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Model-checking

Does the system

Modelling
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ϕ

the property?
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Time!

Context: verification of embedded critical systems

Time

naturally appears in real systems

appears in properties (for ex. bounded response time)

➜ Need of models and specification languages integrating timing aspects
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About time semantics

Adding timing informations

Untimed case: sequence of observable events
a: send message b: receive message

a b a b a b a b a b · · · = (a b)ω
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Adding timing informations

Untimed case: sequence of observable events
a: send message b: receive message

a b a b a b a b a b · · · = (a b)ω

Timed case: sequence of dated observable events

(a, d1) (b, d2) (a, d3) (b, d4) (a, d5) (b, d6) · · ·

d1: date at which the first a occurs
d2: date at which the first b occurs, . . .

Discrete-time semantics: dates are e.g. taken in N
Ex: (a, 1)(b, 3)(c, 4)(a, 6)

Dense-time semantics: dates are e.g. taken in Q+, or in R+

Ex: (a, 1.28).(b, 3.1).(c, 3.98)(a, 6.13)

Artist2 Summer School Foundation for Timed Systems 5 / 63



About time semantics

A case for dense-time

Time domain: discrete (e.g. N) or dense (e.g. Q+)

Dense-time is a more general model than discrete time

A compositionality problem with discrete time

But, can we not always discretize?
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About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]
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Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

Start with x=0 and y=[101] (stable configuration)

The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101]
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−→
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−→
2.5
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y1
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About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

Start with x=0 and y=[101] (stable configuration)

The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101]
y2
−→
1.2

[111]
y3
−→
2.5

[110]
y1
−→
2.8

[010]
y3
−→
4.5

[011]

Reachable configurations: {[101], [111], [110], [010], [011], [001]}
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About time semantics

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.
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This digital circuit is not 1-discretizable.
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This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)
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About time semantics

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)
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y1−→
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1.5
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About time semantics

Is discretizing sufficient?

Theorem [Brzozowski Seger 1991]

For every k ≥ 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time
(with granularity 1

k
).
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About time semantics

Is discretizing sufficient?

Theorem [Brzozowski Seger 1991]

For every k ≥ 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time
(with granularity 1

k
).

Claim

Finding a correct granularity is as difficult as computing the set of
reachable states in dense-time.

Going further... There exist systems for which no granularity exists.
(see later)
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Timed automata, decidability issues

Timed automata [Alur & Dill 90’s]

A finite control structure + variables (clocks)

A transition is of the form:

g , a, C := 0

Enabling condition Reset to zero

An enabling condition (or guard) is:

g ::= x ∼ c | g ∧ g

where ∼∈ {<,≤,=,≥, >}
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Timed automata, decidability issues

Timed automata (example)

x , y : clocks

`0 `1 `2

x ≤ 5, a, y := 0 y > 1, b, x := 0

Artist2 Summer School Foundation for Timed Systems 12 / 63



Timed automata, decidability issues

Timed automata (example)

x , y : clocks

`0 `1 `2

x ≤ 5, a, y := 0 y > 1, b, x := 0

`0 δ(4.1) `0 a `1 δ(1.4) `1 b `2
x 0 4.1 4.1 5.5 0
y 0 4.1 0 1.4 1.4

Artist2 Summer School Foundation for Timed Systems 12 / 63



Timed automata, decidability issues

Timed automata (example)

x , y : clocks

`0 `1 `2

x ≤ 5, a, y := 0 y > 1, b, x := 0

`0 δ(4.1) `0 a `1 δ(1.4) `1 b `2
x 0 4.1 4.1 5.5 0
y 0 4.1 0 1.4 1.4

(clock) valuation

Artist2 Summer School Foundation for Timed Systems 12 / 63



Timed automata, decidability issues

Timed automata (example)

x , y : clocks

`0 `1 `2

x ≤ 5, a, y := 0 y > 1, b, x := 0

`0 δ(4.1) `0 a `1 δ(1.4) `1 b `2
x 0 4.1 4.1 5.5 0
y 0 4.1 0 1.4 1.4

(clock) valuation

➜ timed word (a, 4.1)(b, 5.5)
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Timed automata, decidability issues

Timed automata semantics

A = (Σ, L,X , ) is a TA

Configurations: (`, v) ∈ L× TX where T is the time domain

Timed Transition System:

action transition: (`, v) a (`′, v ′) if ∃` g,a,r
`′ ∈ A s.t.

