From timed to complex systems — Stochastic timed games —

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

Based on joint works with Christel Baier, Nathalie Bertrand, Thomas Brihaye, Vojtěch Forejt, Marcus Größer and Nicolas Markey. I am grateful to Vojtěch Forejt for some of the slides in this presentation.

Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games

Some informal description A more formal view of the semantics Summary of the results Qualitative analysis of $\frac{1}{2}$ -player games Quantitative analysis of $2\frac{1}{2}$ -player games Quantitative analysis of $\frac{1}{2}$ -player games

4. Conclusion

An example of a timed automaton

	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	$\xrightarrow{15.6}$	alarm	$\xrightarrow{\text{delayed}}$	failsafe	
х	0		23		0		15.6		15.6	
у	0		23		23		38.6		0	

failsafe	$\xrightarrow{2.3}$	failsafe	$\xrightarrow{\text{repair}}$	repairing	$\xrightarrow{22.1}$	repairing	$\xrightarrow{\text{done}}$	safe
 15.6		17.9		17.9		40		40
0		2.3		0		22.1		22.1

Emptiness problem

Is the language accepted by a timed automaton empty?

- basic reachability/safety properties
- basic liveness properties

(final states)

(ω -regular conditions)

Emptiness problem

Is the language accepted by a timed automaton empty?

Problem: the set of configurations is infinite
 → classical methods for finite-state systems cannot be applied

Emptiness problem

Is the language accepted by a timed automaton empty?

- \bullet Problem: the set of configurations is infinite \sim classical methods for finite-state systems cannot be applied
- Positive key point: variables (clocks) increase at the same speed

Emptiness problem

Is the language accepted by a timed automaton empty?

- Problem: the set of configurations is infinite
 → classical methods for finite-state systems cannot be applied
- Positive key point: variables (clocks) increase at the same speed

Theorem [AD90, AD94]

The emptiness problem for timed automata is decidable and PSPACE-complete.

Emptiness problem

Is the language accepted by a timed automaton empty?

- Problem: the set of configurations is infinite
 → classical methods for finite-state systems cannot be applied
- Positive key point: variables (clocks) increase at the same speed

Theorem [AD90, AD94]

The emptiness problem for timed automata is decidable and PSPACE-complete.

Method: construct a finite abstraction

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90). [AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

• "compatibility" between regions and constraints

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

 \rightsquigarrow an equivalence of finite index

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

 \rightsquigarrow an equivalence of finite index a time-abstract bisimulation

This is a relation between • and • such that:

... and vice-versa (swap • and •).

The construction of the region graph

It "mimics" the behaviours of the clocks.

Region automaton \equiv finite bisimulation quotient

Region automaton \equiv finite bisimulation quotient

Region automaton \equiv finite bisimulation quotient

$$\prod_{x\in X} (2M_x+2)\cdot |X|!\cdot 2^{|X|}$$

$$\prod_{x\in X} (2M_x+2)\cdot |X|!\cdot 2^{|X|}$$

• It can be used to check for:

$$\prod_{x\in X} (2M_x+2)\cdot |X|!\cdot 2^{|X|}$$

- It can be used to check for:
 - reachability/safety properties

$$\prod_{x\in X} (2M_x+2)\cdot |X|!\cdot 2^{|X|}$$

- It can be used to check for:
 - reachability/safety properties
 - liveness properties (like Büchi properties)

Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games

Some informal description A more formal view of the semantics Summary of the results Qualitative analysis of $\frac{1}{2}$ -player games Quantitative analysis of $2\frac{1}{2}$ -player games Quantitative analysis of $\frac{1}{2}$ -player games

4. Conclusion
• to model uncertainty

Example of a processor in the taskgraph example

• to model uncertainty

Example of a processor in the taskgraph example

• to model uncertainty

Example of a processor in the taskgraph example

• to model an interaction with an environment

Example of the gate in the train/gate example

• to model uncertainty

Example of a processor in the taskgraph example

• to model an interaction with an environment

Example of the gate in the train/gate example

• to model uncertainty

Example of a processor in the taskgraph example

• to model an interaction with an environment

Example of the gate in the train/gate example

Rule of the game

- Aim: avoid 🙁 and reach 🙂
- How do we play? According to a strategy:

f: history \mapsto (delay, cont. transition)

How do we play? According to a strategy: f : history \mapsto (delay, cont. transition)

A (memoryless) winning strategy

• from $(\ell_0, 0)$, play $(0.5, c_1)$ \rightarrow can be preempted by u_2

• from
$$(\ell_2,\star)$$
, play $(1-\star,c_2)$

Rule of the game Aim: avoid (2) and reach (2) How do we play? According to a strategy: f : history \mapsto (delay, cont. transition) A (memoryless) winning strategy • from $(\ell_0, 0)$, play $(0.5, c_1)$ \rightarrow can be preempted by u_2 • from (ℓ_2, \star) , play $(1 - \star, c_2)$

- from $(\ell_3, 1)$, play $(0, c_3)$
- from $(\ell_1, 1)$, play $(1, c_4)$

Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and EXPTIME-complete. Furthermore memoryless and "region-based" strategies are sufficient.

Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and EXPTIME-complete. Furthermore memoryless and "region-based" strategies are sufficient.

 \rightsquigarrow classical regions are sufficient for solving such problems

(one only needs to compute the so-called attractor)

16/60

16/60

16/60

Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games

Some informal description A more formal view of the semantics Summary of the results Qualitative analysis of $\frac{1}{2}$ -player games Quantitative analysis of $2\frac{1}{2}$ -player games Quantitative analysis of $\frac{1}{2}$ -player games

4. Conclusion

• to model probabilistic behaviours

to model probabilistic behaviours

Example of losses when sending messages

to model probabilistic behaviours

Example of losses when sending messages

∼ the probabilistic timed automata model used e.g. in PRISM and UPPAAL-PRO [KNSS02]

[KNSS02] Automatic verification of real-time systems with discrete probability distributions (TCS).

to model probabilistic behaviours

Example of losses when sending messages

∼→ the probabilistic timed automata model used e.g. in PRISM and UPPAAL-PRO [KNSS02]

• to model uncertainty on delays

[KNSS02] Automatic verification of real-time systems with discrete probability distributions (TCS).

• to model probabilistic behaviours

Example of losses when sending messages

 \sim the probabilistic timed automata model used e.g. in PRISM and UPPAAL-PRO [KNSS02]

• to model uncertainty on delays

Example of a processor in the taskgraph example

[KNSS02] Automatic verification of real-time systems with discrete probability distributions (TCS).

• to model probabilistic behaviours

Example of losses when sending messages

- → the probabilistic timed automata model used e.g. in PRISM and UPPAAL-PRO [KNSS02]
- to model uncertainty on delays

Example of a processor in the taskgraph example

[KNSS02] Automatic verification of real-time systems with discrete probability distributions (*TCS*). [BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (*LICS'08*). [BF09] Bouyer, Forejt. Reachability in stochastic timed games (*ICALP'09*).

Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games Some informal description

A more formal view of the semantics Summary of the results Qualitative analysis of $\frac{1}{2}$ -player games Quantitative analysis of $2\frac{1}{2}$ -player games Quantitative analysis of $\frac{1}{2}$ -player games

4. Conclusion

Stochastic timed game: an example

• Timed graph with vertices partitioned among three players:

Stochastic timed game: an example

playing "turn-based"

stochastic player

• There are prescribed probability distributions from igodot vertices.
How is this game played?

- Players 🔷 and 🗖 play according to standard strategies
- Player 🔘 plays according to the prescribed probability distributions:
 - choose a delay according to some distribution
 - choose an action according to some discrete distribution

• From the game and the strategies we obtain a Markov chain:

(a,0)

• From the game and the strategies we obtain a Markov chain:

 $(a,0) \longrightarrow (c,1)$

Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games

Some informal description

A more formal view of the semantics

Summary of the results Qualitative analysis of $\frac{1}{2}$ -player games Quantitative analysis of $2\frac{1}{2}$ -player games Quantitative analysis of $\frac{1}{2}$ -player games

4. Conclusion

• The example of continuous-time Markov chains

• The example of continuous-time Markov chains

• The example of continuous-time Markov chains

• But what if bounded intervals?

• The example of continuous-time Markov chains

• But what if bounded intervals?

truncated normal distribution

• The example of continuous-time Markov chains

• But what if bounded intervals?

How does the semantics formalize?

 We will explain it more formally when all vertices belong to player O. Those are called ¹/₂-player games.

How does the semantics formalize?

- We will explain it more formally when all vertices belong to player O. Those are called ¹/₂-player games.
- We will then extend it using standard strategies for the two other players, which need however satisfy some measurability assumption

The $\frac{1}{2}$ -player game model • $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$: symbolic path from *s* firing edges e_1, \dots, e_n

- $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$: symbolic path from *s* firing edges e_1, \dots, e_n
- Example:

 $\pi(\mathbf{s}_0 \xrightarrow{\mathbf{e}_1} \xrightarrow{\mathbf{e}_2}) = \{\mathbf{s}_0 \xrightarrow{\tau_1, \mathbf{e}_1} \mathbf{s}_1 \xrightarrow{\tau_2, \mathbf{e}_2} \mathbf{s}_2 \mid \tau_1 \leq 2, \ \tau_1 + \tau_2 \leq 5, \ \tau_2 \geq 1\}$

• $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$: symbolic path from *s* firing edges e_1, \dots, e_n • Example:

 $\pi(\mathbf{s}_0 \xrightarrow{\mathbf{e}_1} \xrightarrow{\mathbf{e}_2}) = \{\mathbf{s}_0 \xrightarrow{\tau_1, \mathbf{e}_1} \mathbf{s}_1 \xrightarrow{\tau_2, \mathbf{e}_2} \mathbf{s}_2 \mid \tau_1 \leq 2, \ \tau_1 + \tau_2 \leq 5, \ \tau_2 \geq 1\}$

• Idea: compute the probability of a symbolic path

From state s:

S

• $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$: symbolic path from *s* firing edges e_1, \dots, e_n • Example:

$$\pi(\mathbf{s}_0 \xrightarrow{\mathbf{e}_1} \xrightarrow{\mathbf{e}_2}) = \{\mathbf{s}_0 \xrightarrow{\tau_1, \mathbf{e}_1} \mathbf{s}_1 \xrightarrow{\tau_2, \mathbf{e}_2} \mathbf{s}_2 \mid \tau_1 \leq 2, \ \tau_1 + \tau_2 \leq 5, \ \tau_2 \geq 1\}$$

• Idea: compute the probability of a symbolic path

From state s:

randomly choose a delay

• $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$: symbolic path from *s* firing edges e_1, \dots, e_n • Example:

$$\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2}) = \{ s_0 \xrightarrow{\tau_1, e_1} s_1 \xrightarrow{\tau_2, e_2} s_2 \mid \tau_1 \leq 2, \ \tau_1 + \tau_2 \leq 5, \ \tau_2 \geq 1 \}$$

• Idea: compute the probability of a symbolic path

From state s:

randomly choose a delay

• $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$: symbolic path from *s* firing edges e_1, \dots, e_n • Example:

$$\pi(\mathbf{s}_0 \xrightarrow{\mathbf{e}_1} \xrightarrow{\mathbf{e}_2}) = \{\mathbf{s}_0 \xrightarrow{\tau_1, \mathbf{e}_1} \mathbf{s}_1 \xrightarrow{\tau_2, \mathbf{e}_2} \mathbf{s}_2 \mid \tau_1 \leq 2, \ \tau_1 + \tau_2 \leq 5, \ \tau_2 \geq 1\}$$

• Idea: compute the probability of a symbolic path

From state s:

- randomly choose a delay
- then randomly select an edge

probability distribution _______ over delays

S

• $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$: symbolic path from *s* firing edges e_1, \dots, e_n • Example:

$$\pi(\mathbf{s}_0 \xrightarrow{\mathbf{e}_1} \xrightarrow{\mathbf{e}_2}) = \{\mathbf{s}_0 \xrightarrow{\tau_1, \mathbf{e}_1} \mathbf{s}_1 \xrightarrow{\tau_2, \mathbf{e}_2} \mathbf{s}_2 \mid \tau_1 \leq 2, \ \tau_1 + \tau_2 \leq 5, \ \tau_2 \geq 1\}$$

• Idea: compute the probability of a symbolic path

From state s:

- randomly choose a delay
- then randomly select an edge
- then continue

symbolic path:
$$\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n\}$$

$$\mathbb{P}\Big(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\Big) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\Big(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\Big) d\mu_s(t)$$

symbolic path:
$$\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n\}$$

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

•
$$I(s, e_1) = \{\tau \mid s \xrightarrow{\tau, e_1}\}$$
 and μ_s distribution over $I(s) = \bigcup_e I(s, e)$

symbolic path:
$$\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n\}$$

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

symbolic path:
$$\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n\}$$

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

•
$$I(s, e_1) = \{\tau \mid s \xrightarrow{\tau, e_1}\}$$
 and μ_s distribution over $I(s) = \bigcup_e I(s, e)$

• p_{s+t} distribution over transitions enabled in s + t (given by weights on transitions)

symbolic path:
$$\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n\}$$

$$\mathbb{P}\Big(\pi(s \xrightarrow{\mathbf{e}_1} \cdots \xrightarrow{\mathbf{e}_n})\Big) = \int_{t \in I(s, e_1)}^{t} p_{s+t}(e_1) \mathbb{P}\Big(\pi(s_t \xrightarrow{\mathbf{e}_2} \cdots \xrightarrow{\mathbf{e}_n})\Big) d\mu_s(t)$$

•
$$I(s, e_1) = \{\tau \mid s \xrightarrow{\tau, e_1}\}$$
 and μ_s distribution over $I(s) = \bigcup_e I(s, e)$

• p_{s+t} distribution over transitions enabled in s + t (given by weights on transitions)

•
$$s \xrightarrow{t} s + t \xrightarrow{e_1} s_t$$

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

• Can be viewed as an *n*-dimensional integral

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

• Can be viewed as an *n*-dimensional integral

• Easy extension to constrained symbolic paths

$$\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$$
$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

• Can be viewed as an *n*-dimensional integral

• Easy extension to constrained symbolic paths $\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$

