}\left((\ell, v) \xrightarrow{a} (\ell', v')\right) = p$$

 $Cost(\rho) = accumulated cost along run \rho$

[Larsen, Behrmann, Brinksma, Fehnker, Hune, Pettersson, Romijn - CAV'01]

Fig. 2. Figure (a) depicts the cost of landing a plane at time t. Figure (b) shows an LPTA modelling the landing costs. Figure (c) shows an LPTA model of the runway.

$$5t + 10(2 - t) + 1$$

$$5t + 10(2 - t) + 1$$
, $5t + (2 - t) + 7$

min
$$(5t+10(2-t)+1, 5t+(2-t)+7)$$

$$\inf_{0 \le t \le 2} \min (5t + 10(2 - t) + 1, 5t + (2 - t) + 7) = 9$$

Question: what is the optimal cost for reaching the happy state?

$$\inf_{0 \le t \le 2} \min (5t + 10(2 - t) + 1, 5t + (2 - t) + 7) = 9$$

→ strategy: leave immediately ℓ_0 , go to ℓ_3 , and wait there 2 t.u.

Several issues on weighted timed automata

Several issues on weighted timed automata

Model-checking problems

- reachability with an optimization criterium on the cost
- safety with a mean-cost optimization criterium
- model-checking WCTL, an extension of CTL with cost constraints

Several issues on weighted timed automata

Model-checking problems

- reachability with an optimization criterium on the cost
- safety with a mean-cost optimization criterium
- model-checking WCTL, an extension of CTL with cost constraints

Optimal timed games

- optimal reachability timed games
- optimal mean-cost timed games

1. Introduction

2. Model-checking weighted timed automata

- 3. Optimal timed games
- 4. Conclusion

Model-checking weighted timed automata

Reachability with an optimization criterium on the cost [Behrmann, Brinksma, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager – HSCC'01, TACAS'01, CAV'01] [Alur, La Torre, Pappas – HSCC'01] [Bouyer, Brihaye, Bruyère, Raskin – Subm. 2006]

Safety with a mean-cost optimization criterium
 [Bouyer, Brinksma, Larsen – HSCC'04]

▶ Model-checking WCTL, an extension of CTL with cost constraints

 ${f A}~{f G}~({ t problem} \Rightarrow {f A}~{f G}_{\leq 5}$ repair)

[Brihaye, Bruyère, Raskin – FORMATS+FTRTFT'04] [Bouyer, Brihaye, Markey – IPL'06] [Bouyer, Laroussinie, Larsen, Markey, Rasmussen – 2006]

The classical region abstraction

Idea: reduction to the discrete case

region abstraction: not sufficient

Idea: reduction to the discrete case

- region abstraction: not sufficient
- ► corner-point abstraction/weighted discrete graph A_{cp}:

Optimal reachability

 \rightarrow optimal reachability along a given path can be viewed as a linear programming problem

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \sum_{i=1}^n c_i t_i + c$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

Then, abstract paths in \mathcal{A}_{cp} can be approximated by real path " $\varepsilon\text{-close}$ " to the abstract path

A production system:

Single machine M(D, G, P, g, p)

A production system:

Question: How to minimize

 $\lim_{n \to +\infty} \frac{\operatorname{accumulated cost}(n)}{\operatorname{accumulated reward}(n)}?$

Single machine M(D, G, P, g, p)

Two machines $M_1(D = 3, P = 3, G = 4, p = 5, g = 3)$, $M_2(D = 6, P = 3, G = 2, p = 5, g = 2)$ and an Operator O(4).

Two machines $M_1(D = 3, P = 3, G = 4, p = 5, g = 3)$, $M_2(D = 6, P = 3, G = 2, p = 5, g = 2)$ and an Operator O(4).