{

v |= g
v ′ = v [r ← 0]

delay transition: (`, v) δ(d) (`, v + d) if d ∈ T
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Timed automata, decidability issues

Discrete vs dense-time semantics
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Timed automata, decidability issues

Discrete vs dense-time semantics

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0
Dense-time:
Ldense = {((ab)ω , τ) | ∀i , τ2i−1 = i and τ2i − τ2i−1 > τ2i+2 − τ2i+1}

Discrete-time: Ldiscrete = ∅

x = 1, a, x := 0

b, y := 0

y < 1
b

y := 0

ab‖ ‖
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Timed automata, decidability issues

Classical verification problems

reachability of a control state

S ∼ S ′: bisimulation, etc...

L(S) ⊆ L(S ′): language inclusion

S |= ϕ for some formula ϕ: model-checking

S ‖ AT + reachability: testing automata

. . .
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Timed automata, decidability issues

Classical temporal logics

Path formulas:

Gφ « Always »

Fφ « Eventually »

φUφ′ « Until »

Xφ « Next »

State formulas:

Aψ Eψ

➜ LTL: Linear Temporal Logic [Pnueli 1977],
CTL: Computation Tree Logic [Emerson, Clarke 1982]

Artist2 Summer School Foundation for Timed Systems 16 / 63



Timed automata, decidability issues

Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”
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Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units”

Temporal logics with subscripts. ex: CTL +

∣

∣

∣

∣

EϕU∼kψ

AϕU∼kψ

Artist2 Summer School Foundation for Timed Systems 17 / 63



Timed automata, decidability issues

Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units”

Temporal logics with subscripts.

AG (problem⇒ AF≤20 alarm)

Artist2 Summer School Foundation for Timed Systems 17 / 63



Timed automata, decidability issues

Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:
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Timed automata, decidability issues

Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units”

Temporal logics with subscripts.

AG (problem⇒ AF≤20 alarm)

Temporal logics with clocks.

AG (problem⇒ (x in AF (x ≤ 20 ∧ alarm)))

➜ TCTL: Timed CTL [ACD90,ACD93,HNSY94]
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Timed automata, decidability issues

The train crossing example (1)

Traini with i = 1, 2, ...

Far

Before, xi < 30

On, xi < 20

App!, xi := 0

20 < xi < 30, a, xi := 0

10 < xi < 20,Exit!
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Timed automata, decidability issues

The train crossing example (2)

The gate:

Open

CloseRaising, Hg < 10

Lowering, Hg < 10
GoDown?, Hg := 0

Hg < 10, a

GoUp?, Hg := 0

Hg < 10, a
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Timed automata, decidability issues

The train crossing example (3)

The controller:

c1, xc ≤ 20 c2, xc ≤ 10c0

App? Hc := 0Exit?, Hc := 0

Hc ≤ 10, GoDown!

Exit?

App?

Exit?

Hc = 20, GoUp!

App?
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Timed automata, decidability issues

The train crossing example (4)

We use the synchronization function f :

Train1 Train2 Gate Controller
App! . . App? App
. App! . App? App

Exit! . . Exit? Exit
. Exit! . Exit? Exit
a . . . a
. a . . a
. . a . a
. . GoUp? GoUp! GoUp
. . GoDown? GoDown! GoDown

to define the parallel composition (Train1 ‖ Train2 ‖ Gate ‖ Controller)

NB: the parallel composition does not add expressive power!
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Timed automata, decidability issues

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?
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Timed automata, decidability issues

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?

AG (train.On⇒ gate.Close)

Is the gate always closed for less than 5 minutes?
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Timed automata, decidability issues

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?

AG (train.On⇒ gate.Close)

Is the gate always closed for less than 5 minutes?

