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Model-checking

Does the system satisfy the property?

Modelling = = = = = = o= o ] o o o - -
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Does the system satisfy the property?
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Model-checking
Algorithm
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Time!

Context: verification of embedded critical systems

Time
@ naturally appears in real systems

@ appears in properties (for ex. bounded response time)

O Need of models and specification languages integrating timing aspects
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@ About time semantics
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Adding timing informations

@ Untimed case: sequence of observable events
a: send message b: receive message

ababababab ---=(ab)
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Adding timing informations

@ Untimed case: sequence of observable events
a: send message b: receive message

ababababab ---=(ab)

@ Timed case: sequence of dated observable events

(a’ dl) (b’ d2) (37 d3) (b7 d4) (37 d5) (bv dﬁ) e

dyi: date at which the first a occurs
do: date at which the first b occurs, ...
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o Discrete-time semantics: dates are e.g. taken in N
Ex: (a,1)(b,3)(c,4)(a,6)
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Adding timing informations

@ Untimed case: sequence of observable events
a: send message b: receive message

ababababab ---=(ab)

@ Timed case: sequence of dated observable events

(a’ dl) (b’ d2) (37 d3) (b’ d4) (37 d5) (b7 dﬁ) e

dyi: date at which the first a occurs

do: date at which the first b occurs, ...

o Discrete-time semantics: dates are e.g. taken in N
Ex: (a,1)(b,3)(c,4)(a,6)

o Dense-time semantics: dates are e.g. taken in Q™, or in RT
Ex: (a,1.28).(b,3.1).(c,3.98)(a, 6.13)
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A case for dense-time

Time domain: discrete (e.g. N) or dense (e.g. Q™)
@ Dense-time is a more general model than discrete time
@ A compositionality problem with discrete time

@ But, can we not always discretize?
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About time semantics

A digital circuit [Alur 91]
Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

[1,3]
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About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]
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Start with x=0 and y=[101] (stable configuration)
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About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

[1,3]
—%—yl‘ [1,2]
] e

[1,3]

Start with x=0 and y=[101] (stable configuration)
The input x changes to 1. The corresponding stable state is y=[011]
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About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

3
—o—2 11,21
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[1,3]

Start with x=0 and y=[101] (stable configuration)
The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101] 2+ [111] 2 [110] 2 [010] = [o11]
1.2 25 2.8 4.5
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About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

(1,3
—Po—24 11,21
=

[1,3]

Start with x=0 and y=[101] (stable configuration)
The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101] 2+ [111] 2 [110] 2 [010] = [o11]
1.2 25 2.8 4.5

Reachable configurations: {[101], [111], [110], [010], [011], [001]}
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Is discretizing sufficient? An example [Alur 91]

1,2
21 [1]

B

1,2
.21 [1]*‘ [1] [1]

x—t - I o
——" = ‘ZD =]
—Do——==

(1,21 ¥s 1y s

@ This digital circuit is not 1-discretizable.
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Is discretizing sufficient? An example [Alur 91]

[1,2] 1
DO—-yl oy %
ko —
[1,2] [1] ‘ [1] [1]

YZ
x —‘4%—0

¥y

=)

S

(1,21 ¥3

[1]

»ﬂ‘[ﬁ‘

=D——=

6

@ This digital circuit is not 1-discretizable.
@ Why that? (initially x = 0 and y = [11100000], x is set to 1)
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Is discretizing sufficient? An example [Alur 91]

[(1,2]
DO Y, [+ %
— e

¥y

=D——=

e
B

(1,21 ¥3 [1] 6

@ This digital circuit is not 1-discretizable.
@ Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000] Ll‘» [01100000] % [00100000] “Ty? [00001000] ”Ty? [00000010] y’—4y§’ [00000001]
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Is discretizing sufficient? An example [Alur 91]

1,2
— D::—-Yl —)E[l],;\y

ey e
g

(1,21 ¥3 [1] 6

E@j

@ This digital circuit is not 1-discretizable.
@ Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000] 22 [01100000] [001000001 2:Y% 100001000] 27 [00000010] *Z*¥ [00000001]

[11100000] y‘%” [00000000]
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Is discretizing sufficient? An example [Alur 91]

1,2
— D::—-Yl —)E[l],;\y

ey e
g

(1,21 ¥3 [1] 6

E@j

@ This digital circuit is not 1-discretizable.
@ Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000] 22 [01100000] [001000001 2:Y% 100001000] 27 [00000010] *Z*¥ [00000001]
[11100000] y‘%” [00000000]

[11100000] y—11> [01111000] yz’y’—;y;"ys [00000000]