 $((H, H), x_1 = x_2 = z = 0)$

Two machines $M_1(D = 3, P = 3, G = 4, p = 5, g = 3)$, $M_2(D = 6, P = 3, G = 2, p = 5, g = 2)$ and an Operator O(4).

$$((H, H), x_1 = x_2 = z = 0)$$

$$\xrightarrow{18,18} ((L, H), x_1 = x_2 = z = 3)$$

Two machines $M_1(D = 3, P = 3, G = 4, p = 5, g = 3)$, $M_2(D = 6, P = 3, G = 2, p = 5, g = 2)$ and an Operator O(4).

$$\begin{array}{c} ((H, H), x_1 = x_2 = z = 0) \\ \xrightarrow{8,18} \\ ((L, H), x_1 = x_2 = z = 3) \\ \xrightarrow{8,5} \\ ((L, H), x_1 = x_2 = z = 4) \end{array}$$

1

Two machines $M_1(D = 3, P = 3, G = 4, p = 5, g = 3)$, $M_2(D = 6, P = 3, G = 2, p = 5, g = 2)$ and an Operator O(4).

$$\begin{array}{c} ((H, H), x_1 = x_2 = z = 0) \\ \xrightarrow{8,18} & ((L, H), x_1 = x_2 = z = 3) \\ \xrightarrow{8,5} & ((L, H), x_1 = x_2 = z = 4) \\ \longrightarrow & ((H, H), x_1 = z = 0, x_2 = 4) \end{array}$$

1

Two machines $M_1(D = 3, P = 3, G = 4, p = 5, g = 3)$, $M_2(D = 6, P = 3, G = 2, p = 5, g = 2)$ and an Operator O(4).

$$\begin{array}{ccc} ((H,H), x_1 = x_2 = z = 0) \\ \hline 18,18 \\ ((L,H), x_1 = x_2 = z = 3) \\ \hline & ((L,H), x_1 = x_2 = z = 4) \\ \hline & ((H,H), x_1 = z = 0, x_2 = 4) \\ \hline & ((H,L), x_1 = z = 0, x_2 = 4) \\ \hline 12,12 \\ ((H,L), x_1 = z = 2, x_2 = 6) \\ \hline & ((L,L), x_1 = z = 3, x_2 = 7) \\ \hline 10,5 \\ \hline & ((L,L), x_1 = z = 4, x_2 = 8) \\ \hline & ((H,L), x_1 = z = 3, x_2 = 11) \\ \hline 10,5 \\ \hline & ((L,L), x_1 = z = 4, x_2 = 12) \\ \hline & ((L,L), x_1 = z = 4, x_2 = z = 0) \\ \hline & ((L,H), x_1 = 4, x_2 = z = 0) \\ \hline & ((L,H), x_1 = 8, x_2 = z = 4) \\ \hline & \rightarrow & ((H,H), x_1 = z = 0, x_2 = 4) \end{array}$$

_

_

_

Two machines
$$M_1(D = 3, P = 3, G = 4, p = 5, g = 3)$$
,
 $M_2(D = 6, P = 3, G = 2, p = 5, g = 2)$ and an Operator $O(4)$.

_

_

_

24

_

_

Two machines
$$M_1(D = 3, P = 3, G = 4, p = 5, g = 3)$$
,
 $M_2(D = 6, P = 3, G = 2, p = 5, g = 2)$ and an Operator $O(4)$

From timed to discrete behaviours (1)

Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

From timed to discrete behaviours (1)

Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

 \rightarrow for any finite path π in \mathcal{A} , there exists a path Π in \mathcal{A}_{cp} such that

mean-cost(
$$\Pi$$
) \leq mean-cost(π)

[Π is a "corner-point projection" of π]

From timed to discrete behaviours (1)

Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

 \rightarrow for any finite path π in \mathcal{A} , there exists a path Π in \mathcal{A}_{cp} such that

mean-cost(
$$\Pi$$
) \leq mean-cost(π)

[Π is a "corner-point projection" of π]

b optimal finite behaviours are not prefix-closed

From timed to discrete behaviours (2)

 Infinite behaviours: decompose each sufficiently long projection into cycles

From timed to discrete behaviours (2)

Infinite behaviours: decompose each sufficiently long projection into cycles

The linear part will be negligible!

From timed to discrete behaviours (2)

 Infinite behaviours: decompose each sufficiently long projection into cycles

The linear part will be negligible!

ightarrow the optimal cycle of \mathcal{A}_{cp} is better than any infinite path of \mathcal{A}

Approximation of abstract paths:

For any path Π of $\mathcal{A}_{\mathsf{cp}}$,

Approximation of abstract paths:

For any path Π of \mathcal{A}_{cp} , for any $\varepsilon > 0$,

Approximation of abstract paths:

For any path Π of A_{cp} , for any $\varepsilon > 0$, there exists a path π_{ε} of A s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$

Approximation of abstract paths:

For any path Π of A_{cp} , for any $\varepsilon > 0$, there exists a path π_{ε} of A s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$$

→ This is sufficient under the positive strongly diverging reward.

