
Foundation for Timed Systems

Patricia Bouyer

LSV – CNRS & ENS de Cachan – France

October 2, 2005

Artist2 Summer School Foundation for Timed Systems 1 / 63

Model-checking

Does the system

Modelling

satisfy

ϕ

the property?

Artist2 Summer School Foundation for Timed Systems 2 / 63

Model-checking

Does the system

Modelling

satisfy

ϕ

the property?

|=

Model-checking
Algorithm

Artist2 Summer School Foundation for Timed Systems 2 / 63

Time!

Context: verification of embedded critical systems

Time

naturally appears in real systems

appears in properties (for ex. bounded response time)

➜ Need of models and specification languages integrating timing aspects

Artist2 Summer School Foundation for Timed Systems 3 / 63

About time semantics

Outline

1 About time semantics

2 Timed automata, decidability issues

3 Some extensions of the model

4 Implementation of timed automata

5 Conclusion

Artist2 Summer School Foundation for Timed Systems 4 / 63

About time semantics

Adding timing informations

Untimed case: sequence of observable events
a: send message b: receive message

a b a b a b a b a b · · · = (a b)ω

Artist2 Summer School Foundation for Timed Systems 5 / 63

About time semantics

Adding timing informations

Untimed case: sequence of observable events
a: send message b: receive message

a b a b a b a b a b · · · = (a b)ω

Timed case: sequence of dated observable events

(a, d1) (b, d2) (a, d3) (b, d4) (a, d5) (b, d6) · · ·

d1: date at which the first a occurs
d2: date at which the first b occurs, . . .

Artist2 Summer School Foundation for Timed Systems 5 / 63

About time semantics

Adding timing informations

Untimed case: sequence of observable events
a: send message b: receive message

a b a b a b a b a b · · · = (a b)ω

Timed case: sequence of dated observable events

(a, d1) (b, d2) (a, d3) (b, d4) (a, d5) (b, d6) · · ·

d1: date at which the first a occurs
d2: date at which the first b occurs, . . .

Discrete-time semantics: dates are e.g. taken in N
Ex: (a, 1)(b, 3)(c, 4)(a, 6)

Artist2 Summer School Foundation for Timed Systems 5 / 63

About time semantics

Adding timing informations

Untimed case: sequence of observable events
a: send message b: receive message

a b a b a b a b a b · · · = (a b)ω

Timed case: sequence of dated observable events

(a, d1) (b, d2) (a, d3) (b, d4) (a, d5) (b, d6) · · ·

d1: date at which the first a occurs
d2: date at which the first b occurs, . . .

Discrete-time semantics: dates are e.g. taken in N
Ex: (a, 1)(b, 3)(c, 4)(a, 6)

Dense-time semantics: dates are e.g. taken in Q+, or in R+

Ex: (a, 1.28).(b, 3.1).(c, 3.98)(a, 6.13)

Artist2 Summer School Foundation for Timed Systems 5 / 63

About time semantics

A case for dense-time

Time domain: discrete (e.g. N) or dense (e.g. Q+)

Dense-time is a more general model than discrete time

A compositionality problem with discrete time

But, can we not always discretize?

Artist2 Summer School Foundation for Timed Systems 6 / 63

About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

Artist2 Summer School Foundation for Timed Systems 7 / 63

About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

Start with x=0 and y=[101] (stable configuration)

Artist2 Summer School Foundation for Timed Systems 7 / 63

About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

Start with x=0 and y=[101] (stable configuration)

The input x changes to 1. The corresponding stable state is y=[011]

Artist2 Summer School Foundation for Timed Systems 7 / 63

About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

Start with x=0 and y=[101] (stable configuration)

The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101]
y2
−→
1.2

[111]
y3
−→
2.5

[110]
y1
−→
2.8

[010]
y3
−→
4.5

[011]

Artist2 Summer School Foundation for Timed Systems 7 / 63

About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

Start with x=0 and y=[101] (stable configuration)

The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101]
y2
−→
1.2

[111]
y3
−→
2.5

[110]
y1
−→
2.8

[010]
y3
−→
4.5

[011]

Reachable configurations: {[101], [111], [110], [010], [011], [001]}
Artist2 Summer School Foundation for Timed Systems 7 / 63

About time semantics

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

Artist2 Summer School Foundation for Timed Systems 8 / 63

About time semantics

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

Artist2 Summer School Foundation for Timed Systems 8 / 63

About time semantics

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
y1−→
1

[01100000]
y2−→
1.5

[00100000]
y3,y5−→

2

[00001000]
y5,y7−→

3

[00000010]
y7,y8−→

4

[00000001]

Artist2 Summer School Foundation for Timed Systems 8 / 63

About time semantics

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
y1−→
1

[01100000]
y2−→
1.5

[00100000]
y3,y5−→

2

[00001000]
y5,y7−→

3

[00000010]
y7,y8−→

4

[00000001]

[11100000]
y1,y2,y3−→

1

[00000000]

Artist2 Summer School Foundation for Timed Systems 8 / 63

About time semantics

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
y1−→
1

[01100000]
y2−→
1.5

[00100000]
y3,y5−→

2

[00001000]
y5,y7−→

3

[00000010]
y7,y8−→

4

[00000001]

[11100000]
y1,y2,y3−→

1

[00000000]

[11100000]
y1−→
1

[01111000]
y2,y3,y4,y5−→

2

[00000000]

Artist2 Summer School Foundation for Timed Systems 8 / 63

About time semantics

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
y1−→
1

[01100000]
y2−→
1.5

[00100000]
y3,y5−→

2

[00001000]
y5,y7−→

3

[00000010]
y7,y8−→

4

[00000001]

[11100000]
y1,y2,y3−→

1

[00000000]

[11100000]
y1−→
1

[01111000]
y2,y3,y4,y5−→

2

[00000000]

[11100000]
y1,y2−→

1

[00100000]
y3,y5,y6−→

2

[00001100]
y5,y6−→

3

[00000000]

Artist2 Summer School Foundation for Timed Systems 8 / 63

About time semantics

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.
Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
y1−→
1

[01100000]
y2−→
1.5

[00100000]
y3,y5−→

2

[00001000]
y5,y7−→

3

[00000010]
y7,y8−→

4

[00000001]

[11100000]
y1,y2,y3−→

1

[00000000]

[11100000]
y1−→
1

[01111000]
y2,y3,y4,y5−→

2

[00000000]

[11100000]
y1,y2−→

1

[00100000]
y3,y5,y6−→

2

[00001100]
y5,y6−→

3

[00000000]

Artist2 Summer School Foundation for Timed Systems 8 / 63

About time semantics

Is discretizing sufficient?

