On the optimal reachability problem
in weighted timed games

Patricia Bouyer-Decitre
LSV, CNRS & ENS Cachan, France

Based on former works with Thomas Brihaye, Kim G. Larsen, Nicolas Markey, etc...

And on recent work with Samy Jaziri and Nicolas Markey
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Introduction
Time-dependent systems

@ We are interested in timed systems

@ ... and in their analysis and control
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Introduction

An example: The task graph scheduling problem

Compute Dx(Cx(A+B))+(A+B)+(CxD) using two processors:

P, (fast):
time
+ | 2 picoseconds
X | 3 picoseconds
energy
ide [ 10 Watt
in use | 90 Watts

P, (slow):

time

=F | 5 picoseconds

7 picoseconds
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idle [ 20 Watts
in use | 30 Watts
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[BFLM10] Bouyer, Fahrenberg, Larsen, Markey. Quantitative Analysis of Real-Time Systems using Priced Timed Automata.
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An example: The task graph scheduling problem

Compute Dx(Cx(A+B))+(A+B)+(CxD) using two processors: A B c
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The model of timed automata
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Modelling the task graph scheduling problem

@ Processors

Py x=2 x=3
done; done;

(x=<2) x:=0 x:=0 (x<3)
Py: y=5 y=7
doney doney

(y<5) x:=0 x:=0 (r<7)
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Introduction

Modelling the task graph scheduling problem

@ Processors @ Tasks
. = =3 .
Py : 2 : Ta: t1 At \ t4Z:b
one; onep ‘ :
@@E@ add; e done;
(x=2)  x=0 x=0 (x=3) Ts: t t5i=
0~ —0—=0

done;

P2.

doney @ doney
addy multy

(y<5)  x=o =0 W=7)

A schedule is a path in the product automaton )
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Analyzing timed automata

x<2, x:=0 X=0 A
C x=1 O/—\ y=>2
y:=0 AN S : :
y>2, y:=0

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

@ Technical tool: region abstraction
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Introduction

Analyzing timed automata

x<2, x:=0 X=0 A
C x=1 O/—\ y=>2
y:=0 AN S : :
y>2, y:=0

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other
important properties). It is PSPACE-complete.

@ Technical tool: region abstraction

o Efficient symbolic technics based on zones, implemented in tools
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Modelling resources in timed systems

@ System resources might be relevant and even crucial information

@ energy consumption, .
e price to pay,

memory usage,
° y & o bandwidth,

o ...
~» timed automata are not powerful enough!
@ A possible solution: use hybrid automata

a discrete control (the mode of the system)
+ continuous evolution of the variables within a mode

10/53



Overview of “old” results
Weighted timed automata

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

@ energy consumption, .
e price to pay,

memory usage,
° y & o bandwidth,

~» timed automata are not powerful enough!

@ A possible solution: use hybrid automata

The thermostat example

T<19
Off On

T=—0.5T T=2.25—05T

(T>18) (T<22)
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Modelling resources in timed systems

@ System resources might be relevant and even crucial information

e energy consumption, .
@ price to pay,

memory usage,
° y & o bandwidth,

~» timed automata are not powerful enough!

@ A possible solution: use hybrid automata

The thermostat example

T<19
Off On

T=—05T T=2.25—05T

(T>18) (T<22)
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Modelling resources in timed systems

@ System resources might be relevant and even crucial information

e energy consumption, .
@ price to pay,

@ memory usage,
y usag o bandwidth,

~ timed automata are not powerful enough!
@ A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata. Even for the
simplest, the so-called stopwatch automata (clocks can be stopped).

[HKPV05] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).
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Modelling resources in timed systems

@ System resources might be relevant and even crucial information

e energy consumption, .
@ price to pay,

@ memory usage,
y usag o bandwidth,

~ timed automata are not powerful enough!
@ A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata. Even for the
simplest, the so-called stopwatch automata (clocks can be stopped).

@ An alternative: weighted/priced timed automata [ALP01,BFH+01]
~ hybrid variables do not constrain the system
hybrid variables are observer variables

[HKPV05] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).
[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).