AG AF<5min(¬gate.Close)
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Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

reachability properties (final states)

basic liveness properties (Büchi (or other) conditions)
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Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Theorem [Alur & Dill 1990’s]

The emptiness problem for timed automata is decidable.
It is PSPACE-complete.
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Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Theorem [Alur & Dill 1990’s]

The emptiness problem for timed automata is decidable.
It is PSPACE-complete.

Note: This is also the case for the discrete semantics.
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Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Theorem [Alur & Dill 1990’s]

The emptiness problem for timed automata is decidable.
It is PSPACE-complete.

Method: construct a finite abstraction
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Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index
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Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

region defined by

Ix =]1; 2[, Iy =]0; 1[

{x} < {y}

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

➜ a bisimulation property
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Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

region defined by

Ix =]1; 2[, Iy =]0; 1[

{x} < {y}

successor regions

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

➜ a bisimulation property

Artist2 Summer School Foundation for Timed Systems 24 / 63



Timed automata, decidability issues

The region automaton

timed automaton
⊗

region abstraction

` g ,a,C :=0 `′ is transformed into:

(`,R) a (`′,R ′) if there exists R ′′ ∈ Succ∗t (R) s.t.

R ′′ ⊆ g

[C ← 0]R ′′ ⊆ R ′

➜ time-abstract bisimulation

L(reg. aut.) = UNTIME(L(timed aut.))

where UNTIME((a1, t1)(a2, t2) . . . ) = a1a2 . . .
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Timed automata, decidability issues

An example [AD 90’s]

0 1 x

1

y
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Timed automata, decidability issues

Time-abstract bisimulation

∀
a
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Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

(`0, v0)
a1,t1 (`1, v1)

a2,t2 (`2, v2)
a3,t3 . . .
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Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

(`0, v0)
a1,t1 (`1, v1)

a2,t2 (`2, v2)
a3,t3 . . .
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Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

(`0, v0)
a1,t1 (`1, v1)

a2,t2 (`2, v2)
a3,t3 . . .

(`0,R0)
a1 (`1,R1)

a2 (`2,R2)
a3 . . .

with vi ∈ Ri for all i .

Remark: Real-time properties can not be checked with a time-abstract
bisimulation. For TCTL, a clock associated with the formula needs to be
added.
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Timed automata, decidability issues

PSPACE-easiness

¡ The size of the region graph is in O(|X |!.2|X |) !

One configuration: a discrete location + a region
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Timed automata, decidability issues

PSPACE-easiness

¡ The size of the region graph is in O(|X |!.2|X |) !

One configuration: a discrete location + a region

a discrete location: log-space
a region:

an interval for each clock
an interval for each pair of clocks

➜ needs polynomial space

By guessing a path: needs only to store two configurations

➜ in NPSPACE, thus in PSPACE
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Timed automata, decidability issues

PSPACE-hardness

M LBTM
w0 ∈ {a, b}

∗

}

; AM,w0 s.t. M accepts w0 iff the final state
of AM,w0 is reachable

Cjw0

{xj , yj}

Cj contains an “a” if xj = yj

Cj contains a “b” if xj < yj

(these conditions are invariant by time elapsing)

➜ proof taken in [Aceto & Laroussinie 2002]
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Timed automata, decidability issues

PSPACE-hardness (cont.)

If q α,α′,δ q′ is a transition ofM, then for each position i of the tape,
we have a transition

(q, i) g ,r :=0 (q′, i ′)

where:

g is xi = yi (resp. xi < yi ) if α = a (resp. α = b)

r = {xi , yi} (resp. r = {xi}) if α′ = a (resp. α′ = b)

i ′ = i + 1 (resp. i ′ = i − 1) if δ is right and i < n (resp. left)

Enforcing time elapsing: on each transition, add the condition t = 1
and clock t is reset.