Theorem [Brzozowski Seger 1991]

For every k ≥ 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time
(with granularity 1

k
).

Artist2 Summer School Foundation for Timed Systems 9 / 63

About time semantics

Is discretizing sufficient?

Theorem [Brzozowski Seger 1991]

For every k ≥ 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time
(with granularity 1

k
).

Claim

Finding a correct granularity is as difficult as computing the set of
reachable states in dense-time.

Artist2 Summer School Foundation for Timed Systems 9 / 63

About time semantics

Is discretizing sufficient?

Theorem [Brzozowski Seger 1991]

For every k ≥ 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time
(with granularity 1

k
).

Claim

Finding a correct granularity is as difficult as computing the set of
reachable states in dense-time.

Going further... There exist systems for which no granularity exists.
(see later)

Artist2 Summer School Foundation for Timed Systems 9 / 63

Timed automata, decidability issues

Outline

1 About time semantics

2 Timed automata, decidability issues

3 Some extensions of the model

4 Implementation of timed automata

5 Conclusion

Artist2 Summer School Foundation for Timed Systems 10 / 63

Timed automata, decidability issues

Timed automata [Alur & Dill 90’s]

A finite control structure + variables (clocks)

A transition is of the form:

g , a, C := 0

Enabling condition Reset to zero

An enabling condition (or guard) is:

g ::= x ∼ c | g ∧ g

where ∼∈ {<,≤,=,≥, >}

Artist2 Summer School Foundation for Timed Systems 11 / 63

Timed automata, decidability issues

Timed automata (example)

x , y : clocks

`0 `1 `2

x ≤ 5, a, y := 0 y > 1, b, x := 0

Artist2 Summer School Foundation for Timed Systems 12 / 63

Timed automata, decidability issues

Timed automata (example)

x , y : clocks

`0 `1 `2

x ≤ 5, a, y := 0 y > 1, b, x := 0

`0 δ(4.1) `0 a `1 δ(1.4) `1 b `2
x 0 4.1 4.1 5.5 0
y 0 4.1 0 1.4 1.4

Artist2 Summer School Foundation for Timed Systems 12 / 63

Timed automata, decidability issues

Timed automata (example)

x , y : clocks

`0 `1 `2

x ≤ 5, a, y := 0 y > 1, b, x := 0

`0 δ(4.1) `0 a `1 δ(1.4) `1 b `2
x 0 4.1 4.1 5.5 0
y 0 4.1 0 1.4 1.4

(clock) valuation

Artist2 Summer School Foundation for Timed Systems 12 / 63

Timed automata, decidability issues

Timed automata (example)

x , y : clocks

`0 `1 `2

x ≤ 5, a, y := 0 y > 1, b, x := 0

`0 δ(4.1) `0 a `1 δ(1.4) `1 b `2
x 0 4.1 4.1 5.5 0
y 0 4.1 0 1.4 1.4

(clock) valuation

➜ timed word (a, 4.1)(b, 5.5)

Artist2 Summer School Foundation for Timed Systems 12 / 63

Timed automata, decidability issues

Timed automata semantics

A = (Σ, L,X ,) is a TA

Configurations: (`, v) ∈ L× TX where T is the time domain

Timed Transition System:

action transition: (`, v) a (`′, v ′) if ∃` g,a,r
`′ ∈ A s.t.

{

v |= g
v ′ = v [r ← 0]

delay transition: (`, v) δ(d) (`, v + d) if d ∈ T

Artist2 Summer School Foundation for Timed Systems 13 / 63

Timed automata, decidability issues

Discrete vs dense-time semantics

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0

Artist2 Summer School Foundation for Timed Systems 14 / 63

Timed automata, decidability issues

Discrete vs dense-time semantics

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0
Dense-time:
Ldense = {((ab)ω , τ) | ∀i , τ2i−1 = i and τ2i − τ2i−1 > τ2i+2 − τ2i+1}

Artist2 Summer School Foundation for Timed Systems 14 / 63

Timed automata, decidability issues

Discrete vs dense-time semantics

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0
Dense-time:
Ldense = {((ab)ω , τ) | ∀i , τ2i−1 = i and τ2i − τ2i−1 > τ2i+2 − τ2i+1}

Discrete-time: Ldiscrete = ∅

Artist2 Summer School Foundation for Timed Systems 14 / 63

Timed automata, decidability issues

Discrete vs dense-time semantics

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0
Dense-time:
Ldense = {((ab)ω , τ) | ∀i , τ2i−1 = i and τ2i − τ2i−1 > τ2i+2 − τ2i+1}

Discrete-time: Ldiscrete = ∅

x = 1, a, x := 0

b, y := 0

y < 1
b

y := 0

ab‖ ‖

Artist2 Summer School Foundation for Timed Systems 14 / 63

Timed automata, decidability issues

Classical verification problems

reachability of a control state

S ∼ S ′: bisimulation, etc...

L(S) ⊆ L(S ′): language inclusion

S |= ϕ for some formula ϕ: model-checking

S ‖ AT + reachability: testing automata

. . .

