Probabilities in Timed Automata

Patricia Bouyer

LSV, ENS Cachan & CNRS, France

Based on joint works with Christel Baier (TU Dresden, Germany), Nathalie Bertrand (IRISA, France), Thomas Brihaye (UMH, Belgium), Nicolas Markey (LSV, France) and Marcus Größer (TU Dresden, Germany)

Outline

1. Introduction

- 2. A probabilistic semantics
- 3. Solving the qualitative model-checking problem
- 4. Towards quantitative analysis
- 5. Related works

Timed automata, an idealized mathematical model for real-time systems

Timed automata, an idealized mathematical model for real-time systems

- assumes infinite precision of clocks
- assumes instantaneous actions
- ▶ etc...

Timed automata, an idealized mathematical model for real-time systems

- assumes infinite precision of clocks
- assumes instantaneous actions
- ▶ etc...

→ notion of strong robustness defined in [DDR04]

- Timed automata, an idealized mathematical model for real-time systems
 - assumes infinite precision of clocks
 - assumes instantaneous actions
 - ▶ etc...

→ notion of strong robustness defined in [DDR04]

In a model, only few traces may violate the correctness property: they may hence not be relevant...

- Timed automata, an idealized mathematical model for real-time systems
 - assumes infinite precision of clocks
 - assumes instantaneous actions
 - ▶ etc...

→ notion of strong robustness defined in [DDR04]

In a model, only few traces may violate the correctness property: they may hence not be relevant...

→ topological notion of tube acceptance in [GHJ97]

- Timed automata, an idealized mathematical model for real-time systems
 - assumes infinite precision of clocks
 - assumes instantaneous actions
 - ▶ etc...

→ notion of strong robustness defined in [DDR04]

- In a model, only few traces may violate the correctness property: they may hence not be relevant...
 - → topological notion of tube acceptance in [GHJ97]
 - → notion of fair correctness in [VV06] based on probabilities (for untimed systems) + topological characterization

Timed automata, an idealized mathematical model for real-time systems

- assumes infinite precision of clocks
- assumes instantaneous actions
- ▶ etc...

→ notion of strong robustness defined in [DDR04]

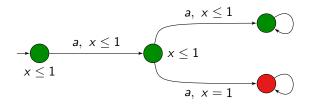
In a model, only few traces may violate the correctness property: they may hence not be relevant...

→ topological notion of tube acceptance in [GHJ97]

→ notion of fair correctness in [VV06] based on probabilities (for untimed systems) + topological characterization

Aim: Use probabilities to "relax" the semantics of timed automata

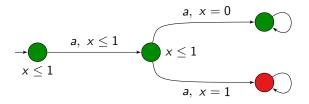
Initial example



Intuition: from the initial state,

this automaton *almost-surely* satisfies "G green"

A maybe less intuitive example



Does it *almost-surely* satisfy "F red"?

Outline

1. Introduction

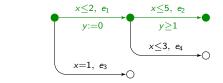
2. A probabilistic semantics

- 3. Solving the qualitative model-checking problem
- 4. Towards quantitative analysis
- 5. Related works

▶ $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$: symbolic path from *s* firing edges e_1, \dots, e_n

▶ $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$: symbolic path from *s* firing edges e_1, \dots, e_n

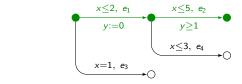
Example:



 $\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2}) = \{ s_0 \xrightarrow{\tau_1, e_1} s_1 \xrightarrow{\tau_2, e_2} s_2 \mid \tau_1 \leq 2, \ \tau_1 + \tau_2 \leq 5, \ \tau_2 \geq 1 \}$

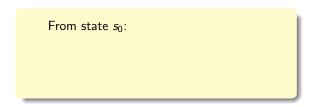
▶ $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$: symbolic path from *s* firing edges e_1, \dots, e_n

► Example:



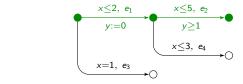
$$\pi(\mathbf{s}_0 \xrightarrow{\mathbf{e}_1} \overset{\mathbf{e}_2}{\longrightarrow}) = \{\mathbf{s}_0 \xrightarrow{\tau_1, \mathbf{e}_1} \mathbf{s}_1 \xrightarrow{\tau_2, \mathbf{e}_2} \mathbf{s}_2 \mid \tau_1 \leq 2, \ \tau_1 + \tau_2 \leq 5, \ \tau_2 \geq 1\}$$

► Idea:



▶ $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$: symbolic path from *s* firing edges e_1, \dots, e_n

► Example:



$$\pi(\mathbf{s}_0 \xrightarrow{\mathbf{e}_1} \overset{\mathbf{e}_2}{\longrightarrow}) = \{\mathbf{s}_0 \xrightarrow{\tau_1, \mathbf{e}_1} \mathbf{s}_1 \xrightarrow{\tau_2, \mathbf{e}_2} \mathbf{s}_2 \mid \tau_1 \leq 2, \ \tau_1 + \tau_2 \leq 5, \ \tau_2 \geq 1\}$$

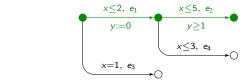
► Idea:

From state s₀:

randomly choose a delay

▶ $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$: symbolic path from *s* firing edges e_1, \dots, e_n

► Example:



$$\pi(\mathbf{s}_0 \xrightarrow{\mathbf{e}_1} \mathbf{e}_2) = \{\mathbf{s}_0 \xrightarrow{\tau_1, \mathbf{e}_1} \mathbf{s}_1 \xrightarrow{\tau_2, \mathbf{e}_2} \mathbf{s}_2 \mid \tau_1 \leq 2, \ \tau_1 + \tau_2 \leq 5, \ \tau_2 \geq 1\}$$

