From timed to complex systems
— Stochastic timed games —

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

Based on joint works with Christel Baier, Nathalie Bertrand, Thomas Brihaye, Vojtěch Forejt, Marcus Größer and Nicolas Markey.

I am grateful to Vojtěch Forejt for some of the slides in this presentation.
Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games
 Some informal description
 A more formal view of the semantics
 Summary of the results
 Qualitative analysis of $\frac{1}{2}$-player games
 Quantitative analysis of $2\frac{1}{2}$-player games
 Quantitative analysis of $\frac{1}{2}$-player games

4. Conclusion
An example of a timed automaton

<table>
<thead>
<tr>
<th>State</th>
<th>Transition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>safe</td>
<td>23</td>
<td>safe</td>
</tr>
<tr>
<td></td>
<td>problem</td>
<td>alarm</td>
</tr>
<tr>
<td></td>
<td>15.6</td>
<td>alarm</td>
</tr>
<tr>
<td></td>
<td>delayed</td>
<td>failsafe</td>
</tr>
<tr>
<td></td>
<td>done</td>
<td>safe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>Transition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>problem</td>
<td></td>
<td>safe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>alarm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>repair</td>
</tr>
<tr>
<td></td>
<td></td>
<td>repairing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>done</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>done</td>
</tr>
<tr>
<td>15.6</td>
<td>25</td>
<td>safe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>failsafe</td>
</tr>
<tr>
<td>15.6</td>
<td>0</td>
<td>safe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>23</td>
<td>problem</td>
</tr>
<tr>
<td>0</td>
<td>15.6</td>
<td>repair</td>
</tr>
<tr>
<td>17.9</td>
<td>40</td>
<td>done</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23</td>
<td>problem</td>
</tr>
<tr>
<td>3</td>
<td>17.9</td>
<td>repair</td>
</tr>
<tr>
<td>0</td>
<td>40</td>
<td>done</td>
</tr>
</tbody>
</table>
Verification

Emptiness problem

Is the language accepted by a timed automaton empty?

- basic reachability/safety properties (final states)
- basic liveness properties (ω-regular conditions)

Theorem [AD90, AD94]
The emptiness problem for timed automata is decidable and PSPACE-complete.

Method: construct a finite abstraction
Verification

Emptiness problem
Is the language accepted by a timed automaton empty?

- **Problem:** the set of configurations is infinite
 ~ classical methods for finite-state systems cannot be applied
Verification

Emptiness problem

Is the language accepted by a timed automaton empty?

- **Problem:** the set of configurations is infinite
 ~ classical methods for finite-state systems cannot be applied

- **Positive key point:** variables (clocks) increase at the same speed
Verification

Emptiness problem

Is the language accepted by a timed automaton empty?

- Problem: the set of configurations is infinite
 - classical methods for finite-state systems cannot be applied

- Positive key point: variables (clocks) increase at the same speed

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and PSPACE-complete.

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
Verification

Emptiness problem
Is the language accepted by a timed automaton empty?

- **Problem:** the set of configurations is infinite
 \(\Rightarrow\) classical methods for finite-state systems cannot be applied

- **Positive key point:** variables (clocks) increase at the same speed

Theorem [AD90,AD94]
The emptiness problem for timed automata is decidable and PSPACE-complete.

Method: construct a finite abstraction

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
The region abstraction

\[x \sim c \quad \text{with} \quad c \in \{0, 1, 2\} \]
\[y \sim c \quad \text{with} \quad c \in \{0, 1, 2\} \]

The path \(x = 1 \quad y = 1 \) cannot be fired from.

"compatibility" between regions and constraints
"compatibility" between regions and time elapsing

\[\ldots \]

\[\ldots \]

\[\ldots \]

\[\ldots \]

\[\ldots \]
The region abstraction

clock y

only constraints: $x \sim c$ with $c \in \{0, 1, 2\}$

$y \sim c$ with $c \in \{0, 1, 2\}$

“compatibility” between regions and constraints
The region abstraction

The path $x=1$ can be fired from $y=1$ cannot be fired from

“compatibility” between regions and constraints
“compatibility” between regions and time elapsing
The region abstraction

The path $x=1$ $y=1$
- can be fired from
- cannot be fired from

“compatibility” between regions and constraints
“compatibility” between regions and time elapsing
The region abstraction

- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

\[\sim \text{ an equivalence of finite index} \]
The region abstraction

- “compatibility” between regions and constraints
- “compatibility” between regions and time elapsing

\[\sim \text{ an equivalence of finite index} \]
\[\text{a time-abstract bisimulation} \]
Time-abstract bisimulation

This is a relation between \bullet and \bullet such that:
Time-abstract bisimulation

This is a relation between \(\bullet \) and \(\bullet \) such that:

\[
\forall d > 0 \exists d' > 0 \prec u (d') \quad \forall d' > 0 \exists d > 0 \prec u (d)
\]

... and vice-versa (swap \(\bullet \) and \(\bullet \)).
This is a relation between \(\bullet \) and \(\bullet \) such that:

\[
\forall \exists a \quad (d) \quad \forall d > 0 \exists d' > 0 \quad \leftrightarrow (d') \quad \text{and vice-versa (swap \(\bullet \) and \(\bullet \)).}
\]
Time-abstract bisimulation

This is a relation between \(\bullet \) and \(\bullet \) such that:

\[
\forall d > 0 \quad \exists d' > 0 \quad \delta(d) \]

\[
\forall \quad \exists a
\]
This is a relation between \bullet and \bullet such that:

$$\forall \exists \forall \exists \delta(d) \delta(d')$$

$$\forall \exists \forall \exists a$$

$$\forall d > 0 \exists d' > 0$$
Time-abstract bisimulation

This is a relation between \(\circ \) and \(\cdot \) such that:

\[
\forall a \exists u \left(d > 0 \right) \exists d' > 0 \quad \text{and vice-versa (swap } \circ \text{ and } \cdot \text{).}
\]
The region abstraction (2)

- region R defined by:
 \[
 \begin{cases}
 0 < x < 1 \\
 0 < y < 1 \\
 y < x
 \end{cases}
 \]
The region abstraction (2)

- region R defined by:
 \[\begin{cases}
 0 < x < 1 \\
 0 < y < 1 \\
 y < x
 \end{cases} \]

- time successors of R
The region abstraction (2)

- region R defined by:
 \[
 \begin{align*}
 0 < x < 1 \\
 0 < y < 1 \\
 y < x
 \end{align*}
 \]

- time successors of R

image of R when resetting clock x
The construction of the region graph

It “mimics” the behaviours of the clocks.
Region automaton \equiv finite bisimulation quotient
Region automaton \equiv finite bisimulation quotient

Timed automaton

Region graph

Region automaton
Region automaton \equiv \text{finite bisimulation quotient}

\[\mathcal{L} (\text{reg. aut.}) = \text{UNTIME} (\mathcal{L} (\text{timed aut.})) \]
An example [AD94]

Timed automata

- s_0: $x > 0, a$
 - $y := 0$

- s_1: $x < 1, c$
 - $y := 0$

- s_2: $y = 1, b$

- s_3: $x > 1, d$
 - $x < 1, d$

- s_0 to s_1: $y := 0$
- s_1 to s_2: $x < 1, c$
- s_2 to s_3: $x < 1, c$
- s_3 to s_0: $x > 1, d$
An example [AD94]
An example [AD94]
Timed automata

Finite bisimulation quotient

Large (but finite) automaton
(region automaton)

Timed automaton

It can be used to check for:
reachability/safety properties
liveness properties (like Büchi properties)
Timed automata

- **Large**: exponential in the number of clocks and in the constants (if encoded in binary). The number of regions is:

 \[
 \prod_{x \in X} (2M_x + 2) \cdot |X|! \cdot 2^{|X|}
 \]
Timed automata

- **large**: exponential in the number of clocks and in the constants (if encoded in binary). The number of regions is:

\[
\prod_{x \in X} (2M_x + 2) \cdot |X|! \cdot 2^{|X|}
\]

- It can be used to check for:

 - reachability/safety properties
 - liveness properties (like Büchi properties)
Timed automata

finite bisimulation quotient

large (but finite) automaton (region automaton)

- **large**: exponential in the number of clocks and in the constants (if encoded in binary). The number of regions is:

 \[
 \prod_{x \in X} (2M_x + 2) \cdot |X|! \cdot 2^{|X|}
 \]

- It can be used to check for:
 - reachability/safety properties
Timed automata

large: exponential in the number of clocks and in the constants (if encoded in binary). The number of regions is:

$$\prod_{x \in X} (2M_x + 2) \cdot |X|! \cdot 2^{|X|}$$

It can be used to check for:
- reachability/safety properties
- liveness properties (like Büchi properties)
Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games
 Some informal description
 A more formal view of the semantics
 Summary of the results
 Qualitative analysis of $\frac{1}{2}$-player games
 Quantitative analysis of $2\frac{1}{2}$-player games
 Quantitative analysis of $\frac{1}{2}$-player games

4. Conclusion
Why (timed) games?

- to model uncertainty

Example of a processor in the taskgraph example

- Timed games
Why (timed) games?

- to model uncertainty

Example of a processor in the taskgraph example
Why (timed) games?

- to model uncertainty

Example of a processor in the taskgraph example

- to model an interaction with an environment

Example of the gate in the train/gate example
Why (timed) games?

- to model uncertainty

Example of a processor in the taskgraph example

- to model an interaction with an environment

Example of the gate in the train/gate example
Why (timed) games?

