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‣ Design synthesis algorithms in two settings:
• Crowd controller problem
• Coalition problem
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Two-player games as a model 
for controller synthesis

[Tho02] W. Thomas : Infinite Games and Verification (CAV’02) 
[FOX] Lectures in Game Theory for Computer Scientists (edited by K. R. Apt and E. Grädel)

‣ Two-player game = model for open systems 

‣ Two players = system vs environment 

‣ Winning objective for system player = specification 

‣ Winning strategy for system player = safe controller
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‣ For many objectives, one can compute winning states and (deterministic) 
winning strategies for each of the players 

‣ Those games are not determined with deterministic strategies 

‣ They nevertheless have values and almost-optimal winning strategies for 
both players (Martin’s second determinacy results for Blackwell games)
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What do we know about 
those games?

[Mar98] D. A. Martin. The determinacy of Blackwell games (The Journal of Symbolic Logic’98)

v2

v

ab, ba

aa, bb

v

ab, ba

bb

aa

val1 = 1
 is an -optimal strategyσ1(v) = (1 − ε) ⋅ a + ε ⋅ b ε

No optimal strategy exists
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From two-player to -player 
concurrent games

N

[MW03] S. Mohalik, I. Walukiewicz. Distributed Games (FSTTCS’03) 
[BBMU15] P. Bouyer, R. Brenguier, N. Markey, M. Ummels. Pure Nash Equilibria in Concurrent Deterministic Games (LMCS’15) 
[KPV16] O. Kupferman, G. Perelli, M. Vardi. Synthesis with Rational Environments (AMAI’16) 
[DMV18] D. Berwanger, A.B. Mathew, M. van den Bogaard. Hierarchical Information and the Synthesis of Distributed Strategies (Acta Informatica’18)

w
v0

 players:N
v1

with w ∈ ΣN

‣ Use of these games: 

• For coordination (specific Nature player, and partial observability) [DMV18] 
— linked to distributed synthesis [MW03] 

• For rational synthesis (e.g. constrained Nash equilibria) [BBNM15,KPV16]

abv0 v1
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with a, b ∈ Σ
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Parameterized verification

‣ Standard verification: can only verify instances of the 
system, where the value of the parameter is known

‣ Parameterized verification: design algorithms to verify all 
instances of the system, at once

Fix , and check N S(N) ⊧ φ

Check that  for every S(N) ⊧ φ N

Various kinds of parameters: 
‣ In arithmetic contraints (timed automata, 

counter automata, hybrid automata, 
Markov chains, …) 

‣ Number of agents
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‣ Abstraction for systems with an arbitrary or unknown number of participants

‣ Examples:
• Distributed algorithms (e.g. leader election protocol)
• Network protocols
• Swarm intelligence systems
• …

‣ It is not true that errors always occur with small instances of the parameters
• Example of the Futurebus+ cache coherence protocol

‣ Need to design methods for verifying parameterized systems, not only 
instances

Why parameterized 
verification?
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[Esp14] J. Esparza. Keeping a Crowd Safe: On the Complexity of Parameterized Verification (STACS’14) 
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‣ Processes executing the same piece of code (crowd)

‣ All decidability/complexity/memory issues depend on many features: 
• Communication structure (broadcasts, rendez-vous, shared variables, 

token-passing, …) 
• With or without fixed architecture 
• With or without identifiers 
• …

‣ Decidability often relies on: 
• Well-structured transition systems 
• Existence of cutoffs

Parameterized verification 
of crowds

[Esp14] J. Esparza. Keeping a Crowd Safe: On the Complexity of Parameterized Verification (STACS’14) 
[BJK+15] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, J. Widder: Decidability of Parameterized Verification
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From two-player to arbitrarily-
many player concurrent games

Assumption: for every , 

 is regular

(v, v′�) ∈ V2

{w ∈ Σ+ ∣ (v, w, v′�) ∈ δ}
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‣ Each player  knows she is the -th (implicit identifier)Pi i

‣ The game starts at initial vertex v0

‣ Given the history (in ) so far, each player  selects an action V*v Pi ai ∈ Σ

‣ The game proceeds to some  (non-det. choice) such that vj a1a2…ak ∈ Lv,vj

‣ This produces an outcome in Vω

Lv,v1

v

v1

v2

v3

Lv,v2

Lv,v3

… …
Adversarial choice

Adversarial choice
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Two synthesis problems

The crowd controller problem

« Gru wants to guide/control the Minions »

The coalition synthesis problem

« The Minions want to achieve some goal »
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The crowd controller 
problem

‣ Input: parameterized game  and linear property  

‣ Question: does there exist  s.t. for every , for every ,for every , ?

