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> assumes instantaneous actions
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=» notion of strong robustness defined in [DDR04]
» In a model, only few traces may violate the correctness property:
they may hence not be relevant...
=» topological notion of tube acceptance in [GHJ97]

=» notion of fair correctness in [VV06] based on probabilities
(for untimed systems) + topological characterization

Aim: Use probabilities to “relax” the semantics of timed automata J
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A maybe less intuitive example

Does it almost-surely satisfy “F red"?
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7T(50£1—>£2—>)={50—71f1—>51—2£2—>52 | 71 <2, 11+7 <5, TQZ].}

> ldea:

From state sg:
> randomly choose a delay
> then randomly select an edge

» then continue

7/29



A probabilistic semantics

Our proposition

symbolic path: 7(s 2 ... 2 ) = {s 2% 5 ... 0%, 6

P(r(s o =) = / EI(Se)psH(el)P(w(st S 2 ) dps(t)

8/29



A probabilistic semantics

Our proposition

symbolic path: 7(s 2 ... ={s % % s}
P(r(s 2o ) :/ dpus(t)
tel(s,er)

> I(s,e1) = {7 | s 22} and ps distribution over /(s) = U.1(s,e)

8/29



A probabilistic semantics

Our proposition

symbolic path: 7(s 2 ... 2 ) = {s 2% 5 ... T, 6}
P(r(s 2 ) :/ dpus(2)
tel(s,er)

> I(s,e1) = {7 | s 22} and ps distribution over /(s) = U. (s, e)

8/29



A probabilistic semantics

Our proposition

symbolic path: 7(s 2 ... 2 ) = {s 2% 5 ... 0%, 6

]P)(,/T(S e_l) . e_,,) )) = P5+t(el)

T,€1

> I(s,e1) = {7 | s =} and ps distribution over I(s) = J, I(s, e)
> ps+: distribution over transitions enabled in s + t
(given by weights on transitions)

8/29



A probabilistic semantics

Our proposition

symbolic path: 7(s 2 ... 2 ) = {s 2% 5 ... 0%, 6

T,€1

> I(s,e1) = {7 | s =} and ps distribution over I(s) = J, I(s, e)
> ps+: distribution over transitions enabled in s + t
(given by weights on transitions)

t e
> s oS5+t s

8/29



A probabilistic semantics

Our proposition

P(n(s - ) = / oy P B (s e 22)) dus(t) J

9/29



A probabilistic semantics

Our proposition

P(n(s - ) = / oy P B (s e 22)) dus(t) J

» Can be viewed as an n-dimensional integral

9/29



Our proposition

A probabilistic semantics

P(n(s - ) = / oy P B (s e 22)) dus(t) J

» Can be viewed as an n-dimensional integral

» Easy extension to constrained symbolic paths

Wc(sl...l):{sﬂ)sl...ﬂsn|(T1""77—n)|:c}

9/29



A probabilistic semantics

Our proposition

P(n(s - ) = / oy P B (s e 22)) dus(t) J

» Can be viewed as an n-dimensional integral

» Easy extension to constrained symbolic paths
Tns€n

7TC(S‘E_H...e_”>):{sﬂ>sl...—>s,,|(7'1,"'77'n)|:C}

» Definition over sets of infinite runs:

9/29



A probabilistic semantics

Our proposition

P(n(s - ) = / oy P B (s e 22)) dus(t) }

» Can be viewed as an n-dimensional integral

» Easy extension to constrained symbolic paths
Tns€n

7Tc(se_%...e_”>):{sﬂ>sl...—>s,,|(7'1,"'77'n)’:C}

» Definition over sets of infinite runs:
> Cyl(re(s 25 ) = {0 |0 € mels 5o 2 )}

9/29



A probabilistic semantics

Our proposition

P(n(s - ) = / oy P B (s e 22)) dus(t) }

» Can be viewed as an n-dimensional integral

» Easy extension to constrained symbolic paths
Tns€n

7Tc(se_%...e_”>):{sﬂ>sl...—>s,,|(7'1,"'77'n)’:C}

» Definition over sets of infinite runs:
> Cyl(re(s 25 - =) = {0+ |0 € mels o 2 )}

€n

> ]P(Cy|(7rc(s &, 5y ))) = IP’(ﬂ—C(s a, . Sy ))

9/29



A probabilistic semantics

Our proposition

P(n(s - ) = / oy P B (s e 22)) dus(t)

» Can be viewed as an n-dimensional integral

» Easy extension to constrained symbolic paths
€n Tns€n

me(s o ) ={s 28 5 2% s | (71, 5 Ta) EC)
» Definition over sets of infinite runs:

> Cyl(me(s = -+ ) ={o- 0 |e€me(s = - )}

> P(Cyl(me(s = -+ =))) =P(me(s = -+ =)

