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Timed automata

An example of a timed automaton

safe alarm

repairing

failsafe

problem, x :=0

re
pa
ir
, x

≤15

y :=
0

delayed, y :=0

15≤x≤16

repair

2≤y∧x≤56

y :=0

done
, 22≤y≤25

safe
23−→ safe

problem−−−−−→ alarm
15.6−−→ alarm

delayed−−−−−→ failsafe

x 0 23 0 15.6 15.6 ⋅⋅⋅

y 0 23 23 38.6 0

failsafe
2.3−−→ failsafe

repair−−−−→ repairing
22.1−−→ repairing

done−−−→ safe

⋅⋅⋅ 15.6 17.9 17.9 40 40

0 2.3 0 22.1 22.1
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Timed automata

Verification

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP’90).
[AD94] Alur, Dill. A theory of timed automata (Theoretical Computer Science).

Emptiness problem

Is the language accepted by a timed automaton empty?

basic reachability/safety properties (final states)

basic liveness properties (!-regular conditions)

Theorem [AD90,AD94]

The emptiness problem for timed automata is decidable and
PSPACE-complete.

Method: construct a finite abstraction
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Timed automata

The region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ∼ c with c ∈ {0, 1, 2}
y ∼ c with c ∈ {0, 1, 2}The path

x=1 y=1

- can be fired from
- cannot be fired from

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; an equivalence of finite index

a time-abstract bisimulation
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Timed automata

Time-abstract bisimulation

This is a relation between ∙ and ∙ such that:

a
∀

∃
a

�(d)
∀d > 0

∃d ′ > 0
�(d ′)

... and vice-versa (swap ∙ and ∙).
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Timed automata

The region abstraction (2)

- region R defined by:8<
:

0 < x < 1
0 < y < 1
y < x

- time successors of R

image of R when resetting clock x

0
0

1

1

2

2

clock y

clock x
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Timed automata

The construction of the region graph

It “mimics” the behaviours of the clocks.

0

1

2

0 0 1 1 1 2 1 2 1 2

delay delay delay

delay

x :=0

x :=0

ℓ1 ℓ2
y<1, x :=0
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Timed automata

Region automaton ≡ finite bisimulation quotient

N
region graphtimed automaton

ℓ1 ℓ2
y<1,a,x :=0

ℓ1

ℓ1

ℓ1

ℓ2
a

a

a

region automaton

ℒ(reg. aut.) = UNTIME(ℒ(timed aut.))
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Timed automata

An example [AD94]

s0 s1

s2

s3
x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

10/60



Timed automata

An example [AD94]

s0 s1

s2

s3
x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

10/60



Timed automata

An example [AD94]

s0 s1

s2

s3
x>0,a

y :=0

y=1,b x<1,cx<1,c

y<1,a,y :=0

x>1,d

s0

x=y=0

s1

0=y<x<1

s1

y=0,x=1

s1

y=0,x>1

s2

1=y<x

s3

0<y<x<1

s3

0<y<1<x

s3

1=y<x

s3

x>1,y>1

a a a b

b b

c a
a a

d

d

d

d

d

d

d

d

a

y

x

10/60



Timed automata

timed automaton

finite bisimulation

quotient

large (but finite) automaton
(region automaton)

large: exponential in the number of clocks and in the constants (if
encoded in binary). The number of regions is:Y

x∈X

(2Mx + 2) ⋅ ∣X ∣! ⋅ 2∣X ∣

It can be used to check for:

reachability/safety properties
liveness properties (like Büchi properties)
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Timed games

Why (timed) games?

to model uncertainty

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)

x :=0

add
x :=0

mult

x=2

done

x=3

done

to model an interaction with an environment

Example of the gate in the train/gate example

?
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Timed games

An example of a timed game

ℓ0

(x≤2)

ℓ1

ℓ2

ℓ3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,

How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)
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Timed games

Decidability of timed games

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (HSSC’98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and “region-based”
strategies are sufficient.

; classical regions are sufficient for solving such problems
(one only needs to compute the so-called attractor)

15/60
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Timed games

Back to the example: computing winning states

ℓ0

(x≤2)

ℓ1

ℓ2

ℓ3

,

/
x≤1,c1

x<1,u1
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A hint into stochastic timed games

Why add stochastic features? And how?