[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Modelling the task graph scheduling problem

° Processors @ Tasks
Tt At —_ t ::]Q:
done; (“ done; ‘ :1 2 :
add; aie multy add; ~ done;
(x<2) (x<3) T
5: t3 t5:=
')
P,: y=5 y=7 O add; S done; O
doney doney
(675 r xi=0 (=7)
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Modelling the task graph scheduling problem

@ Processors @ Tasks
. =2 =3 .
Py X X Tal _tint ~ ti=
done; done; < :
add; multy add; S done;
(x=2)  xi=0 xi=0 (x=3) Ts: b e
O—0+-—0
Py y=5 y=7 add; done;
donep donep
addy multy
(y<5) x:=0 x:=0 (r<7)

@ Modelling energy

X
N
X
Il
w

Py
! done; done; . i
@ add; mult; @ A good schedule is a path in the
(x<2) o x—o (x=3) product automaton with a low cost
=5 =7
P, s Y
doney donep
@ add; multy @
(020 N o <)
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Weighted /priced timed automata [ALPO1,BFH-+01]
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x<2,c,y:=0
~©

+5

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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cost : 6.5

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
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Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
-®
+5
b B o6 o Mo 2 o S O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0 + 0 + 0.7 —+ 7 = 142

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©

+5

Question: what is the optimal cost for reaching @?

min (5t +10(2—t)+1,5t+(2—1t)+7)

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©

+5

Question: what is the optimal cost for reaching @?

Oéurp;z min (5t +102—¢t)+1, 5t+(2—-t)+7)=9

~ strategy: leave immediately £y, go to /3, and wait there 2 t.u.
[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).

[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Weighted timed automata

Optimal-cost reachability

Theorem [ALP01,BFH-+01,BBBR07]

In weighted timed automata, the optimal cost is an integer and can be
computed in PSPACE.

@ Technical tool: a refinement of the regions, the corner-point
abstraction

4 AT
A v v~

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).

[BFH-+-01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
[BBBRO7] Bouyer, Brihaye, Bruyére, Raskin. On the optimal reachability problem (Formal Methods in System Design).
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Optimal reachability as a linear programming problem )
ty t t3 ty ts { t+t<2

o o o o o o .-
y:=0 x<2 y>5 ty+t3+t3 >5
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From timed to discrete behaviours

Optimal reachability as a linear programming problem

T T2 T3 T, Ts
t t t3 ty ts { i+t <2 T,<2
o] o] o] o] o] o] e
y:=0 x<2 y>5 ttt3+ta>5  Ta—T12>5

16/53



Overview of “old” results
Weighted timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem )
T T T3 T, Ts
t t t3 ty ts { i+t <2 T,<2
o o o o o o .-
y=0 x<2 y>5 t+t3+t>5 Tp—T12>5

Lemma

Let Z be a bounded zone and f be a function

n
f:(Tl,.,.,Tn)HZc,T,+c

i=1

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.
v

16/53



Overview of “old” results
Weighted timed automata

From timed to discrete behaviours

Optimal reachability as a linear programming problem )
T T T3 Ty Ts
t t t3 ty ts { i+t <2 T,<2
o o o o o o .-
yi=0  x<2 y>5 t+ts+ta>5  Ta—T1>5

Lemma

Let Z be a bounded zone and f be a function

n
f:(T17-~~7Tn)’_>ZCi7—,‘+C

i=1

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.
v

~ for every finite path 7 in A, there exists a path [T in A, such that
cost(M) < cost(7)

[ is a “corner-point projection” of =]
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Approximation of abstract paths:
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For any path I of A, ,
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From discrete to timed behaviours

Approximation of abstract paths:

For any path I of A, , for any € > 0, there exists a path 7. of A s.t.

N —7]leo <&

For every n > 0, there exists € > 0 s.t.

[IN — 7|0 < & = |cost(M) — cost(n:)| <7

17/53
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Note on the corner-point abstraction

It is a very interesting abstraction, that can be used in several other

contexts:
o for mean-cost optimization [BBL04,BBLOS]
o for discounted-cost optimization [FLOS]
e for all concavely-priced timed automata [JTO8]
o for deciding frequency objectives [BBBS11,Stal?]
°.