> unique extension of PP to the generated o-algebra

9/29



A probabilistic semantics

Our proposition

P(n(s - ) = / oy P B (s e 22)) dus(t)

» Can be viewed as an n-dimensional integral

» Easy extension to constrained symbolic paths

ﬂ-c(se_l>...e_")):{sﬂ)sl...‘rn—’en>snI(Tl""7Tn)’:C}

v

Definition over sets of infinite runs:
> Cy|(ﬂ'c(se—1>--~e—">)):{g.g’ |Qeﬁc(se_1>...e_"))}
> P(Cyl(me(s = -+ =))) =P(me(s = -+ =)
> unique extension of PP to the generated o-algebra

v

Property: P is a probability measure over sets of infinite runs

9/29



A probabilistic semantics

Our proposition

P(n(s - ) = / oy P B (s e 22)) dus(t)

» Can be viewed as an n-dimensional integral

» Easy extension to constrained symbolic paths

me(s o ) ={s 28 5 2% s | (71, 5 Ta) EC)
» Definition over sets of infinite runs:

> Cyl(me(s = -+ ) ={o- 0 |e€me(s = - )}

> P(Cyl(me(s NN ))) =P(me(s Ay )

> unique extension of PP to the generated o-algebra
» Property: P is a probability measure over sets of infinite runs
» Example:

> Zeno(s U ﬂ U Cyl(7s,7,<m(s B TN )

MeN neN (ep,--- ,en)EEN

9/29



A probabilistic semantics

An example of computation (with uniform distributions)

eo,X:]. .Q
e, x<1 e, x <2
x:=0 .Q

x<1 x <2

e, x<1

The probability of the symbolic path 7(sy <> ) is 1.

10/29



A probabilistic semantics

An example of computation (with uniform distributions)

eo,X:]. .Q
e, x<1 e, x <2
x:=0 .Q

x<1 x <2

e, x<1

I

The probability of the symbolic path 7(sp =52 ) is

(s )

1 1p
B(rtoo 22)) = [ B(rtn = ane(+ [ 0D
0 1 2

10/29



A probabilistic semantics

An example of computation (with uniform distributions)

* = @D @D
e, x<1 e3, x <2
f_ : o)

x<1 x <2

The probability of the symbolic path 7(sp =52 ) is %.

1P(n(s1 )

B(rtoo 22)) = [ B(rtn = ane(+ [ 0D
0 2

1

B Al Al (Wd“51(“)> dprs, (1)

10/29



A probabilistic semantics

An example of computation (with uniform distributions)

* = @D @D
e, x<1 e3, x <2
f_ : o)

x<1 x <2

The probability of the symbolic path 7(sp =52 ) is %.

1P(n(s1 )

B(rtoo 22)) = [ B(rtn = ane(+ [ 0D
0 2

1

B Al Al (Wd“51(“)> dprs, (1)

10/29



A probabilistic semantics

Back to the first example

11/29



A probabilistic semantics

Back to the first example

e, x<1 ‘III[::::)
€1, X < 1
x<1
x<1
a1 @)

11/29



A probabilistic semantics

Back to the first example

11/29



A probabilistic semantics

Back to the first example

11/29



A probabilistic semantics

Back to the second example

12/29



A probabilistic semantics

Back to the second example

12/29



A probabilistic semantics

Back to the second example

e, x=0 .Q
€1, X ff; 1
x<1
x<1
e, x=1 .Q

12/29



A probabilistic semantics

Back to the second example

e, x=0 .Q
€1, X ff; 1
x<1
x<1
e, x=1 .Q

12/29



A probabilistic semantics

Almost-sure model-checking

If ¢ is an LTL (or w-regular) property,

skp & P({QeRuns(s)|g|:<p}):1

13/29



A probabilistic semantics

Almost-sure model-checking
If ¢ is an LTL (or w-regular) property,

skp & P({QeRuns(s)|g|:<p}):1

(This definition extends naturally to CTL* specifications...)

13/29



A probabilistic semantics

Almost-sure model-checking

If ¢ is an LTL (or w-regular) property,

def
ske & P({geRuns(s)|g|:<p}) =1
(This definition extends naturally to CTL* specifications...)