Approximation of abstract paths:

For any path Π of A_{cp} , for any $\varepsilon > 0$, there exists a path π_{ε} of A s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$$

→ This is sufficient under the positive strongly diverging reward. For every $\eta > 0$, there exists $\varepsilon > 0$ s.t.

$$\|\Pi - \pi_{arepsilon}\|_{\infty} < arepsilon \Rightarrow |\mathsf{mean-cost}(\Pi) - \mathsf{mean-cost}(\pi_{arepsilon})| < \eta$$

Approximation of abstract paths **Diameter of a valuation**:

Approximation of abstract paths **Diameter of a valuation**:

Approximation of abstract paths **Diameter of a valuation**:

$$y = 1, y := 0 y > 0, y := 0 3/2 0/0 x = 1, x := 0 11/1 0/0 x = 1, x := 0 x = 1, x := 0 0/0 x = 1, x := 0 0/0$$

 $\pi_{d,n}$: path s.t. the first transition is taken at date d and the loop is taken n times.

$$y = 1, y := 0 y > 0, y := 0 3/2 0/0 x = 1, x := 0 11/1 0/0 x = 1, x := 0 x = 1, x := 0 0/0 x = 1, x := 0 0/0$$

 $\pi_{d,n}$: path s.t. the first transition is taken at date d and the loop is taken n times.

 $reward(\pi_{d,n}) = 2 + d.n$ and $cost(\pi_{d,n}) = 3 + 11 d.n$

$$y = 1, y := 0 y > 0, y := 0 3/2 0/0 x = 1, x := 0 11/1 0/0 x = 1, x := 0 x = 1, x := 0 0/0 x = 1, x := 0 0/0$$

 $\pi_{d,n}$: path s.t. the first transition is taken at date d and the loop is taken n times.

 $reward(\pi_{d,n}) = 2 + d.n$ and $cost(\pi_{d,n}) = 3 + 11d.n$

For any real infinite path π_d , mean-cost $(\pi_d) = 11$ but mean-cost $(\pi_0) = \frac{3}{2}$.

$$y = 1, y := 0 y > 0, y := 0 3/2 0/0 x = 1, x := 0 11/1 0/0 x = 1, x := 0 x = 1, x := 0 0/0 x = 1, x := 0 0/0$$

 $\pi_{d,n}$: path s.t. the first transition is taken at date d and the loop is taken n times.

 $reward(\pi_{d,n}) = 2 + d.n$ and $cost(\pi_{d,n}) = 3 + 11d.n$

For any real infinite path π_d , mean-cost $(\pi_d) = 11$ but mean-cost $(\pi_0) = \frac{3}{2}$.

→ this automaton is not strongly reward diverging

Model-checking WCTL

 $\mathbf{A} \mathbf{G}$ (problem $\Rightarrow \mathbf{A} \mathbf{G}_{\leq 5}$ repair)

 With more than five clocks, model-checking WCTL is undecidable [Brihaye, Bruyère, Raskin – FORMATS+FTRTFT'04]

 With more than three clocks, model-checking WCTL is undecidable [Bouyer, Brihaye, Markey – IPL'06]

 \rightarrow Short explanation at the end of the talk

With one clock, model-checking WCTL is decidable [Bouyer, Laroussinie, Larsen, Markey, Rasmussen – 2006]

1. Introduction

- 2. Model-checking weighted timed automata
- 3. Optimal timed games
- 4. Conclusion

Decidability of timed games

Theorem

[Henzinger, Kopke 1999]

Safety and reachability control in timed automata are decidable and EXPTIME-complete.

(the attractor is computable...)

 \rightarrow classical regions are sufficient for solving such problems

Question: what is the optimal cost we can ensure in state ℓ_0 ?

Question: what is the optimal cost we can ensure in state ℓ_0 ?

$$5t + 10(2 - t) + 1$$

Question: what is the optimal cost we can ensure in state ℓ_0 ?

5t + 10(2 - t) + 1, 5t + (2 - t) + 7

Question: what is the optimal cost we can ensure in state ℓ_0 ?

max (5t + 10(2 - t) + 1 , 5t + (2 - t) + 7)

-1

An example

Question: what is the optimal cost we can ensure in state ℓ_0 ?

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1 , 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

1

An example

Question: what is the optimal cost we can ensure in state ℓ_0 ?