Artist2 Summer School Foundation for Timed Systems 15 / 63

Timed automata, decidability issues

Classical temporal logics

Path formulas:

Gφ « Always »

Fφ « Eventually »

φUφ′ « Until »

Xφ « Next »

State formulas:

Aψ Eψ

➜ LTL: Linear Temporal Logic [Pnueli 1977],
CTL: Computation Tree Logic [Emerson, Clarke 1982]

Artist2 Summer School Foundation for Timed Systems 16 / 63

Timed automata, decidability issues

Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

Artist2 Summer School Foundation for Timed Systems 17 / 63

Timed automata, decidability issues

Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

Artist2 Summer School Foundation for Timed Systems 17 / 63

Timed automata, decidability issues

Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units”

Artist2 Summer School Foundation for Timed Systems 17 / 63

Timed automata, decidability issues

Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units”

Temporal logics with subscripts. ex: CTL +

∣

∣

∣

∣

EϕU∼kψ

AϕU∼kψ

Artist2 Summer School Foundation for Timed Systems 17 / 63

Timed automata, decidability issues

Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units”

Temporal logics with subscripts.

AG (problem⇒ AF≤20 alarm)

Artist2 Summer School Foundation for Timed Systems 17 / 63

Timed automata, decidability issues

Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units”

Temporal logics with subscripts.

AG (problem⇒ AF≤20 alarm)

Temporal logics with clocks.

AG (problem⇒ (x in AF (x ≤ 20 ∧ alarm)))

Artist2 Summer School Foundation for Timed Systems 17 / 63

Timed automata, decidability issues

Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units”

Temporal logics with subscripts.

AG (problem⇒ AF≤20 alarm)

Temporal logics with clocks.

AG (problem⇒ (x in AF (x ≤ 20 ∧ alarm)))

➜ TCTL: Timed CTL [ACD90,ACD93,HNSY94]

Artist2 Summer School Foundation for Timed Systems 17 / 63

Timed automata, decidability issues

The train crossing example (1)

Traini with i = 1, 2, ...

Far

Before, xi < 30

On, xi < 20

App!, xi := 0

20 < xi < 30, a, xi := 0

10 < xi < 20,Exit!

Artist2 Summer School Foundation for Timed Systems 18 / 63

Timed automata, decidability issues

The train crossing example (2)

The gate:

Open

CloseRaising, Hg < 10

Lowering, Hg < 10
GoDown?, Hg := 0

Hg < 10, a

GoUp?, Hg := 0

Hg < 10, a

Artist2 Summer School Foundation for Timed Systems 19 / 63

Timed automata, decidability issues

The train crossing example (3)

The controller:

c1, xc ≤ 20 c2, xc ≤ 10c0

App? Hc := 0Exit?, Hc := 0

Hc ≤ 10, GoDown!

Exit?

App?

Exit?

Hc = 20, GoUp!

App?

Artist2 Summer School Foundation for Timed Systems 20 / 63

Timed automata, decidability issues

The train crossing example (4)

We use the synchronization function f :

Train1 Train2 Gate Controller
App! . . App? App
. App! . App? App

Exit! . . Exit? Exit
. Exit! . Exit? Exit
a . . . a
. a . . a
. . a . a
. . GoUp? GoUp! GoUp
. . GoDown? GoDown! GoDown

to define the parallel composition (Train1 ‖ Train2 ‖ Gate ‖ Controller)

NB: the parallel composition does not add expressive power!

Artist2 Summer School Foundation for Timed Systems 21 / 63

Timed automata, decidability issues

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?

Artist2 Summer School Foundation for Timed Systems 22 / 63

Timed automata, decidability issues

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?

AG (train.On⇒ gate.Close)

Artist2 Summer School Foundation for Timed Systems 22 / 63

Timed automata, decidability issues

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?

AG (train.On⇒ gate.Close)

Is the gate always closed for less than 5 minutes?

Artist2 Summer School Foundation for Timed Systems 22 / 63

Timed automata, decidability issues

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?

AG (train.On⇒ gate.Close)

Is the gate always closed for less than 5 minutes?

AG AF<5min(¬gate.Close)

Artist2 Summer School Foundation for Timed Systems 22 / 63

Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

reachability properties (final states)

basic liveness properties (Büchi (or other) conditions)

Artist2 Summer School Foundation for Timed Systems 23 / 63

Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods can not be applied

Artist2 Summer School Foundation for Timed Systems 23 / 63

Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Artist2 Summer School Foundation for Timed Systems 23 / 63

Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Theorem [Alur & Dill 1990’s]

The emptiness problem for timed automata is decidable.
It is PSPACE-complete.

Artist2 Summer School Foundation for Timed Systems 23 / 63

Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Theorem [Alur & Dill 1990’s]

The emptiness problem for timed automata is decidable.
It is PSPACE-complete.

Note: This is also the case for the discrete semantics.

Artist2 Summer School Foundation for Timed Systems 23 / 63

Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Theorem [Alur & Dill 1990’s]

The emptiness problem for timed automata is decidable.
It is PSPACE-complete.

Method: construct a finite abstraction

Artist2 Summer School Foundation for Timed Systems 23 / 63

Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

Artist2 Summer School Foundation for Timed Systems 24 / 63

Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

“compatibility” between regions and constraints

Artist2 Summer School Foundation for Timed Systems 24 / 63

Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

•
•

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

Artist2 Summer School Foundation for Timed Systems 24 / 63

Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

•
•

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

Artist2 Summer School Foundation for Timed Systems 24 / 63

Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

➜ a bisimulation property

Artist2 Summer School Foundation for Timed Systems 24 / 63

Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

region defined by

Ix =]1; 2[, Iy =]0; 1[

{x} < {y}

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

➜ a bisimulation property

Artist2 Summer School Foundation for Timed Systems 24 / 63

Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

region defined by

Ix =]1; 2[, Iy =]0; 1[

{x} < {y}

successor regions

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

➜ a bisimulation property

Artist2 Summer School Foundation for Timed Systems 24 / 63

Timed automata, decidability issues

The region automaton

timed automaton
⊗

region abstraction

` g ,a,C :=0 `′ is transformed into:

(`,R) a (`′,R ′) if there exists R ′′ ∈ Succ∗t (R) s.t.