G = (V, δ) φ
σ1 k (σi)2≤i≤k ρ ∈ 𝖮𝗎𝗍((σi)1≤i≤k) ρ ⊧ φ

 = GruP1
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From languages to counting

Note :  regular language implies 
 is a semi linear set

L
count(L)
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From languages to counting

How do we play this new game?

‣ The game starts at  

‣ The opponent chooses  (unknown to Gru) 
‣ While (true) 

• At vertex , Gru chooses an action  
and opponent chooses an edge  with  
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v
v a;S v′� k ∈ S
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From languages to counting

Gru wins the language/original game iff he wins the counting game
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‣ Gru (Oval) chooses action 
‣ Vector (Box) chooses semi linear set 

‣ The game starts at , and knowledge is updated 
at each round

(v0; ℕ)
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From counting to turn-based 
knowledge games

: knowledgeK

: updated knowledgeK ∩ S2

Gru wins the counting game iff he wins the knowledge game

a; S1

a; S2

v0

v1

v2

 objectiveφ

Note : the complexity is that of solving turn-based knowledge games with objective  
Example: polynomial-time w.r.t. its size for Reachability objectives

φ

a
v0; K
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v1; K ∩ S1

v0; K; a

S1

S2

 objectiveφ
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The results

Complexity results
The crowd controller problem is decidable and has the following complexity for 
Reachability objectives:
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Intervals PTIME-complete

Finite unions of intervals NP-complete PSPACE-complete

Semilinear sets
PSPACE-complete

Reg/CF languages
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Complexity results
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Reachability objectives:

Deterministic arenas Non-deterministic arenas

Intervals PTIME-complete

Finite unions of intervals NP-complete PSPACE-complete

Semilinear sets
PSPACE-complete

Reg/CF languages

‣ Each knowledge is an intersection of (atomic) constraints used in the game 

‣ The number of possible knowledges is therefore at most exponential in the number of (atomic) constraints used in the game 
• Semilinear sets: the knowledge game is at most exponential in the number of semilinear sets 

‣ Finite unions of intervals: the knowledge game is at most exponential in the number of endpoints 

‣ Intervals: the knowledge game is quadratic in the number of endpoints of the intervals
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K0

K1
K2

K3

K3 ⊊ K1, K2 ⊊ K0
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PSPACE algorithm - 2

K0

K1
K2

K3

Bottom-up tag of winning states
‣ Start at subgame with knowledge :K3

• Objective: φ
• Tag winning states with 

• Tag losing states with 

‣ Go to subgame with knowledge :K2

• Objective: φ or Reach( )
• Tag winning states with
• Tag losing states with

‣ Etc…
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a1; ≠ 2

a2; ≠ 3

a3; ≠ 5 a4; ≠ 7

a3; ≠ 6

a2; ≠ 4
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PSPACE-hardness - 2
ψ = ∃x1 ∀x2 ∃x3 ∀x4 ⋅ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4)

Strategy for Gru if  is trueψ
‣ At , play the correct assignment, say false (i.e. ), reaching v0 a1 x1

• If , then go tok = 1
• If , the game proceeds to k ≠ 1 v1

‣ At , play  (no choice — the next vertex is then choose non-deterministically):v1 u
• Either the game proceeds to  (encoding true), and if , then go tox2 k = 4
• Or the game proceeds to  (encoding false), and if , then go tox2 k = 3
• Otherwise the game proceeds to v2
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PSPACE-hardness - 3
QSAT formula ψ = ∃x1 ∀x2 ∃x3 ∀x4 ⋅ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4)

 is true iff Gru has a winning strategy in the above counting gameψ
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Going further?
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‣ The previous approach yielding the PSPACE upper bound 
applies to many other Boolean objectives, as long as solving 
the corresponding standard games can be achieved in 
PSPACE
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‣ The previous approach yielding the PSPACE upper bound 
applies to many other Boolean objectives, as long as solving 
the corresponding standard games can be achieved in 
PSPACE

‣ What about more involved quantitative objectives/payoffs?