[KNSS02] Automatic verification of real-time systems with discrete probability distributions (TCS).
[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS’08).
[BF09] Bouyer, Forejt. Reachability in stochastic timed games (ICALP’09).

to model probabilistic behaviours

Example of losses when sending messages

x≤2

lost

delivered

send

x :=0

; the probabilistic timed automata model

used e.g. in PRISM and UPPAAL-PRO

[KNSS02]

to model uncertainty on delays

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)x :=0

add

x :=0

mult

1 21.5 1 32

; the stochastic timed automata model [BBB+08,BF09]
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A hint into stochastic timed games

Stochastic timed game: an example

a

b

c

d

e

f

g
x≤2 x≤2 x=2

x≤1

x=2

x≤3

x≤2x :=0

Timed graph with vertices partitioned among three players:

classical players
playing “turn-based”

the Nature
stochastic player

There are prescribed probability distributions from vertices.
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A hint into stochastic timed games

How is this game played?

a

b

c

d

e

f

g
x≤2 x≤2 x=2

x≤1

x=2

x≤3

x≤2x :=0

Players and play according to standard strategies

Player plays according to the prescribed probability distributions:
choose a delay according to some distribution
choose an action according to some discrete distribution

21/60



A hint into stochastic timed games

Play, an example

a

b

c

d

e

f

g
x≤2

x≤2

x≤2

x≤1

x=2

x≤2

x≤1

x=2

x=2

x=2

x≤3

x≤3

x≤2x :=0

From the game and the strategies we obtain a Markov chain:

(a,0)

(c,1)(c,1)

probability distribution
over delays

(b,1)

(e,1)

(e,1+")

(e,2)

(d,2)

(g ,2)(g ,2)

(f ,2)

(f ,3)
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A hint into stochastic timed games

How can we attach probabilities to delays?

The example of continuous-time Markov chains

exponential distribution

density function t 7→
n
� ⋅ exp(−�t) if t ≥ 0
0 otherwise

; this is ok if delays are in [0,+∞)

But what if bounded intervals?

truncated normal distribution

I

uniform distribution
density function t 7→

§
1
∣I ∣ if t ≥ 0

0 otherwise
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A hint into stochastic timed games

How does the semantics formalize?

We will explain it more formally when all vertices belong to

player . Those are called 1
2 -player games.

We will then extend it using standard strategies for the two other
players, which need however satisfy some measurability assumption
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A hint into stochastic timed games

The 1
2-player game model

�(s
e1−→ . . .

en−→ ): symbolic path from s firing edges e1, . . . , en

Example:
x≤2, e1

y :=0

x=1, e3

x≤5, e2

y≥1

x≤3, e4

�(s0
e1−→ e2−→) = {s0

�1,e1−−−→ s1
�2,e2−−−→ s2 ∣ �1 ≤ 2, �1 + �2 ≤ 5, �2 ≥ 1}

Idea: compute the probability of a symbolic path

From state s:

randomly choose a delay

then randomly select an edge

then continue

ss

probability distribution
over delays

s ′ s ′′ . . .
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s ′ s ′′ . . .
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A hint into stochastic timed games

The 1
2-player game model

symbolic path: �(s
e1−→ ⋅ ⋅ ⋅ en−→ ) = {s �1,e1−−−→ s1 ⋅ ⋅ ⋅

�n,en−−−→ sn}

ℙ
�
�(s

e1−→ ⋅ ⋅ ⋅ en−→ )
�
=

Z
t∈I (s,e1)

ps+t(e1)ℙ
�
�(st

e2−→ ⋅ ⋅ ⋅ en−→ )
�
d�s(t)

I (s, e1) = {� ∣ s �,e1−−→} and �s distribution over I (s) =
S
e
I (s, e)

ps+t distribution over transitions enabled in s + t
(given by weights on transitions)

s
t−→ s + t

e1−→ st
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A hint into stochastic timed games

The 1
2-player game model

ℙ
�
�(s

e1−→ ⋅ ⋅ ⋅ en−→ )
�
=

Z
t∈I (s,e1)

ps+t(e1)ℙ
�
�(st

e2−→ ⋅ ⋅ ⋅ en−→ )
�
d�s(t)

Can be viewed as an n-dimensional integral

Easy extension to constrained symbolic paths

�C(s
e1−→ ⋅ ⋅ ⋅ en−→ ) = {s �1,e1−−−→ s1 ⋅ ⋅ ⋅

�n,en−−−→ sn ∣ (�1, ⋅ ⋅ ⋅ , �n) ∣= C}

Definition over sets of infinite runs:

Cyl(�C(s
e1−→ ⋅ ⋅ ⋅ en−→ )) = {% ⋅ %′ ∣ % ∈ �C(s

e1−→ ⋅ ⋅ ⋅ en−→ )}
ℙ
�
Cyl(�C(s

e1−→ ⋅ ⋅ ⋅ en−→ ))
�
= ℙ
�
�C(s

e1−→ ⋅ ⋅ ⋅ en−→ )
�

unique extension of ℙ to the generated �-algebra

Property: ℙ is a probability measure over sets of infinite runs

Example:

Zeno(s) =
[
M∈ℕ

\
n∈ℕ

[
(e1,⋅⋅⋅ ,en)∈En

Cyl(�Σi�i≤M(s
e1−→ ⋅ ⋅ ⋅ en−→ ))
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A hint into stochastic timed games

An example of computation (with uniform distributions)

(x ≤ 1) (x ≤ 2)

e1, x ≤ 1

x := 0

e0, x = 1 e2, x ≤ 1

e3, x ≤ 2

The probability of the symbolic path �(s0
e1−→ e2−→) is 1

4 .