- to model uncertainty

Example of a processor in the taskgraph example

\[
\begin{align*}
\text{add} & : x \leq 2 \\
\text{idle} & : x \geq 1 \\
\text{mult} & : x \geq 1
\end{align*}
\]

\[x := 0\]

(x ≤ 2)

(x ≥ 3)

+ done

idle

- to model an interaction with an environment

Example of the gate in the train/gate example
An example of a timed game

Rule of the game

- **Aim:** avoid 😞 and reach 😊
An example of a timed game

Rule of the game

- **Aim:** avoid 😞 and reach 😊
- **How do we play?** According to a strategy:

```
x ≤ 1, c_1
```

```
x ≥ 1, u_3
```

```
x ≥ 2, c_4
```

```
x < 1, u_2, x := 0
```

```
x < 1, u_1
```

```
x ≤ 1, c_3
```

```
x ≤ 2
```

```
(x ≤ 2)
```

An example of a timed game

Rule of the game

- **Aim:** avoid 😞 and reach 😊
- **How do we play?** According to a strategy:

$$f : \text{history} \mapsto (\text{delay, cont. transition})$$
An example of a timed game

Rule of the game
- **Aim:** avoid 😞 and reach 😊
- **How do we play?** According to a strategy:

 \[f : \text{history} \mapsto (\text{delay, cont. transition}) \]

A (memoryless) winning strategy
- from \((\ell_0, 0)\), play \((0.5, c_1)\)
An example of a timed game

Rule of the game

- **Aim:** avoid 😞 and reach 😊
- **How do we play?** According to a strategy:

 $f : \text{history} \mapsto (\text{delay, cont. transition})$

A (memoryless) winning strategy

- from $(\ell_0, 0)$, play $(0.5, c_1)$

 \sim can be preempted by u_2
An example of a timed game

Rule of the game

- **Aim:** avoid 😞 and reach 😊
- **How do we play?** According to a strategy:

\[f : \text{history} \mapsto (\text{delay}, \text{cont. transition}) \]

A (memoryless) winning strategy

- from \((\ell_0, 0)\), play \((0.5, c_1)\)
 \(\leadsto\) can be preempted by \(u_2\)
- from \((\ell_2, \ast)\), play \((1 - \ast, c_2)\)
An example of a timed game

Rule of the game

- **Aim:** avoid 😞 and reach 😊
- **How do we play?** According to a strategy:

 \[f : \text{history} \mapsto (\text{delay}, \text{cont. transition}) \]

A (memoryless) winning strategy

- from \((\ell_0, 0)\), play \((0.5, c_1)\)
 \(\leadsto\) can be preempted by \(u_2\)
- from \((\ell_2, *)\), play \((1 - *, c_2)\)
- from \((\ell_3, 1)\), play \((0, c_3)\)
An example of a timed game

Rule of the game

- **Aim:** avoid 😞 and reach 😊
- **How do we play?** According to a strategy:

\[f : \text{history} \mapsto (\text{delay, cont. transition}) \]

A (memoryless) winning strategy

- from \((\ell_0, 0)\), play \((0.5, c_1)\)
 - can be preempted by \(u_2\)
- from \((\ell_2, \star)\), play \((1 - \star, c_2)\)
- from \((\ell_3, 1)\), play \((0, c_3)\)
- from \((\ell_1, 1)\), play \((1, c_4)\)
An example of a timed game

Rule of the game

- **Aim:** avoid 😞 and reach 😊
- **How do we play?** According to a strategy:

\[f : \text{history} \mapsto (\text{delay, cont. transition}) \]

Problems to be considered
An example of a timed game

Rule of the game

- **Aim:** avoid 😞 and reach 😊
- **How do we play?** According to a strategy:

\[f : \text{history} \mapsto (\text{delay, cont. transition}) \]

Problems to be considered

- Does there exist a winning strategy?
An example of a timed game

Rule of the game

- **Aim:** avoid 😞 and reach 😊
- **How do we play?** According to a strategy:

 \[f : \text{history} \mapsto (\text{delay, cont. transition}) \]

Problems to be considered

- Does there exist a winning strategy?
- If yes, compute one (as simple as possible).
Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and EXPTIME-complete. Furthermore memoryless and “region-based” strategies are sufficient.

[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (*Theoretical Computer Science*).
Decidability of timed games

Theorem [AMPS98, HK99]

Reachability and safety timed games are decidable and \(\text{EXPTIME}\)-complete. Furthermore memoryless and “region-based” strategies are sufficient.

\[\leadsto \text{classical regions are sufficient for solving such problems} \\
\text{(one only needs to compute the so-called attractor)} \]

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (*HSSC'98*).

[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (*Theoretical Computer Science*).
Back to the example: computing winning states

\[x \leq 2 \]

\[x \leq 1, c_1 \]

\[x < 1, u_2, x := 0 \]

\[x < 1, u_1 \]

\[x \geq 2, c_4 \]

\[x \geq 1, u_3 \]

\[x \leq 1, c_3 \]

\[c_2 \]

\[x \leq 1, c_1 \]
Back to the example: computing winning states

Timed games

\[
\ell_0 : x \leq 2 \\
\ell_1 : x \leq 1, c_1 \\
\ell_2 : x < 1, u_1 \\
\ell_3 : c_2
\]

\[
\ell_0 : x \geq 1, u_3 \\
\ell_1 : x \geq 2, c_4 \\
\ell_2 : x \leq 1, c_3 \\
\ell_3 : x < 1, u_2, x := 0
\]
Back to the example: computing winning states

Timed games
Back to the example: computing winning states

Back to the example: computing winning states

Timed games

Back to the example: computing winning states

Back to the example: computing winning states

Back to the example: computing winning states

Timed games
Back to the example: computing winning states

\[\ell_0 \]

\[(x \leq 2) \]

\[x \geq 1, u_3 \]

\[x \leq 1, c_1 \]

\[x \leq 1, c_3 \]

\[x \leq 1, c_1 \]

\[x \leq 1, c_3 \]

\[x < 1, u_2, x := 0 \]

\[x < 1, u_1 \]

\[x \geq 1, c_4 \]

\[x \geq 2, c_4 \]

\[c_2 \]

\[\ell_1 \]

\[\ell_2 \]

\[\ell_3 \]

\[\ell_0 \]

\[0 \quad 1 \quad 2 \quad 3 \]

\[\ell_1 \]

\[0 \quad 1 \quad 2 \quad 3 \]

\[\ell_2 \]

\[0 \quad 1 \quad 2 \quad 3 \]

\[\ell_3 \]

\[0 \quad 1 \quad 2 \quad 3 \]
Back to the example: computing winning states

Timed games

\(x \leq 2\)

\(x \geq 1, u_3\)

\(x \leq 1, c_1\)

\(x < 1, u_1\)

\(x < 1, u_2, x := 0\)

\(x \geq 1, c_1\)

\(x \geq 2, c_4\)

\(x \leq 1, c_3\)

\(c_2\)

\(0, 1, 2, 3\)

\(\ell_0\)

\(\ell_1\)

\(\ell_2\)

\(\ell_3\)
Back to the example: computing winning states

Timed games
Back to the example: computing winning states

Timed games

$$x < 1, u_2, x := 0$$

$$x < 1, u_1$$

$$x \leq 1, c_1$$

$$x \leq 1, c_3$$

$$x \geq 1, u_3$$

$$x \geq 2, c_4$$

$$c_2$$
Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games
 - Some informal description
 - A more formal view of the semantics
 - Summary of the results
 - Qualitative analysis of $\frac{1}{2}$-player games
 - Quantitative analysis of $2\frac{1}{2}$-player games
 - Quantitative analysis of $\frac{1}{2}$-player games

4. Conclusion
Why add stochastic features? And how?

- to model probabilistic behaviours
Why add stochastic features? And how?

- to model probabilistic behaviours

Example of losses when sending messages

\[
\text{send} \quad x := 0 \quad \xrightarrow{\text{lost}} \quad x \leq 2 \quad \xrightarrow{\text{delivered}}
\]
Why add stochastic features? And how?
- to model probabilistic behaviours

Example of losses when sending messages

\[
\begin{align*}
\text{send} & \quad x := 0 \\
& \rightarrow \\
\text{lost} & \quad 0.1 \quad x \leq 2 \\
& \quad 0.9 \\
\text{delivered} & \quad \leadsto
\end{align*}
\]

\sim the probabilistic timed automata model used e.g. in PRISM and UPPAAL-PRO

[KNSS02] Automatic verification of real-time systems with discrete probability distributions (TCS).
Why add stochastic features? And how?

- to model probabilistic behaviours

Example of losses when sending messages

\[x := 0 \quad \begin{array}{c}
\text{send} \\ x \leq 2 \\
\text{lost} \\
\text{delivered}
\end{array} \]

\[\leadsto \text{the probabilistic timed automata model} \]

used e.g. in PRISM and UPPAAL-PRO

[Baier et al. 2008, Bouyer & Forejt 2009]

- to model uncertainty on delays

[KNSS02] Automatic verification of real-time systems with discrete probability distributions (*TCS*).
Why add stochastic features? And how?

- to model probabilistic behaviours

Example of losses when sending messages

![Diagram showing send, lost, and delivered states with probabilities]

- to model uncertainty on delays

Example of a processor in the taskgraph example

![Diagram showing states and transitions for a processor]

[KNSS02] Automatic verification of real-time systems with discrete probability distributions (*TCS*).
Why add stochastic features? And how?

- to model probabilistic behaviours

Example of losses when sending messages

\[
\begin{align*}
\text{send: } & x:=0 \\
\text{lost: } & 0.1 \quad x \leq 2 \\
\text{delivered: } & 0.9
\end{align*}
\]

\[\leadsto \text{the probabilistic timed automata model used e.g. in PRISM and UPPAAL-PRO [KNSS02]}\]

- to model uncertainty on delays

Example of a processor in the taskgraph example

\[\leadsto \text{the stochastic timed automata model [BBB+08,BF09]}\]
Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games
 Some informal description
 A more formal view of the semantics
 Summary of the results
 Qualitative analysis of $\frac{1}{2}$-player games
 Quantitative analysis of $2\frac{1}{2}$-player games
 Quantitative analysis of $\frac{1}{2}$-player games

4. Conclusion
Stochastic timed game: an example

Timed graph with vertices partitioned among three players:

- Classical players playing “turn-based”
- The Nature stochastic player
Stochastic timed game: an example

Timed graph with vertices partitioned among three players:

- Classical players playing “turn-based”
- The Nature stochastic player

There are prescribed probability distributions from vertices.
How is this game played?

Players \blacksquare and \Box play according to standard strategies.
Player \bigcirc plays according to the prescribed probability distributions:
- choose a delay according to some distribution
- choose an action according to some discrete distribution
Play, an example

From the game and the strategies we obtain a Markov chain:

- \(a, 0 \)\n- \(c, 1 \)\n- \(e, 1 + \frac{1}{u} \)\n- \(g, 2 \)\n- \(f, 2 \)
Play, an example

- Strategy for \(\diamond \): go to \(c \) when \(x = 1 \)
- Strategy for \(\square \): go to \(g \) when \(x = 2 \)
Play, an example

- Strategy for \diamond: go to c when $x = 1$
- Strategy for \Box: go to g when $x = 2$

From the game and the strategies we obtain a Markov chain:
Play, an example

- Strategy for \(\diamond \): go to \(c \) when \(x = 1 \)
- Strategy for \(\square \): go to \(g \) when \(x = 2 \)

From the game and the strategies we obtain a Markov chain:

\[(a,0)\]
Play, an example

- Strategy for ⬤: go to c when \(x = 1 \)
- Strategy for ☐: go to g when \(x = 2 \)

From the game and the strategies we obtain a Markov chain:

\[(a,0) \rightarrow (c,1)\]
Play, an example

From the game and the strategies we obtain a Markov chain:

- Strategy for ◻: go to c when $x = 1$
- Strategy for □: go to g when $x = 2$

The graph shows transitions between states with probability distributions over delays.
Play, an example

From the game and the strategies we obtain a Markov chain:

- Strategy for \diamond: go to c when $x = 1$
- Strategy for \square: go to g when $x = 2$