Artist2 Summer School Foundation for Timed Systems 8 /63



Is discretizing sufficient? An example [Alur 91]

1,2
— D::—-Yl —)E[l],;\y

ey e
g

(1,21 ¥3 [1] 6

E@j

@ This digital circuit is not 1-discretizable.
@ Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000] 22 [01100000] [001000001 2:Y% 100001000] 27 [00000010] *Z*¥ [00000001]
[11100000] y‘%” [000000001

[11100000] y—11> [01111000] yz’y’—;y;"ys [00000000]

[11100000] ”Ty>2 [00100000] ”L;’»y" [00001100] "Ty? [00000000]
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Is discretizing sufficient? An example [Alur 91]

1,2

[1,2] v, [1]
B s

[1,2] v [11 ‘ [1] [1]

e
iny

(1,21 ¥s

=D—=,

@ This digital circuit is not 1-discretizable.
@ Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000] 22 [01100000] 2 2, ~ [00100000] 2% 22Y% 100001000] 27 [00000010] 2*# | [00000001]
[11100000] “Lfsy’ [oooooooo]
[11100000] YT‘ [01111000] yz‘yL;y;"ys [00000000]

[11100000] ”Ty? [00100000] ”L:sy" [00001100] ”Ty? [00000000]
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Is discretizing sufficient?

Theorem [Brzozowski Seger 1991]

For every k > 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time
(with granularity 7).
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Is discretizing sufficient?

Theorem [Brzozowski Seger 1991]

For every k > 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time
(with granularity 7).

Claim

Finding a correct granularity is as difficult as computing the set of
reachable states in dense-time.
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Is discretizing sufficient?

Theorem [Brzozowski Seger 1991]

For every k > 1, there exists a digital circuit such that the reachability
set of states in dense-time is strictly larger than the one in discrete time
(with granularity 7).

Claim

Finding a correct granularity is as difficult as computing the set of
reachable states in dense-time.

Going further... There exist systems for which no granularity exists.

(see later)
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@ Timed automata, decidability issues
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Timed automata, decidability issues

Timed automata [Alur & Dill 90’s]

@ A finite control structure + variables (clocks)

@ A transition is of the form:

g, a C:=0

O O

Enabling condition Reset to zero

@ An enabling condition (or guard) is:

g = x~c | ghg

where ~ € {<, <, =, >,>}
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Timed automata (example)

x,y : clocks

x<b5 a y:=0 y>1 b, x:=0

—© Oy

()
N
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Timed automata, decidability issues

Timed automata (example)

x,y : clocks

x<b5 a y:=0 y>1 b, x:=0
—( @ (D

b A1) gy _a, fy S04 g b py
x 0 4.1 4.1 5.5 0
y O 4.1 0 1.4 1.4
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Timed automata, decidability issues

Timed automata (example)

x,y : clocks

x<5 a y:=0

()

—®

Artist2 Summer School

Lo
x 0
y O

5(4.1)

N

go a f]_ 5(1.4) 4 b 62
4.1 4.1 0
4.1 0 1.4

(clock) valuation
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Timed automata, decidability issues

Timed automata (example)

x,y : clocks

x<5 a y:=0
— @ (D~
o 5(4.1) Lo a, /p 514 g b,
x 0 4.1 4.1 0
y 0 4.1 0 1.4

(clock) valuation

O timed word (a,4.1)(b,5.5)

Artist2 Summer School

Foundation for Timed Systems 12 / 63



Timed automata semantics

o A= (X, L,X,—)isa TA
@ Configurations: (/,v) € L x TX where T is the time domain
@ Timed Transition System:

& action transition: (¢,v) —2= (¢',V') if ¢ £25 ¢ € A st
{v e

v =v[r < 0]

o delay transition: (¢,v) 2% ({,v+d)ifde T
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Discrete vs dense-time semantics

: x=1, a, x:=0

O
li
O
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Discrete vs dense-time semantics

x=1 a x:=0 b, y:=0
k) k) /‘\ k)
—0 o -

@ Dense-time:
Ldense = {((ab)®,7) | Vi, Toj_1 =i and Taj — T2j_1 > T2i12 — T2i41}

Artist2 Summer School Foundation for Timed Systems 14 / 63



Discrete vs dense-time semantics

y<1l, b, y:=0
@ Dense-time:
Ldense = {((ab)®,7) | Vi, Toj_1 =i and Taj — T2j_1 > T2i12 — T2i41}

@ Discrete-time: Lgjscrete = 0

Artist2 Summer School Foundation for Timed Systems 14 / 63



Discrete vs dense-time semantics

x=1, a, x:=0
x=1 a x:=0 b, y:=0
k) k) m k)
e 0 -

y<1l, b, y:=0

@ Dense-time:
Lgense = {((ab)¥,7) | Vi, T2j—1 = i and Ta; — T2;_1 > Toj12 — T2it1}

@ Discrete-time: Lgjscrete = 0

x=1, a, x:=0

Artist2 Summer School Foundation for Timed Systems 14 / 63



Classical verification problems

@ reachability of a control state

@ § ~ &': bisimulation, etc...