ℙ
�
�(s0

e1−→ e2−→ )
�
=

Z 1

0
ℙ
�
�(s1

e2−→ )
�
d�s0(t) +

Z 1

1

ℙ
�
�(s1

e2−→ )
�

2
d�s0(t)

=

Z 1

0

Z 1

0

 
ℙ
�
�(s2)

�
2

d�s1(u)

!
d�s0(t)

=

Z 1

0

Z 1

0

�
1

2

du

2

�
dt =

1

4
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A hint into stochastic timed games

An example of computation (with exponential distrib.)

rate 2 rate 3

e1, x ≤ 1

x := 0

e0, x ≥ 1 e2, x ≥ 1

e3, x ≤ 2

The probability of the symbolic path �(s0
e1−→ e2−→) is e−3 − e−5 ≈ 0.043

ℙ
�
�(s0

e1−→ e2−→ )
�
=

Z 1

0
ℙ
�
�(s1

e2−→ )
�
d�s0(t) =

Z 1

0
ℙ
�
�(s1

e2−→ )
�
2 exp(−2t)dt

=

Z 1

0

�Z +∞

1
3 exp(−3u)du

�
2 exp(−2t)dt

= [− exp(−2t)]1t=0 ⋅ [− exp(−3u)]+∞
u=1

= (1− e−2) ⋅ e−3 = e−3 − e−5
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= [− exp(−2t)]1t=0 ⋅ [− exp(−3u)]+∞
u=1

= (1− e−2) ⋅ e−3 = e−3 − e−5
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A hint into stochastic timed games

Some remarks
This defines a purely stochastic process ( 12 -player game).

Continuous-time Markov chains = timed automata with a single
“useless” clock which is reset on all transitions. The distributions on
delays are exponential distributions with a rate per location.

The semantics can be extended in a natural way to several players:

ℙ
�
�(s

e1−→ ⋅ ⋅ ⋅ en−→ )
�
=

Z
t∈I (s,e1)

ps+t(e1)ℙ
�
�(st

e2−→ ⋅ ⋅ ⋅ en−→ )
�
d�s(t)

mass distribution given by the strategy

if s is a player vertex

Probabilistic timed automata = a subclass of the 1 1
2 -player games

2≤x≤5
(z=0)z:=0

2≤x≤5
z=

0

z=0
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A hint into stochastic timed games

The synthesis problem

Problem statement

Given a game G , a (linear-time) property ', a rational threshold ⊳⊲ r ,

is there a strategy f⋄ for player s.t.

for all strategies f2 of player , ℙ
�
G f⋄,f2 ∣= '

�
⊳⊲ r?
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A hint into stochastic timed games

Reachability problem – Example

a

b

c

d

e

f

g
x≤2 x≤2 x=2

x≤1

x=2

x≤3

x≤2x :=0

Uniform distribution over delays

Uniform distribution over edges

Are vertices {b, f } reachable with probability 1 from (a, 0)?

Yes: it is the case when always chooses to move when x = 0.5.

Is the vertex b reachable with probability at least 2
3?

No.
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A hint into stochastic timed games

What kind of games will we play?

Number of players

2 1
2 -player games:

1 1
2 -player games: (“Markov decision process”)

1
2 -player games: (“Markov chain”)

Kind of questions

qualitative questions (threshold is either 0 or 1)

quantitative questions (threshold is a rational number in (0, 1))

Winning objective

The winning objective will be an !-regular condition, or some LTL
property, or some more restrictive condition like a reachability condition.
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A hint into stochastic timed games

Outline

1. Timed automata

2. Timed games

3. A hint into stochastic timed games
Some informal description
A more formal view of the semantics
Summary of the results
Qualitative analysis of 1
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A hint into stochastic timed games

Rough summary of the results

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS’08).
[BBBM08] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST’08).
[BF09] Bouyer, Forejt. Reachability in stochastic timed games (ICALP’09).

Model Qualitative Quantitative

1
2 -player game 1 clock decidable

[BBB+08]
decidable1

[BBBM08]

n clocks decidable?2 ?

1 1
2 -player game 1 clock decidable3

[BF09]
?

n clocks ? ?