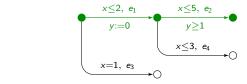
► Idea:

From state s₀:

- randomly choose a delay
- then randomly select an edge

▶ $\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n})$: symbolic path from *s* firing edges e_1, \dots, e_n

► Example:



$$\pi(\mathbf{s}_0 \xrightarrow{\mathbf{e}_1} \overset{\mathbf{e}_2}{\longrightarrow}) = \{\mathbf{s}_0 \xrightarrow{\tau_1, \mathbf{e}_1} \mathbf{s}_1 \xrightarrow{\tau_2, \mathbf{e}_2} \mathbf{s}_2 \mid \tau_1 \leq 2, \ \tau_1 + \tau_2 \leq 5, \ \tau_2 \geq 1\}$$

► Idea:

From state *s*₀:

- randomly choose a delay
- then randomly select an edge
- then continue

symbolic path:
$$\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n\}$$

$$\mathbb{P}\Big(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\Big) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\Big(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\Big) d\mu_s(t)$$

symbolic path:
$$\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n\}$$

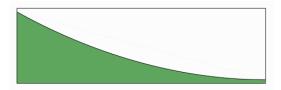
$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

• $I(s, e_1) = \{ \tau \mid s \xrightarrow{\tau, e_1} \}$ and μ_s distribution over $I(s) = \bigcup_e I(s, e)$

symbolic path: $\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n\}$

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

►
$$I(s, e_1) = \{\tau \mid s \xrightarrow{\tau, e_1}\}$$
 and μ_s distribution over $I(s) = \bigcup_e I(s, e)$



symbolic path:
$$\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n\}$$

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

- ► $I(s, e_1) = \{\tau \mid s \xrightarrow{\tau, e_1}\}$ and μ_s distribution over $I(s) = \bigcup_e I(s, e)$
- *p*_{s+t} distribution over transitions enabled in s + t (given by weights on transitions)

symbolic path:
$$\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n\}$$

$$\mathbb{P}\Big(\pi(\mathbf{s} \xrightarrow{\mathbf{e}_{1}} \cdots \xrightarrow{\mathbf{e}_{n}})\Big) = \int_{t \in I(s,e_{1})}^{t} p_{s+t}(e_{1}) \mathbb{P}\Big(\pi(\mathbf{s}_{t} \xrightarrow{\mathbf{e}_{2}} \cdots \xrightarrow{\mathbf{e}_{n}})\Big) d\mu_{s}(t)$$

- ► $I(s, e_1) = \{\tau \mid s \xrightarrow{\tau, e_1}\}$ and μ_s distribution over $I(s) = \bigcup_e I(s, e)$
- *p*_{s+t} distribution over transitions enabled in s + t (given by weights on transitions)

$$\blacktriangleright \ s \xrightarrow{t} s + t \xrightarrow{e_1} s_t$$

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

$$\mathbb{P}\Big(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\Big) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\Big(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\Big) d\mu_s(t)$$

• Can be viewed as an *n*-dimensional integral

$$\mathbb{P}\Big(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\Big) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\Big(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\Big) d\mu_s(t)$$

- Can be viewed as an *n*-dimensional integral
- ► Easy extension to constrained symbolic paths $\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$

$$\mathbb{P}\Big(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\Big) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\Big(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\Big) d\mu_s(t)$$

- Can be viewed as an *n*-dimensional integral
- ► Easy extension to constrained symbolic paths $\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$

Definition over sets of infinite runs:

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

- Can be viewed as an *n*-dimensional integral
- ► Easy extension to constrained symbolic paths $\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$

Definition over sets of infinite runs:

$$\blacktriangleright \operatorname{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{ \varrho \cdot \varrho' \mid \varrho \in \pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) \}$$

$$\mathbb{P}\Big(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\Big) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\Big(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\Big) d\mu_s(t)$$

- Can be viewed as an *n*-dimensional integral
- ► Easy extension to constrained symbolic paths $\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$

Definition over sets of infinite runs:

$$\blacktriangleright \operatorname{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{ \varrho \cdot \varrho' \mid \varrho \in \pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) \}$$

$$\blacktriangleright \mathbb{P}\left(\mathsf{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))\right) = \mathbb{P}\left(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right)$$

$$\mathbb{P}\left(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\right) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\left(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\right) d\mu_s(t)$$

- Can be viewed as an *n*-dimensional integral
- ► Easy extension to constrained symbolic paths $\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$
- Definition over sets of infinite runs:
 - $\operatorname{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{ \varrho \cdot \varrho' \mid \varrho \in \pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) \}$
 - $\blacktriangleright \mathbb{P}(\mathsf{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))) = \mathbb{P}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$
 - ► unique extension of P to the generated σ-algebra

$$\mathbb{P}\Big(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\Big) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\Big(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\Big) d\mu_s(t)$$

Can be viewed as an *n*-dimensional integral

► Easy extension to constrained symbolic paths $\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$

Definition over sets of infinite runs:

- $\operatorname{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{ \varrho \cdot \varrho' \mid \varrho \in \pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) \}$
- $\blacktriangleright \mathbb{P}(\mathsf{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))) = \mathbb{P}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$

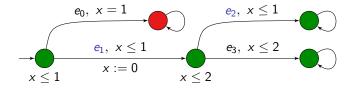
▶ unique extension of P to the generated σ-algebra

▶ Property: P is a probability measure over sets of infinite runs

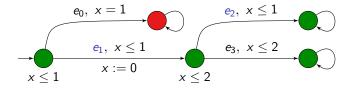
$$\mathbb{P}\Big(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})\Big) = \int_{t \in I(s,e_1)} p_{s+t}(e_1) \mathbb{P}\Big(\pi(s_t \xrightarrow{e_2} \cdots \xrightarrow{e_n})\Big) d\mu_s(t)$$