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

$$\Rightarrow \text{ strategy: wait in } \ell_0, \text{ and when } t = \frac{4}{3}, \text{ go to } \ell_1$$

-1

An example

Question: what is the optimal cost we can ensure in state ℓ_0 ?

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1 , 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

→ strategy: wait in ℓ_0 , and when $t = \frac{4}{3}$, go to ℓ_1

How to automatically compute such optimal costs?

Question: what is the optimal cost we can ensure in state ℓ_0 ?

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1 , 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

→ strategy: wait in ℓ_0 , and when $t = \frac{4}{3}$, go to ℓ_1

- How to automatically compute such optimal costs?
- How to synthesize optimal strategies (if one exists)?

A hot topic!

- ▶ [Asarin, Maler HSCC'99]
 - optimal time is computable in timed games

- ▶ [Asarin, Maler HSCC'99]:
 - optimal time is computable in timed games
- ▶ [La Torre, Mukhopadhyay, Murano TCS@02]:
 - case of acyclic games

- ▶ [Asarin, Maler HSCC'99]:
 - optimal time is computable in timed games
- [La Torre, Mukhopadhyay, Murano TCS@02]:
 - case of acyclic games
- [Alur, Bernadsky, Madhusudan ICALP'04]:
 - complexity of k-step games
 - under a strongly non-Zeno assumption, optimal cost is computable

- ▶ [Asarin, Maler HSCC'99]:
 - optimal time is computable in timed games
- [La Torre, Mukhopadhyay, Murano TCS@02]:
 - case of acyclic games
- [Alur, Bernadsky, Madhusudan ICALP'04]:
 - complexity of k-step games
 - under a strongly non-Zeno assumption, optimal cost is computable
- [Bouyer, Cassez, Fleury, Larsen FSTTCS'04]:
 - structural properties of strategies (e.g. memory)
 - under a strongly non-Zeno assumption, optimal cost is computable

- ▶ [Asarin, Maler HSCC'99]:
 - optimal time is computable in timed games
- [La Torre, Mukhopadhyay, Murano TCS@02]:
 - case of acyclic games
- [Alur, Bernadsky, Madhusudan ICALP'04]:
 - complexity of k-step games
 - under a strongly non-Zeno assumption, optimal cost is computable
- [Bouyer, Cassez, Fleury, Larsen FSTTCS'04]:
 - structural properties of strategies (e.g. memory)
 - under a strongly non-Zeno assumption, optimal cost is computable
- [Brihaye, Bruyère, Raskin FORMATS'05]:
 - with five clocks, optimal cost is not computable!
 - with one clock and one stopwatch cost, optimal cost is computable

- ▶ [Asarin, Maler HSCC'99]:
 - optimal time is computable in timed games
- [La Torre, Mukhopadhyay, Murano TCS@02]:
 - case of acyclic games
- [Alur, Bernadsky, Madhusudan ICALP'04]:
 - complexity of k-step games
 - under a strongly non-Zeno assumption, optimal cost is computable
- [Bouyer, Cassez, Fleury, Larsen FSTTCS'04]:
 - structural properties of strategies (e.g. memory)
 - under a strongly non-Zeno assumption, optimal cost is computable
- [Brihaye, Bruyère, Raskin FORMATS'05]:
 - with five clocks, optimal cost is not computable!
 - with one clock and one stopwatch cost, optimal cost is computable
- [Bouyer, Brihaye, Markey IPL'06]:
 - with three clocks, optimal cost is not computable

- ▶ [Asarin, Maler HSCC'99]:
 - optimal time is computable in timed games
- [La Torre, Mukhopadhyay, Murano TCS@02]:
 - case of acyclic games
- [Alur, Bernadsky, Madhusudan ICALP'04]:
 - complexity of k-step games
 - under a strongly non-Zeno assumption, optimal cost is computable
- [Bouyer, Cassez, Fleury, Larsen FSTTCS'04]:
 - structural properties of strategies (e.g. memory)
 - under a strongly non-Zeno assumption, optimal cost is computable
- [Brihaye, Bruyère, Raskin FORMATS'05]:
 - with five clocks, optimal cost is not computable!
 - with one clock and one stopwatch cost, optimal cost is computable
- [Bouyer, Brihaye, Markey IPL'06]:
 - with three clocks, optimal cost is not computable