R ′′ ⊆ g

[C ← 0]R ′′ ⊆ R ′

➜ time-abstract bisimulation

L(reg. aut.) = UNTIME(L(timed aut.))

where UNTIME((a1, t1)(a2, t2) . . .) = a1a2 . . .

Artist2 Summer School Foundation for Timed Systems 25 / 63

Timed automata, decidability issues

An example [AD 90’s]

0 1 x

1

y

Artist2 Summer School Foundation for Timed Systems 26 / 63

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

Artist2 Summer School Foundation for Timed Systems 27 / 63

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

Artist2 Summer School Foundation for Timed Systems 27 / 63

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

Artist2 Summer School Foundation for Timed Systems 27 / 63

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

Artist2 Summer School Foundation for Timed Systems 27 / 63

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

(`0, v0)
a1,t1 (`1, v1)

a2,t2 (`2, v2)
a3,t3 . . .

Artist2 Summer School Foundation for Timed Systems 27 / 63

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

(`0, v0)
a1,t1 (`1, v1)

a2,t2 (`2, v2)
a3,t3 . . .

(`0,R0)
a1 (`1,R1)

a2 (`2,R2)
a3 . . .

with vi ∈ Ri for all i .

Artist2 Summer School Foundation for Timed Systems 27 / 63

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

(`0, v0)
a1,t1 (`1, v1)

a2,t2 (`2, v2)
a3,t3 . . .

(`0,R0)
a1 (`1,R1)

a2 (`2,R2)
a3 . . .

with vi ∈ Ri for all i .

Artist2 Summer School Foundation for Timed Systems 27 / 63

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

(`0, v0)
a1,t1 (`1, v1)

a2,t2 (`2, v2)
a3,t3 . . .

(`0,R0)
a1 (`1,R1)

a2 (`2,R2)
a3 . . .

with vi ∈ Ri for all i .

Remark: Real-time properties can not be checked with a time-abstract
bisimulation. For TCTL, a clock associated with the formula needs to be
added.

Artist2 Summer School Foundation for Timed Systems 27 / 63

Timed automata, decidability issues

PSPACE-easiness

¡ The size of the region graph is in O(|X |!.2|X |) !

One configuration: a discrete location + a region

Artist2 Summer School Foundation for Timed Systems 28 / 63

Timed automata, decidability issues

PSPACE-easiness

¡ The size of the region graph is in O(|X |!.2|X |) !

One configuration: a discrete location + a region

a discrete location: log-space

Artist2 Summer School Foundation for Timed Systems 28 / 63

Timed automata, decidability issues

PSPACE-easiness

¡ The size of the region graph is in O(|X |!.2|X |) !

One configuration: a discrete location + a region

a discrete location: log-space
a region:

an interval for each clock
an interval for each pair of clocks

Artist2 Summer School Foundation for Timed Systems 28 / 63

Timed automata, decidability issues

PSPACE-easiness

¡ The size of the region graph is in O(|X |!.2|X |) !

One configuration: a discrete location + a region

a discrete location: log-space
a region:

an interval for each clock
an interval for each pair of clocks

➜ needs polynomial space

Artist2 Summer School Foundation for Timed Systems 28 / 63

Timed automata, decidability issues

PSPACE-easiness

¡ The size of the region graph is in O(|X |!.2|X |) !

One configuration: a discrete location + a region

a discrete location: log-space
a region:

an interval for each clock
an interval for each pair of clocks

➜ needs polynomial space

By guessing a path: needs only to store two configurations

Artist2 Summer School Foundation for Timed Systems 28 / 63

Timed automata, decidability issues

PSPACE-easiness

¡ The size of the region graph is in O(|X |!.2|X |) !

One configuration: a discrete location + a region

a discrete location: log-space
a region:

an interval for each clock
an interval for each pair of clocks

➜ needs polynomial space

By guessing a path: needs only to store two configurations

➜ in NPSPACE, thus in PSPACE

Artist2 Summer School Foundation for Timed Systems 28 / 63

Timed automata, decidability issues

PSPACE-hardness

M LBTM
w0 ∈ {a, b}

∗

}

; AM,w0 s.t. M accepts w0 iff the final state
of AM,w0 is reachable

Cjw0

{xj , yj}

Cj contains an “a” if xj = yj

Cj contains a “b” if xj < yj

(these conditions are invariant by time elapsing)

➜ proof taken in [Aceto & Laroussinie 2002]

Artist2 Summer School Foundation for Timed Systems 29 / 63

Timed automata, decidability issues

PSPACE-hardness (cont.)

If q α,α′,δ q′ is a transition ofM, then for each position i of the tape,
we have a transition

(q, i) g ,r :=0 (q′, i ′)

where:

g is xi = yi (resp. xi < yi) if α = a (resp. α = b)

r = {xi , yi} (resp. r = {xi}) if α′ = a (resp. α′ = b)

i ′ = i + 1 (resp. i ′ = i − 1) if δ is right and i < n (resp. left)

Enforcing time elapsing: on each transition, add the condition t = 1
and clock t is reset.

Initialization: init t=1,r0:=0 (q0, 1) where r0 = {xi | w0[i] = b} ∪ {t}

Termination: (qf , i) end

Artist2 Summer School Foundation for Timed Systems 30 / 63

Timed automata, decidability issues

Consequence of region automata construction

Region automata: correct finite abstraction for checking
reachability/Büchi-like properties

Artist2 Summer School Foundation for Timed Systems 31 / 63

Timed automata, decidability issues

Consequence of region automata construction

Region automata: correct finite abstraction for checking
reachability/Büchi-like properties

However, everything can not be reduced to finite automata...