• Definition over sets of infinite runs:

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

• Can be viewed as an *n*-dimensional integral

• Easy extension to constrained symbolic paths $\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$

• Definition over sets of infinite runs:

•
$$\operatorname{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{ \varrho \cdot \varrho' \mid \varrho \in \pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) \}$$

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

• Can be viewed as an *n*-dimensional integral

- Easy extension to constrained symbolic paths $\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$
- Definition over sets of infinite runs:

•
$$\operatorname{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{ \varrho \cdot \varrho' \mid \varrho \in \pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) \}$$

•
$$\mathbb{P}(\mathsf{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))) = \mathbb{P}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$$

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

• Can be viewed as an *n*-dimensional integral

• Easy extension to constrained symbolic paths $\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$

• Definition over sets of infinite runs:

•
$$\operatorname{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{ \varrho \cdot \varrho' \mid \varrho \in \pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) \}$$

•
$$\mathbb{P}(\mathsf{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))) = \mathbb{P}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$$

 ${\, \bullet \,}$ unique extension of $\mathbb P$ to the generated $\sigma\text{-algebra}$

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

• Can be viewed as an *n*-dimensional integral

• Easy extension to constrained symbolic paths $\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$

• Definition over sets of infinite runs:

•
$$\operatorname{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{ \varrho \cdot \varrho' \mid \varrho \in \pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) \}$$

•
$$\mathbb{P}(\mathsf{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))) = \mathbb{P}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$$

 ${\, \bullet \,}$ unique extension of $\mathbb P$ to the generated $\sigma\text{-algebra}$

• Property: P is a probability measure over sets of infinite runs

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

• Can be viewed as an *n*-dimensional integral

• Easy extension to constrained symbolic paths $\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$

• Definition over sets of infinite runs:

•
$$\operatorname{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{ \varrho \cdot \varrho' \mid \varrho \in \pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) \}$$

•
$$\mathbb{P}(\mathsf{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))) = \mathbb{P}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$$

- ${\, \bullet \,}$ unique extension of $\mathbb P$ to the generated $\sigma\text{-algebra}$
- Property: \mathbb{P} is a probability measure over sets of infinite runs
- Example:

• Zeno(s) =
$$\bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \dots, e_n) \in E^n} Cyl(\pi_{\Sigma_i \tau_i \leq M}(s \xrightarrow{e_1} \dots \xrightarrow{e_n}))$$

The probability of the symbolic path $\pi(s_0 \xrightarrow{e_1} e_2)$ is $\frac{1}{4}$.

The probability of the symbolic path $\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})$ is $\frac{1}{4}$.

$$\mathbb{P}\left(\pi(\mathbf{s}_{0} \xrightarrow{\mathbf{e}_{1}} \mathbf{e}_{2})\right) = \int_{0}^{1} \mathbb{P}\left(\pi(\mathbf{s}_{1} \xrightarrow{\mathbf{e}_{2}})\right) \mathrm{d}\mu_{\mathbf{s}_{0}}(t) + \int_{1}^{1} \frac{\mathbb{P}\left(\pi(\mathbf{s}_{1} \xrightarrow{\mathbf{e}_{2}})\right)}{2} \mathrm{d}\mu_{\mathbf{s}_{0}}(t)$$

The probability of the symbolic path $\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})$ is $\frac{1}{4}$.

$$\mathbb{P}\left(\pi(s_0 \xrightarrow{e_1})\right) = \int_0^1 \mathbb{P}\left(\pi(s_1 \xrightarrow{e_2})\right) d\mu_{s_0}(t) + \int_1^1 \frac{\mathbb{P}\left(\pi(s_1 \xrightarrow{e_2})\right)}{2} d\mu_{s_0}(t)$$
$$= \int_0^1 \int_0^1 \left(\frac{\mathbb{P}\left(\pi(s_2)\right)}{2} d\mu_{s_1}(u)\right) d\mu_{s_0}(t)$$

The probability of the symbolic path $\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})$ is $\frac{1}{4}$.

$$\begin{split} \mathbb{P}\Big(\pi(s_0 \xrightarrow{e_1} e_2)\Big) &= \int_0^1 \mathbb{P}\Big(\pi(s_1 \xrightarrow{e_2})\Big) \mathrm{d}\mu_{s_0}(t) + \int_1^1 \frac{\mathbb{P}\Big(\pi(s_1 \xrightarrow{e_2})\Big)}{2} \mathrm{d}\mu_{s_0}(t) \\ &= \int_0^1 \int_0^1 \left(\frac{\mathbb{P}\Big(\pi(s_2)\Big)}{2} \mathrm{d}\mu_{s_1}(u)\right) \mathrm{d}\mu_{s_0}(t) \\ &= \int_0^1 \int_0^1 \left(\frac{1}{2} \frac{\mathrm{d}u}{2}\right) \mathrm{d}t \quad = \frac{1}{4} \end{split}$$

An example of computation (with exponential distrib.)

The probability of the symbolic path $\pi(s_0 \xrightarrow{e_1} e_2)$ is $e^{-3} - e^{-5} \approx 0.043$

An example of computation (with exponential distrib.)

The probability of the symbolic path $\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})$ is $e^{-3} - e^{-5} \approx 0.043$

$$\mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} e_2)\right) = \int_0^1 \mathbb{P}\left(\pi(s_1 \xrightarrow{e_2})\right) d\mu_{s_0}(t) = \int_0^1 \mathbb{P}\left(\pi(s_1 \xrightarrow{e_2})\right) 2 \exp(-2t) dt$$
$$= \int_0^1 \left(\int_1^{+\infty} 3 \exp(-3u) du\right) 2 \exp(-2t) dt$$
$$= \left[-\exp(-2t)\right]_{t=0}^1 \cdot \left[-\exp(-3u)\right]_{u=1}^{+\infty}$$
$$= \left(1 - e^{-2}\right) \cdot e^{-3} = e^{-3} - e^{-5}$$

• This defines a purely stochastic process $(\frac{1}{2}$ -player game).

- This defines a purely stochastic process $(\frac{1}{2}$ -player game).
- Continuous-time Markov chains = timed automata with a single "useless" clock which is reset on all transitions. The distributions on delays are exponential distributions with a rate per location.

- This defines a purely stochastic process $(\frac{1}{2}$ -player game).
- Continuous-time Markov chains = timed automata with a single "useless" clock which is reset on all transitions. The distributions on delays are exponential distributions with a rate per location.
- The semantics can be extended in a natural way to several players:

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$
mass distribution given by the strategy
if s is a player vertex

- This defines a purely stochastic process $(\frac{1}{2}$ -player game).
- Continuous-time Markov chains = timed automata with a single "useless" clock which is reset on all transitions. The distributions on delays are exponential distributions with a rate per location.
- The semantics can be extended in a natural way to several players:

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$
mass distribution given by the strategy
if s is a player vertex

• Probabilistic timed automata = a subclass of the $1\frac{1}{2}$ -player games

The synthesis problem

Problem statement

Given a game *G*, a (linear-time) property φ , a rational threshold $\bowtie r$, is there a strategy f_{\diamond} for player \diamondsuit s.t. for all strategies f_{\Box} of player \Box , $\mathbb{P}(G_{f_{\diamond},f_{\Box}} \models \varphi) \bowtie r$?

