From timed to complex systems

— Stochastic timed games —
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Vojtéch Forejt, Marcus GroBer and Nicolas Markey.

| am grateful to Vojtéch Forejt for some of the slides in this presentation.
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An example of a timed automaton

repairing

y7 repair
2<yAx<56

problem, x:=0

y:=0

failsafe

23 problem 15.6 delayed
safe —> safe alarm ——  alarm
X 0 23 0 15.6
y 0 23 23 38.6
) 2.3 ) repair 22.1
failsafe ~——  failsafe ———> repaiting —> repairing
15.6 17.9 17.9 40
0 2.3 0 22.1

Timed automata

failsafe
15.6
0
done Safe
40
22.1
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Timed automata

Verification

Emptiness problem
Is the language accepted by a timed automaton empty?

@ basic reachability/safety properties (final states)

@ basic liveness properties (w-regular conditions)
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Timed automata

Verification
Emptiness problem

Is the language accepted by a timed automaton empty?

@ Problem: the set of configurations is infinite
~ classical methods for finite-state systems cannot be applied

@ Positive key point: variables (clocks) increase at the same speed

Theorem [AD90,AD94|

The emptiness problem for timed automata is decidable and
PSPACE-complete.

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
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Timed automata

Verification
Emptiness problem

Is the language accepted by a timed automaton empty?

@ Problem: the set of configurations is infinite
~ classical methods for finite-state systems cannot be applied

@ Positive key point: variables (clocks) increase at the same speed

Theorem [AD90,AD94|

The emptiness problem for timed automata is decidable and
PSPACE-complete.

Method: construct a finite abstraction J

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).
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Timed automata

The region abstraction

clock y

0 clock x
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Timed automata

The region abstraction

clock y
only constraints: x ~ ¢ with ¢ € {0,1,2}
y ~ ¢ with c € {0,1,2}
2 e ° °
1 e ° °
0 e ° ° clock x
0 1 2

@ ‘“compatibility” between regions and constraints
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Timed automata

The region abstraction

clock y
d /" The path ( )—»XZl O O
'/' - can be fired from ®

” ‘ - cannot be fired from ®
2 e ° '.' °
OI "0
1 oe——i—o—o'—o
¢ 1"'
|
0 e ° ° clock x
0 1 2

@ ‘“compatibility” between regions and constraints
@ “compatibility” between regions and time elapsing
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The region abstraction

Timed automata

The path O——Q——0O
s - can be fired from @
- cannot be fired from ®

clock x

@ ‘“compatibility” between regions and constraints
@ “compatibility” between regions and time elapsing
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The region abstraction

clock y

Qe ° )

Timed automata

clock x
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~> an equivalence of finite index
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Timed automata

The region abstraction

clock y

0 e ° ° clock x

@ ‘“compatibility” between regions and constraints
@ “compatibility” between regions and time elapsing
~> an equivalence of finite index
a time-abstract bisimulation
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Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:
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Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

a
VvV @— @
I I
I I
1 a 1
oQ—> 0

3
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Time-abstract bisimulation

This is a relation between e and e such that:

v

3

a
—
a
—

Vd >0
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Time-abstract bisimulation

This is a relation between e and e such that:

v

3

a
—
a
—

Vd >0

3d" >0

Timed automata
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Timed automata

Time-abstract bisimulation

This is a relation between e and e such that:

a (d)
VYV @ —m> 0 Vd >0 @@ —> 0
: R : Cooo(d)
Je—— o 3d’ >0 o——— o

.. and vice-versa (swap e and e).
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Timed automata

The region abstraction (2)

clock y
- region R defined by:
(0<x<1
O<y<«l1
2 e ° ®
/ / y<x
1 ."”””"."””””l

° clock x
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The region abstraction (2)

clock y

Timed automata

- region R defined by:

(0<x<1
O<y<x1
y <X

- time successors of R

clock x
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Timed automata

The region abstraction (2)

clock y

- region R defined by:
(0<x<1
O<y<x1
y <X

- time successors of R

clock x

image of R when resetting clock x
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Timed automata

The construction of the region graph

It “mimics” the behaviours of the clocks.

~j. y<1, x:=0 .:’Y
d SA
A
|4/ ]  del /
_ elay
(A Ppit A Ea
0 - .
0 0 1 1 1 2 1 2 1 2
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Timed automata

Region automaton = finite bisimulation quotient

~ a,x:= v __ _
::1II'}...f:fiil......:l.;.@l!.[ . <§§> :::i:iii<:1\\< . .j%. A“'

N A -~ —> > - ==

timed automaton region graph
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Timed automata

Region automaton = finite bisimulation quotient

\:. y<1l,a,x:=0 .::Y ® I@\ ‘ ‘/;_‘_ ‘,

A

timed automaton region graph
4
7 E]
N v
a
4 12 I

ly ‘ region automaton
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Timed automata

Region automaton = finite bisimulation quotient

\:. y<1l,a,x:=0 ‘ v ® 4\ . /Tr"_‘

N A <~ > - -+

timed automaton region graph

4

T E)

N ¥

a

El 82 I

' / A
ly ‘ region automaton

L(reg. aut.) = UNTIME(L(timed aut.)) J
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Timed automata

An example [AD94]

x>0,a
@ y:=0

x>1,d

y<l,a,y:=0
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x>0,a
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Timed automata