- Can be viewed as an *n*-dimensional integral
- ► Easy extension to constrained symbolic paths $\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) = \{s \xrightarrow{\tau_1, e_1} s_1 \cdots \xrightarrow{\tau_n, e_n} s_n \mid (\tau_1, \cdots, \tau_n) \models \mathcal{C}\}$
- Definition over sets of infinite runs:
 - $\operatorname{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n})) = \{ \varrho \cdot \varrho' \mid \varrho \in \pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}) \}$
 - $\blacktriangleright \mathbb{P}(\mathsf{Cyl}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))) = \mathbb{P}(\pi_{\mathcal{C}}(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$
 - ► unique extension of P to the generated σ-algebra
- ▶ Property: \mathbb{P} is a probability measure over sets of infinite runs
- ► Example:

► Zeno(s) =
$$\bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \dots, e_n) \in E^n} Cyl(\pi_{\Sigma_i \tau_i \leq M}(s \xrightarrow{e_1} \dots \xrightarrow{e_n}))$$

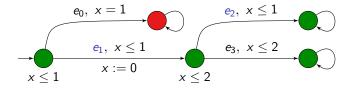


The probability of the symbolic path $\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})$ is $\frac{1}{4}$.



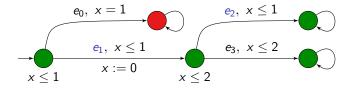
The probability of the symbolic path $\pi(s_0 \xrightarrow{e_1} e_2)$ is $\frac{1}{4}$.

$$\mathbb{P}\left(\pi(s_0 \xrightarrow{e_1})\right) = \int_0^1 \mathbb{P}\left(\pi(s_1 \xrightarrow{e_2})\right) \mathrm{d}\mu_{s_0}(t) + \int_1^1 \frac{\mathbb{P}\left(\pi(s_1 \xrightarrow{e_2})\right)}{2} \mathrm{d}\mu_{s_0}(t)$$



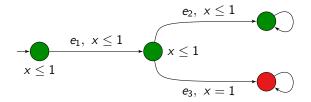
The probability of the symbolic path $\pi(s_0 \xrightarrow{e_1} e_2)$ is $\frac{1}{4}$.

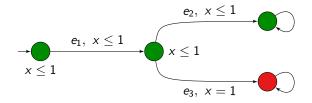
$$\mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})\right) = \int_0^1 \mathbb{P}\left(\pi(s_1 \xrightarrow{e_2})\right) \mathrm{d}\mu_{s_0}(t) + \int_1^1 \frac{\mathbb{P}\left(\pi(s_1 \xrightarrow{e_2})\right)}{2} \mathrm{d}\mu_{s_0}(t)$$
$$= \int_0^1 \int_0^1 \left(\frac{\mathbb{P}\left(\pi(s_2)\right)}{2} \mathrm{d}\mu_{s_1}(u)\right) \mathrm{d}\mu_{s_0}(t)$$



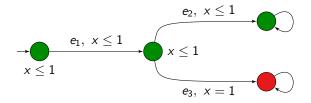
The probability of the symbolic path $\pi(s_0 \xrightarrow{e_1} e_2)$ is $\frac{1}{4}$.

$$\begin{split} \mathbb{P}\Big(\pi(s_0 \xrightarrow{\mathbf{e}_1} \xrightarrow{\mathbf{e}_2})\Big) &= \int_0^1 \mathbb{P}\Big(\pi(s_1 \xrightarrow{\mathbf{e}_2})\Big) \mathrm{d}\mu_{s_0}(t) + \int_1^1 \frac{\mathbb{P}\Big(\pi(s_1 \xrightarrow{\mathbf{e}_2})\Big)}{2} \mathrm{d}\mu_{s_0}(t) \\ &= \int_0^1 \int_0^1 \left(\frac{\mathbb{P}\Big(\pi(s_2)\Big)}{2} \mathrm{d}\mu_{s_1}(u)\right) \mathrm{d}\mu_{s_0}(t) \\ &= \int_0^1 \int_0^1 \left(\frac{1}{2} \frac{\mathrm{d}u}{2}\right) \mathrm{d}t \quad = \frac{1}{4} \end{split}$$

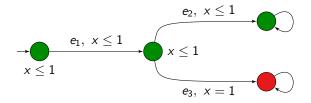




$$\blacktriangleright \mathbb{P}\left(\pi(s_0 \xrightarrow{e_1})) = 1\right)$$



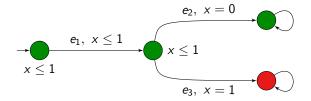
$$\mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})\right) = 1$$
$$\mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_3})\right) = 0$$

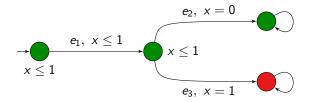


$$\blacktriangleright \mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})\right) = 1$$

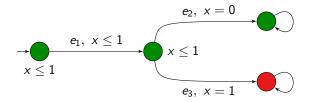
$$\blacktriangleright \mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_3})\right) = 0$$

• $\mathbb{P}(\mathbf{G} \text{ green}) = 1$



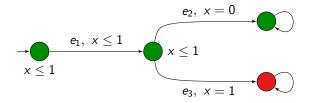


$$\blacktriangleright \mathbb{P}\left(\pi(s_0 \xrightarrow{\mathbf{e}_1} \xrightarrow{\mathbf{e}_2})\right) = \mathbf{0}$$



$$\mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_2})\right) = 0$$

$$\mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_3})\right) = 1$$



$$\blacktriangleright \mathbb{P}\left(\pi(s_0 \xrightarrow{\mathbf{e}_1} \xrightarrow{\mathbf{e}_2})\right) = \mathbf{0}$$