• Are vertices $\{b, f\}$ reachable with probability 1 from (a, 0)?

• Are vertices $\{b, f\}$ reachable with probability 1 from (a, 0)?

• Yes: it is the case when \diamondsuit always chooses to move when x = 0.5.

• Are vertices {*b*, *f*} reachable with probability 1 from (*a*, 0)?

Yes: it is the case when
→ always chooses to move when x = 0.5.
Is the vertex b reachable with probability at least ²/₃?

• Are vertices {*b*, *f*} reachable with probability 1 from (*a*, 0)?

Yes: it is the case when

Always chooses to move when x = 0.5.

Is the vertex b reachable with probability at least ²/₃?

No.

What kind of games will we play?

Number of players

What kind of games will we play?

Number of players

Kind of questions

- qualitative questions (threshold is either 0 or 1)
- quantitative questions (threshold is a rational number in (0,1))

What kind of games will we play?

Number of players

Kind of questions

- qualitative questions (threshold is either 0 or 1)
- quantitative questions (threshold is a rational number in (0,1))

Winning objective

The winning objective will be an ω -regular condition, or some LTL property, or some more restrictive condition like a reachability condition.

Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games

Some informal description A more formal view of the semantic

Summary of the results

Qualitative analysis of $\frac{1}{2}$ -player games Quantitative analysis of $2\frac{1}{2}$ -player games Quantitative analysis of $\frac{1}{2}$ -player games

4. Conclusion

Rough summary of the results

Model		Qualitative	Quantitative
$\frac{1}{2}$ -player game	1 clock	decidable [BBB+08]	decidable ¹ [BBBM08]
	n clocks	decidable? ²	?
$1\frac{1}{2}$ -player game	1 clock	decidable ³ [BF09]	?
	n clocks	?	?
$2\frac{1}{2}$ -player game	1 clock	?	?
	n clocks	?	undecidable ⁴ [BF09]

under some assumptions...

- ¹ reactive automata $I(s) = \mathbb{R}_+$, exponential distributions and resets on every cycle
- ² reactive automata $I(s) = \mathbb{R}_+$ and exponential distributions
- ³ reachability properties
- ⁴ even for reachability properties, exponential (or uniform) distributions

[BBB-08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS'08). [BBBM08] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST'08). [BF09] Bouyer, Forejt. Reachability in stochastic timed games (ICALP'09).

Rough summary of the results

Model		Qualitative	Quantitative
$\frac{1}{2}$ -player game	1 clock	decidable [BBB+08]	decidable ¹ [BBBM08]
	n clocks	decidable? ²	?
$1\frac{1}{2}$ -player game	1 clock	decidable ³ [BF09]	?
	n clocks	?	?
$2\frac{1}{2}$ -player game	1 clock	?	?
	n clocks	?	undecidable ⁴ [BF09]

under some assumptions...

- ¹ reactive automata $I(s) = \mathbb{R}_+$, exponential distributions and resets on every cycle
- ² reactive automata $I(s) = \mathbb{R}_+$ and exponential distributions
- ³ reachability properties
- ⁴ even for reachability properties, exponential (or uniform) distributions

[BBB-08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS'08). [BBBM08] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST'08). [BF09] Bouyer, Forejt. Reachability in stochastic timed games (ICALP'09).

Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games

Some informal description A more formal view of the semantics Summary of the results

Qualitative analysis of $\frac{1}{2}$ -player games

Quantitative analysis of 2½-player games Quantitative analysis of ½-player games

4. Conclusion

Summary of the results

Model		Qualitative	Quantitative
$\frac{1}{2}$ -player game	1 clock	decidable [BBB+08]	decidable [BBBM08]
	n clocks	decidable?	?
$1\frac{1}{2}$ -player game	1 clock	decidable [BF09]	?
	n clocks	?	?
$2\frac{1}{2}$ -player game	1 clock	?	?
	n clocks	?	undecidable [BF09]

[BBB-08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (*LICS'08*). [BBBM08] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (*QEST'08*). [BF09] Bouyer, Forejt. Reachability in stochastic timed games (*ICALP'09*).

Almost-sure model-checking

The qualitative synthesis problem reduces to the so-called "almost-sure model-checking problem"

$$egin{array}{lll} egin{array}{ccc} egin{arra$$

Almost-sure model-checking

The qualitative synthesis problem reduces to the so-called "almost-sure model-checking problem"

$$s \models \varphi \quad \stackrel{\mathrm{def}}{\Leftrightarrow} \quad \mathbb{P} \Big(\{ \varrho \in \mathsf{Runs}(s) \mid \varrho \models \varphi \} \Big) = 1$$

There are only \bigcirc vertices, but we will use extra colors to represent atomic propositions.

 $\mathcal{A} \not\models \mathbf{G} (\mathsf{green} \Rightarrow \mathbf{Fred})$

 $\mathcal{A} \not\models \mathbf{G} (\text{green} \Rightarrow \mathbf{F} \operatorname{\mathsf{red}}) \quad \text{but} \quad \mathbb{P} \Big(\mathcal{A} \models \mathbf{G} (\text{green} \Rightarrow \mathbf{F} \operatorname{\mathsf{red}}) \Big) = 1$

 $\mathcal{A} \not\models \mathbf{G} (\text{green} \Rightarrow \mathbf{F} \operatorname{\mathsf{red}}) \quad \text{but} \quad \mathbb{P} \Big(\mathcal{A} \models \mathbf{G} (\text{green} \Rightarrow \mathbf{F} \operatorname{\mathsf{red}}) \Big) = 1$

Indeed, almost surely, paths are of the form $e_1^*e_2ig(e_4e_5ig)^\omega$
The classical region automaton

... viewed as a finite Markov chain $MC(\mathcal{A})$

... viewed as a finite Markov chain $MC(\mathcal{A})$

Proposition

For single-clock timed automata,

$$\mathbb{P}ig(\mathcal{A}\modelsarphiig)=1 \quad ext{iff} \quad \mathbb{P}ig(\mathit{MC}(\mathcal{A})\modelsarphiig)=1$$

(this is independent of the choice of the distributions...)

Theorem [BBB+08]

For single-clock timed automata, the almost-sure model-checking

- of LTL is PSPACE-Complete
- of ω -regular properties is NLOGSPACE-Complete

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS'08).

Theorem [BBB+08]

For single-clock timed automata, the almost-sure model-checking

- of LTL is PSPACE-Complete
- of ω -regular properties is NLOGSPACE-Complete
- Complexity:

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS'08).

Theorem [BBB+08]

For single-clock timed automata, the almost-sure model-checking

- of LTL is PSPACE-Complete
- of ω -regular properties is NLOGSPACE-Complete
- Complexity:
 - size of single-clock region automata = polynomial [LMS04]

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (*LICS'08*). [LMS04] Laroussinie, Markey, Schnoebelen. Model checking timed automata with one or two clocks (*CONCUR'04*).