Initialization: init t=1,r0:=0 (q0, 1) where r0 = {xi | w0[i ] = b} ∪ {t}

Termination: (qf , i) end

Artist2 Summer School Foundation for Timed Systems 30 / 63



Timed automata, decidability issues

Consequence of region automata construction

Region automata: correct finite abstraction for checking
reachability/Büchi-like properties
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Timed automata, decidability issues

Consequence of region automata construction

Region automata: correct finite abstraction for checking
reachability/Büchi-like properties

However, everything can not be reduced to finite automata...
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Timed automata, decidability issues

A model not far from undecidability

Universality is undecidable [Alur & Dill 90’s]

Inclusion is undecidable [Alur & Dill 90’s]

Determinizability is undecidable [Tripakis 2003]

Complementability is undecidable [Tripakis 2003]

...
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x = 1, a
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Timed automata, decidability issues

A model not far from undecidability

Universality is undecidable [Alur & Dill 90’s]

Inclusion is undecidable [Alur & Dill 90’s]

Determinizability is undecidable [Tripakis 2003]

Complementability is undecidable [Tripakis 2003]

...

An example of non-determinizable/non-complementable timed aut.:
[Alur,Madhusudan 2004]

a, b

a, x := 0

x 6= 1, a, b

UNTIME
(

L ∩ {(a∗b∗, τ) | all a′s happen before 1 and no two a′s simultaneously}
)

is

not regular (exercise!)
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Timed automata, decidability issues

Partial conclusion

➜ a timed model interesting for verification purposes

Numerous works have been (and are) devoted to:

the “theoretical” comprehension of timed automata (cf [Asarin 2004])

extensions of the model (to ease modelling)

expressiveness
analyzability

algorithmic problems and implementation
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Some extensions of the model

Outline

1 About time semantics

2 Timed automata, decidability issues

3 Some extensions of the model

4 Implementation of timed automata

5 Conclusion
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Some extensions of the model

Role of diagonal constraints

x − y ∼ c and x ∼ c

Decidability: yes, using the region abstraction

0 1 2 x

1

y

Expressiveness: no additional expressive power
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Some extensions of the model

Role of diagonal constraints (cont.)

c is positive

x − y ≤ c

x := 0

y := 0

copy where x − y ≤ c

x := 0

y := 0

x ≤ c

x > c
y := 0

x := 0

y := 0

copy where x − y > c

➜ proof in [Bérard,Diekert,Gastin,Petit 1998]
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Some extensions of the model

Role of diagonal constraints (cont.)

c is positive

x − y ≤ c

x := 0

y := 0

copy where x − y ≤ c

x := 0

y := 0

x ≤ c

x > c
y := 0

x := 0

y := 0

copy where x − y > c

➜ proof in [Bérard,Diekert,Gastin,Petit 1998]

➜ exponential blowup unavoidable in general

[Bouyer,Chevalier 2005]
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Some extensions of the model

Adding silent actions

g , ε,C := 0
[Bérard,Diekert,Gastin,Petit 1998]

Decidability: yes
(actions have no influence on region automaton construction)

Expressiveness: strictly more expressive!

x = 1, a, x := 0

x = 1, ε, x := 0
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Some extensions of the model

Adding constraints of the form x + y ∼ c

x + y ∼ c and x ∼ c [Bérard,Dufourd 2000]

Decidability: - for two clocks, decidable using the abstraction

0 1 2 x

1

2

y

- for four clocks (or more), undecidable!

Expressiveness: more expressive! (even using two clocks)

{(an, t1 . . . tn) | n ≥ 1 and ti = 1− 1

2i }

x + y = 1, a, x := 0
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Some extensions of the model

The two-counter machine

Definition

A two-counter machine is a finite set of instructions over two counters (x
and y):

Incrementation:
(p): x := x + 1; goto (q)

Decrementation:
(p): if x > 0 then x := x − 1; goto (q) else goto (r)

Theorem [Minsky 67]

The halting problem for two counter machines is undecidable.
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Some extensions of the model

Undecidability proof

20 21 22 23 24 25 26 time

c c c c c c c c ccd d dd d d d d d d

c is unchanged c is incremented

d is decremented

➜ simulation of • decrementation of a counter
• incrementation of a counter

We will use 4 clocks:
• u, “tic” clock (each time unit)
• x0, x1, x2: reference clocks for the two counters

“xi reference for c” ≡ “the last time xi has been reset is
the last time action c has been performed”

[Bérard,Dufourd 2000]
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Some extensions of the model

Undecidability proof (cont.)