- $\blacktriangleright \mathbb{P}\left(\pi(s_0 \xrightarrow{e_1} \xrightarrow{e_3})\right) = 1$
- $\blacktriangleright \ \mathbb{P}\big(\mathbf{F} \ \mathsf{red}\big) = 1$

Almost-sure model-checking

If φ is an LTL (or ω -regular) property,

$$egin{array}{ll} egin{array}{ccc} s \models arphi & \overset{ ext{def}}{\Leftrightarrow} & \mathbb{P}ig(\{arrho \in \mathsf{Runs}(s) \mid arrho \models arphi\}ig) = 1 \end{array}$$

Almost-sure model-checking

If φ is an LTL (or ω -regular) property,

$$egin{array}{lll} egin{array}{ccc} s \succcurlyeq arphi & \overset{ ext{def}}{\Leftrightarrow} & \mathbb{P}ig(\{arrho \in \mathsf{Runs}(s) \mid arrho \models arphi\}ig) = 1 \end{array}$$

(This definition extends naturally to CTL* specifications...)

Almost-sure model-checking

If φ is an LTL (or ω -regular) property,

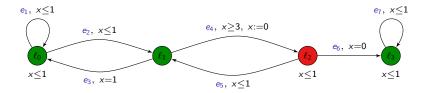
$$egin{array}{lll} egin{array}{ccc} s \succcurlyeq arphi & \overset{ ext{def}}{\Leftrightarrow} & \mathbb{P}ig(\{arrho \in \mathsf{Runs}(s) \mid arrho \models arphi\}ig) = 1 \end{array}$$

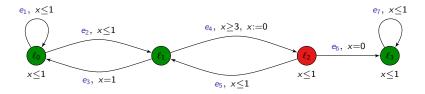
(This definition extends naturally to CTL* specifications...)

We want to decide the almost-sure model-checking... (This is a qualitative question)

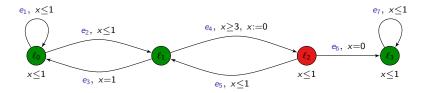
Outline

- 1. Introduction
- 2. A probabilistic semantics
- 3. Solving the qualitative model-checking problem
- 4. Towards quantitative analysis
- 5. Related works

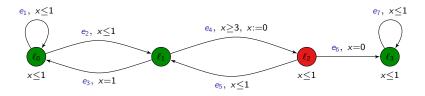




 $\mathcal{A} \not\models \mathbf{G}(\text{green} \Rightarrow \mathbf{F} \text{ red})$



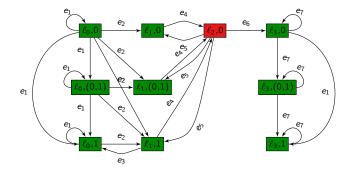
 $\mathcal{A} \not\models \mathbf{G}(\text{green} \Rightarrow \mathbf{F} \text{ red}) \quad \text{but} \quad \mathcal{A} \models \mathbf{G}(\text{green} \Rightarrow \mathbf{F} \text{ red})$

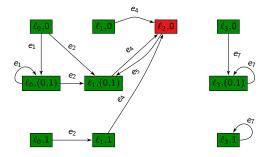


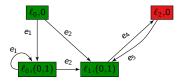
 $\mathcal{A} \not\models \mathbf{G}(\text{green} \Rightarrow \mathbf{F} \text{ red}) \quad \text{but} \quad \mathcal{A} \models \mathbf{G}(\text{green} \Rightarrow \mathbf{F} \text{ red})$

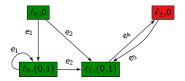
Indeed, almost surely, paths are of the form $e_1^* e_2 (e_4 e_5)^{\omega}$

The classical region automaton

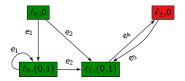








... viewed as a finite Markov chain $MC(\mathcal{A})$



... viewed as a finite Markov chain $MC(\mathcal{A})$

Theorem

For single-clock timed automata,

$$\mathcal{A} \models \varphi \quad \text{iff} \quad \mathbb{P}(\mathcal{MC}(\mathcal{A}) \models \varphi) = 1$$

Theorem

- of LTL is PSPACE-Complete
- of ω -regular properties is NLOGSPACE-Complete

Theorem

- of LTL is PSPACE-Complete
- of ω -regular properties is NLOGSPACE-Complete
- ► Complexity:

Theorem

- of LTL is PSPACE-Complete
- of ω -regular properties is NLOGSPACE-Complete
- ► Complexity:
 - size of single-clock region automata = polynomial [LMS04]

Theorem

- of LTL is PSPACE-Complete
- of ω -regular properties is NLOGSPACE-Complete
- Complexity:
 - size of single-clock region automata = polynomial [LMS04]
 - apply result of [CSS03] to the finite Markov chain

Theorem

- of LTL is PSPACE-Complete
- of ω -regular properties is NLOGSPACE-Complete
- Complexity:
 - size of single-clock region automata = polynomial [LMS04]
 - apply result of [CSS03] to the finite Markov chain
- Correctness: the proof is rather involved

Theorem

- of LTL is PSPACE-Complete
- of ω -regular properties is NLOGSPACE-Complete
- Complexity:
 - size of single-clock region automata = polynomial [LMS04]
 - apply result of [CSS03] to the finite Markov chain
- Correctness: the proof is rather involved
 - requires the definition of a topology over the set of paths