[BBLO4] Bouyer, Brinksma, Larsen. Staying Alive As Cheaply As Possible (HSCC'04).

[BBLO8] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).

[FLO8] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).

[JT08] Judziriski, Trivedi. Concavely-priced timed automata (FORMATS'08).

[BBBS11] Bertrand, Bouyer, Brihaye, Stainer. Emptiness and universality problems in timed automata with positive frequency (ICALP'11).

[Stal2] Stainer. Frequencies in forgetful timed automata (FORMATS'12). 8/53
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Modelling the task graph scheduling problem

@ Processors @ Tasks
Prl x=2 x=3 Ta: t1 Aty ty:=
done; done; < > () 2 >
add; multy add; S done;
(x=2)  x=0 x=0 (x=3) Ts: b e
O—0+-—0
P, y=5 y=T7 add; done;

:

donep donep
addy multy

<5 o 0 (<7

@ Modelling energy

P, x=2 x=3
done; done;
addy multy
(x=2) x:=0 x:=0 (x=3)
=5 =7
Ps: Y v
doney donep
addy multy
<5 e = (<)
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° Processors @ Tasks

Ta: t1 At

done; done; ‘ :

add; multy add;
(x<2) (x<3)

o=
add;

donep donep

addy multy
(y<5) (y<7)

t4::b
done;

t5:=
done; O

Ts.

O O

° Modelling energy ° Modelling uncertainty
done; done; J)n:: rlonei
addy multy %1/ \mw
x<2 x<3 (x<3)
doney donep -
adds multy donep rlone
<5 y<7 ®‘\add2/ \’"”'t?/’(a
(< (x<3)
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A (good) schedule is a strategy in
the product game (with a low cost)
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@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

x>2,¢

A (memoryless) winning strategy

e from (/p,0), play (0.5, ¢c1)

~> can be preempted by >
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An example of a timed game

Rule of the game
o Aim: avoid & and reach ©

@ How do we play? According to a
strategy:

f : history — (delay, cont. transition)

1
x<1,up,x:=01
1

XS].,C;; i
Problems to be considered

@ Does there exist a winning strategy?

o If yes, compute one (as simple as possible).
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Overview of “old” results
Timed games

Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and ‘“region-based”
strategies are sufficient.

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC'98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).
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Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and ‘“region-based”
strategies are sufficient.

~ classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

[AM99] Asarin, Maler. As soon as possible: time optimal control for timed automata (HSCC’99).
[BHPRO7] Brihaye, Henzinger, Prabhu, Raskin. Minimum-time reachability in timed games (ICALP'07).
[JTO7] Jurdzifiski, Trivedi. Reachability-time games on timed automata (ICALP’07).
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x<2,c,y:=0 -7
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+5 (y=0) "~

Question: what is the optimal cost we can ensure while reaching @?

. 1
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A simple weighted timed game

x<2,c,y:=0 -7
~© @

+5 (y=0) "~

Question: what is the optimal cost we can ensure while reaching @?
1

i 10(2 — 1 2 — = =

Ogur:; max (5t +10(2—t)+1,5t+(2—t)+7) =14+ 3

~ strategy: wait in {o, and when t = 3, go to {;
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Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...

[LMMO02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).

[ABMO4] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP'04).

[BCFLO4] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS'04).

[BBROS5] Brihaye, Bruyére, Raskin. On optimal timed strategies (FORMATS'05).

[BBMO6] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).

[BLMRO6] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS'06).

[Rut11] Rutkowski. Two-player reachability-price games on single-clock timed automata (QAPL'11).

[HIM13] Hansen, Ibsen-Jensen, Miltersen. A faster algorithm for solving one-clock priced timed games (CONCUR'13).