An example [AD94]

x>0,a
—>®—> x>1,d
y:=0
y
S0
—_
x=y=0 [
, b . .
a a |/
———— x
S1 b 2
0=y<x<1 l=y<x
C £’
S3 d 53
O<y<x<1 x>1,y>1
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Timed automata

finite bisimulation

quotient

timed automaton large (but finite) automaton
(region automaton)
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Timed automata

finite bisimulation

quotient

timed automaton large (but finite) automaton
(region automaton)

@ large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:

[T eM. +2)- x)t- 2%
xeX

@ It can be used to check for:
o reachability /safety properties

o liveness properties (like Blichi properties)
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Timed games

Outline

2. Timed games
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Timed games
Why (timed) games?
@ to model uncertainty
Example of a processor in the taskgraph example

x=2 x=3
done done
(x=2) x:=0 x:=0

(x<3)
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Timed games
Why (timed) games?
@ to model uncertainty

Example of a processor in the taskgraph example

X

>1 x>1
““done % 4" “done "~
Gl\add/\mult/@
=0 x:=0

(x<2) (x<3)

@ to model an interaction with an environment

Example of the gate in the train/gate example
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Timed games
Why (timed) games?
@ to model uncertainty

Example of a processor in the taskgraph example

done done
Gl\add/.\mult/@

(x<3)

@ to model an interaction with an environment

Example of the gate in the train/gate example

OpenGate
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Timed games

An example of a timed game

Rule of the game

1
x<1,up,x:=01
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An example of a timed game

Rule of the game
e Aim: avoid & and reach ©

@ How do we play? According to a
strategy:

Timed games

x<1,u,x:=0
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strategy:

f : history — (delay, cont. transition)

v

x<1,up,x:=0
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Timed games

An example of a timed game

Rule of the game
(x<2) @ o Aim: avoid @ and reach ©
@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

v

A (memoryless) winning strategy

e from (4o,0), play (0.5, ¢c1)
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Timed games

An example of a timed game

Rule of the game

(XS2 @ o Aim: avoid @ and reach ©

, @ How do we play? According to a

/’ strategy:
I' x<1l,c
! f : history — (delay, cont. transition)

x<1,up,x:=0 : @ @
N A (memoryless) winning strategy
\ e from (£, 0), play (0.5, ¢c1)
~ can be preempted by >
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Timed games

An example of a timed game

Rule of the game

(XS2 @ o Aim: avoid @ and reach ©
@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

A (memoryless) winning strategy
() e from (¢o,0), play (0.5, c1)
~ can be preempted by >
o o from (£2,%), play (1 — x, )
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Timed games

An example of a timed game

Rule of the game

(XQ @ o Aim: avoid @ and reach ©
@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

©

A (memoryless) winning strategy
x<1,c5 e from (¢o,0), play (0.5, c1)
~ can be preempted by >
o from (£2,%), play (1 — x, )
e from (¢3,1), play (0, c3)
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Timed games

An example of a timed game

Rule of the game

(XQ @ o Aim: avoid @ and reach ©
@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

x>2,¢

A (memoryless) winning strategy
e from (£, 0), play (0.5, ¢c1)
~ can be preempted by >
o from (£2,%), play (1 — x, )
e from (¢3,1), play (0, c3)

e from (¢1,1), play (1, c1)
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Timed games

An example of a timed game

Rule of the game
e Aim: avoid & and reach ©

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

x<1,up,x:=01

XS].,C;; .
Problems to be considered
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Timed games

An example of a timed game

Rule of the game
e Aim: avoid & and reach ©

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

1
1
x<1,up,x:=01
1

1

\

XS].,C;;

Problems to be considered
@ Does there exist a winning strategy?

@ If yes, compute one (as simple as possible).

14/60



Timed games

Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and ‘“region-based”
strategies are sufficient.

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (HSSC'98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).
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Timed games

Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and ‘“region-based”
strategies are sufficient.

~ classical regions are sufficient for solving such problems

(one only needs to compute the so-called attractor)

[AMPS08] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (HSSC'98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).
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Back to the example: computing winning states

x<1,u
\

x<1,c3

i
©)

Timed games
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Timed games

Back to the example: computing winning states

o} : : Fo---
0 1 2 3
1
1
1
x<1,up,x:=01 a1 | } } ===
! 0 1 2 3
\
G : : -
0 1 2 3
6ok : : Fo---
0 1 2 3
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Back to the example: computing winning states

x<1,up,x:=0

x<1,u
\

i
©)

x<1,c3

£y

£

£3

Timed games

0 1
O —
0 1
k : ----
0 1
L 1 - - -
T T
0 1
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Timed games

Back to the example: computing winning states

x<1,up,x:=0

x<1,u
\

x<1,c3

i
©)

Lo

L L L - -
T T T T

0 1 2 3
O —
0 1 2 3

k : : b ===
0 1 2 3
e —— — - - - -
0 1 2 3

16/60



Timed games

Back to the example: computing winning states
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©)
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Timed games

Back to the example: computing winning states

1
1
x<1,up,x:=01
1
1

‘X/\l.LI\

i
©)

x<1,c3

Lo

41

£

£3

-
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Timed games

Back to the example: computing winning states

Winning states Losing states

fo (G —
x<1,u,x:=0

0 O ———

123 |

03 G ———
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A hint into stochastic timed games

Outline

3. A hint into stochastic timed games
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A hint into stochastic timed games

Why add stochastic features? And how?