2 1
2 -player game 1 clock ? ?

n clocks ? undecidable4

[BF09]

under some assumptions...
1 reactive automata I (s) = ℝ+, exponential distributions and resets on every cycle
2 reactive automata I (s) = ℝ+ and exponential distributions
3 reachability properties
4 even for reachability properties, exponential (or uniform) distributions
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A hint into stochastic timed games

Summary of the results
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A hint into stochastic timed games

Almost-sure model-checking

The qualitative synthesis problem reduces to the so-called “almost-sure
model-checking problem”

s ∣≈ '
def⇔ ℙ

�
{% ∈ Runs(s) ∣ % ∣= '}

�
= 1

There are only vertices, but we will use extra colors to represent
atomic propositions.
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A hint into stochastic timed games

An example

ℓ0

(x≤1)

ℓ1 ℓ2

(x≤1)

ℓ3

(x≤1)

e2, x≤1

e3, x=1

e4, x≥3, x :=0

e5, x≤1

e6, x=0

e1, x≤1 e7, x≤1

A ∕∣= G (green ⇒ F red) but ℙ
�
A ∣= G (green ⇒ F red)

�
= 1

Indeed, almost surely, paths are of the form e∗1 e2
�
e4e5

�!
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A hint into stochastic timed games

The classical region automaton

ℓ0,0

ℓ0,(0,1)

ℓ0,1

ℓ1,0

ℓ1,(0,1)

ℓ1,1

ℓ2,0 ℓ3,0

ℓ3,(0,1)

ℓ3,1

e1

e1

e1

e1

e1

e1

e2

e2

e2e2

e2

e2

e3

e4

e 4

e 4

e5

e5

e 5

e6

e7

e7

e7

e7

e7

e1

... viewed as a finite Markov chain MC (A)

Proposition

For single-clock timed automata,

ℙ
�
A ∣= '

�
= 1 iff ℙ

�
MC (A) ∣= '

�
= 1

(this is independent of the choice of the distributions...)
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A hint into stochastic timed games

The pruned region automaton
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A hint into stochastic timed games

Result

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS’08).

[LMS04] Laroussinie, Markey, Schnoebelen. Model checking timed automata with one or two clocks (CONCUR’04).
[CSS03] Couvreur, Saheb, Sutre. An optimal automata approach to LTL model checking of probabilistic systems (LPAR’03).

Theorem [BBB+08]

For single-clock timed automata, the almost-sure model-checking

of LTL is PSPACE-Complete

of !-regular properties is NLOGSPACE-Complete

Complexity:

size of single-clock region automata = polynomial [LMS04]
apply result of [CSS03] to the finite Markov chain

Correctness: the proof is rather involved

requires the definition of a topology over the set of paths
notions of largeness (for proba 1) and meagerness (for proba 0)
link between probabilities and topology thanks to the topological
games called Banach-Mazur games
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apply result of [CSS03] to the finite Markov chain

Correctness: the proof is rather involved

requires the definition of a topology over the set of paths
notions of largeness (for proba 1) and meagerness (for proba 0)
link between probabilities and topology thanks to the topological
games called Banach-Mazur games
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A hint into stochastic timed games

An example with two clocks

ℓ0 ℓ1 ℓ2

y<1

ℓ3ℓ4

y<1

e1, y<1 e2, y=1

y :=0

e0, x>1

x :=0

e3, 1<y<2e4, y=2

y :=0

e5 x>2

x :=0

If the previous algorithm was correct, A ∣≈ GF red ∧ GF green

However, we can prove that ℙ
�
G¬red

�
> 0

There is a strange convergence phenomenon: along an execution, if
�i > 0 is the delay in locations ℓ2 or ℓ4, then we have that

P
i �i ≤ 1

43/60



A hint into stochastic timed games

An example with two clocks

ℓ0 ℓ1 ℓ2

y<1

ℓ3ℓ4

y<1

e1, y<1 e2, y=1

y :=0

e0, x>1

x :=0

e3, 1<y<2e4, y=2

y :=0

e5 x>2

x :=0

If the previous algorithm was correct, A ∣≈ GF red ∧ GF green

However, we can prove that ℙ
�
G¬red

�
> 0

There is a strange convergence phenomenon: along an execution, if
�i > 0 is the delay in locations ℓ2 or ℓ4, then we have that

P
i �i ≤ 1

43/60



A hint into stochastic timed games

An example with two clocks

ℓ0 ℓ1 ℓ2

y<1

ℓ3ℓ4

y<1

e1, y<1 e2, y=1

y :=0

e0, x>1

x :=0

e3, 1<y<2e4, y=2

y :=0

e5 x>2

x :=0

If the previous algorithm was correct, A ∣≈ GF red ∧ GF green

However, we can prove that ℙ
�
G¬red

�
> 0

There is a strange convergence phenomenon: along an execution, if
�i > 0 is the delay in locations ℓ2 or ℓ4, then we have that

P
i �i ≤ 1

43/60



A hint into stochastic timed games

An example with two clocks

ℓ0 ℓ1 ℓ2

y<1

ℓ3ℓ4

y<1

e1, y<1 e2, y=1

y :=0

e0, x>1

x :=0

e3, 1<y<2e4, y=2

y :=0

e5 x>2

x :=0

If the previous algorithm was correct, A ∣≈ GF red ∧ GF green

However, we can prove that ℙ
�
G¬red

�
> 0

There is a strange convergence phenomenon: along an execution, if
�i > 0 is the delay in locations ℓ2 or ℓ4, then we have that