Artist2 Summer School Foundation for Timed Systems 31 / 63

Timed automata, decidability issues

A model not far from undecidability

Universality is undecidable [Alur & Dill 90’s]

Inclusion is undecidable [Alur & Dill 90’s]

Determinizability is undecidable [Tripakis 2003]

Complementability is undecidable [Tripakis 2003]

...

Artist2 Summer School Foundation for Timed Systems 32 / 63

Timed automata, decidability issues

A model not far from undecidability

Universality is undecidable [Alur & Dill 90’s]

Inclusion is undecidable [Alur & Dill 90’s]

Determinizability is undecidable [Tripakis 2003]

Complementability is undecidable [Tripakis 2003]

...

An example of non-determinizable/non-complementable timed aut.:

a

a, x := 0

a

x = 1, a

a

Artist2 Summer School Foundation for Timed Systems 32 / 63

Timed automata, decidability issues

A model not far from undecidability

Universality is undecidable [Alur & Dill 90’s]

Inclusion is undecidable [Alur & Dill 90’s]

Determinizability is undecidable [Tripakis 2003]

Complementability is undecidable [Tripakis 2003]

...

An example of non-determinizable/non-complementable timed aut.:
[Alur,Madhusudan 2004]

a, b

a, x := 0

x 6= 1, a, b

UNTIME
(

L ∩ {(a∗b∗, τ) | all a′s happen before 1 and no two a′s simultaneously}
)

is

not regular (exercise!)

Artist2 Summer School Foundation for Timed Systems 32 / 63

Timed automata, decidability issues

Partial conclusion

➜ a timed model interesting for verification purposes

Numerous works have been (and are) devoted to:

the “theoretical” comprehension of timed automata (cf [Asarin 2004])

extensions of the model (to ease modelling)

expressiveness
analyzability

algorithmic problems and implementation

Artist2 Summer School Foundation for Timed Systems 33 / 63

Some extensions of the model

Outline

1 About time semantics

2 Timed automata, decidability issues

3 Some extensions of the model

4 Implementation of timed automata

5 Conclusion

Artist2 Summer School Foundation for Timed Systems 34 / 63

Some extensions of the model

Role of diagonal constraints

x − y ∼ c and x ∼ c

Decidability: yes, using the region abstraction

0 1 2 x

1

y

Expressiveness: no additional expressive power

Artist2 Summer School Foundation for Timed Systems 35 / 63

Some extensions of the model

Role of diagonal constraints (cont.)

c is positive

x − y ≤ c

x := 0

y := 0

copy where x − y ≤ c

x := 0

y := 0

x ≤ c

x > c
y := 0

x := 0

y := 0

copy where x − y > c

➜ proof in [Bérard,Diekert,Gastin,Petit 1998]

Artist2 Summer School Foundation for Timed Systems 36 / 63

Some extensions of the model

Role of diagonal constraints (cont.)

c is positive

x − y ≤ c

x := 0

y := 0

copy where x − y ≤ c

x := 0

y := 0

x ≤ c

x > c
y := 0

x := 0

y := 0

copy where x − y > c

➜ proof in [Bérard,Diekert,Gastin,Petit 1998]

➜ exponential blowup unavoidable in general

[Bouyer,Chevalier 2005]

Artist2 Summer School Foundation for Timed Systems 36 / 63

Some extensions of the model

Adding silent actions

g , ε,C := 0
[Bérard,Diekert,Gastin,Petit 1998]

Decidability: yes
(actions have no influence on region automaton construction)

Expressiveness: strictly more expressive!

x = 1, a, x := 0

x = 1, ε, x := 0

Artist2 Summer School Foundation for Timed Systems 37 / 63

Some extensions of the model

Adding constraints of the form x + y ∼ c

x + y ∼ c and x ∼ c [Bérard,Dufourd 2000]

Decidability: - for two clocks, decidable using the abstraction

0 1 2 x

1

2

y

- for four clocks (or more), undecidable!

Expressiveness: more expressive! (even using two clocks)

{(an, t1 . . . tn) | n ≥ 1 and ti = 1− 1

2i }

x + y = 1, a, x := 0

Artist2 Summer School Foundation for Timed Systems 38 / 63

Some extensions of the model

The two-counter machine

Definition

A two-counter machine is a finite set of instructions over two counters (x
and y):

Incrementation:
(p): x := x + 1; goto (q)

Decrementation:
(p): if x > 0 then x := x − 1; goto (q) else goto (r)

Theorem [Minsky 67]

The halting problem for two counter machines is undecidable.

Artist2 Summer School Foundation for Timed Systems 39 / 63

Some extensions of the model

Undecidability proof

20 21 22 23 24 25 26 time

c c c c c c c c ccd d dd d d d d d d

c is unchanged c is incremented

d is decremented

➜ simulation of • decrementation of a counter
• incrementation of a counter

We will use 4 clocks:
• u, “tic” clock (each time unit)
• x0, x1, x2: reference clocks for the two counters

“xi reference for c” ≡ “the last time xi has been reset is
the last time action c has been performed”

[Bérard,Dufourd 2000]

Artist2 Summer School Foundation for Timed Systems 40 / 63

Some extensions of the model

Undecidability proof (cont.)