[Bouyer, Larsen, Markey, Rasmussen – Subm.'06]:

with one clock, optimal cost is computable

- ▶ [Asarin, Maler HSCC'99]:
 - optimal time is computable in timed games
- [La Torre, Mukhopadhyay, Murano TCS@02]:
 - case of acyclic games
- [Alur, Bernadsky, Madhusudan ICALP'04]:
 - complexity of k-step games
 - under a strongly non-Zeno assumption, optimal cost is computable
- [Bouyer, Cassez, Fleury, Larsen FSTTCS'04]:
 - structural properties of strategies (e.g. memory)
 - under a strongly non-Zeno assumption, optimal cost is computable
- [Brihaye, Bruyère, Raskin FORMATS'05]:
 - with five clocks, optimal cost is not computable!
 - with one clock and one stopwatch cost, optimal cost is computable
- [Bouyer, Brihaye, Markey IPL'06]:
 - with three clocks, optimal cost is not computable

[Bouyer, Larsen, Markey, Rasmussen – Subm.'06].

with one clock, optimal cost is computable

→ See Kim's talk

Do optimal strategies always exist?

$$\begin{cases} f(\ell_0, x < 1) = \lambda \\ f(\ell_1, x < 1) = \lambda \\ f(\ell_1, x = 1) = c \end{cases}$$

Do optimal strategies always exist?

$$\begin{cases} f(\ell_0, x < 1) = \lambda \\ f(\ell_1, x < 1) = \lambda \\ f(\ell_1, x = 1) = c \end{cases} \xrightarrow{\sim} \begin{cases} f_{\varepsilon}(\ell_0, x < 1 - \varepsilon) = \lambda \\ f_{\varepsilon}(\ell_0, 1 - \varepsilon \le x < 1) = c \\ f_{\varepsilon}(\ell_1, x < 1) = \lambda \\ f_{\varepsilon}(\ell_1, x = 1) = c \end{cases}$$

Do optimal strategies always exist?

$$\begin{cases} f(\ell_0, x < 1) = \lambda \\ f(\ell_1, x < 1) = \lambda \\ f(\ell_1, x = 1) = c \end{cases} \xrightarrow{\sim} \begin{cases} f_{\varepsilon}(\ell_0, x < 1 - \varepsilon) = \lambda \\ f_{\varepsilon}(\ell_0, 1 - \varepsilon \le x < 1) = c \\ f_{\varepsilon}(\ell_1, x < 1) = \lambda \\ f_{\varepsilon}(\ell_1, x = 1) = c \end{cases}$$

→ no optimal strategy exists, but rather a family $(f_{\varepsilon})_{\varepsilon>0}$ of ε -approximating strategies $(cost(f_{\varepsilon}) = 1 + \varepsilon)$

An encoding (1)

Idea: tranform the cost into a decreasing linear hybrid variable

An encoding (1)

Idea: tranform the cost into a decreasing linear hybrid variable

Theorem

For priced timed games (under some hypotheses),

$$\exists f \text{ winning strategy in } \mathcal{G} \\ \text{s.t. } \operatorname{cost}(f, (\ell, \nu)) \leq \gamma \end{cases} \qquad \Longleftrightarrow \qquad (\ell, \nu, \operatorname{cost} = \gamma) \text{ winning in } \mathcal{G}' \\ + \text{ constructive proof}$$

An encoding (2)

The set of winning states in \mathcal{G}' is upward-closed for the cost, *i.e.* of the form

```
\bigcup_{i \in I} (P_i \land cost \succ_i k_i) \qquad (\text{with} \succ_i \text{ either } > \text{ or } \ge)
```

An encoding (2)

The set of winning states in \mathcal{G}' is upward-closed for the cost, *i.e.* of the form

 $\bigcup_{i \in I} (P_i \land cost \succ_i k_i) \qquad (\text{with} \succ_i \text{ either } > \text{ or } \ge)$

Corollary

For priced timed games (under some hypotheses),

- "reachable" optimal cost, or not (cost $\geq \gamma$ or cost $> \gamma$)
- existence of an optimal strategy decidable

```
+ constructive proof
```

An encoding (2)

The set of winning states in \mathcal{G}' is upward-closed for the cost, *i.e.* of the form

 $\bigcup_{i \in I} (P_i \land cost \succ_i k_i) \qquad (\text{with} \succ_i \text{ either } > \text{ or } \ge)$

Corollary

For priced timed games (under some hypotheses),

- "reachable" optimal cost, or not (cost $\geq \gamma$ or cost $> \gamma$)
- existence of an optimal strategy decidable

```
+ constructive proof
```

Nature of the strategy:

- state-based for the hybrid game, thus cost-dependent for the timed game
- cost-dependence is unavoidable in general!
- cost-independent strategies for syntactical restrictions of the games
 - c: large constraints, u: strict constraints

 $\cos t = 1$

- ▶ optimal cost: 2
- optimal strategy:

optimal cost: 2

▶ optimal strategy: if d is the time before a u occurs, and d' is the time waited in l₁, the cost of the run is 2.d + d'.