P
i �i ≤ 1

43/60



A hint into stochastic timed games

A note on Zeno behaviours

The set of Zeno behaviours is measurable:

Zeno(s) =
[
M∈ℕ

\
n∈ℕ

[
(e1,⋅⋅⋅ ,en)∈E n

Cyl(�(s
e1−→ ⋅ ⋅ ⋅ en−→ ))

In single-clock timed automata, we can decide in NLOGSPACE

whether ℙ
�
Zeno(s)

�
= 0:

check whether there is a purely Zeno BSCC in MC(A)

x
<
1x<

1

x<
1

x<1

x<
1

an interesting notion of non-Zeno timed automata

x≤1, x :=0
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A hint into stochastic timed games

Summary of the results

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS’08).
[BBBM08] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST’08).
[BF09] Bouyer, Forejt. Reachability in stochastic timed games (ICALP’09).

Model Qualitative Quantitative

1
2 -player game 1 clock decidable

[BBB+08]
decidable
[BBBM08]

n clocks decidable? ?

1 1
2 -player game 1 clock decidable

[BF09]
?

n clocks ? ?

2 1
2 -player game 1 clock ? ?

n clocks ? undecidable
[BF09]
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A hint into stochastic timed games

Undecidability

[BF09] Bouyer, Forejt. Reachability in stochastic timed games (ICALP’09).

Theorem [BF09]

The reachability problem for stochastic timed games (2 1
2 players) is

undecidable.

Holds for uniform and exponential distributions on delays.

Holds for any quantitative question; we give hints for proba = 1
2

Proof by reduction from halting problem of two-counter machine to
the reachability with probability precisely 1

2 :

simulates a computation of the two-counter machine and
encodes counter values in clock values

stores counter values c1 and c2 as 1
2c1 3c2

will check that is not cheating using the power of the
probabilities
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A hint into stochastic timed games

Undecidability – Comparing counter values
Check clock y stores (c1 + 1, c2), assuming that x stores (c1, c2)

a

b c ,
d

e ,
f

u:=0

u=0

u=0

u=0

y<1

u≤1,y≥1

u=0

u≤1,x>1

x≤1

entered with
x = x0 and y = y0

vertices d , f are reached with probability 1
2 iff

1

2
=

1

4
⋅ y0 +

1

2
⋅ (1− x0)

iff x0 = 2y0
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A hint into stochastic timed games

Undecidability – Incrementation

How do we properly increment the first counter?

a

(x≤1)

b

(u≤1)

c

(u=0)
u=0 u>0

y :=0

x=1,x :=0

u=1

u:=0
next instruction

check that x = 2y

enters with x = 1
2c1 3c2

should leave with y = 1
2c1+13c2
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A hint into stochastic timed games

Undecidability – Zero test

How do we check that c1 is zero?

a

(x≤1)

b

(x,u≤1)

c

(u=0)

d (u=0)

,e

x=1,u=0

u=0 u>0

y :=0

x=1,x :=0

u=1

u:=0

check that y=3x

enters with x= 1
3c2

should go the proba.
gadget if c2=0

i.e. if x=1

should leave with y= 1

3c2−1

x :=y

Player has a strategy to reach,with proba. 1
2 iff c1 is initially zero.
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Summary of the results

[BBB+08] Baier, Bertrand, Bouyer, Brihaye, Größer. Almost-sure model checking of infinite paths in one-clock timed automata (LICS’08).
[BBBM08] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST’08).
[BF09] Bouyer, Forejt. Reachability in stochastic timed games (ICALP’09).

Model Qualitative Quantitative

1
2 -player game 1 clock decidable

[BBB+08]
decidable
[BBBM08]

n clocks decidable? ?

1 1
2 -player game 1 clock decidable

[BF09]
?

n clocks ? ?

2 1
2 -player game 1 clock ? ?

n clocks ? undecidable
[BF09]
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A hint into stochastic timed games

Towards quantitative analysis

The abstraction MC (A) is no more correct.

Can be reduced to solving a system of differential equations.
; hard to solve in general, even for simple distributions

We will describe a restricted framework in which:

we will compute a closed-form expression for the probability

we will be able to approximate the probability, i.e., for every " > 0,
we will compute two rationals p−

" and p+
" such that:¨

p−
" ≤ ℙ

�
s0 ∣= '

�
≤ p−

" + "

p+
" − " ≤ ℙ

�
s0 ∣= '

�
≤ p+

"

we will be able to decide the threshold problem:

“Given A, ', c ∈ ℚ, and ∼ ∈ {<,≤,=,≥, >},
does ℙ

�
s0 ∣= '

�
∼ c in A?”
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we will be able to approximate the probability, i.e., for every " > 0,
we will compute two rationals p−