Incrementation of counter c:

u = 1, ∗, u := 0

x2 := 0

x0 ≤ 2, u + x2 = 1, c, x2 := 0

u + x2 = 1

x0 > 2, c, x2 := 0

ref for c is x0 ref for c is x2

Decrementation of counter c:

u = 1, ∗, u := 0

x2 := 0

x0 < 2, u + x2 = 1, c, x2 := 0

u + x2 = 1

x0 = 2, c, x2 := 0

u = 1, x0 = 2, ∗, u := 0, x2 := 0
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Some extensions of the model

Adding constraints of the form x + y ∼ c

Two clocks: decidable using the abstraction

0 1 2 x

1

2

y

Four clocks (or more): undecidable!
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Some extensions of the model

Adding constraints of the form x + y ∼ c

Two clocks: decidable using the abstraction

0 1 2 x

1

2

y

Three clocks: open question

We only know that the coarsest time-abstract bisimulation respecting these

constraints is infinite. [Robin 2004]

Four clocks (or more): undecidable!
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Some extensions of the model

Adding new operations on clocks

Several types of updates: x := y + c , x :< c , x :> c , etc...
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Some extensions of the model

Adding new operations on clocks

Several types of updates: x := y + c , x :< c , x :> c , etc...

The general model is undecidable.
(simulation of a two-counter machine)

Only decrementation also leads to undecidability

Incrementation of counter x

z = 1, z := 0 z = 0, y := y − 1z = 0

Decrementation of counter x

x ≥ 1 z = 0, x := x − 1z = 0

x = 0
Artist2 Summer School Foundation for Timed Systems 43 / 63



Some extensions of the model

Decidability

y := 0 y := 1 x − y < 1

1

1

0

image by y := 1

➜ the bisimulation property is not met

The classical region automaton construction is not correct.
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Some extensions of the model

Decidability (cont.)

A ; Diophantine linear inequations system
; is there a solution?
; if yes, belongs to a decidable class

Examples:

constraint x ∼ c c ≤ maxx

constraint x − y ∼ c c ≤ maxx,y

update x :∼ y + c maxx ≤ maxy +c
and for each clock z , maxx,z ≥ maxy ,z + c , maxz,x ≥ maxz,y − c

update x :< c c ≤ maxx

and for each clock z , maxz ≥ c + maxz,x

The constants (maxx) and (maxx,y ) define a set of regions.
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Some extensions of the model

Decidability (cont.)

y := 0 y := 1 x − y < 1























maxy ≥ 0
maxx ≥ 0 + maxx,y

maxy ≥ 1
maxx ≥ 1 + maxx,y

maxx,y ≥ 1

implies















maxx = 2
maxy = 1
maxx,y = 1
maxy ,x = −1

The bisimulation property is met.
1 2

1

0 x

y
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Some extensions of the model

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1
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Some extensions of the model

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

etc...
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Some extensions of the model

Decidability (cont.)

Diagonal-free constraints General constraints

x := c , x := y PSPACE-complete
x := x + 1 PSPACE-complete
x := y + c Undecidable
x := x − 1 Undecidable

x :< c

PSPACE-complete

PSPACE-complete
x :> c

Undecidable
x :∼ y + c

y + c <: x :< y + d
y + c <: x :< z + d Undecidable

[Bouyer,Dufourd,Fleury,Petit 2000]
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Some extensions of the model

Other extensions which have been considered

New operations on clocks [Bouyer, Dufourd, Fleury, Petit 2004]

x := y + c , x :< c , x :> c , etc...

Alternation [Lasota, Walukiewicz 2005] [Ouaknine, Worrell 2005]

One-clock alternating timed automata are decidable.

n-clock alternating timed automata are undecidable (n ≥ 2).