@ to model probabilistic behaviours
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Why add stochastic features? And how?

@ to model probabilistic behaviours

Example of losses when sending messages

(:) lost

send
x<2
x:=0

O delivered
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@ to model probabilistic behaviours

Example of losses when sending messages

d o) O lost ~> the probabilistic timed automata model
Oi’@é: used e.g. in PRISM and UPPAAL-PRO
x=0 Tog [KNSS02]

O delivered

[KNSS02] Automatic verification of real-time systems with discrete probability distributions (TCS).
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A hint into stochastic timed games

Why add stochastic features? And how?

@ to model probabilistic behaviours

Example of losses when sending messages

d o) O lost ~> the probabilistic timed automata model
Qi»oéz used e.g. in PRISM and UPPAAL-PRO
x=0 Tog [KNSS02]

O delivered

@ to model uncertainty on delays

Example of a processor in the taskgraph example

x>1 x>1
~ “done “ done™ ™
n n
O 9_mix O
(x<2) x:=0 x:=0 (x<3)

[KNSS02] Automatic verification of real-time systems with discrete probability distributions (TCS).
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A hint into stochastic timed games

Why add stochastic features? And how?

@ to model probabilistic behaviours

Example of losses when sending messages

d o) O lost ~> the probabilistic timed automata model
Qi»oéz used e.g. in PRISM and UPPAAL-PRO
x=0" Tog [KNSS02]

O delivered

@ to model uncertainty on delays

Example of a processor in the taskgraph example

done done
1

(x<3)

~ the stochastic timed automata model [BBB-+08,BF09]
v

[KNSS02] Automatic verification of real-time systems with discrete probability distributions (TCS).
[BBB-+08] Baier, Bertrand, Bouyer, Brihaye, GraBer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS'08).
[BF09] Bouyer, Forejt. Reachability in stochastic timed games (ICALP'09).
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A hint into stochastic timed games

Outline

3. A hint into stochastic timed games
Some informal description
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A hint into stochastic timed games

Stochastic timed game: an example

@ Timed graph with vertices partitioned among three players:

& O O

- D

classical players the Nature
playing “turn-based” stochastic player
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A hint into stochastic timed games

Stochastic timed game: an example

@ Timed graph with vertices partitioned among three players:

& O O

. —_—
classical players the Nature
playing “turn-based” stochastic player

@ There are prescribed probability distributions from O vertices.
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A hint into stochastic timed games

How is this game played?

o Players O and [ play according to standard strategies

o Player @) plays according to the prescribed probability distributions:
o choose a delay according to some distribution
e choose an action according to some discrete distribution

21/60



A hint into stochastic timed games

Play, an example
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A hint into stochastic timed games

Play, an example

@ Strategy for O: go to ¢ when x =1

@ Strategy for 0. go to g when x =2

@ From the game and the strategies we obtain a Markov chain:

(a,0) — (e1)
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Play, an example
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(2,0) — (c,1)

probability distribution
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A hint into stochastic timed games

Play, an example

@ Strategy for O; go to ¢ when x =1

@ Strategy for O. go to g when x =2

@ From the game and the strategies we obtain a Markov chain:

(b,1)

(2,0) — (c,1)

probability distribution
over delays
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A hint into stochastic timed games

Play, an example

@ Strategy for O; go to ¢ when x =1

@ Strategy for O. go to g when x =2

(b,1)
<
(e;1)
2
(e,14+¢)
(3.0) — (1) §
probability distribution
over delays (e,2)
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A hint into stochastic timed games

Play, an example

@ Strategy for O; go to ¢ when x =1

@ Strategy for O. go to g when x =2

@ From the game and the strategies we obtain a Markov chain:

(b,1)
C
(e1)
>
(e,14+¢)

(2,0) — (c,1)

probability distribution
over delays (e,2)
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A hint into stochastic timed games

Play, an example

@ Strategy for 0: go to ¢ when x =1

@ Strategy for O. go to g when x =2

@ From the game and the strategies we obtain a Markov chain:

(b,1)
(¢
(e1)
P
(e,14¢) — (g,2)

(2,0) — (c,1)

probability distribution
over delays (e,2)
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A hint into stochastic timed games

Play, an example

@ Strategy for 0: go to ¢ when x =1

@ Strategy for O. go to g when x =2

@ From the game and the strategies we obtain a Markov chain:

(f,2)
A 1+e) — (g,2)

(a,0)
probability distribution (f.3)
over delays (ef)
(d,2)

22/60



A hint into stochastic timed games

Outline

3. A hint into stochastic timed games

A more formal view of the semantics

23/60



A hint into stochastic timed games

How can we attach probabilities to delays?

@ The example of continuous-time Markov chains

exponential distribution

. . A-exp(=At) ift>0
density function t — {0 otherwise
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A hint into stochastic timed games

How can we attach probabilities to delays?