[BGK-+14] Brihaye, Geeraerts, Krishna, Manasa, Monmege, Trivedi. Adding Negative Prices to Priced Timed Games (CONCUR'14). y
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Optimal reachability in weighted timed games (1)

This topic has been fairly hot these last fifteen years...
[LMMO02,ABM04,BCFL04,BBR05,BBM06,BLMR06,Rut11,HIM13,BGK+14]

[LMMO2]
Tree-like weighted timed games can be solved in 2EXPTIME.

[ABMO04,BCFL04|

Depth-k weighted timed games can be solved in EXPTIME. There is a
symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost. )

%
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Optimal reachability in weighted timed games (2)

[BBRO5,BBMO6]

In weighted timed games, the optimal cost cannot be computed, as soon
as games have three clocks or more.
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[BBRO5,BBMO6]

In weighted timed games, the optimal cost cannot be computed, as soon
as games have three clocks or more.

[BLMRO06,Rut11,HIM13,BGK-+14]

Turn-based optimal timed games are decidable in EXPTIME (resp.
PTIME) when automata have a single clock (resp. with two rates). They
are PTIME-hard.
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Optimal reachability in weighted timed games (2)

[BBRO5,BBMO6]

In weighted timed games, the optimal cost cannot be computed, as soon
as games have three clocks or more.

[BLMRO06,Rut11,HIM13,BGK-+14]

Turn-based optimal timed games are decidable in EXPTIME (resp.
PTIME) when automata have a single clock (resp. with two rates). They
are PTIME-hard. )

o Key: resetting the clock somehow resets the history...
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Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. )
Add™* (x) Add™ (x)
y=1,y:=0 y=1,y:=0 y=1y:= y=1,y:=0
z:=0 g:;) x=1,x:=0 g:;z z=1,z:=0 z:=0 g:;z x=1,x:=0 g:;z z=1,z:=0
O 9, O 9
0 1 1 0
The cost is increased by xy The cost is increased by 1—xg
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Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. )

J e — J— J—
;=0 'O_>' Add* (x) ———— Add™ (x) — > Add~(y) —>©
x=x0 z.- T +2
Y=» [ ) ~‘~§A 2=0 —— e

<=0 O—» Add™ (x) =——> Add™ (x) > Add"(y) —1>©

° In@, cost =2xp + (1 — y) +2
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Given two clocks x and y, we can check whether y = 2x. )

0 O ) —— ) —— it ) —©
o O SO ) ——— A () —— At () ——(0)
e In @ cost = 2xo + (1 — yo) +2

In @ cost =2(1 —xp) +yo +1
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Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. )

J e —
;=0 'O_> Add* (x) — > Add" (x) — > Add~(y) —>©
x=x0 z.- +2
Y=Y C ‘~~~A 2=0

<=0 O—» Add™ (x) =——> Add™ (x) > Add"(y) —1>©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +yo +1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
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Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. )

J e —
;=0 'O_> Add* (x) — > Add" (x) — > Add~(y) —>©
x=x0 z.- +2
Y=Y C ‘~\~L 2=0

<=0 O—» Add™ (x) =——> Add™ (x) > Add"(y) —1>©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +yo +1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3
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Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. )

z=0 - . - . ;
;=0 'O_’ Add* (x) ———— Add™ (x) — > Add~(y) —»@
X=Xp C: Ze-" ’ ’ - - +2
Y=yo IREISY z=0 s 4 4 .

<=0 (> Add~ (x) — > Add™~ (x) — > Add"(y) —»(1 )

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +y+1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
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Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. J

=0 - . o . .
=0 'O_> Add (x) ———> Add" (x) ——— Add~(y) —»@
X=Xp C: Ze-" ’ ’ E y +2
Y=o MDY z=0 4 ; "

=<0 Y Add™ (x) —— Add~ (x) Add* (y) - ©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +y+1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3
if yo = 2xp, in both branches, cost =3

~» player 2 can enforce cost 3 + |yo — 2xo|
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Computing the optimal cost: why is that hard?