Probability distribution over delays
Play, an example

- Strategy for \blackdiamond: go to c when $x = 1$
- Strategy for \square: go to g when $x = 2$

From the game and the strategies we obtain a Markov chain:

probability distribution over delays
Play, an example

From the game and the strategies we obtain a Markov chain:

- Strategy for \square: go to c when $x = 1$
- Strategy for \blacklozenge: go to g when $x = 2$

probability distribution over delays
Play, an example

- Strategy for green diamond: go to \(c \) when \(x = 1 \)
- Strategy for red box: go to \(g \) when \(x = 2 \)

From the game and the strategies we obtain a Markov chain:

\[
\begin{align*}
(a,0) &\rightarrow (c,1) \\
(b,1) &\rightarrow (e,1) \\
(e,1+\varepsilon) &\rightarrow (g,2) \\
(e,1) &\rightarrow (e,2) \\
(d,2) &\rightarrow (d,2)
\end{align*}
\]
Play, an example

- Strategy for diamond: go to c when $x = 1$
- Strategy for square: go to g when $x = 2$

From the game and the strategies we obtain a Markov chain:

- probability distribution over delays

$$
\begin{align*}
(a,0) & \rightarrow (c,1) \\
(b,1) & \rightarrow (e,1) \\
(e,1+\varepsilon) & \rightarrow (g,2) \\
(d,2) & \rightarrow (e,2)
\end{align*}
$$
Play, an example

From the game and the strategies we obtain a Markov chain:

- Strategy for \(\diamondsuit \): go to \(c \) when \(x = 1 \)
- Strategy for \(\square \): go to \(g \) when \(x = 2 \)

A hint into stochastic timed games
Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games
 Some informal description
 A more formal view of the semantics
 Summary of the results
 Qualitative analysis of $\frac{1}{2}$-player games
 Quantitative analysis of $2\frac{1}{2}$-player games
 Quantitative analysis of $\frac{1}{2}$-player games

4. Conclusion
How can we attach probabilities to delays?

- The example of continuous-time Markov chains

expontential distribution

density function $t \mapsto \begin{cases} \lambda \cdot \exp(-\lambda t) & \text{if } t \geq 0 \\ 0 & \text{otherwise} \end{cases}$
How can we attach probabilities to delays?

- The example of continuous-time Markov chains

 exponential distribution

 density function \(t \mapsto \begin{cases} \lambda \cdot \exp(-\lambda t) & \text{if } t \geq 0 \\ 0 & \text{otherwise} \end{cases} \)

 \(\sim \) this is ok if delays are in \([0, +\infty)\)
How can we attach probabilities to delays?

- The example of continuous-time Markov chains

\[
\text{density function } t \mapsto \begin{cases}
\lambda \cdot \exp(-\lambda t) & \text{if } t \geq 0 \\
0 & \text{otherwise}
\end{cases}
\]

\(\leadsto \) this is ok if delays are in \([0, +\infty)\)

- But what if bounded intervals?

A hint into stochastic timed games
How can we attach probabilities to delays?

- The example of continuous-time Markov chains

 exponential distribution
 density function $t \mapsto \begin{cases}
 \lambda \cdot \exp(-\lambda t) & \text{if } t \geq 0 \\
 0 & \text{otherwise}
 \end{cases}$

 \rightsquigarrow this is ok if delays are in $[0, +\infty)$

- But what if bounded intervals?

 truncated normal distribution
How can we attach probabilities to delays?

- The example of continuous-time Markov chains

 \[
 \text{exponential distribution}
 \]

 \[
 \text{density function } t \mapsto \begin{cases}
 \lambda \cdot \exp(-\lambda t) & \text{if } t \geq 0 \\
 0 & \text{otherwise}
 \end{cases}
 \]

 \[\sim \text{ this is ok if delays are in } [0, +\infty)\]

- But what if bounded intervals?

 \[
 \text{truncated normal distribution}
 \]

 \[
 \text{density function } t \mapsto \begin{cases}
 \frac{1}{\sqrt{\pi} \cdot \sigma} \exp\left(-\frac{t^2}{\sigma^2}\right) & \text{if } t \geq 0 \\
 0 & \text{otherwise}
 \end{cases}
 \]
How does the semantics formalize?

We will explain it more formally when all vertices belong to player \bigcirc. Those are called $\frac{1}{2}$-player games.
How does the semantics formalize?

- We will explain it more formally when all vertices belong to player \(\bigcirc \). Those are called \(\frac{1}{2} \)-player games.

- We will then extend it using standard strategies for the two other players, which need however satisfy some measurability assumption.
The $\frac{1}{2}$-player game model

$\pi(s \xrightarrow{e_1} \ldots \xrightarrow{e_n})$: symbolic path from s firing edges e_1, \ldots, e_n
The $\frac{1}{2}$-player game model

- $\pi(s \xrightarrow{e_1} \ldots \xrightarrow{e_n})$: symbolic path from s firing edges e_1, \ldots, e_n
- Example:

$$\pi(s_0 \xrightarrow{e_1, e_2}) = \{s_0 \xrightarrow{\tau_1, e_1} s_1 \xrightarrow{\tau_2, e_2} s_2 \mid \tau_1 \leq 2, \tau_1 + \tau_2 \leq 5, \tau_2 \geq 1\}$$
The $\frac{1}{2}$-player game model

- $\pi(s \xrightarrow{e_1} \ldots \xrightarrow{e_n})$: symbolic path from s firing edges e_1, \ldots, e_n
- Example:

![Diagram showing symbolic path with transitions $x \leq 2, e_1$, $x \leq 5, e_2$, $y := 0$, $y \geq 1$, $x = 1, e_3$, $x \leq 3, e_4$]

$\pi(s_0 \xrightarrow{e_1, e_2}) = \{s_0 \xrightarrow{\tau_1, e_1} s_1 \xrightarrow{\tau_2, e_2} s_2 \mid \tau_1 \leq 2, \tau_1 + \tau_2 \leq 5, \tau_2 \geq 1\}$

- Idea: compute the probability of a symbolic path

From state s: s
A hint into stochastic timed games

The $\frac{1}{2}$-player game model

- $\pi(s \xrightarrow{e_1} \ldots \xrightarrow{e_n})$: symbolic path from s firing edges e_1, \ldots, e_n
- Example:

 ![Diagram](image)

 $\pi(s_0 \xrightarrow{e_1, e_2}) = \{s_0 \xrightarrow{\tau_1, e_1} s_1 \xrightarrow{\tau_2, e_2} s_2 \mid \tau_1 \leq 2, \tau_1 + \tau_2 \leq 5, \tau_2 \geq 1\}$

- **Idea**: compute the probability of a symbolic path

From state s:

- randomly choose a delay
The $\frac{1}{2}$-player game model

- $\pi(s \xrightarrow{e_1} \ldots \xrightarrow{e_n})$: symbolic path from s firing edges e_1, \ldots, e_n
- Example:

$$
\begin{align*}
 \pi(s_0 \xrightarrow{e_1,e_2}) &= \{ s_0 \xrightarrow{\tau_1,e_1} s_1 \xrightarrow{\tau_2,e_2} s_2 \mid \tau_1 \leq 2, \tau_1 + \tau_2 \leq 5, \tau_2 \geq 1 \}
\end{align*}
$$

- Idea: compute the probability of a symbolic path

From state s:

- randomly choose a delay
The $\frac{1}{2}$-player game model

- $\pi(s \xrightarrow{e_1} \ldots \xrightarrow{e_n})$: symbolic path from s firing edges e_1, \ldots, e_n
- Example:

$$\pi(s_0 \xrightarrow{e_1, e_2}) = \{ s_0 \xrightarrow{\tau_1, e_1} s_1 \xrightarrow{\tau_2, e_2} s_2 \mid \tau_1 \leq 2, \tau_1 + \tau_2 \leq 5, \tau_2 \geq 1 \}$$

- Idea: compute the probability of a symbolic path

From state s:
- randomly choose a delay
- then randomly select an edge
The $\frac{1}{2}$-player game model

- $\pi(s \xrightarrow{e_1} \ldots \xrightarrow{e_n})$: symbolic path from s firing edges e_1, \ldots, e_n
- Example:

$$\pi(s_0 \xrightarrow{e_1, e_2} \{ s_0 \xrightarrow{\tau_1, e_1} s_1 \xrightarrow{\tau_2, e_2} s_2 \mid \tau_1 \leq 2, \tau_1 + \tau_2 \leq 5, \tau_2 \geq 1 \})$$

- Idea: compute the probability of a symbolic path

From state s:
- randomly choose a delay
- then randomly select an edge
- then continue
The $\frac{1}{2}$-player game model

symbolic path: $\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1,e_1} s_1 \cdots \xrightarrow{\tau_n,e_n} s_n\}$

$\mathbb{P}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})) \, d\mu_s(t)$
The $\frac{1}{2}$-player game model

symbolic path: $\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{ s \xrightarrow{\tau_1,e_1} s_1 \cdots \xrightarrow{\tau_n,e_n} s_n \}$

$$\mathbb{P}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})) \, d\mu_s(t)$$

- $I(s, e_1) = \{ \tau \mid s \xrightarrow{\tau,e_1} \}$ and μ_s distribution over $I(s) = \bigcup_e I(s, e)$
The $\frac{1}{2}$-player game model

symbolic path: $\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1,e_1} s_1 \cdots \xrightarrow{\tau_n,e_n} s_n\}$

$$\mathbb{P}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})) \, d\mu_s(t)$$

- $I(s,e_1) = \{\tau \mid s \xrightarrow{\tau,e_1}\}$ and μ_s distribution over $I(s) = \bigcup_e I(s,e)$
The $\frac{1}{2}$-player game model

symbolic path: $\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1,e_1} s_1 \cdots \xrightarrow{\tau_n,e_n} s_n\}$

$$\mathbb{P}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \int_{t \in I(s,e_1)} \mu_{s}(t) d \mu_{s}(t)$$

- $l(s, e_1) = \{\tau \mid s \xrightarrow{\tau,e_1}\}$ and μ_{s} distribution over $l(s) = \bigcup_{e} l(s, e)$

- p_{s+t} distribution over transitions enabled in $s + t$
 (given by weights on transitions)
The $\frac{1}{2}$-player game model

symbolic path: $\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n\}$

$$P(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \int_{t \in I(s, e_1)} p_s(t) P(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})) d\mu_s(t)$$

- $l(s, e_1) = \{\tau \mid s \xrightarrow{\tau, e_1}\}$ and μ_s distribution over $l(s) = \bigcup_e l(s, e)$
- $p_s(t)$ distribution over transitions enabled in $s + t$
 (given by weights on transitions)
- $s \xrightarrow{t} s + t \xrightarrow{e_1} s_t$
The $\frac{1}{2}$-player game model

$$\mathbb{P}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})) \, d\mu_s(t)$$
The $\frac{1}{2}$-player game model

$$\mathbb{P}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})) \, d\mu_s(t)$$