Slopes of variables: “Linear hybrid automata“ [Henzinger 1996]

[Henzinger,Kopke,Puri,Varaiya 98]

Almost everything is undecidable.

The class of LHA with clocks and only one variable having
possibly two slopes k1 6= k2 is undecidable.

The class of stopwatch automata is undecidable.

One of the “largest” classes of LHA which are decidable is
the class of initialized rectangular automata
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Implementation of timed automata

Outline

1 About time semantics

2 Timed automata, decidability issues

3 Some extensions of the model

4 Implementation of timed automata

5 Conclusion
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Implementation of timed automata

Notice

The region automaton is not used for implementation:

suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

no really adapted data structure
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Implementation of timed automata

Notice

The region automaton is not used for implementation:

suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

no really adapted data structure

Algorithms for “minimizing” the region automaton have been proposed...
[Alur & Co 1992] [Tripakis,Yovine 2001]

...but on-the-fly technics are prefered.

Artist2 Summer School Foundation for Timed Systems 51 / 63



Implementation of timed automata

Reachability analysis

forward analysis algorithm:
compute the successors of initial configurations

F

I
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Implementation of timed automata

Note on the backward analysis of TA

` `′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z
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Implementation of timed automata

Note on the backward analysis of TA

` `′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

Z [C ← 0]−1(Z ∩ (C = 0))
←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g

The exact backward computation terminates and is correct!
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Implementation of timed automata

Note on the backward analysis (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”
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Implementation of timed automata

Note on the backward analysis (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

Let R be a region. Assume:

v ∈ R (for ex. v + t ∈ R)

v ′ ≡reg. v

There exists t′ s.t. v ′ + t′ ≡reg. v + t, which implies that v ′ + t′ ∈ R and thus

v ′ ∈ R.
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Implementation of timed automata

Note on the backward analysis (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

But, the backward computation is not so nice, when also dealing with
integer variables...

i := j .k + `.m
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Implementation of timed automata

Forward analysis of timed automata

` `′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

A zone is a set of valuations defined by a clock constraint

ϕ ::= x ∼ c | x − y ∼ c | ϕ ∧ ϕ
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Implementation of timed automata

Forward analysis of timed automata

` `′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

Z Z Z ∩ g [y ← 0](Z ∩ g)
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Implementation of timed automata

Forward analysis of timed automata

` `′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

Z Z Z ∩ g [y ← 0](Z ∩ g)

➜ a termination problem
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Implementation of timed automata

Non termination of the forward analysis

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y
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Implementation of timed automata

Non termination of the forward analysis

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

➜ an infinite number of steps...
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Implementation of timed automata

The DBM data structure

DBM (Difference Bound Matrice) data structure
[Berthomieu, Menasche 1983] [Dill 1989]

(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x0 x1 x2

x0

x1

x2





+∞ −3 +∞
+∞ +∞ 4
5 +∞ +∞




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Implementation of timed automata

The DBM data structure

DBM (Difference Bound Matrice) data structure
[Berthomieu, Menasche 1983] [Dill 1989]

(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x0 x1 x2

x0

x1

x2





+∞ −3 +∞
+∞ +∞ 4
5 +∞ +∞





Existence of a normal form

3 4 9

5

2





0 −3 0
9 0 4
5 2 0




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Implementation of timed automata

The DBM data structure

DBM (Difference Bound Matrice) data structure
[Berthomieu, Menasche 1983] [Dill 1989]

(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x0 x1 x2

x0

x1

x2





+∞ −3 +∞
+∞ +∞ 4
5 +∞ +∞





Existence of a normal form

3 4 9

5

2





0 −3 0
9 0 4
5 2 0





All previous operations on zones can be computed using DBMs
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Implementation of timed automata

The extrapolation operator

Fix an integer k (“∗” represents an integer between −k and +k)







∗
�

�

�

�> k ∗

∗ ∗ ∗�

�

�

�
< −k ∗ ∗






;







∗
�

�

�

�
+∞ ∗

∗ ∗ ∗�

�

�

�
−k ∗ ∗







“intuitively”, erase non-relevant constraints

➜ ensures termination

Artist2 Summer School Foundation for Timed Systems 58 / 63



Implementation of timed automata

The extrapolation operator

Fix an integer k (“∗” represents an integer between −k and +k)