@ The example of continuous-time Markov chains

exponential distribution

. . A-exp(=At) ift>0
density function t — {0 otherwise

~> this is ok if delays are in [0, +00)

@ But what if bounded intervals?

truncated normal distribution

density function t — 4 Il

uniform distribution 1 ey >0
0 otherwise

24/60



A hint into stochastic timed games

How does the semantics formalize?

o We will explain it more formally when all vertices belong to
player O. Those are called %—player games.
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A hint into stochastic timed games

How does the semantics formalize?

o We will explain it more formally when all vertices belong to
player O. Those are called %—player games.

@ We will then extend it using standard strategies for the two other
players, which need however satisfy some measurability assumption
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A hint into stochastic timed games

The f-player game model

o (s 2 ... =5 ): symbolic path from s firing edges ey, ..., e,
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A hint into stochastic timed games

The %-player game model

o (s 2 ... =5 ): symbolic path from s firing edges ey, ..., e,
o Example:

x<2, e x<5, &
0O O
y:=0 y=>1
X§3, €4 O

TF(SOEI%EZ%):{SOTI—’Q>512>52 | 7'1§2, 7'1-‘r-7'2§5, TQZ].}
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A hint into stochastic timed games

The %-player game model

o (s 2 ... =5 ): symbolic path from s firing edges ey, ..., e,
o Example:

x<2, e x<5, &
0O O
y:=0 y=>1
X§3, €4 O

7!'(50&1%3):{507—1—’6’1)51352 | <2 mn+m<I5 TQZ].}

@ Idea: compute the probability of a symbolic path

From state s:
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x<2, e x<5, &
O

y:=0 y=>1

X§3, €4
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@ Idea: compute the probability of a symbolic path

From state s:
e randomly choose a delay
o then randomly select an edge

o then continue probability distribution
over delays
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A hint into stochastic timed games

The %—player game model

T1,€1 Tny€n }
n

symbolic path: (s & ... &) = {s 2% 5 ... 25

P(r(s 2o 5)) :/ peselen) (s 25 ) dpug(t)

tel(s,er)
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The %—player game model

T1,€1

symbolic path: (s 2 ... 25 ) ={s 2% 5 ... Tn:€n sn}

IP’(W(551—>~~3"—>)):/ o dps()
Jtel(s,er

o I(s,e) = {7 | s 22} and ps distribution over /(s) = |J I(s, e)

e
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A hint into stochastic timed games

The %-player game model

T1,€1

symbolic path: 7(s 2 ... 25 ) = {s 2% 5 ... 2% 51
IP’(W(S . )) = ps+t(e1)

o I(s,e1) = {7 | s 22} and ps distribution over I(s) = |JI(s, €)

e

@ ps.: distribution over transitions enabled in s + t
(given by weights on transitions)
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A hint into stochastic timed games

The %-player game model

T1,€1

symbolic path: (s 2 .- &%) = {s s T o
P(w(sl...i)): p(ﬂ(stﬁg.‘.iﬂ%»

o I(s,e1) = {7 | s 22} and ps distribution over I(s) = |J /(s, €)

e

@ ps.: distribution over transitions enabled in s + t
(given by weights on transitions)

t e
05 >S5+t s
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The %—player game model

P(r(s 2o ) = / peve(en) (s 2 3 )) dpg(t)

tel(s,e1)
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tel(s,e1)

@ Can be viewed as an n-dimensional integral
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A hint into stochastic timed games

The %—player game model

P(r(s 2o ) = / peve(en) (s 2 3 )) dpg(t)

tel(s,e1)

@ Can be viewed as an n-dimensional integral

@ Easy extension to constrained symbolic paths
€; €n T1,€1 Tns€n
me(s = )={s— s —5s,| (11, ,7) EC}
@ Definition over sets of infinite runs:

o Cyl(me(s - =) ={o- 0 |o€me(s - )}
o P(Cyl(me(s = -+ =))) =P(me(s = -+ =)
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A hint into stochastic timed games

The %-player game model
P(r(s 2o ) = [61(56)p5+t(61)lp’<7r(5t =) dg(t)

@ Can be viewed as an n-dimensional integral

@ Easy extension to constrained symbolic paths

me(s o ) ={s 2% 5. % s | (11,0, 70) EC)

@ Definition over sets of infinite runs:
o Cyl(me(s - =) ={o-0 | o€ me(s 2 --- =)}
° P(Cyl(wc(s IO ))) = P(Wc(s IO ))
e unique extension of P to the generated o-algebra
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A hint into stochastic timed games

The %-player game model

P(r(s 2o ) :/ peve(en) (s 2 3 )) dpg(t)
€l(s,er)
@ Can be viewed as an n-dimensional integral

@ Easy extension to constrained symbolic paths

me(s o ) ={s 2% 5. % s | (11,0, 70) EC)
@ Definition over sets of infinite runs:

o Cyl(me(s X - ) ={o-0 |oeme(s = - =)}

° P(Cyl(wc(s 25 ))) = P(Wc(s SN ))

e unique extension of P to the generated o-algebra
@ Property: P is a probability measure over sets of infinite runs
@ Example:

ezeno(s) = J (] U mmmemls =)

MEN neN (ep,--- ,en)EEN
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A hint into stochastic timed games

An example of computation (with uniform distributions)

e, x =1 (:)::::) e, x<1 (:)::::)
el,XS]. 63,X§2
— — u’i o9
(x<1) . (x<2)

The probability of the symbolic path 7 (sy ) is 1.
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A hint into stochastic timed games

An example of computation (with uniform distributions)

e, x =1 OO &, x <1 OO
{ el,XS]. l 63,X§2
- x:=0 ~ C):)
(x<1) . (x<2)

The probability of the symbolic path 7 (sy ) is 1.