- Can be viewed as an n-dimensional integral
The $\frac{1}{2}$-player game model

$$\mathbb{P}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \int_{t \in l(s, e_1)} p_{s+t}(e_1) \mathbb{P}(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})) \, d\mu_s(t)$$

- Can be viewed as an n-dimensional integral
- Easy extension to constrained symbolic paths

$$\pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{ s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models C\}$$
The $\frac{1}{2}$-player game model

$$
\mathbb{P}\left(\pi\left(s \xrightarrow{e_1} \cdots \xrightarrow{e_n} \right)\right) = \int_{t \in l(s, e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi\left(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n} \right)\right) d\mu_s(t)
$$

- Can be viewed as an n-dimensional integral
- Easy extension to constrained symbolic paths
 $$
 \pi_c\left(s \xrightarrow{e_1} \cdots \xrightarrow{e_n} \right) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models C\}
 $$
- Definition over sets of infinite runs:
The $\frac{1}{2}$-player game model

$$\mathbb{P}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \int_{t \in l(s,e_1)} p_{s+t}(e_1) \mathbb{P}(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})) \, d\mu_s(t)$$

- Can be viewed as an n-dimensional integral

- Easy extension to constrained symbolic paths
 $$\pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1,e_1}s_1 \cdots \xrightarrow{\tau_n,e_n}s_n \mid (\tau_1, \cdots, \tau_n) \models C\}$$

- Definition over sets of infinite runs:
 - $\text{Cyl}(\pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{\varphi \cdot \varphi' \mid \varphi \in \pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\}$
The $\frac{1}{2}$-player game model

$$\mathbb{P}\left(\pi\left(s \xrightarrow{e_1} \cdots \xrightarrow{e_n} \right) \right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi\left(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n} \right) \right) d\mu_s(t)$$

- Can be viewed as an n-dimensional integral
- Easy extension to constrained symbolic paths
 $$\pi_C\left(s \xrightarrow{e_1} \cdots \xrightarrow{e_n} \right) = \{ s \xrightarrow{\tau_1,e_1} s_1 \cdots \xrightarrow{\tau_n,e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models C \}$$
- Definition over sets of infinite runs:
 - $\text{Cyl}(\pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{ \rho \cdot \rho' \mid \rho \in \pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) \}$
 - $\mathbb{P}(\text{Cyl}(\pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))) = \mathbb{P}(\pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$
The $\frac{1}{2}$-player game model

$$\mathbb{P}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \int_{t \in l(s, e_1)} p_{s+t}(e_1) \mathbb{P}(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})) \, d\mu_s(t)$$

- Can be viewed as an n-dimensional integral
- Easy extension to constrained symbolic paths
 $$\pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{ s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models C \}$$
- Definition over sets of infinite runs:
 - $\text{Cyl}(\pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{ \varrho \cdot \varrho' \mid \varrho \in \pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) \}$
 - $\mathbb{P}(\text{Cyl}(\pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))) = \mathbb{P}(\pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$
 - unique extension of \mathbb{P} to the generated σ-algebra
The $\frac{1}{2}$-player game model

$$\mathbb{P}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})) \, d\mu_s(t)$$

- Can be viewed as an n-dimensional integral

- Easy extension to constrained symbolic paths

$$\pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1,e_1} s_1 \cdots \xrightarrow{\tau_n,e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models C\}$$

- Definition over sets of infinite runs:
 - $\text{Cyl}(\pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{o \cdot o' \mid o \in \pi_c(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\}$
 - $\mathbb{P}(\text{Cyl}(\pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))) = \mathbb{P}(\pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$
 - unique extension of \mathbb{P} to the generated σ-algebra

- Property: \mathbb{P} is a probability measure over sets of infinite runs
The $\frac{1}{2}$-player game model

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in l(s, e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) \, d\mu_s(t)$$

- Can be viewed as an n-dimensional integral
- Easy extension to constrained symbolic paths
 $$\pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models C\}$$
- Definition over sets of infinite runs:
 - $\text{Cyl}(\pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{q \cdot q' \mid q \in \pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\}$
 - $\mathbb{P}(\text{Cyl}(\pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))) = \mathbb{P}(\pi_C(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$
 - unique extension of \mathbb{P} to the generated σ-algebra
- Property: \mathbb{P} is a probability measure over sets of infinite runs
- Example:
 $$\text{Zeno}(s) = \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \cdots, e_n) \in E^n} \text{Cyl}(\pi_{\sum_i \tau_i \leq M}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$$
An example of computation (with uniform distributions)

The probability of the symbolic path $\pi(s_0 \xrightarrow{e_1} e_2)$ is $\frac{1}{4}$.
An example of computation (with uniform distributions)

The probability of the symbolic path $\pi(s_0 \xrightarrow{e_1} e_2)$ is $\frac{1}{4}$.

$$\mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} e_2) \right) = \int_0^1 \mathbb{P}\left(\pi(s_1 \xrightarrow{e_2}) \right) \, d\mu_{s_0}(t) + \int_1^1 \frac{\mathbb{P}\left(\pi(s_1 \xrightarrow{e_2}) \right)}{2} \, d\mu_{s_0}(t)$$
An example of computation (with uniform distributions)

The probability of the symbolic path $\pi(s_0 \xrightarrow{e_1} e_2)$ is $\frac{1}{4}$.

$$
P(\pi(s_0 \xrightarrow{e_1} e_2)) = \int_0^1 P(\pi(s_1 \xrightarrow{e_2})) d\mu_{s_0}(t) + \int_1^1 \frac{P(\pi(s_1 \xrightarrow{e_2}))}{2} d\mu_{s_0}(t)$$

$$= \int_0^1 \int_0^1 \left(\frac{P(\pi(s_2))}{2} d\mu_{s_1}(u) \right) d\mu_{s_0}(t)$$
An example of computation (with uniform distributions)

A hint into stochastic timed games

The probability of the symbolic path $\pi(s_0 \xrightarrow{e_1} e_2)$ is $\frac{1}{4}$.

$$P\left(\pi(s_0 \xrightarrow{e_1} e_2)\right) = \int_0^1 P\left(\pi(s_1 \xrightarrow{e_2})\right) d\mu_{s_0}(t) + \int_1^1 \frac{P(\pi(s_1 \xrightarrow{e_2}))}{2} d\mu_{s_0}(t)$$

$$= \int_0^1 \int_0^1 \left(\frac{P(\pi(s_2))}{2}\right) d\mu_{s_1}(u) d\mu_{s_0}(t)$$

$$= \int_0^1 \int_0^1 \left(\frac{1 \cdot du}{2} \cdot \frac{du}{2}\right) dt = \frac{1}{4}$$
An example of computation (with exponential distrib.)

The probability of the symbolic path $\pi(s_0 \xrightarrow{e_1} e_2)$ is $e^{-3} - e^{-5} \approx 0.043$
An example of computation (with exponential distrib.)

The probability of the symbolic path $\pi(s_0 \xrightarrow{e_1} e_2)$ is $e^{-3} - e^{-5} \approx 0.043$

$$\mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} e_2)\right) = \int_0^1 \mathbb{P}\left(\pi(s_1 \xrightarrow{e_2})\right) d\mu_{s_0}(t) = \int_0^1 \mathbb{P}\left(\pi(s_1 \xrightarrow{e_2})\right) e^{-2t} dt$$

$$= \int_0^1 \left(\int_1^{+\infty} 3 e^{-3u} du \right) e^{-2t} dt$$

$$= \left[- e^{-2t} \right]_{t=0}^1 \cdot \left[- e^{-3u} \right]_{u=1}^{+\infty}$$

$$= (1 - e^{-2}) \cdot e^{-3} = e^{-3} - e^{-5}$$
Some remarks

- This defines a purely stochastic process (\(\frac{1}{2} \)-player game).
Some remarks

- This defines a purely stochastic process ($\frac{1}{2}$-player game).
- **Continuous-time Markov chains** = timed automata with a single “useless” clock which is reset on all transitions. The distributions on delays are exponential distributions with a rate per location.
Some remarks

- This defines a purely stochastic process ($\frac{1}{2}$-player game).
- Continuous-time Markov chains = timed automata with a single "useless" clock which is reset on all transitions. The distributions on delays are exponential distributions with a rate per location.
- The semantics can be extended in a natural way to several players:

\[
\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in l(s, e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) \, d\mu_s(t)
\]

mass distribution given by the strategy

if s is a player vertex
A hint into stochastic timed games

Some remarks

- This defines a purely stochastic process (\(\frac{1}{2} \)-player game).
- Continuous-time Markov chains = timed automata with a single “useless” clock which is reset on all transitions. The distributions on delays are exponential distributions with a rate per location.
- The semantics can be extended in a natural way to several players:

\[
P(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \int_{t \in I(s, e_1)} p_{s+t}(e_1) P(\pi(s \xrightarrow{e_2} \cdots \xrightarrow{e_n})) \, d\mu_s(t)
\]

mass distribution given by the strategy

if \(s \) is a player ◇ vertex

- Probabilistic timed automata = a subclass of the \(1\frac{1}{2} \)-player games
The synthesis problem

Problem statement

Given a game G, a (linear-time) property φ, a rational threshold $\triangleright r$, is there a strategy f_\diamond for player \Diamond s.t. for all strategies f_\square of player \Box, $\mathbb{P}(G_{f_\diamond}, f_\square \models \varphi) \triangleright r$?
Reachability problem – Example

Are vertices \{b, f\} reachable with probability 1 from (a, 0)?

Yes: it is the case when always chooses to move when \(x = 0\).

5. Is the vertex \(b\) reachable with probability at least \(\frac{2}{3}\)?

No.

- Uniform distribution over delays
- Uniform distribution over edges
Reachability problem – Example

- Are vertices \{b, f\} reachable with probability 1 from \((a, 0)\)?

- Uniform distribution over delays
- Uniform distribution over edges
Reachability problem – Example

- Are vertices \(\{b, f\} \) reachable with probability 1 from \((a, 0)\)?
 - Yes: it is the case when \(\square \) always chooses to move when \(x = 0.5 \).
Reachability problem – Example

Are vertices \(\{b, f\} \) reachable with probability 1 from \((a, 0) \)?
- Yes: it is the case when the diamond always chooses to move when \(x = 0.5 \).
- Is the vertex \(b \) reachable with probability at least \(\frac{2}{3} \)?
Reachability problem – Example

Are vertices \{b, f\} reachable with probability 1 from \((a, 0)\)?

- Yes: it is the case when \(\Diamond\) always chooses to move when \(x = 0.5\).

Is the vertex \(b\) reachable with probability at least \(\frac{2}{3}\)?

- No.
What kind of games will we play?