∗
�

�

�

�> k ∗

∗ ∗ ∗�

�

�

�
< −k ∗ ∗






;







∗
�

�

�

�
+∞ ∗

∗ ∗ ∗�

�

�

�
−k ∗ ∗







“intuitively”, erase non-relevant constraints

2

2

➜ ensures termination

Artist2 Summer School Foundation for Timed Systems 58 / 63



Implementation of timed automata

The extrapolation operator

Fix an integer k (“∗” represents an integer between −k and +k)







∗
�

�

�

�> k ∗

∗ ∗ ∗�

�

�

�
< −k ∗ ∗






;







∗
�

�

�

�
+∞ ∗

∗ ∗ ∗�

�

�

�
−k ∗ ∗







“intuitively”, erase non-relevant constraints

2

2

➜ ensures termination

Artist2 Summer School Foundation for Timed Systems 58 / 63



Implementation of timed automata

Classical algorithm, focus on correctness

Take k the maximal constant appearing in the constraints of the
automaton.
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Implementation of timed automata

Classical algorithm, focus on correctness

Take k the maximal constant appearing in the constraints of the
automaton.

Theorem

This algorithm is correct for diagonal-free timed automata.

However, this theorem does not extend to timed automata using
diagonal clock constraints... A counter-example

Implemented in numerous tools:

Uppaal, http://www.uppaal.com/
Kronos, http://www-verimag.imag.fr/TEMPORISE/kronos/
. . .

Successfully used on many real-life examples since ten years.

Artist2 Summer School Foundation for Timed Systems 59 / 63

http://www.uppaal.com/
http://www-verimag.imag.fr/TEMPORISE/kronos/


Conclusion

Outline

1 About time semantics

2 Timed automata, decidability issues

3 Some extensions of the model

4 Implementation of timed automata

5 Conclusion

Artist2 Summer School Foundation for Timed Systems 60 / 63



Conclusion

Conclusion & further work

Decidability is quite well understood.

There is still some progress which is done for the verification of
timed automata. (see Gerd’s talk)

Some other current challenges:

controller synthesis
implementability issues (program synthesis)

(remember Jean-François’ talk)
optimal computations
. . .
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Appendix

A problematic automaton

x3 ≤ 3

x1, x3 := 0

x2 = 3

x2 := 0

x1 = 2, x1 := 0

x2 = 2, x2 := 0

x1 = 2
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 − x1 > 2

x4 − x3 < 2
Error

The loop
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A problematic automaton

x3 ≤ 3

x1, x3 := 0

x2 = 3

x2 := 0

x1 = 2, x1 := 0

x2 = 2, x2 := 0

x1 = 2
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 − x1 > 2

x4 − x3 < 2
Error

The loop















v(x1) = 0
v(x2) = d

v(x3) = 2α + 5
v(x4) = 2α + 5 + d
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Appendix

A problematic automaton

x3 ≤ 3

x1, x3 := 0

x2 = 3

x2 := 0

x1 = 2, x1 := 0

x2 = 2, x2 := 0

x1 = 2
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 − x1 > 2

x4 − x3 < 2
Error

The loop















v(x1) = 0
v(x2) = d

v(x3) = 2α + 5
v(x4) = 2α + 5 + d

x1

x2

x3 x4

[1; 3]

[1; 3]

[2α + 5]

[2α + 5]
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Appendix

The problematic zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2α + 5]

[2α + 5]

[2α + 2; 2α + 4]

[2α + 6; 2α + 8]

implies x1 − x2 = x3 − x4.
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Appendix

The problematic zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2α + 5]

[2α + 5]

[2α + 2; 2α + 4]

[2α + 6; 2α + 8]

implies x1 − x2 = x3 − x4.

If α is sufficiently large, after extrapolation:

x1

x2

x3 x4

[1; 3]

[1; 3]

> k

does not imply x1−x2 = x3−x4.

Back
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