@ L(S) C L(S'): language inclusion

@ S = ¢ for some formula ¢: model-checking
@ S || At + reachability: testing automata

o ...
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Classical temporal logics

Path formulas:

Go /\N\ « Always »
Fo /\/\/\ « Eventually »

opUg’ /\N\ « Until »
X¢ M « Next »

State formulas:

A¢§ Ewé

0 LTL: Linear Temporal Logic [Pnueli 1977],
CTL: Computation Tree Logic [Emerson, Clarke 1982]
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Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”
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With CTL:
AG(problem = AF alarm)
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Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG(problem = AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units”
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Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG(problem = AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units”

EpUky

@ Temporal logics with subscripts. ex: CTL+ ApUoiil
~k
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Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG(problem = AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units”
@ Temporal logics with subscripts.

AG (problem = AF<5( alarm)
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Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG(problem = AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units"
@ Temporal logics with subscripts.

AG (problem = AF<5( alarm)

@ Temporal logics with clocks.

AG(problem = (x in AF(x < 20 A alarm)))
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Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG(problem = AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units"
@ Temporal logics with subscripts.

AG (problem = AF<5( alarm)
@ Temporal logics with clocks.

AG(problem = (x in AF(x < 20 A alarm)))

O TCTL: Timed CTL [ACD90,ACD93,HNSY94]
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Timed automata, decidability issues

The train crossing example (1)

Train; with / =1,2 ...

Before, x; < 30
App!l,x; =0

20 < x; < 30,a,x; :=0

10 < x; < 20, Exit!
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Timed automata, decidability issues

The train crossing example (2)

The gate:

O GoDown?, H, :=0 1 - ; 0
pen > Lowering, Hy, < 10)

Hgy < 10, a Hg <10, a

(Raising, Hy < 10)« — )
aising, Hg GoUp?, H, — 0 Close
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Timed automata, decidability issues

The train crossing example (3)

The controller:

Exit? App? Exit?

Exit?, H. :=0

H. = 20, GoUp! H. <10, GoDown!
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The train crossing example (4)

We use the synchronization function f:

Trainy | Train, Gate Controller
App! . . App? App
. App! . App? App
Exit! . . Exit? Exit
Exit! . Exit? Exit
a . . . a
a . . a
a . a
GoUp? GoUp! GoUp
GoDown? | GoDown! || GoDown

to define the parallel composition (Trainy || Train, || Gate || Controller)

NB: the parallel composition does not add expressive power!
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The train crossing example (5)

Some properties one could check:
@ Is the gate closed when a train crosses the road?
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The train crossing example (5)

Some properties one could check:
@ Is the gate closed when a train crosses the road?

AG(train.On = gate.Close)
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The train crossing example (5)

Some properties one could check:
@ Is the gate closed when a train crosses the road?

AG(train.On = gate.Close)

@ Is the gate always closed for less than 5 minutes?
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The train crossing example (5)

Some properties one could check:
@ Is the gate closed when a train crosses the road?

AG(train.On = gate.Close)

@ Is the gate always closed for less than 5 minutes?

AG AF -5min(—gate.Close)
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Verification

Emptiness problem: is the language accepted by a timed automaton

empty?
@ reachability properties (final states)
@ basic liveness properties (Biichi (or other) conditions)
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Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

@ Problem: the set of configurations is infinite
O classical methods can not be applied
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Emptiness problem: is the language accepted by a timed automaton
empty?

@ Problem: the set of configurations is infinite
O classical methods can not be applied

o Positive key point: variables (clocks) have the same speed
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Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

@ Problem: the set of configurations is infinite
O classical methods can not be applied

o Positive key point: variables (clocks) have the same speed

Theorem [Alur & Dill 1990’s]

The emptiness problem for timed automata is decidable.
It is PSPACE-complete.
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Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

@ Problem: the set of configurations is infinite
O classical methods can not be applied

o Positive key point: variables (clocks) have the same speed

Theorem [Alur & Dill 1990’s]

The emptiness problem for timed automata is decidable.
It is PSPACE-complete.

Note: This is also the case for the discrete semantics.
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Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

@ Problem: the set of configurations is infinite
O classical methods can not be applied

o Positive key point: variables (clocks) have the same speed

Theorem [Alur & Dill 1990’s]

The emptiness problem for timed automata is decidable.
It is PSPACE-complete.