1 1P(rx &
]P)(ﬂ'(SO i)& )) :A ]P(ﬂ'(sl 3) ))duso(t) +/ < (Sl — )

1

dyis, (t)
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A hint into stochastic timed games

An example of computation (with uniform distributions)

IP’(Tr(

1
so 52 )) :A P(W(Sl = ))dMSO(t) +/

e, x =1 OO e, x <1 OO
! e, x<1 [ ez, x <2
— 1, = 3 = CO
The probability of the symbolic path 7 (sy ) is 1.

LP(n(s1 )

dyis, (t)
1

ot (B(r()
- A A (2%@)) dre (1)
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A hint into stochastic timed games

An example of computation (with uniform distributions)
20 0D
e, x<1 €3, x <2 :

The probability of the symbolic path 7 (sy ) is 1.

LP(n(s1 )

1
P(r(so 252 )) :A P (r (s %))duso(rH/ djie ()

1

ot (B(r()
- (2%@)) djis,(£)
1
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A hint into stochastic timed games

An example of computation (with exponential distrib.)

20D 0O
61./X§1 e3,x§2
SCSREL LSS D
rate 2 ) rate 3

The probability of the symbolic path 7(s; =) is e=3 — e &~ 0.043
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A hint into stochastic timed games

An example of computation (with exponential distrib.)

eo,le OO 627X21 :C
61./X§1 e3,x§2
—>$ P u’< Q)
rate 2 ) rate 3

The probability of the symbolic path 7(s; =) is e=3 — e &~ 0.043

1

1
]P(W(So 52, )) = A IP’(W(sl 2, ))d/zso(t) = / IP’(Tr(sl 2 ))Zexp(th)dt

0

_ Al (foo 3exp(3u)du) 2 exp(—2t)dt

= [~ exp(—20)]rg - [ exp(—3u)[;5]

=(1—e?)-e3=e3-¢"°
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A hint into stochastic timed games

Some remarks

@ This defines a purely stochastic process (%—player game).
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“useless” clock which is reset on all transitions. The distributions on
delays are exponential distributions with a rate per location.
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Some remarks

@ This defines a purely stochastic process (%—player game).

@ Continuous-time Markov chains = timed automata with a single
“useless” clock which is reset on all transitions. The distributions on
delays are exponential distributions with a rate per location.

@ The semantics can be extended in a natural way to several players:

IP’(W(S & )) = / ps+t(e1)IP(7r(st 2 )) dps(t)

tel(s,er) N

mass distribution gi:ven by the strategy
if s is a player vertex
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A hint into stochastic timed games

Some remarks

@ This defines a purely stochastic process (%—player game).

@ Continuous-time Markov chains = timed automata with a single
“useless” clock which is reset on all transitions. The distributions on
delays are exponential distributions with a rate per location.

@ The semantics can be extended in a natural way to several players:

P(ﬂ'(s A )) = / ps+t(e1)IP(rr(st 2 )) dps(t)

tel(s,er) N

mass distribution gi:ven by the strategy
if s is a player vertex

@ Probabilistic timed automata = a subclass of the 1%—p|ayer games

O

2<x<5

O
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A hint into stochastic timed games

The synthesis problem

Problem statement
Given a game G, a (linear-time) property ¢, a rational threshold < r,

is there a strategy £, for player s.t.
for all strategies f5 of player O, ]P)(Gfo’fu = ,:) D r?
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A hint into stochastic timed games

Reachability problem — Example

20 20

x<1 x<3

x<2 /4[\ x<2 x=2
-~ c B e

@ Uniform distribution over delays

@ Uniform distribution over edges
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20 20
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-~ c <] e

@ Uniform distribution over delays

@ Uniform distribution over edges

@ Are vertices {b, f} reachable with probability 1 from (a,0)?
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20 20
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x<2 /4[\ x<2 x=2
-~ c <] e

@ Uniform distribution over delays

@ Uniform distribution over edges

@ Are vertices {b, f} reachable with probability 1 from (a,0)?

o Yes: it is the case when O always chooses to move when x = 0.5.
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Reachability problem — Example

20 20

x<1 x<3

x<2 /4[\ x<2 x=2
-~ c <] e

@ Uniform distribution over delays

@ Uniform distribution over edges

@ Are vertices {b, f} reachable with probability 1 from (a,0)?

o Yes: it is the case when O always chooses to move when x = 0.5.
@ Is the vertex b reachable with probability at least %?
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A hint into stochastic timed games

Reachability problem — Example

20 20

x<1 x<3

x<2 /4[\ x<2 x=2
-~ c <] e

@ Uniform distribution over delays

@ Uniform distribution over edges

@ Are vertices {b, f} reachable with probability 1 from (a,0)?

o Yes: it is the case when O always chooses to move when x = 0.5.
@ Is the vertex b reachable with probability at least %?
o No.
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A hint into stochastic timed games
What kind of games will we play?
Number of players
@ 25-player games: O O O

1
2
° lé—player games: O O (“Markov decision process”)

° %—player games: @) (“Markov chain™)
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What kind of games will we play?