‣ We believe the approach can be extended to « structured » 
infinite-state systems (e.g. pushdown systems)

Going further?
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The coalition problem
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The coalition problem

‣ Input: parameterized game  and linear property  

‣ Question: does there exist  such that for every , for every , ?

G = (V, δ) φ
(σi)i≥1 k ρ ∈ 𝖮𝗎𝗍((σi)1≤i≤k) ρ ⊧ φ
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An intriguing example

a*ba+

v0

v1a*b

Σ+∖a*ba*



30

An intriguing example

A winning coalition strategy

‣ At round :i
• Player  plays i b
• Player  plays j ≠ i a

a*ba+

v0

v1a*b

Σ+∖a*ba*
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An intriguing example

A winning coalition strategy

‣ At round :i
• Player  plays i b
• Player  plays j ≠ i a

a*ba+

v0

v1a*b

Σ+∖a*ba*

If :  
If :  
If : 

k = 1 v0
b

k = 2 v0
ba v0

ab

k = 3 v0
baa v0

aba v0
aab

⋮
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An intriguing example

A winning coalition strategy

‣ At round :i
• Player  plays i b
• Player  plays j ≠ i a

‣ At round , coalition plays i ai−1baω

a*ba+

v0

v1a*b

Σ+∖a*ba*

If :  
If :  
If : 

k = 1 v0
b

k = 2 v0
ba v0

ab

k = 3 v0
baa v0

aba v0
aab

⋮
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Tree unfolding

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥
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Tree unfolding

v0

v0 v2

v0

v1

v0 v2v1 v1

v0v0 v1

⋮

⋮ ⋮⋮

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

L0⊥L00

L21L10 L1⊥ ⋮

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥
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Tree unfolding

There is a winning coalition strategy in the game iff there is a winning 
coalition strategy in the unfolding

v0

v0 v2

v0

v1

v0 v2v1 v1

v0v0 v1

⋮

⋮ ⋮⋮

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

L0⊥L00

L21L10 L1⊥ ⋮

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥
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Tree unfolding — Safety case

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥



32

Tree unfolding — Safety case
For a safety condition: the unfolding can be pruned

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥
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Tree unfolding — Safety case
For a safety condition: the unfolding can be pruned

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥
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Tree unfolding — Safety case
For a safety condition: the unfolding can be pruned

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

Possible solution: 
-  
-  
-  
-

u0 = abaω

u1 = aω

u2 = aω

u3 = baω

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥
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Tree unfolding — Safety case
For a safety condition: the unfolding can be pruned
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v0 v2
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u1 u2
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Possible solution: 
-  
-  
-  
-
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u1 = aω

u2 = aω

u3 = baω

‣ :  
since , , 
k = 1 v0

a v2
a v1

b v0 → …
a ∈ L02 a ∈ L21 b ∈ L10

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥
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‣ :  
since , , 
k = 1 v0

a v2
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b v0 → …
a ∈ L02 a ∈ L21 b ∈ L10

‣ :  
since , 
k > 1 v0

abak−2
v1

ak
v0 → …

abak−2 ∈ L01 ak ∈ L10

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥
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Tree unfolding — Safety case

There is a winning coalition strategy in the unfolding iff there are infinite words  s.t. 
for every , playing  at each internal node ensures avoiding

(ui)i
k ≥ 1 ui

≤k

For a safety condition: the unfolding can be pruned
v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥
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u1 u2

u3

Possible solution: 
-  
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u0 = abaω

u1 = aω

u2 = aω

u3 = baω

‣ :  
since , , 
k = 1 v0

a v2
a v1

b v0 → …
a ∈ L02 a ∈ L21 b ∈ L10

‣ :  
since , 
k > 1 v0

abak−2
v1

ak
v0 → …

abak−2 ∈ L01 ak ∈ L10

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥
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Construction of a finite 
automaton — 1

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3
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Σ
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Construction of a finite 
automaton — 1
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This state is unsafe, due to the branch v0v1

, b ∈ L0,1 a ∈ L1⊥ = Σ+∖L10
(  accepting,  not accepting)p1 s1
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Construction of a finite 
automaton — 2
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automaton — 2
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Construction of a finite 
automaton — 2
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Unsafe