Incrementation of counter c:

u = 1, ∗, u := 0

x2 := 0

x0 ≤ 2, u + x2 = 1, c, x2 := 0

u + x2 = 1

x0 > 2, c, x2 := 0

ref for c is x0 ref for c is x2

Decrementation of counter c:

u = 1, ∗, u := 0

x2 := 0

x0 < 2, u + x2 = 1, c, x2 := 0

u + x2 = 1

x0 = 2, c, x2 := 0

u = 1, x0 = 2, ∗, u := 0, x2 := 0

Artist2 Summer School Foundation for Timed Systems 41 / 63

Some extensions of the model

Adding constraints of the form x + y ∼ c

Two clocks: decidable using the abstraction

0 1 2 x

1

2

y

Four clocks (or more): undecidable!

Artist2 Summer School Foundation for Timed Systems 42 / 63

Some extensions of the model

Adding constraints of the form x + y ∼ c

Two clocks: decidable using the abstraction

0 1 2 x

1

2

y

Three clocks: open question

We only know that the coarsest time-abstract bisimulation respecting these

constraints is infinite. [Robin 2004]

Four clocks (or more): undecidable!

Artist2 Summer School Foundation for Timed Systems 42 / 63

Some extensions of the model

Adding new operations on clocks

Several types of updates: x := y + c , x :< c , x :> c , etc...

Artist2 Summer School Foundation for Timed Systems 43 / 63

Some extensions of the model

Adding new operations on clocks

Several types of updates: x := y + c , x :< c , x :> c , etc...

The general model is undecidable.
(simulation of a two-counter machine)

Artist2 Summer School Foundation for Timed Systems 43 / 63

Some extensions of the model

Adding new operations on clocks

Several types of updates: x := y + c , x :< c , x :> c , etc...

The general model is undecidable.
(simulation of a two-counter machine)

Only decrementation also leads to undecidability

Incrementation of counter x

z = 1, z := 0 z = 0, y := y − 1z = 0

Decrementation of counter x

x ≥ 1 z = 0, x := x − 1z = 0

x = 0
Artist2 Summer School Foundation for Timed Systems 43 / 63

Some extensions of the model

Decidability

y := 0 y := 1 x − y < 1

1

1

0

image by y := 1

➜ the bisimulation property is not met

The classical region automaton construction is not correct.

Artist2 Summer School Foundation for Timed Systems 44 / 63

Some extensions of the model

Decidability (cont.)

A ; Diophantine linear inequations system
; is there a solution?
; if yes, belongs to a decidable class

Examples:

constraint x ∼ c c ≤ maxx

constraint x − y ∼ c c ≤ maxx,y

update x :∼ y + c maxx ≤ maxy +c
and for each clock z , maxx,z ≥ maxy ,z + c , maxz,x ≥ maxz,y − c

update x :< c c ≤ maxx

and for each clock z , maxz ≥ c + maxz,x

The constants (maxx) and (maxx,y) define a set of regions.

Artist2 Summer School Foundation for Timed Systems 45 / 63

Some extensions of the model

Decidability (cont.)

y := 0 y := 1 x − y < 1























maxy ≥ 0
maxx ≥ 0 + maxx,y

maxy ≥ 1
maxx ≥ 1 + maxx,y

maxx,y ≥ 1

implies















maxx = 2
maxy = 1
maxx,y = 1
maxy ,x = −1

The bisimulation property is met.
1 2

1

0 x

y

Artist2 Summer School Foundation for Timed Systems 46 / 63

Some extensions of the model

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

Artist2 Summer School Foundation for Timed Systems 47 / 63

Some extensions of the model

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

••

Artist2 Summer School Foundation for Timed Systems 47 / 63

Some extensions of the model

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

••

Artist2 Summer School Foundation for Timed Systems 47 / 63

Some extensions of the model

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

•

•

Artist2 Summer School Foundation for Timed Systems 47 / 63

Some extensions of the model

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

•

•

Artist2 Summer School Foundation for Timed Systems 47 / 63

Some extensions of the model

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

Artist2 Summer School Foundation for Timed Systems 47 / 63

Some extensions of the model

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

etc...

Artist2 Summer School Foundation for Timed Systems 47 / 63

Some extensions of the model

Decidability (cont.)

Diagonal-free constraints General constraints

x := c , x := y PSPACE-complete
x := x + 1 PSPACE-complete
x := y + c Undecidable
x := x − 1 Undecidable

x :< c

PSPACE-complete

PSPACE-complete
x :> c

Undecidable
x :∼ y + c

y + c <: x :< y + d
y + c <: x :< z + d Undecidable

[Bouyer,Dufourd,Fleury,Petit 2000]

Artist2 Summer School Foundation for Timed Systems 48 / 63

Some extensions of the model

Other extensions which have been considered

New operations on clocks [Bouyer, Dufourd, Fleury, Petit 2004]

x := y + c , x :< c , x :> c , etc...

Alternation [Lasota, Walukiewicz 2005] [Ouaknine, Worrell 2005]

One-clock alternating timed automata are decidable.

n-clock alternating timed automata are undecidable (n ≥ 2).

Slopes of variables: “Linear hybrid automata“ [Henzinger 1996]

[Henzinger,Kopke,Puri,Varaiya 98]

Almost everything is undecidable.

The class of LHA with clocks and only one variable having
possibly two slopes k1 6= k2 is undecidable.

The class of stopwatch automata is undecidable.

One of the “largest” classes of LHA which are decidable is
the class of initialized rectangular automata

Artist2 Summer School Foundation for Timed Systems 49 / 63

Implementation of timed automata

Outline

1 About time semantics

2 Timed automata, decidability issues

3 Some extensions of the model

4 Implementation of timed automata

5 Conclusion

Artist2 Summer School Foundation for Timed Systems 50 / 63

Implementation of timed automata

Notice

The region automaton is not used for implementation:

suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

no really adapted data structure

Artist2 Summer School Foundation for Timed Systems 51 / 63

Implementation of timed automata

Notice

The region automaton is not used for implementation:

suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

no really adapted data structure

Algorithms for “minimizing” the region automaton have been proposed...
[Alur & Co 1992] [Tripakis,Yovine 2001]

Artist2 Summer School Foundation for Timed Systems 51 / 63

Implementation of timed automata

Notice

The region automaton is not used for implementation:

suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

no really adapted data structure

Algorithms for “minimizing” the region automaton have been proposed...
[Alur & Co 1992] [Tripakis,Yovine 2001]

...but on-the-fly technics are prefered.