Number of players

e 21-player games: & O O
° lé—player games: O O (“Markov decision process”)
° %—player games: O (“Markov chain”)

Kind of questions

@ qualitative questions (threshold is either 0 or 1)

@ quantitative questions (threshold is a rational number in (0, 1))

34/60



A hint into stochastic timed games

What kind of games will we play?

Number of players

o

@ 2:-player games: O
O (“Markov decision process”)

1
2
e 1i-player games:

OO

° %—player games: (“Markov chain”)l

Kind of questions
@ qualitative questions (threshold is either 0 or 1)
@ quantitative questions (threshold is a rational number in (0, 1))

Winning objective
The winning objective will be an w-regular condition, or some LTL
property, or some more restrictive condition like a reachability condition.
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A hint into stochastic timed games

Outline

3. A hint into stochastic timed games

Summary of the results
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A hint into stochastic timed games

Rough summary of the results

Model Qualitative | Quantitative
1 decidable decidable!
>-player game | 1 clock (BBB108] [BBBMOS]
n clocks 2 ?
1 decidable3 2
15-player game | 1 clock (BFOY] /
n clocks ? ?
2%—p|ayer game | 1 clock ? ?
- undecidable*
n clocks / (BFOJ]

under some assumptions...

1 reactive automata I(s) = R4, exponential distributions and resets on every cycle
2 reactive automata /(s) = Ry and exponential distributions

3 reachability properties

4

even for reachability properties, exponential (or uniform) distributions

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, GréBer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS'08).
[BBBMOS] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST'08).
[BF09] Bouyer, Forejt. Reachability in stochastic timed games (ICALP'09).
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n clocks / (BFOJ]

under some assumptions...

1 reactive automata I1(s) = R4, exponential distributions and resets on every cycle
2 reactive automata /(s) = Ry and exponential distributions

3 reachability properties

4

even for reachability properties, exponential (or uniform) distributions
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A hint into stochastic timed games

Outline

3. A hint into stochastic timed games

Qualitative analysis of %—player games
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A hint into stochastic timed games

Summary of the results

Model Qualitative | Quantitative
1 decidable decidable
>-player game | 1 clock (BBB 108] (BBBMO]
n clocks ?
1. decidable 2
15-player game | 1 clock [BFOY] /
n clocks ? ?
2%—p|ayer game | 1 clock ? ?
n clocks ? undecidable

[BF09]

[BBB-+08] Baier, Bertrand, Bouyer, Brihaye, GréBer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS'08).
[BBBMOS] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST'08).
[BF09] Bouyer, Forejt. Reachability in stochastic timed games (ICALP'09).

38/60



A hint into stochastic timed games

Almost-sure model-checking

The qualitative synthesis problem reduces to the so-called “almost-sure
model-checking problem”

skp & P({QeRuns(s)|g|:<p}):1
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A hint into stochastic timed games

Almost-sure model-checking

The qualitative synthesis problem reduces to the so-called “almost-sure
model-checking problem”

sk & P({QeRuns(s)|g|:<p}):1

There are only @) vertices, but we will use extra colors to represent
atomic propositions.
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A hint into stochastic timed games

An example

er, x<1 er7, x<1
e, x>3, x:=0

e, x=0
6 @
(x<1) (x<1)

e3, x=1 es, XSl
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A hint into stochastic timed games

An example

er, x<1 er7, x<1
e, x>3, x:=0

e, x=0
6 @
(x<1) (x<1)

e3, x=1 es, XSl

A = G (green = Fred)
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A hint into stochastic timed games

An example
e, x<1 e, x<1
e, x<1 ey, x>3, x:=0
—_— e, x=0
@ &
(x<1) (x<1) (x<1)
e, x=1 es, x<1

A [~ G (green = F red) but ]P’(.A E G (green = F red)) =1
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A hint into stochastic timed games

An example

er, x<1 er7, x<1
e, x>3, x:=0

e, x=0
R
(x<1) (x<1)

e3, x=1 es, XSl

A [~ G (green = F red) but ]P’(.A E G (green = F red)) =1

w
Indeed, almost surely, paths are of the form ei"eg<e4e5)
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A hint into stochastic timed games

The classical region automaton
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The pruned region automaton
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A hint into stochastic timed games

The pruned region automaton

.. viewed as a finite Markov chain MC(A)
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A hint into stochastic timed games

The pruned region automaton

.. viewed as a finite Markov chain MC(A)

Proposition

For single-clock timed automata,

PAEy) =1 iff P(MC(A) ) =1

(this is independent of the choice of the distributions...)
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A hint into stochastic timed games

Result

Theorem [BBB+-08]

For single-clock timed automata, the almost-sure model-checking
@ of LTL is PSPACE-Complete
o of w-regular properties is NLOGSPACE-Complete

[BBB-+08] Baier, Bertrand, Bouyer, Brihaye, GréBer. Almost-sure model checking of infinite paths in one-clock timed automata (L/CS'08).
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For single-clock timed automata, the almost-sure model-checking
@ of LTL is PSPACE-Complete
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o Complexity:
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o of w-regular properties is NLOGSPACE-Complete

o Complexity:
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Theorem [BBB+-08]

For single-clock timed automata, the almost-sure model-checking
@ of LTL is PSPACE-Complete
o of w-regular properties is NLOGSPACE-Complete

o Complexity:
o size of single-clock region automata = polynomial [LMS04]
o apply result of [CSS03] to the finite Markov chain