Theorem

For single-clock timed automata, the almost-sure model-checking

- of LTL is PSPACE-Complete
- of ω -regular properties is NLOGSPACE-Complete

• Complexity:

- size of single-clock region automata = polynomial [LMS04]
- apply result of [CSS03] to the finite Markov chain
- Correctness: the proof is rather involved
 - requires the definition of a topology over the set of paths
 - notions of largeness (for proba 1) and meagerness (for proba 0)

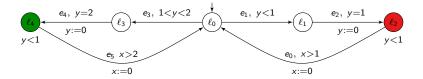
Theorem

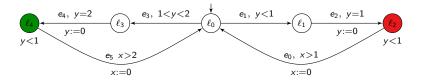
For single-clock timed automata, the almost-sure model-checking

- of LTL is PSPACE-Complete
- of ω -regular properties is NLOGSPACE-Complete

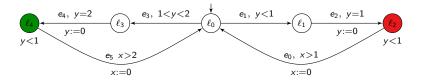
► Complexity:

- size of single-clock region automata = polynomial [LMS04]
- apply result of [CSS03] to the finite Markov chain
- Correctness: the proof is rather involved
 - requires the definition of a topology over the set of paths
 - notions of largeness (for proba 1) and meagerness (for proba 0)
 - link between probabilities and topology thanks to the topological games called Banach-Mazur games

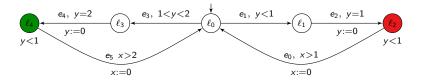




 \blacktriangleright If the previous algorithm was correct, $\mathcal{A} \models \mathbf{G} \, \mathbf{F} \, \, \mathsf{red} \, \wedge \, \mathbf{G} \, \mathbf{F}$ green



- \blacktriangleright If the previous algorithm was correct, $\mathcal{A} \models \mathbf{G} \, \mathbf{F} \, \, \mathsf{red} \, \wedge \, \mathbf{G} \, \mathbf{F}$ green
- However, we can prove that $\mathbb{P}(\mathbf{G} \neg \mathsf{red}) > 0$



- \blacktriangleright If the previous algorithm was correct, $\mathcal{A} \models \mathbf{G} \, \mathbf{F} \, \, \mathsf{red} \, \wedge \, \mathbf{G} \, \mathbf{F}$ green
- However, we can prove that $\mathbb{P}(\mathbf{G} \neg \mathsf{red}) > 0$
- ► There is a *strange* convergence phenomenon: along an execution, if $\delta_i > 0$ is the delay in location ℓ_4 , then we have that $\sum_i \delta_i \leq 1$

A note on Zeno behaviours

► The set of Zeno behaviours is measurable: $Zeno(s) = \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \cdots, e_n) \in E^n} Cyl(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$

A note on Zeno behaviours

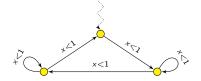
► The set of Zeno behaviours is measurable:

$$Zeno(s) = \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \dots, e_n) \in E^n} Cyl(\pi(s \xrightarrow{e_1} \dots \xrightarrow{e_n}))$$

In single-clock timed automata, we can decide in NLOGSPACE whether P(Zeno(s)) = 0:

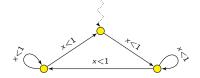
A note on Zeno behaviours

- ► The set of Zeno behaviours is measurable: $Zeno(s) = \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \cdots, e_n) \in E^n} Cyl(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$
- In single-clock timed automata, we can decide in NLOGSPACE whether P(Zeno(s)) = 0:
 - check whether there is a purely Zeno BSCC in MC(A)



A note on Zeno behaviours

- ► The set of Zeno behaviours is measurable: $Zeno(s) = \bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{(e_1, \cdots, e_n) \in E^n} Cyl(\pi(s \xrightarrow{e_1} \cdots \xrightarrow{e_n}))$
- In single-clock timed automata, we can decide in NLOGSPACE whether P(Zeno(s)) = 0:
 - check whether there is a purely Zeno BSCC in MC(A)



an interesting notion of non-Zeno timed automata

x < 1, x := 0

Outline

- 1. Introduction
- 2. A probabilistic semantics
- 3. Solving the qualitative model-checking problem
- 4. Towards quantitative analysis
- 5. Related works

• The abstraction $MC(\mathcal{A})$ is no more corret.

- The abstraction $MC(\mathcal{A})$ is no more corret.
- ► Can be reduced to solving a system of differential equations.

- The abstraction $MC(\mathcal{A})$ is no more corret.
- Can be reduced to solving a system of differential equations.
 Image hard to solve in general, even for simple distributions

- The abstraction $MC(\mathcal{A})$ is no more corret.
- Can be reduced to solving a system of differential equations.
 Image was a solve in general, even for simple distributions
- We will describe a restricted framework in which:

- The abstraction $MC(\mathcal{A})$ is no more corret.
- Can be reduced to solving a system of differential equations.
 Image hard to solve in general, even for simple distributions
- We will describe a restricted framework in which:
 - ▶ we will compute a closed-form expression for the probability

- The abstraction $MC(\mathcal{A})$ is no more corret.
- Can be reduced to solving a system of differential equations.
 Image hard to solve in general, even for simple distributions
- We will describe a restricted framework in which:
 - we will compute a closed-form expression for the probability
 - we will be able to approximate the probability