" and p+
" such that:¨

p−
" ≤ ℙ

�
s0 ∣= '

�
≤ p−

" + "

p+
" − " ≤ ℙ

�
s0 ∣= '

�
≤ p+

"

we will be able to decide the threshold problem:

“Given A, ', c ∈ ℚ, and ∼ ∈ {<,≤,=,≥, >},
does ℙ

�
s0 ∣= '

�
∼ c in A?”
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A hint into stochastic timed games

An example

ℓ0

x≤1

ℓ1 ℓ2

x≤2

ℓ3

e2, x≤1

e2, x≤1

e3, x≤2, x :=0

e3, x≤2, x :=0

e4, x≥2, x :=0

e4, x≥2, x :=0

e5, x≤2

e5, x≤2

e6, x=0

e6, x=0

e1, x≤1, x :=0

e1, x≤1, x :=0

e7

e7

+ distributions �s : t 7→ e−t when I (s) = ℝ+

�s uniform distribution when I (s) is bounded
+ uniform weights on transitions

We construct a finite Markov chain MC ′(A) with macro-edges:

ℓ0,0 ℓ1,0 ℓ2,0 ℓ3,0

e6e7 0

e2e4

1
2
⋅e−2

e5e3

1
2
⋅(1+e−2)

e1
1
2

e
2
e
3

1
2
⋅(1−e−2)

e
5
e
4

1
2
⋅(1−e−2)

e7
1

54/60



A hint into stochastic timed games

An example

ℓ0

x≤1

ℓ1 ℓ2

x≤2

ℓ3

e2, x≤1

e2, x≤1

e3, x≤2, x :=0

e3, x≤2, x :=0

e4, x≥2, x :=0

e4, x≥2, x :=0

e5, x≤2

e5, x≤2

e6, x=0

e6, x=0

e1, x≤1, x :=0

e1, x≤1, x :=0

e7

e7

+ distributions �s : t 7→ e−t when I (s) = ℝ+

�s uniform distribution when I (s) is bounded
+ uniform weights on transitions

We construct a finite Markov chain MC ′(A) with macro-edges:

ℓ0,0 ℓ1,0 ℓ2,0 ℓ3,0

e6e7 0

e2e4

1
2
⋅e−2

e5e3

1
2
⋅(1+e−2)

e1
1
2

e
2
e
3

1
2
⋅(1−e−2)

e
5
e
4

1
2
⋅(1−e−2)

e7
1

54/60



A hint into stochastic timed games

An example

ℓ0

x≤1

ℓ1 ℓ2

x≤2

ℓ3

e2, x≤1

e2, x≤1

e3, x≤2, x :=0

e3, x≤2, x :=0

e4, x≥2, x :=0

e4, x≥2, x :=0

e5, x≤2

e5, x≤2

e6, x=0

e6, x=0

e1, x≤1, x :=0

e1, x≤1, x :=0

e7

e7

+ distributions �s : t 7→ e−t when I (s) = ℝ+

�s uniform distribution when I (s) is bounded
+ uniform weights on transitions

We construct a finite Markov chain MC ′(A) with macro-edges:

ℓ0,0 ℓ1,0 ℓ2,0 ℓ3,0

e6e7 0

e2e4

1
2
⋅e−2

e5e3

1
2
⋅(1+e−2)

e1
1
2

e
2
e
3

1
2
⋅(1−e−2)

e
5
e
4

1
2
⋅(1−e−2)

e7
1

54/60



A hint into stochastic timed games

An example

ℓ0

x≤1

ℓ1 ℓ2

x≤2

ℓ3

e2, x≤1

e2, x≤1

e3, x≤2, x :=0

e3, x≤2, x :=0

e4, x≥2, x :=0

e4, x≥2, x :=0

e5, x≤2

e5, x≤2

e6, x=0

e6, x=0

e1, x≤1, x :=0e1, x≤1, x :=0 e7

e7

+ distributions �s : t 7→ e−t when I (s) = ℝ+

�s uniform distribution when I (s) is bounded
+ uniform weights on transitions

We construct a finite Markov chain MC ′(A) with macro-edges:

ℓ0,0 ℓ1,0 ℓ2,0 ℓ3,0

e6e7 0

e2e4

1
2
⋅e−2

e5e3

1
2
⋅(1+e−2)

e1
1
2

e
2
e
3

1
2
⋅(1−e−2)

e
5
e
4

1
2
⋅(1−e−2)

e7
1

54/60



A hint into stochastic timed games

An example

ℓ0

x≤1

ℓ1 ℓ2

x≤2

ℓ3

e2, x≤1e2, x≤1

e3, x≤2, x :=0e3, x≤2, x :=0

e4, x≥2, x :=0

e4, x≥2, x :=0

e5, x≤2

e5, x≤2

e6, x=0

e6, x=0

e1, x≤1, x :=0

e1, x≤1, x :=0

e7

e7

+ distributions �s : t 7→ e−t when I (s) = ℝ+

�s uniform distribution when I (s) is bounded
+ uniform weights on transitions

We construct a finite Markov chain MC ′(A) with macro-edges:

ℓ0,0 ℓ1,0 ℓ2,0 ℓ3,0

e6e7 0

e2e4

1
2
⋅e−2

e5e3

1
2
⋅(1+e−2)

e1
1
2

e
2
e
3

1
2
⋅(1−e−2)

e
5
e
4

1
2
⋅(1−e−2)

e7
1

54/60



A hint into stochastic timed games

An example

ℓ0

x≤1

ℓ1 ℓ2

x≤2

ℓ3

e2, x≤1e2, x≤1

e3, x≤2, x :=0

e3, x≤2, x :=0

e4, x≥2, x :=0e4, x≥2, x :=0

e5, x≤2

e5, x≤2

e6, x=0

e6, x=0

e1, x≤1, x :=0

e1, x≤1, x :=0

e7

e7

+ distributions �s : t 7→ e−t when I (s) = ℝ+

�s uniform distribution when I (s) is bounded
+ uniform weights on transitions

We construct a finite Markov chain MC ′(A) with macro-edges:

ℓ0,0 ℓ1,0 ℓ2,0 ℓ3,0

e6e7 0

e2e4

1
2
⋅e−2

e5e3

1
2
⋅(1+e−2)

e1
1
2

e
2
e
3

1
2
⋅(1−e−2)

e
5
e
4

1
2
⋅(1−e−2)

e7
1

54/60



A hint into stochastic timed games

An example

ℓ0

x≤1

ℓ1 ℓ2

x≤2

ℓ3

e2, x≤1

e2, x≤1

e3, x≤2, x :=0

e3, x≤2, x :=0

e4, x≥2, x :=0e4, x≥2, x :=0

e5, x≤2e5, x≤2

e6, x=0

e6, x=0

e1, x≤1, x :=0

e1, x≤1, x :=0

e7

e7

+ distributions �s : t 7→ e−t when I (s) = ℝ+

�s uniform distribution when I (s) is bounded
+ uniform weights on transitions

We construct a finite Markov chain MC ′(A) with macro-edges:

ℓ0,0 ℓ1,0 ℓ2,0 ℓ3,0

e6e7 0

e2e4

1
2
⋅e−2

e5e3

1
2
⋅(1+e−2)

e1
1
2

e
2
e
3

1
2
⋅(1−e−2)

e
5
e
4

1
2
⋅(1−e−2)

e7
1

54/60



A hint into stochastic timed games

An example

ℓ0

x≤1

ℓ1 ℓ2

x≤2

ℓ3

e2, x≤1

e2, x≤1

e3, x≤2, x :=0e3, x≤2, x :=0

e4, x≥2, x :=0

e4, x≥2, x :=0

e5, x≤2e5, x≤2

e6, x=0

e6, x=0

e1, x≤1, x :=0

e1, x≤1, x :=0

e7

e7

+ distributions �s : t 7→ e−t when I (s) = ℝ+

�s uniform distribution when I (s) is bounded
+ uniform weights on transitions

We construct a finite Markov chain MC ′(A) with macro-edges:

ℓ0,0 ℓ1,0 ℓ2,0 ℓ3,0

e6e7 0

e2e4

1
2
⋅e−2

e5e3

1
2
⋅(1+e−2)

e1
1
2

e
2
e
3

1
2
⋅(1−e−2)

e
5
e
4

1
2
⋅(1−e−2)

e7
1

54/60



A hint into stochastic timed games

An example

ℓ0

x≤1

ℓ1 ℓ2

x≤2

ℓ3

e2, x≤1

e2, x≤1

e3, x≤2, x :=0

e3, x≤2, x :=0

e4, x≥2, x :=0

e4, x≥2, x :=0

e5, x≤2

e5, x≤2

e6, x=0e6, x=0

e1, x≤1, x :=0

e1, x≤1, x :=0

e7e7

+ distributions �s : t 7→ e−t when I (s) = ℝ+

�s uniform distribution when I (s) is bounded
+ uniform weights on transitions

We construct a finite Markov chain MC ′(A) with macro-edges:

ℓ0,0 ℓ1,0 ℓ2,0 ℓ3,0

e6e7 0

e2e4

1
2
⋅e−2

e5e3

1
2
⋅(1+e−2)

e1
1
2

e
2
e
3

1
2
⋅(1−e−2)

e
5
e
4

1
2
⋅(1−e−2)

e7
1

54/60



A hint into stochastic timed games

An example

ℓ0

x≤1

ℓ1 ℓ2

x≤2

ℓ3

e2, x≤1

e2, x≤1

e3, x≤2, x :=0

e3, x≤2, x :=0

e4, x≥2, x :=0

e4, x≥2, x :=0

e5, x≤2

e5, x≤2

e6, x=0

e6, x=0

e1, x≤1, x :=0

e1, x≤1, x :=0

e7e7

+ distributions �s : t 7→ e−t when I (s) = ℝ+

�s uniform distribution when I (s) is bounded
+ uniform weights on transitions

We construct a finite Markov chain MC ′(A) with macro-edges:

ℓ0,0 ℓ1,0 ℓ2,0 ℓ3,0

e6e7 0

e2e4

1
2
⋅e−2

e5e3

1
2
⋅(1+e−2)

e1
1
2

e
2
e
3

1
2
⋅(1−e−2)

e
5
e
4

1
2
⋅(1−e−2)

e7
1

54/60



A hint into stochastic timed games

An example

ℓ0

x≤1

ℓ1 ℓ2

x≤2

ℓ3

e2, x≤1

e2, x≤1

e3, x≤2, x :=0

e3, x≤2, x :=0

e4, x≥2, x :=0

e4, x≥2, x :=0

e5, x≤2

e5, x≤2

e6, x=0

e6, x=0

e1, x≤1, x :=0

e1, x≤1, x :=0

e7

e7

+ distributions �s : t 7→ e−t when I (s) = ℝ+

�s uniform distribution when I (s) is bounded
+ uniform weights on transitions

We construct a finite Markov chain MC ′(A) with macro-edges:

ℓ0,0

ℓ1,0

ℓ2,0 ℓ3,0

e6e7 0

e2e4

1
2
⋅e−2

e5e3

1
2
⋅(1+e−2)

e1
1
2

e
2
e
3

1
2
⋅(1−e−2)

e
5
e
4

1
2
⋅(1−e−2)

e7
1

54/60



A hint into stochastic timed games

Correctness of the abstraction

Theorem
Under some hypotheses, for single-clock automaton A and property ',

ℙA(s0 ∣= ') = ℙMC ′(A)(s0 ∣= 3F')

for some well-chosen set F'.

Hypotheses:

if s = (ℓ, �) and s ′ = (ℓ, �′) with �, �′ > M, �s = �s′

every bounded cycle resets the clock

Limits of the abstraction: there may be no closed form for the
values labelling the edges of MC ′(A).
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A hint into stochastic timed games

Computing the probability

We assume furthermore that:

for every state s, I (s) = ℝ+

(the timed automaton is ‘reactive’)

in every location ℓ, the distribution over delays has density
t 7→ �ℓ ⋅ e−�ℓ⋅t for some �ℓ ∈ ℚ+

; more general than continuous-time Markov chains

Proposition

Under those hypotheses, ℙ
�
s0 ∣= '

�
can be expressed as f (e−r ) where r

is a rational number, and f ∈ ℚ(X ) is a rational function.

; Note: the hypothesis “reset all bounded cycles” is necessary to get
this form.
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A hint into stochastic timed games

Approximating the probability

ℙ
�
s0 ∣= '

�
= f (e−r )

We can compute sequences (ai )i and (bi )i with

limi ai = limi bi = e−r

ai ≤ ai+1 ≤ e−r ≤ bi+1 ≤ bi

As e−r is transcendental, we can compute an interval (�, �) ∋ e−r

over which f is monotonic:

writing f = P/Q, we have that f ′ = (P ′Q − PQ ′)/Q2

by induction on the degree of R = P ′Q − PQ ′, we prove that the
sign of R is constant over (�, �) (that we can compute)
If the sign of R′ is constant over (�′, �′) (containing e−r ), the sign of R will be constant over

(�, �) = (aj , bj ) ⊆ (�′, �′) if R(aj ) ⋅ R(bj ) > 0.

When (aN , bN) ⊆ (�, �), the two sequences (f (ai ))i≥N and
(f (bi ))i≥N are monotonic and converge to f (e−r )
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A hint into stochastic timed games

Deciding the threshold problem

[BBBM08] Bertrand, Bouyer, Brihaye, Markey. Quantitative model-checking of one-clock timed automata under probabilistic semantics (QEST’08).

Theorem [BBBM08]

Under the previous hypotheses, the threshold problem is decidable.

Check whether c = f (e−r )

If not:

use the approximation scheme for a sequence ("n)n that converges
to 0
stop when the under- and the over-approximations are on the same
side of the threshold c
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Conclusion

Conclusion and perspectives

We have presented a general model for stochastic timed games:

timing constraints
probabilistic features
non-determinism and interaction

Not much has been done so far!

even for simple untimed objectives, few is known

nothing about more involved quantitative objectives (e.g. expected
time, timed properties, ...)
what about approximate probabilities?
compositionality problems

Probabilistic timed automata (PRISM and UPPAAL-PRO model)

the questions considered in this presentation can be “trivially”
answered (because they reduce to similar questions on discrete-time
Markov decision processes)
quantitative objectives should be investigated
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