[ Method: construct a finite abstraction ]
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Timed automata, decidability issues

The region abstraction

Equivalence of finite index
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The region abstraction

Equivalence of finite index

@ “compatibility” between regions and constraints
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Timed automata, decidability issues

The region abstraction

Equivalence of finite index

/

@ “compatibility” between regions and constraints

@ “compatibility” between regions and time elapsing
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Timed automata, decidability issues

The region abstraction

Equivalence of finite index

@ “compatibility” between regions and constraints

@ “compatibility” between regions and time elapsing

O a bisimulation property

Artist2 Summer School Foundation for Timed Systems 24 / 63



The region abstraction

Equivalence of finite index

2 region defined by
L =]1;2[, I, =]0; 1]
1 {x} <{v}

@ “compatibility” between regions and constraints

@ “compatibility” between regions and time elapsing

O a bisimulation property
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The region abstraction

Equivalence of finite index

2 region defined by
L =]1;2[, I, =]0; 1]
1 {x} <{v}

. successor regions

@ “compatibility” between regions and constraints

@ “compatibility” between regions and time elapsing

O a bisimulation property
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The region automaton

timed automaton () region abstraction

¢ _£3,C=0_ ¢ is transformed into:

0,R) 2, (¢,R') if there exists R” € Succ;(R) s.t.
t

o R Cg
o [C—OR'CR

0 time-abstract bisimulation
L(reg. aut.) = UNTIME(L(timed aut.))
where UNTIME((a1, t1)(a2,t2) ... ) = a1a2. ..
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An example [AD 90's]

d, (x>1)?

a, (y<1)?,y:=0

] y
— o
x=y=0
a a a b 1
b
5 s, s b s,
O=y<x<1 y=0, x=1 y=0,x>1 l=y<x o 1 x
c a 2 a =
"
s, d s, s, d s, Od
O<y<x<l O<y<l<x d 1=y<x x>1,y>1
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Time-abstract bisimulation

2 Summer School Foundation for Timed Systems 27 / 63



Time-abstract bisimulation

I @0—mm>©0
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Time-abstract bisimulation

a 4(d)
v — Vd > 0 s
Je—2 >e °
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Time-abstract bisimulation

o(d

v —2 > vd >0 (d)
| 5 | Cos(d)
Jje——e 3d >0 @—> @
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Time-abstract bisimulation

o(d

v —2 > vd >0 (d)
| 5 | Cos(d)
Jje——e 3d >0 @—> @

(eo,VO) 31—’t1> (£1,v1) az_,tz) (ﬁg,Vg) —_—
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Time-abstract bisimulation

o(d

v —2 > vd > 0 (d)
| R | C8(d)
1 @0——> 0 dd' >0 @ —> @

(bo,vo) 228 (b1,v1) 22Ba (bh,v) 25,

!

(bo, R)) —2» (l1,R1) —22> (L, R) —2=->

with v; € R; for all J.
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Time-abstract bisimulation

o(d

v —2 > vd > 0 (d)
| R | C8(d)
1 @0——> 0 dd' >0 @ —> @

(bo,vo) 228 (b1,v1) 22Ba (bh,v) 25,

!

(bo, R)) —2» (l1,R1) —22> (L, R) —2=->

with v; € R; for all J.
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Time-abstract bisimulation

o(d

v —2 > vd > 0 (d)
| R | Cos(d)
1 @0——> 0 3d"' >0 @ ——> @

(bo,vo) 228 (b1,v1) 22Ba (bh,v) 25,

!

(601 RO) —2, (Zla Rl) —= (€23 R2) —=
with v; € R; for all i.

Remark: Real-time properties can not be checked with a time-abstract
bisimulation. For TCTL, a clock associated with the formula needs to be
added.
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PSPACE-easiness

i The size of the region graph is in O(|X|!1.2!X]) 1

@ One configuration: a discrete location + a region
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PSPACE-easiness

i The size of the region graph is in O(|X|!1.2!X]) 1

@ One configuration: a discrete location + a region
o a discrete location: log-space

Artist2 Summer School Foundation for Timed Systems 28 / 63



PSPACE-easiness

i The size of the region graph is in O(|X|!1.2!X]) 1

@ One configuration: a discrete location + a region

¢ a discrete location: log-space
9 a region:
@ an interval for each clock
@ an interval for each pair of clocks
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PSPACE-easiness

i The size of the region graph is in O(|X|!1.2!X]) 1

@ One configuration: a discrete location + a region

¢ a discrete location: log-space
9 a region:
@ an interval for each clock
@ an interval for each pair of clocks