Artist2 Summer School Foundation for Timed Systems 51 / 63

Implementation of timed automata

Reachability analysis

forward analysis algorithm:
compute the successors of initial configurations

F

I

Artist2 Summer School Foundation for Timed Systems 52 / 63

Implementation of timed automata

Reachability analysis

forward analysis algorithm:
compute the successors of initial configurations

F

I

Artist2 Summer School Foundation for Timed Systems 52 / 63

Implementation of timed automata

Reachability analysis

forward analysis algorithm:
compute the successors of initial configurations

F

I

backward analysis algorithm:
compute the predecessors of final configurations

I

F

Artist2 Summer School Foundation for Timed Systems 52 / 63

Implementation of timed automata

Reachability analysis

forward analysis algorithm:
compute the successors of initial configurations

F

I

backward analysis algorithm:
compute the predecessors of final configurations

I

F

Artist2 Summer School Foundation for Timed Systems 52 / 63

Implementation of timed automata

Note on the backward analysis of TA

` `′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

Artist2 Summer School Foundation for Timed Systems 53 / 63

Implementation of timed automata

Note on the backward analysis of TA

` `′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

Z

Artist2 Summer School Foundation for Timed Systems 53 / 63

Implementation of timed automata

Note on the backward analysis of TA

` `′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

Z [C ← 0]−1(Z ∩ (C = 0))

Artist2 Summer School Foundation for Timed Systems 53 / 63

Implementation of timed automata

Note on the backward analysis of TA

` `′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

Z [C ← 0]−1(Z ∩ (C = 0))

Artist2 Summer School Foundation for Timed Systems 53 / 63

Implementation of timed automata

Note on the backward analysis of TA

` `′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

Z [C ← 0]−1(Z ∩ (C = 0))
←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g

Artist2 Summer School Foundation for Timed Systems 53 / 63

Implementation of timed automata

Note on the backward analysis of TA

` `′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

Z [C ← 0]−1(Z ∩ (C = 0))
←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g

The exact backward computation terminates and is correct!

Artist2 Summer School Foundation for Timed Systems 53 / 63

Implementation of timed automata

Note on the backward analysis (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

Artist2 Summer School Foundation for Timed Systems 54 / 63

Implementation of timed automata

Note on the backward analysis (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

Let R be a region. Assume:

v ∈ R (for ex. v + t ∈ R)

v ′ ≡reg. v

There exists t′ s.t. v ′ + t′ ≡reg. v + t, which implies that v ′ + t′ ∈ R and thus

v ′ ∈ R.

Artist2 Summer School Foundation for Timed Systems 54 / 63

Implementation of timed automata

Note on the backward analysis (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

But, the backward computation is not so nice, when also dealing with
integer variables...

i := j .k + `.m

Artist2 Summer School Foundation for Timed Systems 54 / 63

Implementation of timed automata

Forward analysis of timed automata

` `′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

A zone is a set of valuations defined by a clock constraint

ϕ ::= x ∼ c | x − y ∼ c | ϕ ∧ ϕ

Artist2 Summer School Foundation for Timed Systems 55 / 63

Implementation of timed automata

Forward analysis of timed automata

` `′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

Z

Artist2 Summer School Foundation for Timed Systems 55 / 63

Implementation of timed automata

Forward analysis of timed automata

` `′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

Z Z

Artist2 Summer School Foundation for Timed Systems 55 / 63

Implementation of timed automata

Forward analysis of timed automata

` `′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

Z Z Z ∩ g

Artist2 Summer School Foundation for Timed Systems 55 / 63

Implementation of timed automata

Forward analysis of timed automata

` `′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

Z Z Z ∩ g [y ← 0](Z ∩ g)

Artist2 Summer School Foundation for Timed Systems 55 / 63

Implementation of timed automata

Forward analysis of timed automata

` `′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

Z Z Z ∩ g [y ← 0](Z ∩ g)

➜ a termination problem

Artist2 Summer School Foundation for Timed Systems 55 / 63

Implementation of timed automata

Non termination of the forward analysis

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

Artist2 Summer School Foundation for Timed Systems 56 / 63

Implementation of timed automata

Non termination of the forward analysis

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

Artist2 Summer School Foundation for Timed Systems 56 / 63

Implementation of timed automata

Non termination of the forward analysis

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

Artist2 Summer School Foundation for Timed Systems 56 / 63

Implementation of timed automata

Non termination of the forward analysis

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

Artist2 Summer School Foundation for Timed Systems 56 / 63

Implementation of timed automata

Non termination of the forward analysis

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

➜ an infinite number of steps...