@ Correctness: the proof is rather involved

e requires the definition of a topology over the set of paths
e notions of largeness (for proba 1) and meagerness (for proba 0)

[BBB-+08] Baier, Bertrand, Bouyer, Brihaye, GréBer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS'08).
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A hint into stochastic timed games

Result

Theorem [BBB+-08]

For single-clock timed automata, the almost-sure model-checking
@ of LTL is PSPACE-Complete
o of w-regular properties is NLOGSPACE-Complete

o Complexity:
o size of single-clock region automata = polynomial [LMS04]
o apply result of [CSS03] to the finite Markov chain

@ Correctness: the proof is rather involved

e requires the definition of a topology over the set of paths

e notions of largeness (for proba 1) and meagerness (for proba 0)

o link between probabilities and topology thanks to the topological
games called Banach-Mazur games

[BBB-+08] Baier, Bertrand, Bouyer, Brihaye, GréBer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS'08).
[LMS04] Laroussinie, Markey, Schnoebelen. Model checking timed automata with one or two clocks (CONCUR'04).
[CSS03] Couvreur, Saheb, Sutre. An optimal automata approach to LTL model checking of probabilistic systems (LPAR'03).
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Y
&, y=2 e3, 1<y<2 e, y<1 e, y=1
(%) ()
AN -/ yi=0

y<1
e, x>1

x:=0 x:=0
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An example with two clocks

e, x>1

o If the previous algorithm was correct, A = GF red A GF green
@ However, we can prove that P(G —|red) >0

@ There is a strange convergence phenomenon: along an execution, if
d; > 0 is the delay in locations £» or 44, then we have that . 6; <1
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@ The set of Zeno behaviours is measurable:

Zeno(s) = U m U Cyl(Tr(s e_1> e_,,) ))

MeN neN (e, - ,e))€E"

@ In single-clock timed automata, we can decide in NLOGSPACE
whether ]P’(Zeno(s)) =0:

o check whether there is a purely Zeno BSCC in MC(.A)

e an interesting notion of non-Zeno timed automata
x<1, x:=0

g
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A hint into stochastic timed games

Summary of the results

Model Qualitative | Quantitative
1 decidable decidable
>-player game | 1 clock (BBB.1.08] (BBBMO]
n clocks ?
1. decidable 2
15-player game | 1 clock [BFOY] /
n clocks ? ?
2%—p|ayer game | 1 clock ? ?
n clocks ? undecidable

[BF09]

[BBB-+08] Baier, Bertrand, Bouyer, Brihaye, GréBer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS'08).
[BBBMOS] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST'08).
[BF09] Bouyer, Forejt. Reachability in stochastic timed games (ICALP'09).
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Undecidability

Theorem [BF09]

The reachability problem for stochastic timed games (2% players) is
undecidable.

@ Holds for uniform and exponential distributions on delays.

@ Holds for any quantitative question; we give hints for proba = %

@ Proof by reduction from halting problem of two-counter machine to
the reachability with probability precisely %:

° O simulates a computation of the two-counter machine and
encodes counter values in clock values

° stores counter values ¢; and ¢ as ﬁ

° D will check that O is not cheating using the power of the
probabilities

[BF09] Bouyer, Forejt. Reachability in stochastic timed games (ICALP'09).
47/60
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Undecidability — Comparing counter values

@ Check clock y stores (c1 + 1, cp), assuming that x stores (c1, ¢z)

u<l,x>1

p
f:.\ u<l,y>1 @
entered with u=0 T
x=xpand y =y O O
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@ Check clock y stores (¢ + 1, ¢p), assuming that x stores (c1, ¢2)

c =
entered with u=0 y<:r
x =xg and y = yp O :

e vertex d is reached with probability % - yo
vertex f with prob. 3 - (1 — xo)
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Undecidability — Comparing counter values

@ Check clock y stores (¢ + 1, ¢p), assuming that x stores (c1, ¢2)

c =
entered with u=0 y<:r
x =xg and y = yp O :

e vertex d is reached with probability % - yo
vertex f with prob. 3 - (1 — xo)
@ vertices d, f are reached with probability % iff
1 1

1 .
E—Z'YO‘FE'(].—X()) iff X0—2y0
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Undecidability — Incrementation

A hint into stochastic timed games

How do we properly increment the first counter?

(x<1) (u<1) (u=0)
=0 u>0 =1
x=1,x:=0 Y
check that x =2y }
enters with x = ﬁ should leave with y =

next instruction

1
ICREEE)
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Undecidability — Zero test

How do we check that ¢; is zero?

A hint into stochastic timed games

(u=0)

(x<1) (x,u<1)
=0 u>0 =1
7 y:=0 M u:=0
x=1,u=0
x=1,x:=0

enters with x= 3%2

check that y=3x

Player O has a strategy to reach @with proba. % iff ¢; is initially zero.
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Undecidability — Zero test

How do we check that ¢; is zero?