0 needs polynomial space

@ By guessing a path: needs only to store two configurations
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PSPACE-easiness

i The size of the region graph is in O(|X|!1.2!X]) 1

@ One configuration: a discrete location + a region

¢ a discrete location: log-space
9 a region:
@ an interval for each clock
@ an interval for each pair of clocks

0 needs polynomial space

@ By guessing a path: needs only to store two configurations

O in NPSPACE, thus in PSPACE
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Timed automata, decidability issues

PSPACE-hardness

M LBTM ~  AMm,we S-t. M accepts wy iff the final state
wp € {a, b}* of A, is reachable

N—
{x, ¥}

C; contains an "a" if x; =y;
C; contains a "b" if x; <y

(these conditions are invariant by time elapsing)

[] proof taken in [Aceto & Laroussinie 2002]
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PSPACE-hardness (cont.)

If g —22%, ¢ is a transition of M, then for each position i of the tape,
we have a transition
(q7 I) g,r:=0 (q/’ Il)

where:

@ gisx; =y (resp. x; < y;)if a=a (resp. a =b)

o r={x;,yi} (resp. r ={x})if o/ = a (resp. &/ = b)

@ /"=i+1 (resp. i" =i—1)if ¢ is right and i < n (resp. left)
Enforcing time elapsing: on each transition, add the condition t = 1
and clock t is reset.

Initialization: init £=22=0 (g0, 1) where rp = {x; | wo[i] = b} U {t}

Termination: (gr,i) — end
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Consequence of region automata construction

Region automata: correct finite abstraction for checking
reachability /Biichi-like properties
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Consequence of region automata construction

Region automata: correct finite abstraction for checking
reachability /Biichi-like properties

However, everything can not be reduced to finite automata...
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A model not far from undecidability

@ Universality is undecidable [Alur & Dill 90’s]
@ Inclusion is undecidable [Alur & Dill 90’s]
@ Determinizability is undecidable [Tripakis 2003]
@ Complementability is undecidable [Tripakis 2003]
°
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°

An example of non-determinizable/non-complementable timed aut.:

a a a
Q a, x:=0 Q x=1, a @
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A model not far from undecidability

@ Universality is undecidable [Alur & Dill 90’s]
@ Inclusion is undecidable [Alur & Dill 90’s]
@ Determinizability is undecidable [Tripakis 2003]
@ Complementability is undecidable [Tripakis 2003]
°

An example of non-determinizable/non-complementable timed aut.:
[Alur,Madhusudan 2004]

a, b x#1, ab

a, x:=0

UNTIME (Zﬂ {(a*b*,7) | all a’s happen before 1 and no two a’s simultaneously}> is
not regular (exercise!)

Artist2 Summer School Foundation for Timed Systems 32 /63



Partial conclusion

[0 a timed model interesting for verification purposes

Numerous works have been (and are) devoted to:
@ the “theoretical’ comprehension of timed automata (cf [Asarin 2004])

@ extensions of the model (to ease modelling)
@ expressiveness
@ analyzability

@ algorithmic problems and implementation
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© Some extensions of the model
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Role of diagonal constraints

[X—ywc and x~c]

@ Decidability: yes, using the region abstraction

y

) 1 2 x

@ Expressiveness: no additional expressive power
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Some extensions of the model

Role of diagonal constraints (cont.)

c is positive copy where x —y < ¢

X1

=0 x>c
y =

o~

O proof in [Bérard,Diekert,Gastin,Petit 1998] w

copy where x —y > ¢
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Some extensions of the model

Role of diagonal constraints (cont.)

c is positive copy where x —y < ¢

X1

=0 x>c
y =

o~

O proof in [Bérard,Diekert,Gastin,Petit 1998] w
[0 exponential blowup unavoidable in general

[Bouyer,Chevalier 2005] copy where x — y > ¢
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Adding silent actions

g,5,C:=0
’ [Bérard,Diekert,Gastin,Petit 1998]

@ Decidability: yes
(actions have no influence on region automaton construction)

@ Expressiveness: strictly more expressive!

x=1, a, x:=0
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Some extensions of the model

Adding constraints of the form x+y ~ ¢

(x+y~c and x~c] [Bérard,Dufourd 2000]

@ Decidability: - for two clocks, decidable using the abstraction
y

. S

[} 1 2 x

- for four clocks (or more), undecidable!