Number of players

- $2\frac{1}{2}$-player games: ♣️ □️ ○
- $1\frac{1}{2}$-player games: ♣️ ○
- $\frac{1}{2}$-player games: ○

(“Markov decision process”)

(“Markov chain”)

Kind of questions

- Qualitative questions (threshold is either 0 or 1)
- Quantitative questions (threshold is a rational number in $(0, 1)$)

Winning objective

The winning objective will be an $\ominus u_1D714$-regular condition, or some LTL property, or some more restrictive condition like a reachability condition.
What kind of games will we play?

Number of players

- **2₁²-player games:**
 - “Markov decision process”

- **1₁²-player games:**
 - “Markov chain”

- **1₂-player games:**

Kind of questions

- Qualitative questions (threshold is either 0 or 1)
- Quantitative questions (threshold is a rational number in (0, 1))
What kind of games will we play?

Number of players

- $2\frac{1}{2}$-player games:
 - Markov decision process
- $1\frac{1}{2}$-player games:
 - Markov chain
- $\frac{1}{2}$-player games:

Kind of questions

- Qualitative questions (threshold is either 0 or 1)
- Quantitative questions (threshold is a rational number in $(0, 1)$)

Winning objective

The winning objective will be an ω-regular condition, or some LTL property, or some more restrictive condition like a reachability condition.
A hint into stochastic timed games

Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games
 - Some informal description
 - A more formal view of the semantics
 - Summary of the results
 - Qualitative analysis of $\frac{1}{2}$-player games
 - Quantitative analysis of $2\frac{1}{2}$-player games
 - Quantitative analysis of $\frac{1}{2}$-player games

4. Conclusion
Rough summary of the results

<table>
<thead>
<tr>
<th>Model</th>
<th>Qualitative</th>
<th>Quantitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$-player game</td>
<td>1 clock</td>
<td>decidable [BBB+08]</td>
</tr>
<tr>
<td></td>
<td>n clocks</td>
<td>decidable?2</td>
</tr>
<tr>
<td>$1\frac{1}{2}$-player game</td>
<td>1 clock</td>
<td>decidable3 [BF09]</td>
</tr>
<tr>
<td></td>
<td>n clocks</td>
<td>?</td>
</tr>
<tr>
<td>$2\frac{1}{2}$-player game</td>
<td>1 clock</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>n clocks</td>
<td>?</td>
</tr>
</tbody>
</table>

under some assumptions...

1. reactive automata $I(s) = \mathbb{R}_+$, exponential distributions and resets on every cycle
2. reactive automata $I(s) = \mathbb{R}_+$ and exponential distributions
3. reachability properties
4. even for reachability properties, exponential (or uniform) distributions

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (*LICS’08*).

[BBBM08] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (*QEST’08*).

[BF09] Bouyer, Forejt. Reachability in stochastic timed games (*ICALP’09*).
Rough summary of the results

<table>
<thead>
<tr>
<th>Model</th>
<th>Qualitative</th>
<th>Quantitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$-player game</td>
<td>1 clock</td>
<td>decidable 1 [BBB+08]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>decidable 1 [BBBM08]</td>
</tr>
<tr>
<td>n clocks</td>
<td>decidable? 2</td>
<td>?</td>
</tr>
<tr>
<td>$1\frac{1}{2}$-player game</td>
<td>1 clock</td>
<td>decidable 3 [BF09]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>n clocks</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$2\frac{1}{2}$-player game</td>
<td>1 clock</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>n clocks</td>
<td>?</td>
<td>undecidable 4 [BF09]</td>
</tr>
</tbody>
</table>

under some assumptions...

1. reactive automata $I(s) = \mathbb{R}_+$, exponential distributions and resets on every cycle
2. reactive automata $I(s) = \mathbb{R}_+$ and exponential distributions
3. reachability properties
4. even for reachability properties, exponential (or uniform) distributions

1 Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata ($LICS’08$).
2 Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics ($QEST’08$).
3 Bouyer, Forejt. Reachability in stochastic timed games ($ICALP’09$).
Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games
 - Some informal description
 - A more formal view of the semantics
 - Summary of the results
 - Qualitative analysis of $\frac{1}{2}$-player games
 - Quantitative analysis of $2\frac{1}{2}$-player games
 - Quantitative analysis of $\frac{1}{2}$-player games

4. Conclusion
Summary of the results

<table>
<thead>
<tr>
<th>Model</th>
<th>Qualitative</th>
<th>Quantitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2})-player game</td>
<td>1 clock</td>
<td>(\text{decidable} [\text{BBB+08}])</td>
</tr>
<tr>
<td></td>
<td>(n \text{ clocks})</td>
<td>(\text{decidable?})</td>
</tr>
<tr>
<td>(1\frac{1}{2})-player game</td>
<td>1 clock</td>
<td>(\text{decidable} [\text{BF09}])</td>
</tr>
<tr>
<td></td>
<td>(n \text{ clocks})</td>
<td>?</td>
</tr>
<tr>
<td>(2\frac{1}{2})-player game</td>
<td>1 clock</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>(n \text{ clocks})</td>
<td>?</td>
</tr>
</tbody>
</table>

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS’08).

The qualitative synthesis problem reduces to the so-called “almost-sure model-checking problem”

\[s \models \varphi \iff \mathbb{P}(\{ \sigma \in \text{Runs}(s) \mid \sigma \models \varphi \}) = 1 \]
Almost-sure model-checking

The qualitative synthesis problem reduces to the so-called “almost-sure model-checking problem”

\[s \models \varphi \iff P \left(\{ \rho \in \text{Runs}(s) \mid \rho \models \varphi \} \right) = 1 \]

There are only \(\bigcirc \) vertices, but we will use extra colors to represent atomic propositions.
An example
An example

$\mathcal{A} \not\models G (\text{green} \Rightarrow F \text{red})$
An example

\[
A \not\models G(\text{green }\Rightarrow \text{ F red}) \quad \text{but} \quad \mathbb{P}(A \models G(\text{green }\Rightarrow \text{ F red})) = 1
\]
An example

\[A \not\models G(\text{green } \Rightarrow \text{ F red}) \quad \text{but} \quad \mathbb{P}(A \models G(\text{green } \Rightarrow \text{ F red})) = 1 \]

Indeed, almost surely, paths are of the form \(e_1^* e_2 (e_4 e_5)^\omega \)
The classical region automaton
The pruned region automaton

A hint into stochastic timed games
The pruned region automaton
The pruned region automaton

... viewed as a finite Markov chain $MC(A)$
The pruned region automaton

... viewed as a finite Markov chain \(MC(A) \)

Proposition

For single-clock timed automata,

\[
P(A \models \varphi) = 1 \quad \text{iff} \quad P(MC(A) \models \varphi) = 1
\]

(this is independent of the choice of the distributions...)}
Result

Theorem [BBB+08]

For single-clock timed automata, the almost-sure model-checking
- of LTL is PSPACE-Complete
- of ω-regular properties is NLOGSPACE-Complete

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS’08).
Result

Theorem [BBB+08]

For single-clock timed automata, the almost-sure model-checking

- of LTL is PSPACE-Complete
- of ω-regular properties is NLOGSPACE-Complete

Complexity:

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (*LICS’08*).
Result

Theorem [BBB+08]

For single-clock timed automata, the almost-sure model-checking
- of LTL is PSPACE-Complete
- of ω-regular properties is NLOGSPACE-Complete

Complexity:
- size of single-clock region automata = polynomial [LMS04]

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS’08).
[LMS04] Laroussinie, Markey, Schnoebelen. Model checking timed automata with one or two clocks (CONCUR’04).
Theorem [BBB+08]

For single-clock timed automata, the almost-sure model-checking

- of LTL is PSPACE-Complete
- of \(\omega \)-regular properties is NLOGSPACE-Complete

Complexity:

- size of single-clock region automata = polynomial [LMS04]
- apply result of [CSS03] to the finite Markov chain

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS’08).
[LMS04] Laroussinie, Markey, Schnoebelen. Model checking timed automata with one or two clocks (CONCUR’04).
[CSS03] Couvreur, Saheb, Sutre. An optimal automata approach to LTL model checking of probabilistic systems (LPAR’03).
Result

Theorem [BBB+08]

For single-clock timed automata, the almost-sure model-checking
- of LTL is PSPACE-Complete
- of ω-regular properties is NLOGSPACE-Complete

- Complexity:
 - size of single-clock region automata \approx polynomial [LMS04]
 - apply result of [CSS03] to the finite Markov chain

- Correctness: the proof is rather involved
Result

Theorem [BBB+08]

For single-clock timed automata, the almost-sure model-checking
- of LTL is PSPACE-Complete
- of ω-regular properties is NLOGSPACE-Complete

- Complexity:
 - size of single-clock region automata = polynomial [LMS04]
 - apply result of [CSS03] to the finite Markov chain

- Correctness: the proof is rather involved
 - requires the definition of a topology over the set of paths

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS’08).
[LMS04] Laroussinie, Markey, Schnoebelen. Model checking timed automata with one or two clocks (CONCUR’04).
[CSS03] Couvreur, Saheb, Sutre. An optimal automata approach to LTL model checking of probabilistic systems (LPAR’03).
Result

Theorem [BBB+08]

For single-clock timed automata, the almost-sure model-checking

- of LTL is PSPACE-Complete
- of ω-regular properties is NLOGSPACE-Complete

Complexity:
- size of single-clock region automata \equiv polynomial [LMS04]
- apply result of [CSS03] to the finite Markov chain

Correctness: the proof is rather involved
- requires the definition of a topology over the set of paths
- notions of largeness (for proba 1) and meagerness (for proba 0)

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS’08).
[LMS04] Laroussinie, Markey, Schnoebelen. Model checking timed automata with one or two clocks (CONCUR’04).
[CSS03] Couvreur, Saheb, Sutre. An optimal automata approach to LTL model checking of probabilistic systems (LPAR’03).
Result

Theorem [BBB+08]

For single-clock timed automata, the almost-sure model-checking
- of LTL is PSPACE-Complete
- of ω-regular properties is NLOGSPACE-Complete

Complexity:
- size of single-clock region automata = polynomial [LMS04]
- apply result of [CSS03] to the finite Markov chain

Correctness: the proof is rather involved
- requires the definition of a topology over the set of paths
- notions of largeness (for proba 1) and meagerness (for proba 0)
- link between probabilities and topology thanks to the topological games called Banach-Mazur games

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (*LICS’08*).
[LMS04] Laroussinie, Markey, Schnoebelen. Model checking timed automata with one or two clocks (*CONCUR’04*).
[CSS03] Couvreur, Saheb, Sutre. An optimal automata approach to LTL model checking of probabilistic systems (*LPAR’03*).
An example with two clocks

If the previous algorithm was correct, \[\mu \in \Delta^4 \exists C \mid \approx \]
However, we can prove that \[\mathbb{P} \in G \neg \mathit{red} \neq 0 \]
There is a strange convergence phenomenon: along an execution, if \(\mu_1 \) is the delay in locations \(\ell_2 \) or \(\ell_4 \), then we have that \(P \mu_1 \leq 1 - \frac{43}{60} \)
An example with two clocks