A hint into stochastic timed games

(>x,u<1)
=0 u>0 =1
4= D D u
T T yi=0 M u:=0
x=1,u=0

should go the proba.
gadget if =0
ie. if x=1

enters with x= 3%2

check that y=3x &

I __1
should leave with y=i5-T

Player O has a strategy to reach @with proba. ; iff ¢; is initially zero.
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A hint into stochastic timed games

Summary of the results

Model Qualitative | Quantitative
1 decidable decidable
>-player game | 1 clock (BBB.1.08] (BBBMO]
n clocks ?
1. decidable 2
15-player game | 1 clock [BFOY] /
n clocks ? ?
2%—p|ayer game | 1 clock ? ?
n clocks ? undecidable

[BF09]

[BBB-+08] Baier, Bertrand, Bouyer, Brihaye, GréBer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS'08).
[BBBMOS] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST'08).
[BF09] Bouyer, Forejt. Reachability in stochastic timed games (ICALP'09).
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A hint into stochastic timed games

Towards quantitative analysis

@ The abstraction MC(.A) is no more correct.

@ Can be reduced to solving a system of differential equations.
~ hard to solve in general, even for simple distributions

@ We will describe a restricted framework in which:

o we will compute a closed-form expression for the probability

o we will be able to approximate the probability, i.e., for every £ > 0,
we will compute two rationals p- and pJ such that:

p- <P(sof=¢) <pz +¢
pi —e<P(sof=) <pt

o we will be able to decide the threshold problem:
“Given A, ¢, c € Q, and ~ € {<,<,=,>, >},
does P(so = ap) ~ cin A?"

53/60
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s uniform distribution when /(s) is bounded
+ uniform weights on transitions
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Correctness of the abstraction

Theorem

Under some hypotheses, for single-clock automaton A and property ¢,

P4(so = ¢) = Pucr(a)(so FE OF,)

for some well-chosen set F.

o Hypotheses:
o ifs=({,a)and s’ = ({,a') with a,a' > M, ps = pg
o every bounded cycle resets the clock

o Limits of the abstraction: there may be no closed form for the
values labelling the edges of MC'(A).

55/60
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Computing the probability

@ We assume furthermore that:

o for every state s, I(s) = R4
(the timed automaton is ‘reactive’)
e in every location £, the distribution over delays has density

t— A - et for some Mg € Q4
~> more general than continuous-time Markov chains

Proposition

Under those hypotheses, IP’(SO E cp) can be expressed as f (e~") where r
is a rational number, and f € Q(X) is a rational function.

~> Note: the hypothesis “reset all bounded cycles” is necessary to get
this form.

56/60
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o As e " is transcendental, we can compute an interval (a,8) > e "
over which f is monotonic:
o writing f = P/Q, we have that f' = (P'Q — PQ’)/Q?
o by induction on the degree of R = P'Q — PQ’, we prove that the
sign of R is constant over (a, 3) (that we can compute)
If the sign of R’ is constant over (., B’) (containing e "), the sign of R will be constant over
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Approximating the probability

P(so =) =1 ()

o We can compute sequences (a;); and (b;); with
o limjaj=Ilimibj=e "

0 3 <ap1<e "<by<bh

o As e " is transcendental, we can compute an interval (a,8) > e "
over which f is monotonic:
o writing f = P/Q, we have that f' = (P'Q — PQ’)/Q?
o by induction on the degree of R = P'Q — PQ’, we prove that the
sign of R is constant over (a, 3) (that we can compute)
If the sign of R’ is constant over (., B’) (containing e "), the sign of R will be constant over

(e, B) = (aj, bj) C (a!, B')if R(aj) - R(bj) > 0.

o When (aw, bn) C (o, 8), the two sequences (f(a;))i>n and
(f(bi))i>n are monotonic and converge to f (e ")
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Deciding the threshold problem

Theorem [BBBMO08]
Under the previous hypotheses, the threshold problem is decidable. J

@ Check whether ¢ = f(e™ ")
o If not:

[BBBMO8] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST'08).
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Theorem [BBBMO08]
Under the previous hypotheses, the threshold problem is decidable. J

@ Check whether ¢ = f(e™ ")
o If not:

o use the approximation scheme for a sequence (e,), that converges
to 0

[BBBMO8] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST'08).
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A hint into stochastic timed games

Deciding the threshold problem

Theorem [BBBMOS|
Under the previous hypotheses, the threshold problem is decidable. J

o Check whether c = f(e™ ")

e If not:
o use the approximation scheme for a sequence (e,), that converges

to 0
o stop when the under- and the over-approximations are on the same

side of the threshold ¢

[BBBMO8] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST'08).
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Conclusion

@ We have presented a general model for stochastic timed games:

e timing constraints

Model

Qualitative

Quantitative

o probabilistic features

1
1-player game

1 clock

decidable
[BBB-+08]

decidable?
[BBBMog]

n clocks

idable??

?

e non-determinism and interaction

14-player game

1 clock

decidable3
[BFos]

?

n clocks|

7

7

@ Not much has been done so far!

23-player game

1 clock

7

7

n clocks

?

undecidable*
[BFo9]

o even for simple untimed objectives, few is known

e nothing about more involved quantitative objectives (e.g.

time, timed properties, ...)
o what about approximate probabilities?
e compositionality problems

expected

@ Probabilistic timed automata (PRISM and UPPAAL-PRO model)

o the questions considered in this presentation can be “trivially”
answered (because they reduce to similar questions on discrete-time

Markov decision processes)
e quantitative objectives should be investigated
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