@ Expressiveness: more expressive! (even using two clocks)

x+y=1 a x:=0

{(a”,tl...t,,)|n213ndt,-:l—%} ‘Q
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The two-counter machine

Definition
A two-counter machine is a finite set of instructions over two counters (x
and y):

@ Incrementation:
(p): x:=x+1; goto (q)

@ Decrementation:
(p): if x>0 then x:=x—1; goto (q) else goto (r)

Theorem [Minsky 67]
The halting problem for two counter machines is undecidable. J
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Undecidability proof

T TR N N T 1
20 21 2223 ........ ; 24 25 26 time

d is decremented

O simulation of e decrementation of a counter
e incrementation of a counter

We will use 4 clocks:
e u, "tic" clock (each time unit)
® X, x1, xo: reference clocks for the two counters

“x; reference for ¢’ = ‘“the last time x; has been reset is
the last time action ¢ has been performed”

[Bérard,Dufourd 2000]
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Some extensions of the model

Undecidability proof (cont.)

@ Incrementation of counter c:

x0 <2, u+x2=1, ¢, x0:=0

x2:=0 X0 >2, ¢, x2:=0
O u=1, % u:=0 - u+t+x=1 O
ref for c is xg ref for c is x2
@ Decrementation of counter c:
X0 <2,u+x2=1, ¢, x0:=0

X2 1= X0 =2, ¢, x2:=0 O
u+x2=1

u=1 x0=2, %, u:=0, x0:=0
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Adding constraints of the form x+y ~ ¢

@ Two clocks: decidable using the abstraction
y

2

.  /

@ Four clocks (or more): undecidable!
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Adding constraints of the form x+y ~ ¢

@ Two clocks: decidable using the abstraction
y

° [ Three clocks: open question]

We only know that the coarsest time-abstract bisimulation respecting these
constraints is infinite. [Robin 2004]

@ Four clocks (or more): undecidable!
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Adding new operations on clocks

Several types of updates: x ==y + ¢, x :< ¢, x :> c, etc...
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@ The general model is undecidable.

(simulation of a two-counter machine)
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Adding new operations on clocks

Several types of updates: x ==y + ¢, x :< ¢, x :> c, etc...

@ The general model is undecidable.

(simulation of a two-counter machine)

@ Only decrementation also leads to undecidability

o Incrementation of counter x

z2=0 z:l,z::O:' ~ =0, y=y-1 O .
P |

N

o Decrementation of counter x

z=0 x>1 E O z=0, x:=x—-1 O E
I I
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Some extensions of the model

Decidability

=0 =1 x—y<l1
—O— O— O O

image by y :=1

1 &

1 O the bisimulation property is not met

The classical region automaton construction is not correct.
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Decidability (cont.)

A

Diophantine linear inequations system
is there a solution?
if yes, belongs to a decidable class

¢ ¢

Examples:
@ constraint x ~ ¢ ¢ < maxy
@ constraint x —y ~ ¢ ¢ < maxy,,

@ update x :~ y + ¢ max, < max, +c
and for each clock z, max, , > max, , + ¢, max,, > max,, — c

@ update x :< ¢ ¢ < maxy
and for each clock z, max, > ¢ + max,

The constants (max,) and (max, ) define a set of regions.
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Some extensions of the model

Decidability (cont.)

=0 y=1
—O— 2O

max, > 0

max, > 0 + max,,,

max, > 1 implies
max, > 1+ max,,,

max, , > 1

The bisimulation property is met.

Artist2 Summer School

O

x—y<l1 O

max, — 2
max, =1
max,, =1
max, , = —1
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What's wrong when undecidable?

Decrementation x := x — 1

max, < max, — 1

Artist2 Summer School Foundation for Timed Systems 47 / 63



What's wrong when undecidable?

Decrementation x := x — 1

max, < max, — 1

Artist2 Summer School Foundation for Timed Systems 47 / 63



What's wrong when undecidable?

Decrementation x := x — 1

max, < max, — 1

Artist2 Summer School Foundation for Timed Systems 47 / 63



What's wrong when undecidable?

Decrementation x := x — 1

max, < max, — 1

Artist2 Summer School Foundation for Timed Systems 47 / 63



What's wrong when undecidable?

Decrementation x := x — 1

max, < max, — 1

Artist2 Summer School Foundation for Timed Systems 47 / 63



What's wrong when undecidable?

Decrementation x := x — 1

max, < max, — 1
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What's wrong when undecidable?

Decrementation x := x — 1

max, < max, — 1

etc...
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Decidability (cont.)

Diagonal-free constraints General constraints
X:=cC, X:=y PSPACE-complete
x:=x+1 PSPACE-complete
x:=y+c Undecidable
x:=x-—1 Undecidable
x:<c PSPACE-complete
x> ¢C PSPACE-complete
Xivyte Undecidable
y+e<:ix<y+d
y+tec<x:<z+d Undecidable

[Bouyer,Dufourd,Fleury, Petit 2000]
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Other extensions which have been considered

@ New operations on clocks [Bouyer, Dufourd, Fleury, Petit 2004]
X =y—+c¢ x:<c, x:>c, etc...