34

Construction of a finite 
automaton — 2

v0

v0 v2

v0

v1

v1

v0

L00 L01 L02 L0⊥

L10 L1⊥ L21

L10 L1⊥

u0

u1 u2

u3

p0 p1
b

a
a

q0 q1
a

r0 r1
Σ

Σ

s0 s2

a

a

s1

s3

a

b

L00 = L01

L02

L21

L10

 
 
 

u0 = abaω

u1 = aω

u2 = aω

u3 = baω

Safe word: 

U =
a
a
a
b

b
a
a
a

a
a
a
a

ω

p0
p0
q0
−−
s0

−−
r0

−−
s0

p0
p0
q1
−−
s1

−−
r1

−−
s3

p1
p1
×

−−
s1

−−
r1

−−
s3

p1
p1
×

−−
s3

−−
r1

−−
s3

p1
p1
×

−−
s2

−−
r1

−−
×

p1
p1
×

−−
×

−−
r1

−−
×

⋯

⋯

a
a
Σ
Σ

b
a
Σ
Σ

a
a
Σ
b

b
a
Σ
b

b
b
Σ
b

a
Σ
Σ
Σ

Unsafe
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Recap

There is a winning safe coalition strategy in the game iff there is an infinite 
safe word in the constructed automaton

⋯

⋯

a
a
Σ
Σ

b
a
Σ
Σ

a
a
Σ
b

b
a
Σ
b

b
b
Σ
b

a
Σ
Σ
Σ

Unsafe

v0 v1

v2

L00 = a*ba*

L01 = a*ba*

L10 = b ∨ aa+

L21 = Σ+L02 = a

L0⊥
L1⊥
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The result

 Decidability/complexity results 
The safety coalition problem is decidable in EXPSPACE. It is 
PSPACE-hard.

‣ Upper bound: the size of the pruned unfolding can be exponential (and not 
possible to consider a polynomial-size DAG instead) 

‣ Lower bound: similar reduction as for the strong controller synthesis from 
QSAT
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Going further?
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‣ Understand the case of other objectives, starting with 
Reachability

Going further?

A winning coalition strategy

‣ At round : 

• Player  plays  

• Player  plays  

‣ At round , coalition plays 

i
i b
j ≠ i a

i ai−1baω

a*ba+

v0

v1a*b

Σ+∖a*ba*
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‣ Understand the case of other objectives, starting with 
Reachability

‣ Limits: undecidability if regular relations instead of regular 
languages

Going further?

A winning coalition strategy

‣ At round : 

• Player  plays  

• Player  plays  

‣ At round , coalition plays 

i
i b
j ≠ i a

i ai−1baω

a*ba+

v0

v1a*b

Σ+∖a*ba*
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Undecidability under 
rational relations

q

q′�

Det. Turing machine ℳ
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Undecidability under 
rational relations

q

q′�

Det. Turing machine ℳ

,
wℛw′�

w w′�
(Σ × Σ)* (Σ × Σ)*q q′�( ),

(Σ × Σ)* (q , )

w
w′�
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Undecidability under 
rational relations

q

q′�

Det. Turing machine ℳ

,
wℛw′�

w w′�
(Σ × Σ)* (Σ × Σ)*q q′�( ),

(Σ × Σ)* (q , )

w
w′�

 has no bounded execution iff the coalition can coordinate to reach ℳ
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Conclusion and further work
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Summary
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‣ A concurrent parameterized game model 
• To reason about an unbounded number of agents 
• A natural extension of standard concurrent games

Summary



40

‣ A concurrent parameterized game model 
• To reason about an unbounded number of agents 
• A natural extension of standard concurrent games

‣ Two natural problems under inspection: 
• The crowd controller problem 
• The coalition problem

Summary
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Further work
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‣ Some technical further work: 
• Better understand the coalition problem

Further work
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‣ Some technical further work: 
• Better understand the coalition problem

‣ Investigate solution concepts relevant to multiplayer games? 
• Various notions of rational behaviors (e.g. equilibria)

Further work
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‣ Some technical further work: 
• Better understand the coalition problem

‣ Investigate solution concepts relevant to multiplayer games? 
• Various notions of rational behaviors (e.g. equilibria)

‣ Integrate new features in the model for better modeling power 
• Add partial information? 
• Infinite state space useful? 
• More general structures than words?

Further work
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Questions?