- The abstraction $MC(\mathcal{A})$ is no more corret.
- Can be reduced to solving a system of differential equations.
 Image hard to solve in general, even for simple distributions
- ▶ We will describe a restricted framework in which:
 - we will compute a closed-form expression for the probability
 - we will be able to approximate the probability, *i.e.*, for every ε > 0, we will compute two rationals p[−]_ε and p⁺_ε such that:

$$\begin{cases} p_{\varepsilon}^{-} \leq \mathbb{P}(\mathbf{s}_{0} \models \varphi) \leq p_{\varepsilon}^{-} + \varepsilon \\ p_{\varepsilon}^{+} - \varepsilon \leq \mathbb{P}(\mathbf{s}_{0} \models \varphi) \leq p_{\varepsilon}^{+} \end{cases}$$

- The abstraction $MC(\mathcal{A})$ is no more corret.
- Can be reduced to solving a system of differential equations.
 Image hard to solve in general, even for simple distributions
- ▶ We will describe a restricted framework in which:
 - we will compute a closed-form expression for the probability
 - we will be able to approximate the probability, *i.e.*, for every ε > 0, we will compute two rationals p[−]_ε and p⁺_ε such that:

$$\begin{cases} p_{\varepsilon}^{-} \leq \mathbb{P}(\mathbf{s}_{0} \models \varphi) \leq p_{\varepsilon}^{-} + \varepsilon \\ p_{\varepsilon}^{+} - \varepsilon \leq \mathbb{P}(\mathbf{s}_{0} \models \varphi) \leq p_{\varepsilon}^{+} \end{cases}$$

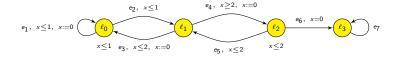
we will be able to decide the threshold problem

- The abstraction $MC(\mathcal{A})$ is no more corret.
- Can be reduced to solving a system of differential equations.
 Image hard to solve in general, even for simple distributions
- ▶ We will describe a restricted framework in which:
 - we will compute a closed-form expression for the probability
 - we will be able to approximate the probability, *i.e.*, for every ε > 0, we will compute two rationals p_ε⁻ and p_ε⁺ such that:

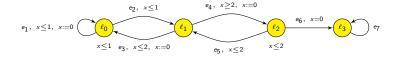
$$\begin{cases} p_{\varepsilon}^{-} \leq \mathbb{P}(\mathbf{s}_{0} \models \varphi) \leq p_{\varepsilon}^{-} + \varepsilon \\ p_{\varepsilon}^{+} - \varepsilon \leq \mathbb{P}(\mathbf{s}_{0} \models \varphi) \leq p_{\varepsilon}^{+} \end{cases}$$

we will be able to decide the threshold problem:

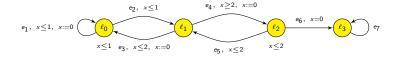
"Given
$$\mathcal{A}$$
, φ , $c \in \mathbb{Q}$, and $\sim \in \{<, \leq, =, \geq, >\}$,
does $\mathbb{P}(s_0 \models \varphi) \sim c$ in \mathcal{A} ?"



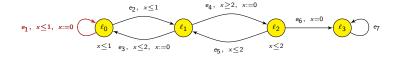
+ distributions $\mu_s : t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions



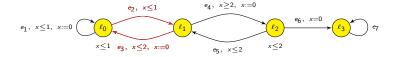
+ distributions $\mu_s : t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions



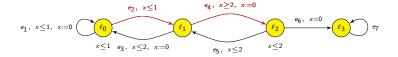
+ distributions $\mu_s : t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions



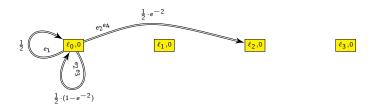
+ distributions $\mu_s : t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions

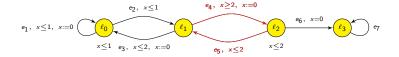


+ distributions $\mu_s : t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions

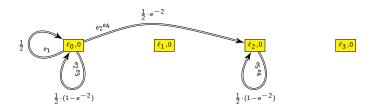


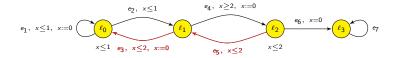
+ distributions $\mu_s : t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions



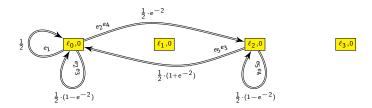


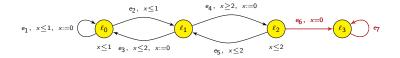
+ distributions $\mu_s: t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions



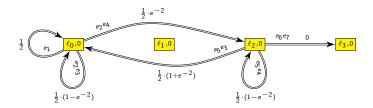


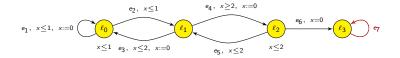
+ distributions $\mu_s: t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions



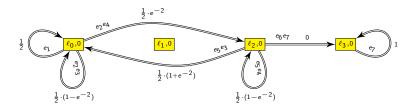


+ distributions $\mu_s: t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions



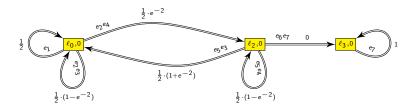


+ distributions $\mu_s: t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions





+ distributions $\mu_s: t \mapsto e^{-t}$ when $I(s) = \mathbb{R}_+$ μ_s uniform distribution when I(s) is bounded + uniform weights on transitions



Correctness of the abstraction

Theorem

Under some hypotheses, for single-clock automaton ${\cal A}$ and property $\varphi,$

$$\mathbb{P}_{\mathcal{A}}(s_0 \models \varphi) = \mathbb{P}_{\mathcal{MC}'(\mathcal{A})}(s_0 \models \Diamond F_{\varphi})$$

for some well-chosen set F_{φ} .