Given two clocks x and y, we can check whether y = 2x. J

z=0 =~ . ; 5 F
L0 'O_’ Add* (x) ———> Add" (x) —— Add~ (y) —(2)
X=Xp C: Ze-" ’ : ’ E y +2
Y=o PREISS z=0 4 ; "
“0(C Y——> Add™ (x) ——> Add~ (x) Add* (y) - ©

° In@, cost = 2xp + (1 — yp) +2
In @ cost =2(1 —xp) +y+1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3
if yo = 2xp, in both branches, cost =3

~» player 2 can enforce cost 3 + |yo — 2xo|

@ Player 1 has a winning strategy with cost < 3 iff yp = 2xg
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Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=5a
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Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
X =— and Y=5a

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3. J

Globally, (x<1,y<1,u<1)

x=1,x:=0 x=1,x:=0 )
V y=1,y:=0 V y=1,y:=0 Test, (x=2z)

i :
u:=0 Q 2:=0 Q u=1,u:=0 , (u=0)
J J O
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Computing the optimal cost: why is that hard?
Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1
e and Y=

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

)

x=1,x:=0 x=1,x:=0
VvV y=1l,y:=0 V y=1,y:=0 Test, (x=2z)
A
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Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
and Y=

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

x=1,x:=0 x=1,x:=0
V y=1,y:=0 VvV y=1,y:=0 Test, (x=2z)
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Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
and Y=

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

x=1,x:=0 x=1,x:=0
V y=1,y:=0 VvV y=1,y:=0 Test, (x=2z)
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Computing the optimal cost: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the counter values ¢; and ¢, are encoded by two clocks:

1 1
and Y=

The two-counter machine has a halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

x=1,x:=0 x=1,x:=0
VvV y=1l,y:=0 V y=1,y:=0 Test, (x=2z)
A
u:=0 Q z:=0 Q u=1,u:=0 X (u=0)
O O o
x=3e x=z+a X=3
_ 1 1 —
Y=3d )’4*5;7‘?(¥ y—A—g%
Z=% z=0 z=—1_
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(c—
" Instruction o

" Test module
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Are we done?
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Are we done? No! Let's be a bit more precise!

Given G a weighted timed game,
@ a strategy o is winning whenever all its outcomes are winning;

@ Cost of a winning strategy o
cost(o) = sup{cost(p) | p outcome of o up to the target}

@ Optimal cost:
optcostg = inf cost(o)

o winning strat.

(set it to 400 if there is no winning strategy)

Two problems of interest

@ The value problem asks, given G and a threshold > ¢, whether
optcostg > c?

@ The existence problem asks, given G and a threshold 1 ¢, whether
there exists a winning strategy in G such that cost(c) < ¢?

Note: These problems are distinct...
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Some recent developments

The value of the game is 0, but no strategy has cost 0. J

0 x>0 e
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Some recent developments

The value of the game is 1, but there is a strategy that secures cost < l.J
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Some recent developments

@ Weighted timed automata

In weighted timed automata, the optimal cost is an integer, and can be
computed in PSPACE. J
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@ Weighted timed games

Turn-based optimal timed games are decidable in EXPTIME when automata
have a single clock. J
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Almost-optimal winning schedules can be computed.

@ Weighted timed games

have-asingleclock:
The value problem is decidable in EXPTIME in single-clock weighted timed
games. Almost-optimal memoryless winning strategies can be computed.

There is a symbolic algorithm to solve weighted timed games with a strongly
non-Zeno cost.
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@ Weighted timed automata

eomputed—PSPACE-
The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.

@ Weighted timed games

have-asingleeloek:
The value problem is decidable in EXPTIME in single-clock weighted timed
games. Almost-optimal memoryless winning strategies can be computed.

nen-Zene—<€ost:
The value problem can be decided in EXPTIME in weighted timed games with
a strongly non-Zeno cost. Almost-optimal winning strategies can be computed.

In weighted timed games, the optimal cost cannot be computed, as soon as
games have three clocks or more.
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@ Weighted timed automata

eomputed—PSPACE-
The value problem is PSPACE-complete in weighted timed automata.
Almost-optimal winning schedules can be computed.