We want to decide the almost-sure model-checking...
(This is a qualitative question)
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Solving the qualitative model-checking problem

An example
e, x<1 e7, x<1
&, x<1 e, x>3, x:=0
x<1 — x<1 x<1
e3, x=1 es, x<1

A = G(green = F red) but A R G(green = F red)

w
Indeed, almost surely, paths are of the form efeg(e4e5)
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The pruned region automaton

.. viewed as a finite Markov chain MC(A)

Theorem

For single-clock timed automata,

Ak iff P(MC(A) E¢)=1
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Result

For single-clock timed automata, the almost-sure model-checking
» of LTL is PSPACE-Complete
» of w-regular properties is NLOGSPACE-Complete

v

Complexity:
> size of single-clock region automata = polynomial [LMS04]
> apply result of [CSS03] to the finite Markov chain
Correctness: the proof is rather involved
> requires the definition of a topology over the set of paths
> notions of largeness (for proba 1) and meagerness (for proba 0)
> link between probabilities and topology thanks to the topological
games called Banach-Mazur games

v
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Solving the qualitative model-checking problem

An example with two clocks

» If the previous algorithm was correct, A & GF red A GF green

» However, we can prove that ]P’(G —|red) >0

» There is a strange convergence phenomenon: along an execution, if
d; > 0 is the delay in location /4, then we have that ). 6; <1
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Solving the qualitative model-checking problem

A note on Zeno behaviours

» The set of Zeno behaviours is measurable:

Zeno(s) = U ﬂ U Cyl(r(s = -+ =)

MeN neN (e, ,e,)EE"

» In single-clock timed automata, we can decide in NLOGSPACE
whether }P’(Zeno(s)) =0:

> check whether there is a purely Zeno BSCC in MC(A)

E <1 OQ“«

> an interesting notion of non-Zeno timed automata
x<1, x:=0

¥
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» The abstraction MC(.A) is no more corret.

» Can be reduced to solving a system of differential equations.
= hard to solve in general, even for simple distributions

» We will describe a restricted framework in which:

> we will compute a closed-form expression for the probability

> we will be able to approximate the probability, i.e., for every € > 0,
we will compute two rationals pZ and pJ such that:

p- <P(sof=¢) <pz +¢
pi —e<P(sof=) <pt

> we will be able to decide the threshold problem:
“Given A, ¢, c € Q, and ~ € {<,<,=,>, >},
does P(so = ap) ~ cin A?"
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Theorem

Under some hypotheses, for single-clock automaton A and property ¢,

Pa(so E ¢) = Pucia)(so | OFy)

for some well-chosen set F.

» Hypotheses:
» if s=({,a) and s’ = ({,a’) with o,/ > M, ps = pg
> every bounded cycle resets the clock

» Limits of the abstraction: there may be no closed form for the
values labelling the edges of MC'(A).
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> for every state s, I(s) = Ry
(the timed automaton is ‘reactive’)
> in every location ¢, the distribution over delays has density
t— X -e Mt for some M\ € Q4

= more general than continuous-time Markov chains [BHHKO03]

Proposition

Under those hypotheses, IP’(so = go) can be expressed as f (e~ ") where r
is a rational number, and f € Q(X) is a rational function.

= Note: the hypothesis “reset all bounded cycles” is necessary to get
this form.
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Approximating the probability

P(so k=) = F(e) J

» We can compute sequences (a;); and (b;); with
> limja;j =Ilim;bj=¢e "

» 3 <ap<e "<by<bh

» As e " is transcendental, we can compute an interval (a, 3) > e
over which f is monotonic:
> writing f = P/Q, we have that f' = (P'Q — PQ’)/Q?
> by induction on the degree of R = P'Q — PQ’, we prove that the
sign of R is constant over (a, 3) (that we can compute)
If the sign of R’ is constant over (a, 3’) (containing e ~"), the sign of R will be constant over

(a0, B) = (aj, bj) C (@', B) if R(3j) - R(bj) > 0.

» When (an, by) C (o, ), the two sequences (f(a;))i>n and
(f(bi))i>n are monotonic and converge to f (e ")
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Towards quantitative analysis

Deciding the threshold problem

Under the previous hypotheses, the threshold problem is decidable. I

> Check whether ¢ = f(e™")

> If not:
> use the approximation scheme for a sequence (¢,), that converges

to 0
> stop when the under- and the over-approximations are on the same

side of the threshold ¢
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» Other “probabilistic and timed” (automata-)based models

> probabilistic timed automata & /la PRISM [KNSS02]
> real-time probabilistic systems [ACD91,ACD92]
> dense-time Markov chains [BHHKO3]
» Labelled Markov processes over a continuum [DGJP03,04]

» Strong relation with robustness

> robust timed automata [GHJ97,HRO00]
> robust model-checking
[Puri98,DDR04,DDMR04,ALM05,BMR06,BMR08|
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Conclusions

> a probabilistic semantics for timed automata which removes
“unlikely” (sequences of) events

» qualitative model-checking has a topological interpretation

» algorithm for qualitative and (restricted) quantitative
model-checking of LTL (and w-regular) properties

» remark: extends to hybrid systems with a finite bisimulation quotient

Ongoing work
> games (very hard!)

Further works
» efficient zone-based algorithm
> apply to relevant examples
» add non-determinism (& /la MDP)
» handle several clocks
» timed properties
>

expected time
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