Correctness of the abstraction

Theorem

Under some hypotheses, for single-clock automaton $\mathcal A$ and property φ ,

$$\mathbb{P}_{\mathcal{A}}(s_0 \models \varphi) = \mathbb{P}_{\mathcal{MC}'(\mathcal{A})}(s_0 \models \Diamond F_{\varphi})$$

for some well-chosen set F_{φ} .

Hypotheses:

- if $s = (\ell, \alpha)$ and $s' = (\ell, \alpha')$ with $\alpha, \alpha' > M$, $\mu_s = \mu_{s'}$
- every bounded cycle resets the clock

Correctness of the abstraction

Theorem

Under some hypotheses, for single-clock automaton \mathcal{A} and property φ ,

$$\mathbb{P}_{\mathcal{A}}(s_0 \models \varphi) = \mathbb{P}_{\mathcal{MC}'(\mathcal{A})}(s_0 \models \Diamond F_{\varphi})$$

for some well-chosen set F_{φ} .

- Hypotheses:
 - if $s = (\ell, \alpha)$ and $s' = (\ell, \alpha')$ with $\alpha, \alpha' > M$, $\mu_s = \mu_{s'}$
 - every bounded cycle resets the clock
- ► Limits of the abstraction: there may be no closed form for the values labelling the edges of MC'(A).

▶ We assume furthermore that:

▶ for every state s, I(s) = ℝ₊ (the timed automaton is 'reactive')

▶ We assume furthermore that:

- ▶ for every state s, I(s) = ℝ₊ (the timed automaton is 'reactive')
- in every location ℓ , the distribution over delays has density $t \mapsto \lambda_{\ell} \cdot e^{-\lambda_{\ell} \cdot t}$ for some $\lambda_{\ell} \in \mathbb{Q}_+$

We assume furthermore that:

- ▶ for every state s, I(s) = ℝ₊ (the timed automaton is 'reactive')
- in every location ℓ , the distribution over delays has density $t \mapsto \lambda_{\ell} \cdot e^{-\lambda_{\ell} \cdot t}$ for some $\lambda_{\ell} \in \mathbb{Q}_+$

I™ more general than continuous-time Markov chains [BHHK03]

We assume furthermore that:

- ▶ for every state s, I(s) = ℝ₊ (the timed automaton is 'reactive')
- in every location ℓ , the distribution over delays has density $t \mapsto \lambda_{\ell} \cdot e^{-\lambda_{\ell} \cdot t}$ for some $\lambda_{\ell} \in \mathbb{Q}_+$

I™ more general than continuous-time Markov chains [BHHK03]

Proposition

Under those hypotheses, $\mathbb{P}(s_0 \models \varphi)$ can be expressed as $f(e^{-r})$ where r is a rational number, and $f \in \mathbb{Q}(X)$ is a rational function.

We assume furthermore that:

- ▶ for every state s, I(s) = ℝ₊ (the timed automaton is 'reactive')
- in every location ℓ , the distribution over delays has density $t \mapsto \lambda_{\ell} \cdot e^{-\lambda_{\ell} \cdot t}$ for some $\lambda_{\ell} \in \mathbb{Q}_+$

I™ more general than continuous-time Markov chains [BHHK03]

Proposition

Under those hypotheses, $\mathbb{P}(s_0 \models \varphi)$ can be expressed as $f(e^{-r})$ where r is a rational number, and $f \in \mathbb{Q}(X)$ is a rational function.

 ${\tt I}{\tt S}$ Note: the hypothesis "reset all bounded cycles" is necessary to get this form.

$$\mathbb{P}(s_0 \models \varphi) = f(e^{-r})$$

$$\mathbb{P}(s_0 \models \varphi) = f(e^{-r})$$

- We can compute sequences $(a_i)_i$ and $(b_i)_i$ with
 - $\lim_{i} a_{i} = \lim_{i} b_{i} = e^{-r}$
 - $\bullet \ a_i \leq a_{i+1} \leq e^{-r} \leq b_{i+1} \leq b_i$

$$\mathbb{P}(s_0 \models \varphi) = f(e^{-r})$$

- We can compute sequences $(a_i)_i$ and $(b_i)_i$ with
 - $\lim_{i} a_{i} = \lim_{i} b_{i} = e^{-r}$
 - $a_i \leq a_{i+1} \leq e^{-r} \leq b_{i+1} \leq b_i$
- As e^{-r} is transcendental, we can compute an interval (α, β) ∋ e^{-r} over which f is monotonic:

$$\mathbb{P}(s_0 \models \varphi) = f(e^{-r})$$

- We can compute sequences $(a_i)_i$ and $(b_i)_i$ with
 - $\lim_{i} a_{i} = \lim_{i} b_{i} = e^{-r}$
 - $a_i \leq a_{i+1} \leq e^{-r} \leq b_{i+1} \leq b_i$
- As e^{-r} is transcendental, we can compute an interval (α, β) ∋ e^{-r} over which f is monotonic:
 - writing f = P/Q, we have that $f' = (P'Q PQ')/Q^2$

$$\mathbb{P}(s_0 \models \varphi) = f(e^{-r})$$

- We can compute sequences $(a_i)_i$ and $(b_i)_i$ with
 - $\lim_{i} a_{i} = \lim_{i} b_{i} = e^{-r}$
 - $\bullet \ a_i \leq a_{i+1} \leq e^{-r} \leq b_{i+1} \leq b_i$
- As e^{-r} is transcendental, we can compute an interval (α, β) ∋ e^{-r} over which f is monotonic:
 - writing f = P/Q, we have that $f' = (P'Q PQ')/Q^2$
 - by induction on the degree of R = P'Q − PQ', we prove that the sign of R is constant over (α, β) (that we can compute)

$$\mathbb{P}(s_0 \models \varphi) = f(e^{-r})$$

- We can compute sequences $(a_i)_i$ and $(b_i)_i$ with
 - $\lim_{i} a_{i} = \lim_{i} b_{i} = e^{-r}$
 - $\bullet \ a_i \leq a_{i+1} \leq e^{-r} \leq b_{i+1} \leq b_i$

As e^{-r} is transcendental, we can compute an interval (α, β) ∋ e^{-r} over which f is monotonic:

- writing f = P/Q, we have that $f' = (P'Q PQ')/Q^2$
- by induction on the degree of R = P'Q − PQ', we prove that the sign of R is constant over (α, β) (that we can compute) If the sign of R' is constant over (α', β') (containing e^{-r}), the sign of R will be constant over (α, β) = (a_j, b_j) ⊆ (α', β') if (a_j) · R(b_j) > 0.