If the previous algorithm was correct, \(\mathcal{A} \models G F \text{ red} \land G F \text{ green} \)
An example with two clocks

If the previous algorithm was correct, $\mathcal{A} \models GF \text{ red} \land GF \text{ green}$

However, we can prove that $P(G \neg\text{red}) > 0$
An example with two clocks

- If the previous algorithm was correct, $\mathcal{A} \models GF \text{ red} \land GF \text{ green}$
- However, we can prove that $P(G \neg\text{red}) > 0$
- There is a strange convergence phenomenon: along an execution, if $\delta_i > 0$ is the delay in locations ℓ_2 or ℓ_4, then we have that $\sum_i \delta_i \leq 1$
A note on Zeno behaviours

- The set of Zeno behaviours is measurable:

\[Zeno(s) = \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \ldots, e_n) \in E^n} \text{Cyl}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) \]
A note on Zeno behaviours

- The set of Zeno behaviours is measurable:
 \[\text{Zeno}(s) = \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \ldots, e_n) \in E^n} \text{Cyl}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) \]

- In single-clock timed automata, we can decide in NLOGSPACE whether \(\mathbb{P}(\text{Zeno}(s)) = 0 \):
A note on Zeno behaviours

- The set of Zeno behaviours is measurable:

\[\text{Zeno}(s) = \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \ldots, e_n) \in E^n} \text{Cyl}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) \]

- In single-clock timed automata, we can decide in NLOGSPACE whether \(P(\text{Zeno}(s)) = 0 \):
 - check whether there is a purely Zeno BSCC in \(MC(A) \)
A note on Zeno behaviours

- The set of Zeno behaviours is measurable:
 \[Zeno(s) = \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \ldots, e_n) \in E^n} \text{Cyl}(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) \]

- In single-clock timed automata, we can decide in NLOGSPACE whether \(\mathbb{P}(Zeno(s)) = 0 \):
 - check whether there is a purely Zeno BSCC in \(MC(A) \)

- an interesting notion of non-Zeno timed automata
 \[x \leq 1, \ x := 0 \]
Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games
 - Some informal description
 - A more formal view of the semantics
 - Summary of the results
 - Qualitative analysis of $\frac{1}{2}$-player games
 - Quantitative analysis of $2\frac{1}{2}$-player games
 - Quantitative analysis of $\frac{1}{2}$-player games

4. Conclusion
Summary of the results

<table>
<thead>
<tr>
<th>Model</th>
<th>Qualitative</th>
<th>Quantitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2-player game</td>
<td>1 clock</td>
<td>decidable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[BBB+08]</td>
</tr>
<tr>
<td></td>
<td>n clocks</td>
<td>decidable?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>1 1/2-player game</td>
<td>1 clock</td>
<td>decidable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[BF09]</td>
</tr>
<tr>
<td></td>
<td>n clocks</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>2 1/2-player game</td>
<td>1 clock</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>n clocks</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>undecided</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[BF09]</td>
</tr>
</tbody>
</table>

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (*LICS*’08).

Undecidability

Theorem [BF09]

The reachability problem for stochastic timed games ($2\frac{1}{2}$ players) is undecidable.

Theorem [BF09]

The reachability problem for stochastic timed games ($2 \frac{1}{2}$ players) is undecidable.

- Holds for uniform and exponential distributions on delays.
- Holds for any quantitative question; we give hints for proba $= \frac{1}{2}$.
- Proof by reduction from halting problem of two-counter machine to the reachability with probability precisely $\frac{1}{2}$.

Undecidability

Theorem [BF09]

The reachability problem for stochastic timed games (2½ players) is undecidable.

- Holds for uniform and exponential distributions on delays.
- Holds for any quantitative question; we give hints for proba = ½.
- Proof by reduction from halting problem of two-counter machine to the reachability with probability precisely ½:
 - ♦ simulates a computation of the two-counter machine and encodes counter values in clock values
 - ♦ stores counter values c_1 and c_2 as $\frac{1}{2^{c_1}3^{c_2}}$
 - ✘ will check that ♦ is not cheating using the power of the probabilities

Undecidability – Comparing counter values

- Check clock y stores $(c_1 + 1, c_2)$, assuming that x stores (c_1, c_2)

![Diagram showing states and transitions involving clock values x and y with conditions for reaching states a, b, c, and d.]

- Entered with $x = x_0$ and $y = y_0$
Undecidability – Comparing counter values

- Check clock y stores $(c_1 + 1, c_2)$, assuming that x stores (c_1, c_2)

Vertex d is reached with probability:
Undecidability – Comparing counter values

- Check clock y stores $(c_1 + 1, c_2)$, assuming that x stores (c_1, c_2)

vertex d is reached with probability:

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \int_{t=1-y_0}^{1} dt$$
Undecidability – Comparing counter values

- Check clock y stores $(c_1 + 1, c_2)$, assuming that x stores (c_1, c_2)

```
\begin{align*}
\text{entered with } &\left\{ x = x_0 \text{ and } y = y_0 \right\} \\
\text{vertex } &d \text{ is reached with probability: } \\
\frac{1}{2} \cdot \frac{1}{2} &\cdot \int_{t=1-y_0}^{1} \frac{1}{t^2} \cdot \frac{1}{4} \cdot y_0
\end{align*}
```
Undecidability – Comparing counter values

- Check clock y stores $(c_1 + 1, c_2)$, assuming that x stores (c_1, c_2)

vertex d is reached with probability $\frac{1}{4} \cdot y_0$
Undecidability – Comparing counter values

- Check clock y stores $(c_1 + 1, c_2)$, assuming that x stores (c_1, c_2)

- vertex d is reached with probability $\frac{1}{4} \cdot y_0$
 vertex f with prob. $\frac{1}{2} \cdot (1 - x_0)$
Undecidability – Comparing counter values

- Check clock y stores $(c_1 + 1, c_2)$, assuming that x stores (c_1, c_2)

- vertex d is reached with probability $\frac{1}{4} \cdot y_0$
 vertex f with prob. $\frac{1}{2} \cdot (1 - x_0)$

- vertices d, f are reached with probability $\frac{1}{2}$ iff

$$\frac{1}{2} = \frac{1}{4} \cdot y_0 + \frac{1}{2} \cdot (1 - x_0)$$
Undecidability – Comparing counter values

- Check clock y stores $(c_1 + 1, c_2)$, assuming that x stores (c_1, c_2)

- vertex d is reached with probability $\frac{1}{4} \cdot y_0$
 - vertex f with prob. $\frac{1}{2} \cdot (1 - x_0)$

- vertices d, f are reached with probability $\frac{1}{2}$ iff

$$\frac{1}{2} = \frac{1}{4} \cdot y_0 + \frac{1}{2} \cdot (1 - x_0) \quad \text{iff} \quad x_0 = 2y_0$$
How do we properly increment the first counter?

enters with $x = \frac{1}{2c_1 3c_2}$

should leave with $y = \frac{1}{2c_1 + 13c_2}$
Undecidability – Zero test

How do we check that \(c_1 \) is zero?

Player \(\Diamond \) has a strategy to reach \(\bigcirc \) with proba. \(\frac{1}{2} \) iff \(c_1 \) is initially zero.
Undecidability – Zero test

How do we check that c_1 is zero?

Player \Diamond has a strategy to reach \smiley with proba. $\frac{1}{2}$ iff c_1 is initially zero.
Undecidability – Zero test

How do we check that c_1 is zero?

Player \blacklozenge has a strategy to reach \smiley with proba. $\frac{1}{2}$ iff c_1 is initially zero.
Undecidability – Zero test

How do we check that c_1 is zero?

Player 🟦 has a strategy to reach ☻ with proba. $\frac{1}{2}$ iff c_1 is initially zero.
Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games
 - Some informal description
 - A more formal view of the semantics
 - Summary of the results
 - Qualitative analysis of $\frac{1}{2}$-player games
 - Quantitative analysis of $2\frac{1}{2}$-player games
 - Quantitative analysis of $\frac{1}{2}$-player games

4. Conclusion
Summary of the results

<table>
<thead>
<tr>
<th>Model</th>
<th>Qualitative</th>
<th>Quantitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2})-player game</td>
<td>1 clock [decidable] [BBB+08]</td>
<td>[decidable] [BBBM08]</td>
</tr>
<tr>
<td></td>
<td>(n) clocks</td>
<td>decidable?</td>
</tr>
<tr>
<td>(1 \frac{1}{2})-player game</td>
<td>1 clock [decidable] [BF09]</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>(n) clocks</td>
<td>?</td>
</tr>
<tr>
<td>(2 \frac{1}{2})-player game</td>
<td>1 clock</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>(n) clocks</td>
<td>?</td>
</tr>
</tbody>
</table>

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (*LICS*’08).

Towards quantitative analysis

- The abstraction $MC(A)$ is no more correct.
Towards quantitative analysis

- The abstraction $MC(A)$ is no more correct.
- Can be reduced to solving a system of differential equations.
Towards quantitative analysis

- The abstraction $MC(\mathcal{A})$ is no more correct.
- Can be reduced to solving a system of differential equations.
 - ~ hard to solve in general, even for simple distributions
Towards quantitative analysis

- The abstraction $MC(A)$ is no more correct.
- Can be reduced to solving a system of differential equations.
 - hard to solve in general, even for simple distributions
- We will describe a restricted framework in which:
Towards quantitative analysis

- The abstraction $MC(A)$ is no more correct.

- Can be reduced to solving a system of differential equations.

 \leadsto hard to solve in general, even for simple distributions

- We will describe a restricted framework in which:

 - we will compute a closed-form expression for the probability
Towards quantitative analysis

- The abstraction $M_C(A)$ is no more correct.
- Can be reduced to solving a system of differential equations.
 - \sim hard to solve in general, even for simple distributions
- We will describe a restricted framework in which:
 - we will compute a closed-form expression for the probability
 - we will be able to approximate the probability
Towards quantitative analysis

- The abstraction $MC(\mathcal{A})$ is no more correct.

- Can be reduced to solving a system of differential equations.
 - Hard to solve in general, even for simple distributions

- We will describe a restricted framework in which:
 - We will compute a closed-form expression for the probability
 - We will be able to approximate the probability, i.e., for every $\varepsilon > 0$, we will compute two rationals p^-_ε and $p^+\varepsilon$ such that:

$$
\begin{align*}
 p^-_\varepsilon & \leq \mathbb{P}(s_0 \models \varphi) \leq p^-_\varepsilon + \varepsilon \\
 p^+\varepsilon - \varepsilon & \leq \mathbb{P}(s_0 \models \varphi) \leq p^+\varepsilon
\end{align*}
$$
Towards quantitative analysis

- The abstraction $MC(\mathcal{A})$ is no more correct.