Theorem [BBB+08]

For single-clock timed automata, the almost-sure model-checking

- of LTL is PSPACE-Complete
- of ω -regular properties is NLOGSPACE-Complete
- Complexity:
 - size of single-clock region automata = polynomial [LMS04]
 - apply result of [CSS03] to the finite Markov chain

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS'08). [LMS04] Laroussinie, Markey, Schnoebelen. Model checking timed automata with one or two clocks (CONCUR'04). [CSS03] Couvreur, Saheb, Sutre. An optimal automata approach to LTL model checking of probabilistic systems (LPAR'03).

Theorem [BBB+08]

For single-clock timed automata, the almost-sure model-checking

- of LTL is PSPACE-Complete
- of ω -regular properties is NLOGSPACE-Complete
- Complexity:
 - size of single-clock region automata = polynomial [LMS04]
 - apply result of [CSS03] to the finite Markov chain
- Correctness: the proof is rather involved

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-dock timed automata (LICS'08). [LMS04] Laroussinie, Markey, Schnoebelen. Model checking timed automata with one or two clocks (CONCUR'04). [CSS03] Couver, Saheb, Sutre. An optimal automata approach to LTL model checking of probabilistic systems (LPAR'03).

Theorem [BBB+08]

For single-clock timed automata, the almost-sure model-checking

- of LTL is PSPACE-Complete
- of ω -regular properties is NLOGSPACE-Complete
- Complexity:
 - size of single-clock region automata = polynomial [LMS04]
 - apply result of [CSS03] to the finite Markov chain
- Correctness: the proof is rather involved
 - requires the definition of a topology over the set of paths

Theorem [BBB+08]

For single-clock timed automata, the almost-sure model-checking

- of LTL is PSPACE-Complete
- of ω -regular properties is NLOGSPACE-Complete
- Complexity:
 - size of single-clock region automata = polynomial [LMS04]
 - apply result of [CSS03] to the finite Markov chain
- Correctness: the proof is rather involved
 - requires the definition of a topology over the set of paths
 - notions of largeness (for proba 1) and meagerness (for proba 0)

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS'08). [LMS04] Laroussinie, Markey, Schnoebelen. Model checking timed automata with one or two clocks (CONCUR'04). [CSS03] Couver, Saheb, Sutre. An optimal automata approach to LTL model checking of probabilistic systems (LPAR'03).

Theorem [BBB+08]

For single-clock timed automata, the almost-sure model-checking

- of LTL is PSPACE-Complete
- of ω -regular properties is NLOGSPACE-Complete
- Complexity:
 - size of single-clock region automata = polynomial [LMS04]
 - apply result of [CSS03] to the finite Markov chain
- Correctness: the proof is rather involved
 - requires the definition of a topology over the set of paths
 - notions of largeness (for proba 1) and meagerness (for proba 0)
 - link between probabilities and topology thanks to the topological games called Banach-Mazur games

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-dock timed automata (LICS'08). [LMS04] Laroussinie, Markey, Schnoebelen. Model checking timed automata with one or two clocks (CONCUR'04). [CSS03] Couver, Saheb, Sutre. An optimal automata approach to LTL model checking of probabilistic systems (LPAR'03).

• If the previous algorithm was correct, $\mathcal{A} \models \mathbf{G} \mathbf{F} \operatorname{\mathsf{red}} \land \mathbf{G} \mathbf{F}$ green

- If the previous algorithm was correct, $\mathcal{A} \models \mathbf{G} \mathbf{F} \mathsf{ red } \land \mathbf{G} \mathbf{F}$ green
- However, we can prove that $\mathbb{P}(\mathbf{G} \neg \mathsf{red}) > 0$

- If the previous algorithm was correct, $\mathcal{A} \models \mathbf{G} \, \mathbf{F} \, \, \mathsf{red} \, \wedge \, \mathbf{G} \, \mathbf{F}$ green
- However, we can prove that $\mathbb{P}(\mathbf{G} \neg \mathsf{red}) > 0$
- There is a *strange* convergence phenomenon: along an execution, if $\delta_i > 0$ is the delay in locations ℓ_2 or ℓ_4 , then we have that $\sum_i \delta_i \leq 1$

• The set of Zeno behaviours is measurable: $\operatorname{Zeno}(s) = \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \cdots, e_n) \in E^n} \operatorname{Cyl}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$

• The set of Zeno behaviours is measurable:

$$\operatorname{Zeno}(s) = \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \cdots, e_n) \in E^n} \operatorname{Cyl}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$$

 In single-clock timed automata, we can decide in NLOGSPACE whether ℙ(Zeno(s)) = 0:

• The set of Zeno behaviours is measurable:

$$Zeno(s) = \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \cdots, e_n) \in E^n} Cyl(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$$

- In single-clock timed automata, we can decide in NLOGSPACE whether ℙ(Zeno(s)) = 0:
 - check whether there is a purely Zeno BSCC in MC(A)

• The set of Zeno behaviours is measurable:

$$\operatorname{Zeno}(s) = \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \cdots, e_n) \in E^n} \operatorname{Cyl}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$$

- In single-clock timed automata, we can decide in NLOGSPACE whether ℙ(Zeno(s)) = 0:
 - check whether there is a purely Zeno BSCC in MC(A)

• an interesting notion of non-Zeno timed automata

Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games

Some informal description A more formal view of the semantics Summary of the results Qualitative analysis of $\frac{1}{2}$ -player games Quantitative analysis of $2\frac{1}{2}$ -player games Quantitative analysis of $\frac{1}{2}$ -player games

4. Conclusion

Summary of the results

Model		Qualitative	Quantitative
$\frac{1}{2}$ -player game	1 clock	decidable [BBB+08]	decidable [BBBM08]
	n clocks	decidable?	?
$1\frac{1}{2}$ -player game	1 clock	decidable [BF09]	?
	n clocks	?	?
$2\frac{1}{2}$ -player game	1 clock	?	?
	n clocks	?	undecidable [BF09]

[BBB-08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (*LICS'08*). [BBBM08] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (*QEST'08*). [BF09] Bouyer, Forejt. Reachability in stochastic timed games (*ICALP'09*).

Undecidability

Theorem [BF09]

The reachability problem for stochastic timed games ($2\frac{1}{2}$ players) is undecidable.

Undecidability

Theorem [BF09]

The reachability problem for stochastic timed games $(2\frac{1}{2} \text{ players})$ is undecidable.

- Holds for uniform and exponential distributions on delays.
- Holds for any quantitative question; we give hints for proba $=\frac{1}{2}$
- Proof by reduction from halting problem of two-counter machine to the reachability with probability precisely ¹/₂:

Undecidability

Theorem [BF09]

The reachability problem for stochastic timed games $(2\frac{1}{2} \text{ players})$ is undecidable.