@ Weighted timed games

have-a-single-—cloek:
The value problem is decidable in EXPTIME in single-clock weighted timed
games. Almost-optimal memoryless winning strategies can be computed.

non-Zeno—cost:
The value problem can be decided in EXPTIME in weighted timed games with
a strongly non-Zeno cost. Almost-optimal winning strategies can be computed.

games-have-three—clocks-ormeore:

The existence problem is undecidable in weighted timed games.
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Outline of the rest of the talk

@ Show that the value problem is undecidable in weighted timed
games
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Outline of the rest of the talk

@ Show that the value problem is undecidable in weighted timed
games
~> This is intellectually satisfactory to not have this discrepancy in the
set of results
~ A first proof based on a diagonal construction (originally proposed in
the context of quantitative temporal logics [BMM14])

[BMM14] Bouyer, Markey, Matteplackel. Averaging in LTL (CONCUR'14).
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Some recent developments

Outline of the rest of the talk

@ Show that the value problem is undecidable in weighted timed
games
~> This is intellectually satisfactory to not have this discrepancy in the
set of results
~ A first proof based on a diagonal construction (originally proposed in
the context of quantitative temporal logics [BMM14])
~> A second direct proof

@ Propose an approximation algorithm for a large class of weighted
timed games (that comprises the class of games used for proving the
above undecidability)

o Almost-optimality in practice should be sufficient
o Even when we know how to compute the value, we are only able to
synthesize almost-optimal strategies...
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Undecidability of the value problem

Outline

© Some recent developments
@ Undecidability of the value problem
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Undecidability of the value problem

A snapshot on the undecidability proof

C_"" Instruction

C_"" Test module
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Some recent developments

Undecidability of the value problem

A snapshot on the undecidability proof

Leave

M does not halt iff the
value of Gaq is 3 J

Leave

Leave

Leave <—O

Leave with cost 3+ 1/2" (n: length of the path)
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Some recent developments
Undecidability of the value problem

Theorem [BJM15]

The value problem is undecidable in weighted timed games (with four
clocks or more).

@ Remark on the reduction:

o Cost 0 within the core of the game
o The rest of the game is acyclic

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games.
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Outline

© Some recent developments

@ Approximation of the optimal cost
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Some recent developments
Approximation of the optimal cost

Optimal cost is computable...
. when cost is strongly non-zeno. [AMO04,BCFL04]

That is, there exists £ > 0 such that for every region cycle C, for every real run
o read on C,
cost(p) > K

Optimal cost is not computable...
. when cost is almost-strongly non-zeno. [BIJM15]

That is, there exists K > 0 such that for every region cycle C, for every real run
o read on C,
cost(g) >k or cost(p) =0

Note: In both cases, we can assume k = 1.

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games.
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Optimal cost is computable...
. when cost is strongly non-zeno. [AMO04,BCFL04]

That is, there exists £ > 0 such that for every region cycle C, for every real run
o read on C,
cost(p) > K

Optimal cost is not computable... but is approximable!
. when cost is almost-strongly non-zeno. [BIJM15]

That is, there exists K > 0 such that for every region cycle C, for every real run
o read on C,
cost(g) >k or cost(p) =0

Note: In both cases, we can assume k = 1.

[BJM15] Bouyer, Jaziri, Markey. On the value problem in weighted timed games.
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Approximation of the optimal cost

Approximation of the optimal cost

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every € > 0, one can compute:

@ two values v, and v such that

lv.m —vo|<e and v. <opteostg < v
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[it is an e-optimal winning strategy]
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@ one strategy o, such that
optcostg < cost(o.) < optcostg + €

[it is an e-optimal winning strategy]

@ Standard technics: unfold the game to get more precision, and
compute two adjacency sequences
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Approximation of the optimal cost

Theorem

Let G be a weighted timed game, in which the cost is almost-strongly
non-zeno. For every € > 0, one can compute:

@ two values v, and v such that
lv.m —vo|<e and v. <opteostg < v
@ one strategy o, such that

optcostg < cost(o.) < optcostg + €

[it is an e-optimal winning strategy]