- Can be reduced to solving a system of differential equations.
 \leadsto hard to solve in general, even for simple distributions

- We will describe a restricted framework in which:
 - we will compute a closed-form expression for the probability
 - we will be able to approximate the probability, i.e., for every $\varepsilon > 0$, we will compute two rationals p^-_ε and p^+_ε such that:

 \[
 \begin{cases}
 p^-_\varepsilon \leq \mathbb{P}(s_0 \models \varphi) \leq p^-_\varepsilon + \varepsilon \\
 p^+_\varepsilon - \varepsilon \leq \mathbb{P}(s_0 \models \varphi) \leq p^+_\varepsilon
 \end{cases}
 \]

 - we will be able to decide the threshold problem
Towards quantitative analysis

- The abstraction $MC(\mathcal{A})$ is no more correct.

- Can be reduced to solving a system of differential equations.
 \[\leadsto \text{hard to solve in general, even for simple distributions} \]

- We will describe a restricted framework in which:
 - we will compute a closed-form expression for the probability
 - we will be able to approximate the probability, i.e., for every $\varepsilon > 0$, we will compute two rationals p_{ε}^- and p_{ε}^+ such that:
 \[
 \begin{align*}
 p_{\varepsilon}^- & \leq P(s_0 \models \varphi) \leq p_{\varepsilon}^- + \varepsilon \\
 p_{\varepsilon}^+ - \varepsilon & \leq P(s_0 \models \varphi) \leq p_{\varepsilon}^+
 \end{align*}
 \]
 - we will be able to decide the threshold problem:
 “Given \mathcal{A}, φ, $c \in \mathbb{Q}$, and $\sim \in \{<,\leq,=,\geq,>\}$, does $P(s_0 \models \varphi) \sim c$ in \mathcal{A}?”
An example

We construct a finite Markov chain \mathcal{MC}' with macro-edges:

- $e_0, x \leq 1$, $x:=0$
- $e_1, x \leq 1$, $x:=0$
- $e_2, x \leq 1$
- $e_3, x \leq 2$, $x:=0$
- $e_4, x \geq 2$, $x:=0$
- $e_5, x \leq 2$
- $e_6, x \geq 2$, $x:=0$
- $e_7, x \geq 2$

± distributions

- $\mu_s: t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$
- μ_s uniform distribution when $I(s)$ is bounded
- uniform weights on transitions
An example

We construct a finite Markov chain $MC'(A)$ with macro-edges:
An example

\[\begin{align*}
\ell_0, \ x \leq 1, \ x := 0 & \quad e_2, \ x \leq 1 \\
\ell_1 & \quad e_4, \ x \geq 2, \ x := 0 \\
\ell_2, \ x \leq 2 & \quad e_5, \ x \leq 2 \\
\ell_3, \ x \leq 2 & \quad e_6, \ x := 0 \\
e_7 &
\end{align*} \]

\[\begin{align*}
+ \text{ distributions} & \quad \mu_s : t \mapsto e^{-t} \text{ when } I(s) = \mathbb{R}_+ \\
& \quad \mu_s \text{ uniform distribution when } I(s) \text{ is bounded} \\
& \quad \text{uniform weights on transitions}
\end{align*} \]

We construct a finite Markov chain \(MC'(A) \) with macro-edges:
An example

We construct a finite Markov chain $MC'(A)$ with macro-edges:

+ distributions $\mu_s : t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$
+ μ_s uniform distribution when $I(s)$ is bounded
+ uniform weights on transitions
An example

We construct a finite Markov chain $MC'(A)$ with macro-edges:
An example

We construct a finite Markov chain $MC'(A)$ with macro-edges:

+ distributions $\mu_s : t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$
+ μ_s uniform distribution when $I(s)$ is bounded
+ uniform weights on transitions
An example

\[e_1, \ x \leq 1, \ x := 0 \]

\[e_2, \ x \leq 1 \]

\[e_3, \ x \leq 2, \ x := 0 \]

\[e_4, \ x \geq 2, \ x := 0 \]

\[e_5, \ x \leq 2 \]

\[e_6, \ x = 0 \]

\[e_7 \]

+ distributions \(\mu_s : t \mapsto e^{-t} \) when \(I(s) = \mathbb{R}_+ \)

\(\mu_s \) uniform distribution when \(I(s) \) is bounded

+ uniform weights on transitions

We construct a finite Markov chain \(MC'(\mathcal{A}) \) with macro-edges:
An example

\[\begin{align*}
\ell_0, \ x \leq 1, \ x := 0, \\
\ell_1, \ x \leq 1, \ x := 0, \\
\ell_2, \ x \leq 1, \ x := 0, \\
\ell_3, \ x := 0
\end{align*} \]

\[\begin{align*}
e_2, \ x \leq 1, \\
e_4, \ x \geq 2, \ x := 0, \\
e_6, \ x := 0
\end{align*} \]

\[\begin{align*}
e_3, \ x \leq 2, \ x := 0, \\
e_5, \ x \leq 2, \\
e_7
\end{align*} \]

+ distributions \(\mu_s: t \mapsto e^{-t} \) when \(I(s) = \mathbb{R}_+ \)
+ \(\mu_s \) uniform distribution when \(I(s) \) is bounded
+ uniform weights on transitions

We construct a finite Markov chain \(MC'(A) \) with macro-edges:

\[\begin{align*}
\frac{1}{2} \cdot e^{-2} \\
\frac{1}{2} \cdot (1 + e^{-2}) \\
\frac{1}{2} \cdot (1 - e^{-2})
\end{align*} \]
An example

\[e_1, \ x \leq 1, \ x := 0 \]
\[e_2, \ x \leq 1 \]
\[e_3, \ x \leq 2, \ x := 0 \]
\[e_4, \ x \geq 2, \ x := 0 \]
\[e_5, \ x \leq 2 \]
\[e_6, \ x = 0 \]
\[e_7 \]

+ distributions $\mu_s: t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$
+ μ_s uniform distribution when $I(s)$ is bounded
+ uniform weights on transitions

We construct a finite Markov chain $MC'(A)$ with macro-edges:
An example

\[\ell_0, \ x \leq 1, \ x:=0 \]

\[\ell_1, \ x \leq 1, \ e_2, \ x \leq 1 \]

\[\ell_2, \ x \leq 2, \ e_5, \ x \leq 2 \]

\[\ell_3, \ x = 0 \]

\[e_6, \ x = 0 \]

\[e_7 \]

+ distributions \(\mu_s : t \mapsto e^{-t} \) when \(I(s) = \mathbb{R}_+ \)

\[\mu_s \text{ uniform distribution when } I(s) \text{ is bounded} \]

+ uniform weights on transitions

We construct a finite Markov chain \(MC'(A) \) with macro-edges:
An example

We construct a finite Markov chain $MC'(A)$ with macro-edges:
Correctness of the abstraction

Theorem

Under some hypotheses, for single-clock automaton A and property φ,

$$P_A(s_0 \models \varphi) = P_{MC}(s_0 \models \Diamond F_\varphi)$$

for some well-chosen set F_φ.
Correctness of the abstraction

Theorem
Under some hypotheses, for single-clock automaton \mathcal{A} and property φ,

$$\mathbb{P}_\mathcal{A}(s_0 \models \varphi) = \mathbb{P}_{MC'_{\mathcal{A}}}(s_0 \models \Diamond F_{\varphi})$$

for some well-chosen set F_{φ}.

Hypotheses:
- if $s = (\ell, \alpha)$ and $s' = (\ell, \alpha')$ with $\alpha, \alpha' > M$, $\mu_s = \mu_{s'}$
- every bounded cycle resets the clock
Correctness of the abstraction

Theorem
Under some hypotheses, for single-clock automaton \mathcal{A} and property φ,

$$\mathbb{P}_\mathcal{A}(s_0 \models \varphi) = \mathbb{P}_{MC'(\mathcal{A})}(s_0 \models \Diamond F_\varphi)$$

for some well-chosen set F_φ.

- **Hypotheses:**
 - if $s = (\ell, \alpha)$ and $s' = (\ell, \alpha')$ with $\alpha, \alpha' > M$, $\mu_s = \mu_{s'}$
 - every bounded cycle resets the clock

- **Limits of the abstraction:** there may be no closed form for the values labelling the edges of $MC'(\mathcal{A})$.
Computing the probability

- We assume furthermore that:
 - for every state s, $I(s) = \mathbb{R}_+$
 (the timed automaton is ‘reactive’)
Computing the probability

We assume furthermore that:

- for every state s, $I(s) = \mathbb{R}_+$
 (the timed automaton is ‘reactive’)
- in every location ℓ, the distribution over delays has density $t \mapsto \lambda_\ell \cdot e^{-\lambda_\ell \cdot t}$ for some $\lambda_\ell \in \mathbb{Q}_+$
Computing the probability

- We assume furthermore that:
 - for every state s, $I(s) = \mathbb{R}_+$
 (the timed automaton is ‘reactive’)
 - in every location ℓ, the distribution over delays has density
 $t \mapsto \lambda_\ell \cdot e^{-\lambda_\ell \cdot t}$ for some $\lambda_\ell \in \mathbb{Q}_+$
 - more general than continuous-time Markov chains
Computing the probability

- We assume furthermore that:
 - for every state s, $l(s) = \mathbb{R}_+$
 (the timed automaton is ‘reactive’)
 - in every location ℓ, the distribution over delays has density
 $t \mapsto \lambda_\ell \cdot e^{-\lambda_\ell \cdot t}$ for some $\lambda_\ell \in \mathbb{Q}_+$
 \leadsto more general than continuous-time Markov chains

Proposition

Under those hypotheses, $P(s_0 \models \varphi)$ can be expressed as $f(e^{-r})$ where r is a rational number, and $f \in \mathbb{Q}(X)$ is a rational function.
Computing the probability

- We assume furthermore that:
 - for every state \(s \), \(I(s) = \mathbb{R}_+ \)
 (the timed automaton is ‘reactive’)
 - in every location \(\ell \), the distribution over delays has density
 \[t \mapsto \lambda_{\ell} \cdot e^{-\lambda_{\ell} \cdot t} \]
 for some \(\lambda_{\ell} \in \mathbb{Q}_+ \)
 \[\leadsto \text{more general than continuous-time Markov chains} \]

Proposition

Under those hypotheses, \(\mathbb{P}(s_0 \models \varphi) \) can be expressed as \(f(e^{-r}) \) where \(r \) is a rational number, and \(f \in \mathbb{Q}(X) \) is a rational function.

\[\leadsto \text{Note: the hypothesis “reset all bounded cycles” is necessary to get this form.} \]
Approximating the probability

\[\mathbb{P}(s_0 \models \varphi) = f(e^{-r}) \]
Approximating the probability

\[\mathbb{P}(s_0 \models \varphi) = f(e^{-r}) \]