- Holds for uniform and exponential distributions on delays.
- Holds for any quantitative question; we give hints for proba $=\frac{1}{2}$
- Proof by reduction from halting problem of two-counter machine to the reachability with probability precisely ¹/₂:
 - Simulates a computation of the two-counter machine and encodes counter values in clock values
 - \diamondsuit stores counter values c_1 and c_2 as $\frac{1}{2^{c_1}3^{c_2}}$
 - will check that \diamondsuit is not cheating using the power of the probabilities

• Check clock y stores $(c_1 + 1, c_2)$, assuming that x stores (c_1, c_2)

• Check clock y stores $(c_1 + 1, c_2)$, assuming that x stores (c_1, c_2)

• vertex *d* is reached with probability:

• Check clock y stores $(c_1 + 1, c_2)$, assuming that x stores (c_1, c_2)

• vertex *d* is reached with probability:

$$\frac{1}{2}\cdot\frac{1}{2}\cdot\int_{t=1-y_0}^1\mathrm{d}t$$

• Check clock y stores $(c_1 + 1, c_2)$, assuming that x stores (c_1, c_2)

• vertex *d* is reached with probability:

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \int_{t=1-y_0}^{1} \mathrm{d}t = \frac{1}{4} \cdot y_0$$

• Check clock y stores $(c_1 + 1, c_2)$, assuming that x stores (c_1, c_2)

• vertex d is reached with probability $\frac{1}{4} \cdot y_0$

• Check clock y stores $(c_1 + 1, c_2)$, assuming that x stores (c_1, c_2)

• vertex *d* is reached with probability $\frac{1}{4} \cdot y_0$ vertex *f* with prob. $\frac{1}{2} \cdot (1 - x_0)$

• Check clock y stores $(c_1 + 1, c_2)$, assuming that x stores (c_1, c_2)

- vertex *d* is reached with probability $\frac{1}{4} \cdot y_0$ vertex *f* with prob. $\frac{1}{2} \cdot (1 - x_0)$
- vertices d, f are reached with probability $\frac{1}{2}$ iff

$$\frac{1}{2} = \frac{1}{4} \cdot y_0 + \frac{1}{2} \cdot (1 - x_0)$$

• Check clock y stores $(c_1 + 1, c_2)$, assuming that x stores (c_1, c_2)

- vertex *d* is reached with probability $\frac{1}{4} \cdot y_0$ vertex *f* with prob. $\frac{1}{2} \cdot (1 - x_0)$
- vertices d, f are reached with probability $\frac{1}{2}$ iff

$$\frac{1}{2} = \frac{1}{4} \cdot y_0 + \frac{1}{2} \cdot (1 - x_0) \quad \text{iff} \quad x_0 = 2y_0$$

Undecidability – Incrementation

How do we properly increment the first counter?

Undecidability – Zero test

How do we check that c_1 is zero?

Player \diamondsuit has a strategy to reach \bigcirc with proba. $\frac{1}{2}$ iff c_1 is initially zero.
Undecidability - Zero test

How do we check that c_1 is zero?

Player \diamondsuit has a strategy to reach \bigcirc with proba. $\frac{1}{2}$ iff c_1 is initially zero.

Undecidability - Zero test

How do we check that c_1 is zero?

Player \diamondsuit has a strategy to reach \bigcirc with proba. $\frac{1}{2}$ iff c_1 is initially zero.

Undecidability - Zero test

How do we check that c_1 is zero?

Player \diamondsuit has a strategy to reach \bigcirc with proba. $\frac{1}{2}$ iff c_1 is initially zero.

Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games

Some informal description A more formal view of the semantics Summary of the results Qualitative analysis of $\frac{1}{2}$ -player games Quantitative analysis of $2\frac{1}{2}$ -player games Quantitative analysis of $\frac{1}{2}$ -player games

4. Conclusion

Summary of the results

Model		Qualitative	Quantitative
$\frac{1}{2}$ -player game	1 clock	decidable [BBB+08]	decidable [BBBM08]
	n clocks	decidable?	?
$1\frac{1}{2}$ -player game	1 clock	decidable [BF09]	?
	n clocks	?	?
$2\frac{1}{2}$ -player game	1 clock	?	?
	n clocks	?	undecidable [BF09]

[BBB-08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (*LICS'08*). [BBBM08] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (*QEST'08*). [BF09] Bouyer, Forejt. Reachability in stochastic timed games (*ICALP'09*).

• The abstraction $MC(\mathcal{A})$ is no more correct.

- The abstraction $MC(\mathcal{A})$ is no more correct.
- Can be reduced to solving a system of differential equations.

- The abstraction $MC(\mathcal{A})$ is no more correct.
- Can be reduced to solving a system of differential equations. \rightsquigarrow hard to solve in general, even for simple distributions

- The abstraction $MC(\mathcal{A})$ is no more correct.
- Can be reduced to solving a system of differential equations. \rightsquigarrow hard to solve in general, even for simple distributions
- We will describe a restricted framework in which:

- The abstraction $MC(\mathcal{A})$ is no more correct.
- Can be reduced to solving a system of differential equations. \rightsquigarrow hard to solve in general, even for simple distributions
- We will describe a restricted framework in which:
 - we will compute a closed-form expression for the probability

- The abstraction $MC(\mathcal{A})$ is no more correct.
- Can be reduced to solving a system of differential equations. \rightsquigarrow hard to solve in general, even for simple distributions
- We will describe a restricted framework in which:
 - we will compute a closed-form expression for the probability
 - we will be able to approximate the probability

- The abstraction $MC(\mathcal{A})$ is no more correct.
- Can be reduced to solving a system of differential equations. \rightsquigarrow hard to solve in general, even for simple distributions
- We will describe a restricted framework in which:
 - we will compute a closed-form expression for the probability
 - we will be able to approximate the probability, *i.e.*, for every ε > 0, we will compute two rationals p_ε⁻ and p_ε⁺ such that:

$$\begin{cases} p_{\varepsilon}^{-} \leq \mathbb{P}(\mathbf{s}_{0} \models \varphi) \leq p_{\varepsilon}^{-} + \varepsilon \\ p_{\varepsilon}^{+} - \varepsilon \leq \mathbb{P}(\mathbf{s}_{0} \models \varphi) \leq p_{\varepsilon}^{+} \end{cases}$$

- The abstraction $MC(\mathcal{A})$ is no more correct.
- Can be reduced to solving a system of differential equations. \rightsquigarrow hard to solve in general, even for simple distributions
- We will describe a restricted framework in which:
 - we will compute a closed-form expression for the probability
 - we will be able to approximate the probability, *i.e.*, for every ε > 0, we will compute two rationals p_ε⁻ and p_ε⁺ such that:

$$\begin{cases} p_{\varepsilon}^{-} \leq \mathbb{P}(\mathbf{s}_{0} \models \varphi) \leq p_{\varepsilon}^{-} + \varepsilon \\ p_{\varepsilon}^{+} - \varepsilon \leq \mathbb{P}(\mathbf{s}_{0} \models \varphi) \leq p_{\varepsilon}^{+} \end{cases}$$

• we will be able to decide the threshold problem

- The abstraction $MC(\mathcal{A})$ is no more correct.
- Can be reduced to solving a system of differential equations. \rightsquigarrow hard to solve in general, even for simple distributions
- We will describe a restricted framework in which:
 - we will compute a closed-form expression for the probability
 - we will be able to approximate the probability, *i.e.*, for every ε > 0, we will compute two rationals p_ε⁻ and p_ε⁺ such that:

$$\begin{cases} p_{\varepsilon}^{-} \leq \mathbb{P}(\mathbf{s}_{0} \models \varphi) \leq p_{\varepsilon}^{-} + \varepsilon \\ p_{\varepsilon}^{+} - \varepsilon \leq \mathbb{P}(\mathbf{s}_{0} \models \varphi) \leq p_{\varepsilon}^{+} \end{cases}$$

• we will be able to decide the threshold problem:

"Given
$$\mathcal{A}$$
, φ , $c \in \mathbb{Q}$, and $\sim \in \{<, \leq, =, \geq, >\}$,
does $\mathbb{P}(s_0 \models \varphi) \sim c$ in \mathcal{A} ?"