@ Alternation [Lasota, Walukiewicz 2005]  [Ouaknine, Worrell 2005]

o One-clock alternating timed automata are decidable.

o n-clock alternating timed automata are undecidable (n > 2).

@ Slopes of variables: “Linear hybrid automata” [Henzinger 1996]
[Henzinger,Kopke,Puri,Varaiya 98]

o Almost everything is undecidable.

o The class of LHA with clocks and only one variable having
possibly two slopes ki # k> is undecidable.

o The class of stopwatch automata is undecidable.

@ One of the “largest” classes of LHA which are decidable is
the class of initialized rectangular automata
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@ Implementation of timed automata
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.
Notice

The region automaton is not used for implementation:

@ suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

@ no really adapted data structure
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Notice

The region automaton is not used for implementation:

@ suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

@ no really adapted data structure

Algorithms for “minimizing” the region automaton have been proposed...
[Alur & Co 1992] [Tripakis, Yovine 2001]
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.
Notice

The region automaton is not used for implementation:

@ suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

@ no really adapted data structure

Algorithms for “minimizing” the region automaton have been proposed...
[Alur & Co 1992] [Tripakis, Yovine 2001]

...but on-the-fly technics are prefered.
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Reachability analysis

@ forward analysis algorithm:
compute the successors of initial configurations
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Reachability analysis

@ forward analysis algorithm:
compute the successors of initial configurations

@ backward analysis algorithm:
compute the predecessors of final configurations
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Implementation of timed automata

Reachability analysis

@ forward analysis algorithm:
compute the successors of initial configurations

@ backward analysis algorithm:
compute the predecessors of final configurations

I

Iy
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Note on the backward analysis of TA

g, a C:=0

® ©
[C— 0 Zn(C=0)ng z
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Implementation of timed automata

Note on the backward analysis of TA

g, a C:=0
O ©
[C—0"Y(Zn(C=0)Ng V4

’
’
’
’
/ 1/
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Implementation of timed automata

Note on the backward analysis of TA

g, a C:=0
[C—0"Y(Zn(C=0)Ng V4
’
’
’
’
/ 1/
z [C—0]"Y(zZzn(C=0)) [C—0"Y(ZN(C=0)ng
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Implementation of timed automata

Note on the backward analysis of TA

g, a C:=0
[C—0"Y(Zn(C=0)Ng V4
’
’
’
’
/ 1/
z [C—0]"Y(zZzn(C=0)) [C—0"Y(ZN(C=0)ng

The exact backward computation terminates and is correct!
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Note on the backward analysis (cont.)

If Ais a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”
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Implementation of timed automata

Note on the backward analysis (cont.)

If Ais a timed automaton, we construct its corresponding set of regions.
Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

Let R be a region. Assume:
—
@ vER (forex. v+t ER)
@ Vv = v

There exists t’ s.t. v/ + t’ =,g. v + t, which implies that v/ + t' € R and thus

v R
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Note on the backward analysis (cont.)

If Ais a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

But, the backward computation is not so nice, when also dealing with
integer variables...
i=j.k+fm
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Forward analysis of timed automata

g, a C:=0
© @
zones V4 [C — 0](7ﬂ g)

A zone is a set of valuations defined by a clock constraint

o = x~c | x—y~c | oAy
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Implementation of timed automata

Forward analysis of timed automata

g, a C:=0

zones z [C — 0](?0 g)

[/
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Implementation of timed automata

Forward analysis of timed automata

g, a C:=0

O, ©
zones V4 [C — O](_Z)ﬁ g)
[
Z 7 _Z)ﬂg
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Implementation of timed automata

Forward analysis of timed automata

g, a C:=0
O ©
zones V4 [C — O](_Z)ﬁ g)
Q /
| [
z Z Zng [y —0lZneg)
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Implementation of timed automata

Forward analysis of timed automata

g, a C:=0

zones V4 [C «— O](_Z)ﬁ g)
| |
z Z Zng y = 0Zne)

[0 a termination problem
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Implementation of timed automata

Non termination of the forward analysis

...............................
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Implementation of timed automata

Non termination of the forward analysis

y =0,
x:=0
\@x>1/\y 1,

O an infinite number of steps...
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The DBM data structure

DBM (Difference Bound Matrice) data structure
[Berthomieu, Menasche 1983] [Dill 1989]