- We can compute sequences \((a_i)_i\) and \((b_i)_i\) with
 - \(\lim_i a_i = \lim_i b_i = e^{-r}\)
 - \(a_i \leq a_{i+1} \leq e^{-r} \leq b_{i+1} \leq b_i\)
Approximating the probability

\[\mathbb{P}(s_0 \models \varphi) = f(e^{-r}) \]

- We can compute sequences \((a_i)_i\) and \((b_i)_i\) with
 - \(\lim_i a_i = \lim_i b_i = e^{-r}\)
 - \(a_i \leq a_{i+1} \leq e^{-r} \leq b_{i+1} \leq b_i\)
- As \(e^{-r}\) is transcendental, we can compute an interval \((\alpha, \beta) \ni e^{-r}\) over which \(f\) is monotonic:
Approximating the probability

\[\mathbb{P}(s_0 \models \varphi) = f(e^{-r}) \]

- We can compute sequences \((a_i)\) and \((b_i)\) with
 - \(\lim_i a_i = \lim_i b_i = e^{-r}\)
 - \(a_i \leq a_{i+1} \leq e^{-r} \leq b_{i+1} \leq b_i\)

- As \(e^{-r}\) is transcendental, we can compute an interval \((\alpha, \beta) \ni e^{-r}\) over which \(f\) is monotonic:
 - writing \(f = P/Q\), we have that \(f' = (P'Q - PQ')/Q^2\)
Approximating the probability

\[\mathbb{P}(s_0 \models \varphi) = f(e^{-r}) \]

- We can compute sequences \((a_i)_i\) and \((b_i)_i\) with
 - \(\lim_i a_i = \lim_i b_i = e^{-r}\)
 - \(a_i \leq a_{i+1} \leq e^{-r} \leq b_{i+1} \leq b_i\)

- As \(e^{-r}\) is transcendental, we can compute an interval \((\alpha, \beta) \ni e^{-r}\) over which \(f\) is monotonic:
 - writing \(f = \frac{P}{Q}\), we have that \(f' = (P'Q - PQ')/Q^2\)
 - by induction on the degree of \(R = P'Q - PQ'\), we prove that the sign of \(R\) is constant over \((\alpha, \beta)\) (that we can compute)
Approximating the probability

\[P(s_0 \models \varphi) = f(e^{-r}) \]

- We can compute sequences \((a_i)_i\) and \((b_i)_i\) with
 - \(\lim_i a_i = \lim_i b_i = e^{-r}\)
 - \(a_i \leq a_{i+1} \leq e^{-r} \leq b_{i+1} \leq b_i\)

- As \(e^{-r}\) is transcendental, we can compute an interval \((\alpha, \beta) \ni e^{-r}\) over which \(f\) is monotonic:
 - writing \(f = P/Q\), we have that \(f' = (P'Q - PQ')/Q^2\)
 - by induction on the degree of \(R = P'Q - PQ'\), we prove that the sign of \(R\) is constant over \((\alpha, \beta)\) (that we can compute)

If the sign of \(R'\) is constant over \((\alpha', \beta')\) (containing \(e^{-r}\)), the sign of \(R\) will be constant over

\((\alpha, \beta) = (a_j, b_j) \subseteq (\alpha', \beta')\) if \(R(a_j) \cdot R(b_j) > 0.\)
Approximating the probability

$\mathbb{P}(s_0 \models \varphi) = f(e^{-r})$

- We can compute sequences $(a_i)_i$ and $(b_i)_i$ with
 - $\lim_i a_i = \lim_i b_i = e^{-r}$
 - $a_i \leq a_{i+1} \leq e^{-r} \leq b_{i+1} \leq b_i$

- As e^{-r} is transcendental, we can compute an interval $(\alpha, \beta) \ni e^{-r}$ over which f is monotonic:
 - writing $f = P/Q$, we have that $f' = (P'Q - PQ')/Q^2$
 - by induction on the degree of $R = P'Q - PQ'$, we prove that the sign of R is constant over (α, β) (that we can compute)
 - If the sign of R' is constant over (α', β') (containing e^{-r}), the sign of R will be constant over $(\alpha, \beta) = (a_j, b_j) \subseteq (\alpha', \beta')$ if $R(a_j) \cdot R(b_j) > 0$.

- When $(a_N, b_N) \subseteq (\alpha, \beta)$, the two sequences $(f(a_i))_{i \geq N}$ and $(f(b_i))_{i \geq N}$ are monotonic and converge to $f(e^{-r})$
Deciding the threshold problem

Theorem [BBBM08]

Under the previous hypotheses, the threshold problem is decidable.

Deciding the threshold problem

Theorem [BBBM08]

Under the previous hypotheses, the threshold problem is decidable.

- Check whether $c = f(e^{-r})$
Deciding the threshold problem

Theorem [BBBM08]

Under the previous hypotheses, the threshold problem is decidable.

- Check whether $c = f(e^{-r})$
- If not:
Deciding the threshold problem

Theorem [BBBM08]

Under the previous hypotheses, the threshold problem is decidable.

- Check whether \(c = f(e^{-r}) \)
- If not:
 - use the approximation scheme for a sequence \((\varepsilon_n)_n\) that converges to 0

[BBBM08] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST'08).
Deciding the threshold problem

Theorem [BBBM08]

Under the previous hypotheses, the threshold problem is decidable.

- Check whether $c = f(e^{-r})$
- If not:
 - use the approximation scheme for a sequence $(\varepsilon_n)_n$ that converges to 0
 - stop when the under- and the over-approximations are on the same side of the threshold c

Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games
 - Some informal description
 - A more formal view of the semantics
 - Summary of the results
 - Qualitative analysis of $\frac{1}{2}$-player games
 - Quantitative analysis of $2\frac{1}{2}$-player games
 - Quantitative analysis of $\frac{1}{2}$-player games

4. Conclusion
Conclusion and perspectives

- We have presented a general model for stochastic timed games:
 - timing constraints
 - probabilistic features
 - non-determinism and interaction
Conclusion and perspectives

- We have presented a **general model** for **stochastic timed games**:
 - timing constraints
 - probabilistic features
 - non-determinism and interaction

- Not much has been done so far!
Conclusion and perspectives

- We have presented a general model for stochastic timed games:
 - timing constraints
 - probabilistic features
 - non-determinism and interaction

- Not much has been done so far!
 - even for simple untimed objectives, few is known

<table>
<thead>
<tr>
<th>Model</th>
<th>Qualitative</th>
<th>Quantitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2})-player game</td>
<td>1 clock</td>
<td>decidable ([\text{BBB}+08])</td>
</tr>
<tr>
<td></td>
<td>(n) clocks</td>
<td>decidable(^2)</td>
</tr>
<tr>
<td>(1\frac{1}{2})-player game</td>
<td>1 clock</td>
<td>decidable(^3) ([\text{BF09}])</td>
</tr>
<tr>
<td></td>
<td>(n) clocks</td>
<td>?</td>
</tr>
<tr>
<td>2(\frac{1}{2})-player game</td>
<td>1 clock</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>(n) clocks</td>
<td>?</td>
</tr>
</tbody>
</table>
Conclusion and perspectives

- We have presented a general model for stochastic timed games:
 - timing constraints
 - probabilistic features
 - non-determinism and interaction

- Not much has been done so far!
 - even for simple untimed objectives, few is known
 - nothing about more involved quantitative objectives (e.g. expected time, timed properties, ...)

<table>
<thead>
<tr>
<th>Model</th>
<th>Qualitative</th>
<th>Quantitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$-player game</td>
<td>1 clock</td>
<td>decidable [BBB+08]</td>
</tr>
<tr>
<td></td>
<td>n clocks</td>
<td>decidable2</td>
</tr>
<tr>
<td>$1\frac{1}{2}$-player game</td>
<td>1 clock</td>
<td>decidable3 [BF09]</td>
</tr>
<tr>
<td></td>
<td>n clocks</td>
<td>?</td>
</tr>
<tr>
<td>$2\frac{1}{2}$-player game</td>
<td>1 clock</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>n clocks</td>
<td>?</td>
</tr>
</tbody>
</table>
Conclusion and perspectives

- We have presented a general model for stochastic timed games:
 - timing constraints
 - probabilistic features
 - non-determinism and interaction

- Not much has been done so far!
 - even for simple untimed objectives, few is known
 - nothing about more involved quantitative objectives (e.g. expected time, timed properties, ...)
 - what about approximate probabilities?

<table>
<thead>
<tr>
<th>Model</th>
<th>Qualitative</th>
<th>Quantitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2})-player game</td>
<td>1 clock</td>
<td>decidable \cite{BBB+2009}</td>
</tr>
<tr>
<td>(n) clocks</td>
<td>decidable2</td>
<td>?</td>
</tr>
<tr>
<td>1(\frac{1}{2})-player game</td>
<td>1 clock</td>
<td>decidable3 \cite{BF2009}</td>
</tr>
<tr>
<td>(n) clocks</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>2(\frac{1}{2})-player game</td>
<td>1 clock</td>
<td>?</td>
</tr>
<tr>
<td>(n) clocks</td>
<td>?</td>
<td>undecidable4 \cite{BF2009}</td>
</tr>
</tbody>
</table>
Conclusion and perspectives

- We have presented a **general model** for **stochastic timed games**:
 - timing constraints
 - probabilistic features
 - non-determinism and interaction

- **Not much has been done so far!**
 - even for simple untimed objectives, few is known
 - nothing about more involved quantitative objectives (e.g. expected time, timed properties, ...)
 - what about approximate probabilities?
 - compositionality problems

<table>
<thead>
<tr>
<th>Model</th>
<th>Qualitative</th>
<th>Quantitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$-player game</td>
<td>1 clock</td>
<td>decidable \cite{BBB+08}</td>
</tr>
<tr>
<td>n clocks</td>
<td>decidable2</td>
<td>?</td>
</tr>
<tr>
<td>$1\frac{1}{2}$-player game</td>
<td>1 clock</td>
<td>decidable3 \cite{BF09}</td>
</tr>
<tr>
<td>n clocks</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$2\frac{1}{2}$-player game</td>
<td>1 clock</td>
<td>?</td>
</tr>
<tr>
<td>n clocks</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Conclusion and perspectives

- We have presented a **general model** for **stochastic timed games**:
 - timing constraints
 - probabilistic features
 - non-determinism and interaction

- **Not much has been done so far!**
 - even for simple untimed objectives, few is known
 - nothing about more involved quantitative objectives (e.g. expected time, timed properties, ...)
 - what about approximate probabilities?
 - compositionality problems

- **Probabilistic timed automata** (**PRISM and UPPAAL-PRO model**)
 - the questions considered in this presentation can be “trivially” answered (because they reduce to similar questions on discrete-time Markov decision processes)
 - quantitative objectives should be investigated