+ distributions $\mu_s : t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions

+ distributions $\mu_s : t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions

+ distributions $\mu_s : t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions

+ distributions $\mu_s : t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions

+ distributions $\mu_s : t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions

+ distributions $\mu_s: t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions

+ distributions $\mu_s: t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions

+ distributions $\mu_s: t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions

+ distributions $\mu_s: t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions

+ distributions $\mu_s : t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions

+ distributions $\mu_s : t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions

Correctness of the abstraction

Theorem

Under some hypotheses, for single-clock automaton ${\cal A}$ and property $\varphi,$

$$\mathbb{P}_{\mathcal{A}}(s_0 \models \varphi) = \mathbb{P}_{\mathcal{MC}'(\mathcal{A})}(s_0 \models \Diamond F_{\varphi})$$

for some well-chosen set F_{φ} .

Correctness of the abstraction

Theorem

Under some hypotheses, for single-clock automaton \mathcal{A} and property φ ,

$$\mathbb{P}_{\mathcal{A}}(s_0 \models \varphi) = \mathbb{P}_{\mathcal{MC}'(\mathcal{A})}(s_0 \models \Diamond F_{\varphi})$$

for some well-chosen set F_{φ} .

• Hypotheses:

• if
$$s=(\ell, lpha)$$
 and $s'=(\ell, lpha')$ with $lpha, lpha' > M$, $\mu_s=\mu_{s'}$

• every bounded cycle resets the clock

Correctness of the abstraction

Theorem

Under some hypotheses, for single-clock automaton \mathcal{A} and property φ ,

$$\mathbb{P}_{\mathcal{A}}(s_0 \models \varphi) = \mathbb{P}_{\mathcal{MC}'(\mathcal{A})}(s_0 \models \Diamond F_{\varphi})$$

for some well-chosen set F_{φ} .

- Hypotheses:
 - if $s = (\ell, \alpha)$ and $s' = (\ell, \alpha')$ with $\alpha, \alpha' > M$, $\mu_s = \mu_{s'}$
 - every bounded cycle resets the clock
- Limits of the abstraction: there may be no closed form for the values labelling the edges of MC'(A).

- We assume furthermore that:
 - for every state s, I(s) = ℝ₊ (the timed automaton is 'reactive')

- We assume furthermore that:
 - for every state s, I(s) = ℝ₊ (the timed automaton is 'reactive')
 - in every location ℓ , the distribution over delays has density $t\mapsto \lambda_\ell\cdot e^{-\lambda_\ell\cdot t}$ for some $\lambda_\ell\in\mathbb{Q}_+$

- We assume furthermore that:
 - for every state s, I(s) = ℝ₊ (the timed automaton is 'reactive')
 - in every location ℓ , the distribution over delays has density $t\mapsto \lambda_\ell\cdot e^{-\lambda_\ell\cdot t}$ for some $\lambda_\ell\in\mathbb{Q}_+$

 \rightsquigarrow more general than continuous-time Markov chains

- We assume furthermore that:
 - for every state s, I(s) = ℝ₊ (the timed automaton is 'reactive')
 - in every location ℓ , the distribution over delays has density $t\mapsto \lambda_\ell\cdot e^{-\lambda_\ell\cdot t}$ for some $\lambda_\ell\in\mathbb{Q}_+$

 \rightsquigarrow more general than continuous-time Markov chains

Proposition

Under those hypotheses, $\mathbb{P}(s_0 \models \varphi)$ can be expressed as $f(e^{-r})$ where r is a rational number, and $f \in \mathbb{Q}(X)$ is a rational function.

- We assume furthermore that:
 - for every state s, I(s) = ℝ₊ (the timed automaton is 'reactive')
 - in every location ℓ , the distribution over delays has density $t \mapsto \lambda_{\ell} \cdot e^{-\lambda_{\ell} \cdot t}$ for some $\lambda_{\ell} \in \mathbb{Q}_+$

 \rightsquigarrow more general than continuous-time Markov chains

Proposition

Under those hypotheses, $\mathbb{P}(s_0 \models \varphi)$ can be expressed as $f(e^{-r})$ where r is a rational number, and $f \in \mathbb{Q}(X)$ is a rational function.

 \rightsquigarrow Note: the hypothesis "reset all bounded cycles" is necessary to get this form.

Approximating the probability

$$\mathbb{P}(s_0 \models \varphi) = f(e^{-r})$$

Approximating the probability

$$\mathbb{P}(s_0 \models \varphi) = f(e^{-r})$$

• We can compute sequences $(a_i)_i$ and $(b_i)_i$ with

•
$$\lim_{i} a_i = \lim_{i} b_i = e^-$$

• $a_i \le a_{i+1} \le e^{-r} \le b_{i+1} \le b_i$

Approximating the probability

$$\mathbb{P}\big(s_0\models\varphi\big)=f\left(e^{-r}\right)$$

- We can compute sequences $(a_i)_i$ and $(b_i)_i$ with
 - $\lim_i a_i = \lim_i b_i = e^{-r}$
 - $a_i \le a_{i+1} \le e^{-r} \le b_{i+1} \le b_i$
- As e^{-r} is transcendental, we can compute an interval (α, β) ∋ e^{-r} over which f is monotonic:
$$\mathbb{P}\big(\mathbf{s}_0\models\varphi\big)=f\left(e^{-r}\right)$$

• We can compute sequences $(a_i)_i$ and $(b_i)_i$ with

•
$$\lim_i a_i = \lim_i b_i = e^-$$

- $a_i \le a_{i+1} \le e^{-r} \le b_{i+1} \le b_i$
- As e^{-r} is transcendental, we can compute an interval (α, β) ∋ e^{-r} over which f is monotonic:
 - writing f = P/Q, we have that $f' = (P'Q PQ')/Q^2$

$$\mathbb{P}\big(\mathbf{s}_0\models\varphi\big)=f\left(e^{-r}\right)$$

- We can compute sequences $(a_i)_i$ and $(b_i)_i$ with
 - $\lim_i a_i = \lim_i b_i = e^{-r}$
 - $a_i \le a_{i+1} \le e^{-r} \le b_{i+1} \le b_i$
- As e^{-r} is transcendental, we can compute an interval (α, β) ∋ e^{-r} over which f is monotonic:
 - writing f = P/Q, we have that $f' = (P'Q PQ')/Q^2$
 - by induction on the degree of R = P'Q PQ', we prove that the sign of R is constant over (α, β) (that we can compute)

$$\mathbb{P}\big(s_0\models\varphi\big)=f\left(e^{-r}\right)$$

- We can compute sequences $(a_i)_i$ and $(b_i)_i$ with
 - $\lim_i a_i = \lim_i b_i = e^{-r}$
 - $a_i \le a_{i+1} \le e^{-r} \le b_{i+1} \le b_i$
- As e^{-r} is transcendental, we can compute an interval (α, β) ∋ e^{-r} over which f is monotonic:
 - writing f = P/Q, we have that $f' = (P'Q PQ')/Q^2$
 - by induction on the degree of R = P'Q PQ', we prove that the sign of R is constant over (α, β) (that we can compute) If the sign of R' is constant over (α', β') (containing e^{-r}), the sign of R will be constant over $(\alpha, \beta) = (a_j, b_j) \subseteq (\alpha', \beta')$ if $R(a_j) \cdot R(b_j) > 0$.

