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Introduction

Motivations

I Timed automata, an idealized mathematical model for real-time
systems

I assumes infinite precision of clocks
I assumes instantaneous actions
I etc...

Ü notion of strong robustness defined in [DDR04]

I In a model, only few traces may violate the correctness property:
they may hence not be relevant...

Ü topological notion of tube acceptance in [GHJ97]

Ü notion of fair correctness in [VV06] based on probabilities
(for untimed systems) + topological characterization

Aim: Use probabilities to “relax” the semantics of timed automata
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Introduction

Initial example

x ≤ 1

x ≤ 1
a, x ≤ 1

a, x ≤ 1

a, x = 1

Intuition: from the initial state,

this automaton almost-surely satisfies “G green”
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Introduction

A maybe less intuitive example

x ≤ 1

x ≤ 1
a, x ≤ 1

a, x = 0

a, x = 1

Does it almost-surely satisfy “F red”?
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A probabilistic semantics

Our proposition

I π(s
e1−→ . . .

en−→ ): symbolic path from s firing edges e1, . . . , en

I Example:

x≤2, e1

y :=0

x=1, e3

x≤5, e2

y≥1

x≤3, e4

π(s0
e1−→ e2−→) = {s0

τ1,e1−−−→ s1
τ2,e2−−−→ s2 | τ1 ≤ 2, τ1 + τ2 ≤ 5, τ2 ≥ 1}

I Idea:

From state s0:

I randomly choose a delay

I then randomly select an edge

I then continue
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A probabilistic semantics

Our proposition

symbolic path: π(s
e1−→ · · · en−→ ) = {s τ1,e1−−−→ s1 · · ·

τn,en−−−→ sn}

P
�
π(s

e1−→ · · · en−→ )
�

=

Z
t∈I (s,e1)

ps+t(e1) P
�
π(st

e2−→ · · · en−→ )
�

dµs(t)

I I (s, e1) = {τ | s τ,e1−−→} and µs distribution over I (s) =
S

e I (s, e)

I ps+t distribution over transitions enabled in s + t
(given by weights on transitions)

I s
t−→ s + t

e1−→ st
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A probabilistic semantics

Our proposition

P
�
π(s

e1−→ · · · en−→ )
�

=

Z
t∈I (s,e1)

ps+t(e1) P
�
π(st

e2−→ · · · en−→ )
�

dµs(t)

I Can be viewed as an n-dimensional integral

I Easy extension to constrained symbolic paths

πC(s
e1−→ · · · en−→ ) = {s τ1,e1−−−→ s1 · · ·

τn,en−−−→ sn | (τ1, · · · , τn) |= C}

I Definition over sets of infinite runs:
I Cyl(πC(s

e1−→ · · · en−→ )) = {% · %′ | % ∈ πC(s
e1−→ · · · en−→ )}

I P
�
Cyl(πC(s

e1−→ · · · en−→ ))
�

= P
�
πC(s

e1−→ · · · en−→ )
�

I unique extension of P to the generated σ-algebra

I Property: P is a probability measure over sets of infinite runs

I Example:
I Zeno(s) =

[
M∈N

\
n∈N

[
(e1,··· ,en)∈En

Cyl(πΣi τi≤M(s
e1−→ · · · en−→ ))
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A probabilistic semantics

An example of computation (with uniform distributions)

x ≤ 1 x ≤ 2

e1, x ≤ 1

x := 0

e0, x = 1 e2, x ≤ 1

e3, x ≤ 2

The probability of the symbolic path π(s0
e1−→ e2−→ ) is 1

4 .

P
�
π(s0

e1−→ e2−→ )
�

=

Z 1

0
P
�
π(s1

e2−→ )
�
dµs0(t) +

Z 1

1

P
�
π(s1

e2−→ )
�

2
dµs0(t)

=

Z 1

0

Z 1

0

 
P
�
π(s2)

�
2

dµs1(u)

!
dµs0(t)

=

Z 1

0

Z 1

0

�
1

2

du

2

�
dt =

1

4

10/29



A probabilistic semantics

An example of computation (with uniform distributions)

x ≤ 1 x ≤ 2

e1, x ≤ 1

x := 0

e0, x = 1 e2, x ≤ 1

e3, x ≤ 2

The probability of the symbolic path π(s0
e1−→ e2−→ ) is 1

4 .

P
�
π(s0

e1−→ e2−→ )
�

=

Z 1

0
P
�
π(s1

e2−→ )
�
dµs0(t) +

Z 1

1

P
�
π(s1

e2−→ )
�

2
dµs0(t)

=

Z 1

0

Z 1

0

 
P
�
π(s2)

�
2

dµs1(u)

!
dµs0(t)

=

Z 1

0

Z 1

0

�
1

2

du

2

�
dt =

1

4

10/29



A probabilistic semantics

An example of computation (with uniform distributions)

x ≤ 1 x ≤ 2

e1, x ≤ 1

x := 0

e0, x = 1 e2, x ≤ 1

e3, x ≤ 2

The probability of the symbolic path π(s0
e1−→ e2−→ ) is 1

4 .