- optimal cost: 2
- ▶ optimal strategy: if d is the time before a u occurs, and d' is the time waited in l₁, the cost of the run is 2.d + d'.

$$2.d+d'\leq 2$$

- optimal cost: 2
- ▶ optimal strategy: if d is the time before a u occurs, and d' is the time waited in l₁, the cost of the run is 2.d + d'.

$$2.d+d'\leq 2$$

(accumulated cost) + $d' \leq 2$

Hypotheses for termination

- all clocks are bounded (not restrictive)
- the cost function is strictly non-Zeno
 - \rightarrow This condition is restrictive, but is decidable

Hypotheses for termination

- all clocks are bounded (not restrictive)
- the cost function is strictly non-Zeno
 - \rightarrow This condition is restrictive, but is decidable

Original reduction: [Brihaye, Bruyère, Raskin – FORMATS'05] This reduction: [Bouyer, Brihaye, Markey – IPL'06]

Original reduction: [Brihaye, Bruyère, Raskin – FORMATS'05] This reduction: [Bouyer, Brihaye, Markey – IPL'06]

Simulation of a two-counter machine:

- player 1 simulates the two-counter machine
- player 2 checks that player 1 does not cheat

Original reduction: [Brihaye, Bruyère, Raskin – FORMATS'05] This reduction: [Bouyer, Brihaye, Markey – IPL'06]

Simulation of a two-counter machine:

- player 1 simulates the two-counter machine
- player 2 checks that player 1 does not cheat

Encoding of the counters:

- counter c_1 is encoded by a clock x_1 s.t. $x_1 = \frac{1}{2^{c_1}}$
- counter c_2 is encoded by a clock x_2 s.t. $x_2 = \frac{1}{3^{c_2}}$
- x_1 and x_2 will be alternatively x, y or z

Original reduction: [Brihaye, Bruyère, Raskin – FORMATS'05] This reduction: [Bouyer, Brihaye, Markey – IPL'06]

Simulation of a two-counter machine:

- player 1 simulates the two-counter machine
- player 2 checks that player 1 does not cheat

Encoding of the counters:

- counter c_1 is encoded by a clock x_1 s.t. $x_1 = \frac{1}{2^{c_1}}$
- counter c_2 is encoded by a clock x_2 s.t. $x_2 = \frac{1}{3^{c_2}}$
- x_1 and x_2 will be alternatively x, y or z

The aim of player 1 is to win (reach a W-state) with cost \leq 3,

Original reduction: [Brihaye, Bruyère, Raskin – FORMATS'05] This reduction: [Bouyer, Brihaye, Markey – IPL'06]

Simulation of a two-counter machine:

- player 1 simulates the two-counter machine
- player 2 checks that player 1 does not cheat

Encoding of the counters:

- counter c_1 is encoded by a clock x_1 s.t. $x_1 = \frac{1}{2^{c_1}}$
- counter c_2 is encoded by a clock x_2 s.t. $x_2 = \frac{1}{3^{c_2}}$
- x_1 and x_2 will be alternatively x, y or z

The aim of player 1 is to win (reach a W-state) with cost \leq 3, and

Player 1 has a winning strategy with cost
$$\leq$$
 3 iff the two-counter machine halts

Simulation of an incrementation

Instruction *i*: $c_1 + +$; goto instruction *j*

Simulation of an incrementation

Instruction *i*: $c_1 + +$; goto instruction *j*

34/41

Adding x or 1 - x to the cost variable

Adding x or 1 - x to the cost variable

Adding x or 1 - x to the cost variable

ln W_1 , cost = $2x_0 + (1 - y_0) + 2$. ln W_2 , cost = $2(1 - x_0) + y_0 + 1$.

In W_2 , cost = $2(1 - x_0) + y_0 + 1$.