$$\mathbb{P}(\mathbf{s}_0 \models \varphi) = f(e^{-r})$$

• We can compute sequences $(a_i)_i$ and $(b_i)_i$ with

•
$$\lim_{i} a_i = \lim_{i} b_i = e^-$$

- $a_i \le a_{i+1} \le e^{-r} \le b_{i+1} \le b_i$
- As e^{-r} is transcendental, we can compute an interval (α, β) ∋ e^{-r} over which f is monotonic:
 - writing f = P/Q, we have that $f' = (P'Q PQ')/Q^2$
 - by induction on the degree of R = P'Q PQ', we prove that the sign of R is constant over (α, β) (that we can compute) If the sign of R' is constant over (α', β') (containing e^{-r}), the sign of R will be constant over $(\alpha, \beta) = (a_j, b_j) \subseteq (\alpha', \beta')$ if $R(a_j) \cdot R(b_j) > 0$.
- When $(a_N, b_N) \subseteq (\alpha, \beta)$, the two sequences $(f(a_i))_{i \ge N}$ and $(f(b_i))_{i \ge N}$ are monotonic and converge to $f(e^{-r})$

Theorem [BBBM08]

Under the previous hypotheses, the threshold problem is decidable.

[BBBM08] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST'08).

Theorem [BBBM08]

Under the previous hypotheses, the threshold problem is decidable.

• Check whether $c = f(e^{-r})$

[BBBM08] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST'08).

Theorem [BBBM08]

Under the previous hypotheses, the threshold problem is decidable.

- Check whether $c = f(e^{-r})$
- If not:

Theorem [BBBM08]

Under the previous hypotheses, the threshold problem is decidable.

- Check whether $c = f(e^{-r})$
- If not:
 - use the approximation scheme for a sequence (\varepsilon_n)_n that converges to 0

Theorem [BBBM08]

Under the previous hypotheses, the threshold problem is decidable.

- Check whether $c = f(e^{-r})$
- If not:
 - use the approximation scheme for a sequence (\varepsilon_n)_n that converges to 0
 - $\bullet\,$ stop when the under- and the over-approximations are on the same side of the threshold $c\,$

Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games

Some informal description A more formal view of the semantics Summary of the results Qualitative analysis of $\frac{1}{2}$ -player games Quantitative analysis of $2\frac{1}{2}$ -player games Quantitative analysis of $\frac{1}{2}$ -player games

4. Conclusion

- We have presented a general model for stochastic timed games:
 - timing constraints
 - probabilistic features
 - non-determinism and interaction

- We have presented a general model for stochastic timed games:
 - timing constraints
 - probabilistic features
 - non-determinism and interaction
- Not much has been done so far!

- We have presented a general model for stochastic timed games:
 - timing constraints
 - probabilistic features
 - non-determinism and interaction
- Not much has been done so far!
 - even for simple untimed objectives, few is known

Model		Qualitative	Quantitative
$\frac{1}{2}$ -player game	1 clock	decidable [BBB+08]	decidable ¹ [BBBM08]
	n clocks	decidable? ²	?
1 ¹ / ₂ -player game	1 clock	decidable ³ [BF09]	?
	n clocks	?	?
2 ¹ / ₂ -player game	1 clock	?	?
-	n clocks	?	undecidable ⁴ [BF09]

- We have presented a general model for stochastic timed games:
 - timing constraints
 - probabilistic features
 - non-determinism and interaction
- Not much has been done so far!
 - even for simple untimed objectives, few is known
 - nothing about more involved quantitative objectives (e.g. expected time, timed properties, ...)

Model		Qualitative	Quantitative
$\frac{1}{2}$ -player game	1 clock	decidable [BBB+08]	decidable ¹ [BBBM08]
	n clocks	decidable? ²	?
$1\frac{1}{2}$ -player game	1 clock	decidable ³ [BF09]	?
	n clocks	?	?
2 ¹ / ₂ -player game	1 clock	?	?
	n clocks	?	undecidable ⁴ [BF09]

- We have presented a general model for stochastic timed games:
 - timing constraints
 - probabilistic features
 - non-determinism and interaction
- Not much has been done so far!
 - even for simple untimed objectives, few is known
 - nothing about more involved quantitative objectives (e.g. expected time, timed properties, ...)
 - what about approximate probabilities?

Model		Qualitative	Quantitative
$\frac{1}{2}$ -player game	1 clock	decidable [BBB+08]	decidable ¹ [BBBM08]
	n clocks	decidable? ²	?
$1\frac{1}{2}$ -player game	1 clock	decidable ³ [BF09]	?
	n clocks	?	?
2 ¹ / ₂ -player game	1 clock	?	?
	n clocks	?	undecidable ⁴ [BF09]

- We have presented a general model for stochastic timed games:
 - timing constraints
 - probabilistic features
 - non-determinism and interaction
- Not much has been done so far!
 - even for simple untimed objectives, few is known
 - nothing about more involved quantitative objectives (e.g. expected time, timed properties, ...)
 - what about approximate probabilities?
 - compositionality problems

Model		Qualitative	Quantitative
$\frac{1}{2}$ -player game	1 clock	decidable [BBB+08]	decidable ¹ [BBBM08]
	n clocks	decidable? ²	?
$1\frac{1}{2}$ -player game	1 clock	decidable ³ [BF09]	?
	n clocks	?	?
2 ¹ / ₂ -player game	1 clock	?	?
	n clocks	?	undecidable ⁴ [BF09]

- We have presented a general model for stochastic timed games:
 - timing constraints
 - probabilistic features
 - non-determinism and interaction
- Not much has been done so far!
 - even for simple untimed objectives, few is known
 - nothing about more involved quantitative objectives (e.g. expected time, timed properties, ...)
 - what about approximate probabilities?
 - compositionality problems
- Probabilistic timed automata (PRISM and UPPAAL-PRO model)
 - the questions considered in this presentation can be "trivially" answered (because they reduce to similar questions on discrete-time Markov decision processes)
 - quantitative objectives should be investigated

Model		Qualitative	Quantitative
$\frac{1}{2}$ -player game	1 clock	decidable [BBB+08]	decidable ¹ [BBBM08]
	n clocks	decidable? ²	?
$1\frac{1}{2}$ -player game	1 clock	decidable ³ [BF09]	?
	n clocks	?	?
2 ¹ / ₂ -player game	1 clock	?	?
	n clocks	?	undecidable ⁴ [BF09]