@ Standard technics: unfold the game to get more precision, and
compute two adjacency sequences
~> This is not possible here
There might be runs with prefixes of arbitrary length and cost 0 (e.g. the
game of the undecidability proof)
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Some recent developments
Approximation of the optimal cost

|dea for approximation

Idea

Only partially unfold the game:
@ Keep components with cost 0 untouched — we call it the kernel
@ Unfold the rest of the game
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Approximation of the optimal cost

Semi-unfolding

Only cost 0
Kernel K
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Kernel K
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Approximation of the optimal cost

Semi-unfolding

Only cost 0
Kernel K

Hypothesis:

cost > 0 implies cost > K
Only cost 0
Kernel KC
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Approximation of the optimal cost

Semi-unfolding

Only cost 0
Kernel K
Hypothesis:
cost > 0 implies cost > K
Only cost 0
Kernel K
0 e ®(r)
VAN N

Conclusion: we can stop unfolding the game after N steps
(e.g. N=(M+2)-|R(A)

, where M is a pre-computed bound on optcost)
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Approximation scheme
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Approximation scheme
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Some recent developments
Approximation of the optimal cost

First step: Tree-like parts

~ Goes back to [LMMO02]

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
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[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
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First step: Tree-like parts

~ Goes back to [LMMO02]

¢ O, v) = | inf):
t v+t g/

Y

E’ O El/

o.v) O,

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
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First step: Tree-like parts
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o.v) O,

Some recent developments
Approximation of the optimal cost

~ Goes back to [LMMO02]

o(¢,v) = t’|v-lkr:.f):g’ max( , )

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
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Approximation of the optimal cost

First step: Tree-like parts

~ Goes back to [LMMO02]

I/ o(¢,v) = t’|v4i»r:.‘1’:):g’ max((a), )

Y

Ogl OZ// () = tc+c + O(ﬁl, V’)

o.v) O,

v/ =[Y'«0](v+t')

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
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First step: Tree-like parts

~ Goes back to [LMMO02]

0 oW, v) = inf max((a), (J))

. t'|v+t' =g’

/ \ 1
C \ (o}
\

v b o (o) = tc+c + 0, V)

o.v) O,

(B) = sup t'c+c+ 0" v")
t//St/|V+t//':g//

v/ =[Y'«0](v+t')
v =[Y" +0](v+t")

[LMMO02] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
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Second step: Kernels

@ Refine the regions such that f differs
of at most e within a small region

A
—
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Output cost functions f
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Refine/split the kernel along the new
small regions and fix 7 or ", write f;

Since cost is 0 everywhere, the
resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by f.)
Those can be solved using standard
technics based on attractors: small
regions are sufficient, and the local
optimal cost (for output 7.) is constant
within a small region
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Some recent developments
Approximation of the optimal cost

Refine/split the kernel along the new
small regions and fix 7 or ", write f;

Since cost is 0 everywhere, the
resulting game is nothing more than a
reachability timed game with an order
on target (output) edges (given by f.)
Those can be solved using standard
technics based on attractors: small
regions are sufficient, and the local
optimal cost (for output 7.) is constant
within a small region

We have computed e-approximations of
the optimal cost, which are constant
within small regions. Corresponding
strategies can be inferred

49/53



Some recent developments
Back to the undecidability

Outline

© Some recent developments

@ Back to the undecidability
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Some recent developments
Back to the undecidability

Consequence of the approximation algorithm

Theorem

The value problem is co-recursively enumerable (for almost-strongly
non-zeno weighted timed games), but not recursively enumerable.
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Conclusion

Summary of the talk
@ Quick overview of results concerning the optimal reachability
problem in weighted timed games
@ New insight into the value problem for this model:

o Undecidability of this problem
o Approximability of the optimal cost
(under some conditions)
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Conclusion

Summary of the talk
@ Quick overview of results concerning the optimal reachability
problem in weighted timed games
@ New insight into the value problem for this model:

o Undecidability of this problem
o Approximability of the optimal cost
(under some conditions)

Future work

Ix|?
@ Improve the approximation scheme (2EXP(|G|) - (1/6) )

Extend to the whole class of weighted timed games? Or understand
why it is not possible

Assume stochastic uncertainty

Is the value of any game a rational number?

Understand the multiplayer setting
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