Approximating the probability

$$\mathbb{P}(s_0 \models \varphi) = f(e^{-r})$$

- We can compute sequences $(a_i)_i$ and $(b_i)_i$ with
 - $\lim_{i} a_{i} = \lim_{i} b_{i} = e^{-r}$
 - $a_i \leq a_{i+1} \leq e^{-r} \leq b_{i+1} \leq b_i$

As e^{-r} is transcendental, we can compute an interval (α, β) ∋ e^{-r} over which f is monotonic:

- writing f = P/Q, we have that $f' = (P'Q PQ')/Q^2$
- by induction on the degree of R = P'Q PQ', we prove that the sign of R is constant over (α, β) (that we can compute)
 If the sign of R' is constant over (α', β') (containing e^{-r}), the sign of R will be constant over (α, β) = (a_j, b_j) ⊆ (α', β') if R(a_j) ⋅ R(b_j) > 0.
- ▶ When $(a_N, b_N) \subseteq (\alpha, \beta)$, the two sequences $(f(a_i))_{i \ge N}$ and $(f(b_i))_{i \ge N}$ are monotonic and converge to $f(e^{-r})$

Theorem

Theorem

Under the previous hypotheses, the threshold problem is decidable.

• Check whether $c = f(e^{-r})$

Theorem

- Check whether $c = f(e^{-r})$
- If not:

Theorem

- Check whether $c = f(e^{-r})$
- If not:
 - ► use the approximation scheme for a sequence (ε_n)_n that converges to 0

Theorem

- Check whether $c = f(e^{-r})$
- If not:
 - ► use the approximation scheme for a sequence (ε_n)_n that converges to 0
 - stop when the under- and the over-approximations are on the same side of the threshold c

Outline

- 1. Introduction
- 2. A probabilistic semantics
- 3. Solving the qualitative model-checking problem
- 4. Towards quantitative analysis
- 5. Related works

▶ Other "probabilistic and timed" (automata-)based models

- ▶ Other "probabilistic and timed" (automata-)based models
 - probabilistic timed automata à la PRISM

[KNSS02]

▶ Other "probabilistic and timed" (automata-)based models

- probabilistic timed automata à la PRISM
- real-time probabilistic systems

[KNSS02] [ACD91,ACD92]

▶ Other "probabilistic and timed" (automata-)based models

- probabilistic timed automata à la PRISM
- real-time probabilistic systems
- dense-time Markov chains

[KNSS02] [ACD91,ACD92] [BHHK03]

▶ Other "probabilistic and timed" (automata-)based models

- probabilistic timed automata à la PRISM
- real-time probabilistic systems
- dense-time Markov chains

[KNSS02] [ACD91,ACD92] [BHHK03]

Labelled Markov processes over a continuum

[DGJP03,04]

▶ Other "probabilistic and timed" (automata-)based models

- probabilistic timed automata à la PRISM
- real-time probabilistic systems
- dense-time Markov chains

[KNSS02] [ACD91,ACD92] [BHHK03]

Labelled Markov processes over a continuum

[DGJP03,04]

Strong relation with robustness

▶ Other "probabilistic and timed" (automata-)based models

- probabilistic timed automata à la PRISM
- real-time probabilistic systems
- dense-time Markov chains

[KNSS02] [ACD91,ACD92] [BHHK03]

- Labelled Markov processes over a continuum [DGJP03,04]
- Strong relation with robustness
 - robust timed automata

[GHJ97,HR00]

robust model-checking

[Puri98, DDR04, DDMR04, ALM05, BMR06, BMR08]

- a probabilistic semantics for timed automata which removes "unlikely" (sequences of) events
- qualitative model-checking has a topological interpretation
- algorithm for qualitative and (restricted) quantitative model-checking of LTL (and ω-regular) properties

- a probabilistic semantics for timed automata which removes "unlikely" (sequences of) events
- qualitative model-checking has a topological interpretation
- algorithm for qualitative and (restricted) quantitative model-checking of LTL (and ω-regular) properties
- remark: extends to hybrid systems with a finite bisimulation quotient

- a probabilistic semantics for timed automata which removes "unlikely" (sequences of) events
- qualitative model-checking has a topological interpretation
- algorithm for qualitative and (restricted) quantitative model-checking of LTL (and ω-regular) properties
- remark: extends to hybrid systems with a finite bisimulation quotient

Ongoing work

games (very hard!)

- a probabilistic semantics for timed automata which removes "unlikely" (sequences of) events
- qualitative model-checking has a topological interpretation
- algorithm for qualitative and (restricted) quantitative model-checking of LTL (and ω-regular) properties
- remark: extends to hybrid systems with a finite bisimulation quotient

Ongoing work

games (very hard!)

Further works

- efficient zone-based algorithm
- apply to relevant examples
- add non-determinism (à la MDP)
- handle several clocks
- timed properties
- expected time