Artist2 Summer School Foundation for Timed Systems 56 / 63

Implementation of timed automata

The DBM data structure

DBM (Difference Bound Matrice) data structure
[Berthomieu, Menasche 1983] [Dill 1989]

(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x0 x1 x2

x0

x1

x2





+∞ −3 +∞
+∞ +∞ 4
5 +∞ +∞





Artist2 Summer School Foundation for Timed Systems 57 / 63

Implementation of timed automata

The DBM data structure

DBM (Difference Bound Matrice) data structure
[Berthomieu, Menasche 1983] [Dill 1989]

(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x0 x1 x2

x0

x1

x2





+∞ −3 +∞
+∞ +∞ 4
5 +∞ +∞





Existence of a normal form

3 4 9

5

2





0 −3 0
9 0 4
5 2 0





Artist2 Summer School Foundation for Timed Systems 57 / 63

Implementation of timed automata

The DBM data structure

DBM (Difference Bound Matrice) data structure
[Berthomieu, Menasche 1983] [Dill 1989]

(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x0 x1 x2

x0

x1

x2





+∞ −3 +∞
+∞ +∞ 4
5 +∞ +∞





Existence of a normal form

3 4 9

5

2





0 −3 0
9 0 4
5 2 0





All previous operations on zones can be computed using DBMs

Artist2 Summer School Foundation for Timed Systems 57 / 63

Implementation of timed automata

The extrapolation operator

Fix an integer k (“∗” represents an integer between −k and +k)







∗
�

�

�

�> k ∗

∗ ∗ ∗�

�

�

�
< −k ∗ ∗






;







∗
�

�

�

�
+∞ ∗

∗ ∗ ∗�

�

�

�
−k ∗ ∗







“intuitively”, erase non-relevant constraints

➜ ensures termination

Artist2 Summer School Foundation for Timed Systems 58 / 63

Implementation of timed automata

The extrapolation operator

Fix an integer k (“∗” represents an integer between −k and +k)







∗
�

�

�

�> k ∗

∗ ∗ ∗�

�

�

�
< −k ∗ ∗






;







∗
�

�

�

�
+∞ ∗

∗ ∗ ∗�

�

�

�
−k ∗ ∗







“intuitively”, erase non-relevant constraints

2

2

➜ ensures termination

Artist2 Summer School Foundation for Timed Systems 58 / 63

Implementation of timed automata

The extrapolation operator

Fix an integer k (“∗” represents an integer between −k and +k)







∗
�

�

�

�> k ∗

∗ ∗ ∗�

�

�

�
< −k ∗ ∗






;







∗
�

�

�

�
+∞ ∗

∗ ∗ ∗�

�

�

�
−k ∗ ∗







“intuitively”, erase non-relevant constraints

2

2

➜ ensures termination

Artist2 Summer School Foundation for Timed Systems 58 / 63

Implementation of timed automata

Classical algorithm, focus on correctness

Take k the maximal constant appearing in the constraints of the
automaton.

Artist2 Summer School Foundation for Timed Systems 59 / 63

Implementation of timed automata

Classical algorithm, focus on correctness

Take k the maximal constant appearing in the constraints of the
automaton.

Theorem

This algorithm is correct for diagonal-free timed automata.

Artist2 Summer School Foundation for Timed Systems 59 / 63

Implementation of timed automata

Classical algorithm, focus on correctness

Take k the maximal constant appearing in the constraints of the
automaton.

Theorem

This algorithm is correct for diagonal-free timed automata.

However, this theorem does not extend to timed automata using
diagonal clock constraints... A counter-example

Implemented in numerous tools:

Uppaal, http://www.uppaal.com/
Kronos, http://www-verimag.imag.fr/TEMPORISE/kronos/
. . .

Successfully used on many real-life examples since ten years.

Artist2 Summer School Foundation for Timed Systems 59 / 63

http://www.uppaal.com/
http://www-verimag.imag.fr/TEMPORISE/kronos/

Conclusion

Outline

1 About time semantics

2 Timed automata, decidability issues

3 Some extensions of the model

4 Implementation of timed automata

5 Conclusion

Artist2 Summer School Foundation for Timed Systems 60 / 63

Conclusion

Conclusion & further work

Decidability is quite well understood.

There is still some progress which is done for the verification of
timed automata. (see Gerd’s talk)

Some other current challenges:

controller synthesis
implementability issues (program synthesis)

(remember Jean-François’ talk)
optimal computations
. . .

Artist2 Summer School Foundation for Timed Systems 61 / 63

Appendix

A problematic automaton

x3 ≤ 3

x1, x3 := 0

x2 = 3

x2 := 0

x1 = 2, x1 := 0

x2 = 2, x2 := 0

x1 = 2
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 − x1 > 2

x4 − x3 < 2
Error

The loop

Artist2 Summer School Foundation for Timed Systems 62 / 63

Appendix

A problematic automaton

x3 ≤ 3

x1, x3 := 0

x2 = 3

x2 := 0

x1 = 2, x1 := 0

x2 = 2, x2 := 0

x1 = 2
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 − x1 > 2

x4 − x3 < 2
Error

The loop















v(x1) = 0
v(x2) = d

v(x3) = 2α + 5
v(x4) = 2α + 5 + d

Artist2 Summer School Foundation for Timed Systems 62 / 63

Appendix

A problematic automaton

x3 ≤ 3

x1, x3 := 0

x2 = 3

x2 := 0

x1 = 2, x1 := 0

x2 = 2, x2 := 0

x1 = 2
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 − x1 > 2

x4 − x3 < 2
Error

The loop















v(x1) = 0
v(x2) = d

v(x3) = 2α + 5
v(x4) = 2α + 5 + d

x1

x2

x3 x4

[1; 3]

[1; 3]

[2α + 5]

[2α + 5]

Artist2 Summer School Foundation for Timed Systems 62 / 63

Appendix

The problematic zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2α + 5]

[2α + 5]

[2α + 2; 2α + 4]

[2α + 6; 2α + 8]

implies x1 − x2 = x3 − x4.

Artist2 Summer School Foundation for Timed Systems 63 / 63

Appendix

The problematic zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2α + 5]

[2α + 5]

[2α + 2; 2α + 4]

[2α + 6; 2α + 8]

implies x1 − x2 = x3 − x4.

If α is sufficiently large, after extrapolation:

x1

x2

x3 x4

[1; 3]

[1; 3]

> k

does not imply x1−x2 = x3−x4.

Back

Artist2 Summer School Foundation for Timed Systems 63 / 63

	About time semantics
	Timed automata, decidability issues
	Some extensions of the model
	Implementation of timed automata
	Conclusion
	Appendix