X0 X1 X2
X0 400 -3 +4o©

(x1>3) A (2 <5) A (x1 —x2 < 4) X1 +oo +oo 4
X2 5 400 400
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Implementation of timed automata

The DBM data structure

DBM (Difference Bound Matrice) data structure
[Berthomieu, Menasche 1983] [Dill 1989]

X0 X1 X2
Xo 400 -3 +4o©
(x1>3) A (x2<5) A (x1 —x2 < 4) x1 | +oo +oo 4
X2 5 +o00 +4o0
@ Existence of a normal form

5 0 -3 0

9 0 4

2 5 2 0
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Implementation of timed automata

The DBM data structure

DBM (Difference Bound Matrice) data structure
[Berthomieu, Menasche 1983] [Dill 1989]

X0 X1 X2
Xo 400 -3 +4o©
(x1>3) A (x2<5) A (x1 —x2 < 4) x1 | +oo +oo 4
X2 5 +o00 +4o0
@ Existence of a normal form

5 0 -3 0

9 0 4

2 5 2 0

34 9
@ All previous operations on zones can be computed using DBMs
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The extrapolation operator

Fix an integer k (“+" represents an integer between —k and +k)
: :
* * * ~ * * *
< —k * * * *

@ “intuitively”, erase non-relevant constraints

[0 ensures termination
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The extrapolation operator

Fix an integer k (“+" represents an integer between —k and +k)
* *
* * * ~ * * *
< —k * * * *

@ “intuitively”, erase non-relevant constraints

[0 ensures termination
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Classical algorithm, focus on correctness

Take k the maximal constant appearing in the constraints of the
automaton.

Artist2 Summer School Foundation for Timed Systems 59 / 63



Classical algorithm, focus on correctness

Take k the maximal constant appearing in the constraints of the
automaton.
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This algorithm is correct for diagonal-free timed automata.

Artist2 Summer School Foundation for Timed Systems 59 / 63



Classical algorithm, focus on correctness

Take k the maximal constant appearing in the constraints of the
automaton.

Theorem J

This algorithm is correct for diagonal-free timed automata.

However, this theorem does not extend to timed automata using

diagonal clock constraints...

@ Implemented in numerous tools:

@ Uppaal, http://www.uppaal . com/
9 Kronos, http://www-verimag. imag.fr/TEMPORISE/kronos/
e ...

@ Successfully used on many real-life examples since ten years.
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@ Conclusion
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Conclusion & further work

@ Decidability is quite well understood.

@ There is still some progress which is done for the verification of
timed automata. (see Gerd’s talk)

@ Some other current challenges:
@ controller synthesis
@ implementability issues (program synthesis)
(remember Jean-Francois’ talk)
@ optimal computations
o ...
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Appendix

A problematic automaton

x1 =2, x1:=0

x3 <3 ~ x2 =3
x1,x3:=0 ~ x2 =0
x2 =2, x20:=0
x1 =2
x1:=0 T
X2 —x1 > 2 ~ x1 =3 ~ X2 =2 O The |oop
X4 —x3 < 2 N x1:=0 ~ x2: =0

Error
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A problematic automaton

x1 =2, x1:=0

x3 <3 ~ x2 =3
x1,x3:=0 ~ x2:=0
x2 =2, x20:=0
x1 =2
x1:=0 T
X2 —x1 > 2 ~ x1 =3 ~ X2 =2 O The |oop
X4 —x3 < 2 N x1:=0 ~ x2: =0
Error
v(x1) =0
v(ixe) =d
v(xs) =2a+5

v(xa) =2a+5+d
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A problematic automaton

x1 =2, x1:=0

x3 <3 ~ x2 =3
x1,x3:=0 — x2 =0
x2 =2, x20:=0
x1 =2
x1:=0 T
The loop
X2 —x1 > 2 x1 =3 X2 =2
2 i Vil i Yl O
X4 —x3 < 2 ~ x1:=0 ~ x2: =0
Error
[1;3] [2a + 5]
X2 -
e —  —%
v(x2) = -
v(xs) =2a+5 [2a + 5] [1:3]

v(xa) =2a+5+d
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The problematic zone

[1;3] [2a + 5]
X2 -
q o—  —
[2a + 5] L 3] implies X1 — X2 = X3 — Xa.
:(_ _____________ . :

[200 + 6;2a + 8]
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The problematic zone

[1;3] [2a + 5]
X2 -
q o—  —
[2a + 5] C[1 3] implies X1 — X2 = X3 — Xa.
:(_ _____________ . :

[2a + 6; 2a + 8]

If o is sufficiently large, after extrapolation:

X1 : X"3\/X4

S5 3] does not imply x3 —xo = x3—x4.
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