P
�
π(s0

e1−→ e2−→ )
�

=

Z 1

0
P
�
π(s1

e2−→ )
�
dµs0(t) +

Z 1

1

P
�
π(s1

e2−→ )
�

2
dµs0(t)

=

Z 1

0

Z 1

0

 
P
�
π(s2)

�
2

dµs1(u)

!
dµs0(t)

=

Z 1

0

Z 1

0

�
1

2

du

2

�
dt =

1

4

10/29



A probabilistic semantics

An example of computation (with uniform distributions)

x ≤ 1 x ≤ 2

e1, x ≤ 1

x := 0

e0, x = 1 e2, x ≤ 1

e3, x ≤ 2

The probability of the symbolic path π(s0
e1−→ e2−→ ) is 1

4 .

P
�
π(s0

e1−→ e2−→ )
�

=

Z 1

0
P
�
π(s1

e2−→ )
�
dµs0(t) +

Z 1

1

P
�
π(s1

e2−→ )
�

2
dµs0(t)

=

Z 1

0

Z 1

0

 
P
�
π(s2)

�
2

dµs1(u)

!
dµs0(t)

=

Z 1

0

Z 1

0

�
1

2

du

2

�
dt =

1

4

10/29



A probabilistic semantics

Back to the first example

x ≤ 1

x ≤ 1
e1, x ≤ 1

e2, x ≤ 1

e3, x = 1

I P
�
π(s0

e1−→ e2−→ )
�

= 1

I P
�
π(s0

e1−→ e3−→ )
�

= 0

I P
�
G green

�
= 1

11/29



A probabilistic semantics

Back to the first example

x ≤ 1

x ≤ 1
e1, x ≤ 1

e2, x ≤ 1

e3, x = 1

I P
�
π(s0

e1−→ e2−→ )
�

= 1

I P
�
π(s0

e1−→ e3−→ )
�

= 0

I P
�
G green

�
= 1

11/29



A probabilistic semantics

Back to the first example

x ≤ 1

x ≤ 1
e1, x ≤ 1

e2, x ≤ 1

e3, x = 1

I P
�
π(s0

e1−→ e2−→ )
�

= 1

I P
�
π(s0

e1−→ e3−→ )
�

= 0

I P
�
G green

�
= 1

11/29



A probabilistic semantics

Back to the first example

x ≤ 1

x ≤ 1
e1, x ≤ 1

e2, x ≤ 1

e3, x = 1

I P
�
π(s0

e1−→ e2−→ )
�

= 1

I P
�
π(s0

e1−→ e3−→ )
�

= 0

I P
�
G green

�
= 1

11/29



A probabilistic semantics
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A probabilistic semantics

Almost-sure model-checking

If ϕ is an LTL (or ω-regular) property,

s |≈ ϕ
def⇔ P

�
{% ∈ Runs(s) | % |= ϕ}

�
= 1

(This definition extends naturally to CTL? specifications...)

We want to decide the almost-sure model-checking...
(This is a qualitative question)
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Solving the qualitative model-checking problem
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Solving the qualitative model-checking problem

An example

`0

x≤1

`1 `2

x≤1

`3

x≤1

e2, x≤1

e3, x=1

e4, x≥3, x :=0

e5, x≤1

e6, x=0

e1, x≤1 e7, x≤1

A 6|= G(green ⇒ F red) but A |≈ G(green ⇒ F red)

Indeed, almost surely, paths are of the form e∗1 e2

�
e4e5

�ω
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Solving the qualitative model-checking problem

The classical region automaton
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e6

e7

e7
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e7

e1

... viewed as a finite Markov chain MC (A)

Theorem

For single-clock timed automata,

A |≈ ϕ iff P(MC (A) |= ϕ) = 1
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Solving the qualitative model-checking problem

Result

Theorem

For single-clock timed automata, the almost-sure model-checking

I of LTL is PSPACE-Complete

I of ω-regular properties is NLOGSPACE-Complete

I Complexity:
I size of single-clock region automata = polynomial [LMS04]
I apply result of [CSS03] to the finite Markov chain

I Correctness: the proof is rather involved
I requires the definition of a topology over the set of paths
I notions of largeness (for proba 1) and meagerness (for proba 0)
I link between probabilities and topology thanks to the topological

games called Banach-Mazur games
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Solving the qualitative model-checking problem

An example with two clocks

`0 `1 `2

y<1

`3`4

y<1

e1, y<1 e2, y=1

y :=0

e0, x>1

x :=0

e3, 1<y<2e4, y=2

y :=0

e5 x>2

x :=0

I If the previous algorithm was correct, A |≈ GF red ∧ GF green

I However, we can prove that P
�
G¬red

�
> 0

I There is a strange convergence phenomenon: along an execution, if
δi > 0 is the delay in location `4, then we have that

P
i δi ≤ 1
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Solving the qualitative model-checking problem

A note on Zeno behaviours

I The set of Zeno behaviours is measurable:

Zeno(s) =
[

M∈N

\
n∈N

[
(e1,··· ,en)∈E n

Cyl(π(s
e1−→ · · · en−→ ))

I In single-clock timed automata, we can decide in NLOGSPACE

whether P
�
Zeno(s)

�
= 0:

I check whether there is a purely Zeno BSCC in MC(A)

x
<

1x<
1

x<
1

x<1

x<
1

I an interesting notion of non-Zeno timed automata

x≤1, x :=0
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Towards quantitative analysis

Outline

1. Introduction

2. A probabilistic semantics
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Towards quantitative analysis

Towards quantitative analysis

I The abstraction MC (A) is no more corret.