• if $y_0 < 2x_0$, player 2 chooses the first branch: in W_1 , cost > 3

In W_1 , cost = $2x_0 + (1 - y_0) + 2$. In W_2 , cost = $2(1 - x_0) + y_0 + 1$.

• if $y_0 < 2x_0$, player 2 chooses the first branch: in W_1 , cost > 3

• if $y_0 > 2x_0$, player 2 chooses the second branch: in W_2 , cost > 3

- ln W_1 , cost = $2x_0 + (1 y_0) + 2$. ln W_2 , cost = $2(1 - x_0) + y_0 + 1$.
 - if $y_0 < 2x_0$, player 2 chooses the first branch: in W_1 , cost > 3
 - if $y_0 > 2x_0$, player 2 chooses the second branch: in W_2 , cost > 3
 - if $y_0 = 2x_0$, in W_1 or in W_2 , cost = 3.

How to get rid of tick clock *u*?

We will ensure that:

▶ no cost is accumulated in *D*-states

We will ensure that:

- ▶ no cost is accumulated in *D*-states
- ▶ the delay between the A-state and the D-state is 1 t.u.

We will ensure that:

- no cost is accumulated in D-states
- ▶ the delay between the *A*-state and the *D*-state is 1 t.u.
 - the value of x in D is of the form $\frac{1}{2^n}$

We will ensure that:

- no cost is accumulated in D-states
- ▶ the delay between the *A*-state and the *D*-state is 1 t.u.
 - the value of x in D is of the form $\frac{1}{2^n}$
 - the value of y in D is of the form $\frac{1}{3^m}$

We will ensure that:

- no cost is accumulated in D-states
- ▶ the delay between the *A*-state and the *D*-state is 1 t.u.
 - the value of x in D is of the form $\frac{1}{2^n}$
 - the value of y in D is of the form $\frac{1}{3^m}$

 $\xrightarrow{\text{cost}=3} \text{Halt}$

Checking that x is of the form $\frac{1}{2^n}$

Extension to undecidability of WCTL

We build the same automaton $\mathcal{A}_{\mathcal{M}},$ and prove that:

```
the two-counter machine \mathcal M halts iff \mathcal A_{\mathcal M}\models \Phi
```

where

$$\begin{split} \Phi &\equiv \ \mathbf{E} \left(D \to \varphi \right) \mathbf{U}_{\leq 0} \mathsf{Halt} \\ \text{with } \varphi &\equiv \bigwedge_{i=1,2,3} \ \mathbf{E} \left(D \ \mathbf{U}_{\leq 0} \varphi_i \right) \end{split}$$

 $\varphi_1 \equiv S \land \mathbf{E} \mathbf{F}_{\leq 1} T \land \mathbf{E} \mathbf{F}_{\geq 1} T$ evaluated in $\text{Test}(x = 2z, \{y\})$

 $\varphi_2 \equiv P_2 \wedge \mathbf{E} ((Q_2 \rightarrow \mathbf{E} (Q_2 \mathbf{U} \varphi_1)) \mathbf{U} R_2)$ evaluated in Power₂(x, {y, z})

- 1. Introduction
- 2. Model-checking weighted timed automata
- 3. Optimal timed games
- 4. Conclusion

Model-checking

- "basic" properties are decidable
- efficient symbolic computations have even been proposed

→ implemented in tool Uppaal Cora

branching-time properties are undecidable

Model-checking

- "basic" properties are decidable
- efficient symbolic computations have even been proposed
 - → implemented in tool Uppaal Cora
- branching-time properties are undecidable
- what about linear-time properties?
- consider more general cost functions

Model-checking

- "basic" properties are decidable
- efficient symbolic computations have even been proposed

→ implemented in tool Uppaal Cora

- branching-time properties are undecidable
- what about linear-time properties?
- consider more general cost functions

Optimal timed games

- optimal cost is in general not computable in timed games
- under some assumption, it becomes computable
- complexity issues and properties of strategies have also been studied

Model-checking

- "basic" properties are decidable
- efficient symbolic computations have even been proposed
 - → implemented in tool Uppaal Cora
- branching-time properties are undecidable
- what about linear-time properties?
- consider more general cost functions

Optimal timed games

- optimal cost is in general not computable in timed games
- under some assumption, it becomes computable
- complexity issues and properties of strategies have also been studied
- investigate further mean-cost optimal timed games
- approximate optimal cost
- propose more algorithmics solutions
- o-minimal optimal timed games

▶ ...