I Can be reduced to solving a system of differential equations.
+ hard to solve in general, even for simple distributions

I We will describe a restricted framework in which:

I we will compute a closed-form expression for the probability

I we will be able to approximate the probability, i.e., for every ε > 0,
we will compute two rationals p−ε and p+

ε such that:¨
p−ε ≤ P

�
s0 |= ϕ

�
≤ p−ε + ε

p+
ε − ε ≤ P

�
s0 |= ϕ

�
≤ p+

ε

I we will be able to decide the threshold problem:

“Given A, ϕ, c ∈ Q, and ∼ ∈ {<,≤, =,≥, >},
does P

�
s0 |= ϕ

�
∼ c in A?”
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Towards quantitative analysis

An example

`0

x≤1

`1 `2

x≤2

`3

e2, x≤1

e2, x≤1

e3, x≤2, x :=0

e3, x≤2, x :=0

e4, x≥2, x :=0

e4, x≥2, x :=0

e5, x≤2

e5, x≤2

e6, x=0

e6, x=0

e1, x≤1, x :=0

e1, x≤1, x :=0

e7

e7

+ distributions µs : t 7→ e−t when I (s) = R+

µs uniform distribution when I (s) is bounded
+ uniform weights on transitions

We construct a finite Markov chain MC ′(A) with macro-edges:

`0,0 `1,0 `2,0 `3,0

e6e7 0

e2e4

1
2
·e−2

e5e3

1
2
·(1+e−2)

e1
1
2

e
2
e
3

1
2
·(1−e−2)

e
5
e
4

1
2
·(1−e−2)

e7
1
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Towards quantitative analysis

Correctness of the abstraction

Theorem

Under some hypotheses, for single-clock automaton A and property ϕ,

PA(s0 |= ϕ) = PMC ′(A)(s0 |= 3Fϕ)

for some well-chosen set Fϕ.

I Hypotheses:
I if s = (`, α) and s ′ = (`, α′) with α, α′ > M, µs = µs′

I every bounded cycle resets the clock

I Limits of the abstraction: there may be no closed form for the
values labelling the edges of MC ′(A).
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Towards quantitative analysis

Computing the probability

I We assume furthermore that:
I for every state s, I (s) = R+

(the timed automaton is ‘reactive’)

I in every location `, the distribution over delays has density
t 7→ λ` · e−λ`·t for some λ` ∈ Q+

+ more general than continuous-time Markov chains [BHHK03]

Proposition

Under those hypotheses, P
�
s0 |= ϕ

�
can be expressed as f (e−r ) where r

is a rational number, and f ∈ Q(X ) is a rational function.

+ Note: the hypothesis “reset all bounded cycles” is necessary to get
this form.
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Towards quantitative analysis

Approximating the probability

P
�
s0 |= ϕ

�
= f (e−r )

I We can compute sequences (ai )i and (bi )i with
I limi ai = limi bi = e−r

I ai ≤ ai+1 ≤ e−r ≤ bi+1 ≤ bi

I As e−r is transcendental, we can compute an interval (α, β) 3 e−r

over which f is monotonic:
I writing f = P/Q, we have that f ′ = (P ′Q − PQ ′)/Q2

I by induction on the degree of R = P ′Q − PQ ′, we prove that the
sign of R is constant over (α, β) (that we can compute)
If the sign of R′ is constant over (α′, β′) (containing e−r ), the sign of R will be constant over

(α, β) = (aj , bj ) ⊆ (α′, β′) if R(aj ) · R(bj ) > 0.

I When (aN , bN) ⊆ (α, β), the two sequences (f (ai ))i≥N and
(f (bi ))i≥N are monotonic and converge to f (e−r )
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If the sign of R′ is constant over (α′, β′) (containing e−r ), the sign of R will be constant over

(α, β) = (aj , bj ) ⊆ (α′, β′) if R(aj ) · R(bj ) > 0.

I When (aN , bN) ⊆ (α, β), the two sequences (f (ai ))i≥N and
(f (bi ))i≥N are monotonic and converge to f (e−r )
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Towards quantitative analysis

Deciding the threshold problem

Theorem

Under the previous hypotheses, the threshold problem is decidable.

I Check whether c = f (e−r )

I If not:
I use the approximation scheme for a sequence (εn)n that converges

to 0
I stop when the under- and the over-approximations are on the same

side of the threshold c
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