Playing (Almost-)Optimally in Concurrent Büchi and co-Büchi Games

Benjamin Bordais, Patricia Bouyer, Stéphane Le Roux

Laboratoire Méthodes Formelles
Université Paris-Saclay, CNRS, ENS Paris-Saclay
France
Context

- Two-player games on graphs as a tool for formal verification (e.g. controller synthesis)
- Win/lose games: the objectives of the two players are opposite
- **Concurrent games**, as opposed to turn-based games
Concurrent games

$q_0, \begin{bmatrix} \bot & \top \end{bmatrix}$

« Matching-penny game »
Concurrent games

- Player A chooses a row

Matching-penny game
Concurrent games

- Player A chooses a row
- Player B chooses a column

« Matching-penny game »
Concurrent games

- Player A chooses a row
- Player B chooses a column
- The game proceeds to the corresponding state

« Matching-penny game »
Concurrent games

- Player A chooses a row
- Player B chooses a column
- The game proceeds to the corresponding state
- Strategy for player A: $\sigma_A : Q^+ \rightarrow \text{row}$

« Matching-penny game »
Concurrent games

- Player A chooses a row
- Player B chooses a column
- The game proceeds to the corresponding state
- Strategy for player A: $\sigma_A : Q^+ \rightarrow \text{row}$
- Outcome of σ_A: infinite path compatible with σ_A

« Matching-penny game »
Concurrent games

- Player A chooses a row
- Player B chooses a column
- The game proceeds to the corresponding state
- Strategy for player A: $\sigma_A : Q^+ \rightarrow \text{row}$
- Outcome of σ_A: infinite path compatible with σ_A
- Objective for Player A: $W \subseteq Q^\omega$

Matching-penny game
Concurrent games

- Player A chooses a row
- Player B chooses a column
- The game proceeds to the corresponding state
- Strategy for player A: \(\sigma_A : Q^+ \rightarrow \text{row} \)
- Outcome of \(\sigma_A \): infinite path compatible with \(\sigma_A \)
- Objective for Player A: \(W \subseteq Q^\omega \)
- Objective for Player B: \(W^c \)

« Matching-penny game »
Concurrent games

- Player A chooses a row
- Player B chooses a column
- The game proceeds to the corresponding state
- Strategy for player A: $\sigma_A : Q^+ \rightarrow \text{row}$
- Outcome of σ_A: infinite path compatible with σ_A
- Objective for Player A: $W \subseteq Q^\omega$
- Objective for Player B: W^c
- Winning strategy σ_A: all outcomes of σ_A belong to W

« Matching-penny game »
Concurrent games

- Player A chooses a row
- Player B chooses a column
- The game proceeds to the corresponding state
- Strategy for player A: $\sigma_A : Q^+ \rightarrow \text{row}$
- Outcome of σ_A: infinite path compatible with σ_A
- Objective for Player A: $W \subseteq Q^\omega$
- Objective for Player B: W^c
- Winning strategy σ_A: all outcomes of σ_A belong to W
- There is no winning strategy, for either of the players

« Matching-penny game »
Concurrent games

- Player A chooses a row
- Player B chooses a column
- The game proceeds to the corresponding state
- Strategy for player A: $\sigma_A : Q^+ \rightarrow \text{row}$
- Outcome of σ_A: infinite path compatible with σ_A
- Objective for Player A: $W \subseteq Q^\omega$
- Objective for Player B: W^c
- Winning strategy σ_A: all outcomes of σ_A belong to W
- There is no winning strategy, for either of the players

« Matching-penny game »

Major difference with turn-based games
Concurrent games

« Matching-penny game »
Concurrent games

- Need for randomization!
- Randomized strategy: choose rows/columns according to a distribution

« Matching-penny game »
Concurrent games

- Need for **randomization**!
- Randomized strategy: choose rows/columns according to a distribution
- Given randomized strategies σ_A and σ_B, the **payoff** (for A) is the probability $\mathbb{P}_{\sigma_A,\sigma_B}(W)$
- Optimal strategy for A: σ_A that maximizes $\inf_{\sigma_B} \mathbb{P}_{\sigma_A,\sigma_B}(W)$

« Matching-penny game »
Concurrent games

- Need for randomization!
- Randomized strategy: choose rows/columns according to a distribution
- Given randomized strategies σ_A and σ_B, the payoff (for A) is the probability $\mathbb{P}_{\sigma_A,\sigma_B}(W)$
- Optimal strategy for B σ_B that minimizes $\sup_{\sigma_A} \mathbb{P}_{\sigma_A,\sigma_B}(W)$

« Matching-penny game »
Concurrent games

- Need for randomization!
- Randomized strategy: choose rows/columns according to a distribution
- Given randomized strategies σ_A and σ_B, the payoff (for A) is the probability $\mathbb{P}_{\sigma_A,\sigma_B}(W)$
- Optimal strategy for B σ_B that minimizes $\sup_{\sigma_A} \mathbb{P}_{\sigma_A,\sigma_B}(W)$
- ε-optimal strategy for A: σ_A' that achieves $\sup_{\sigma_A'} \inf_{\sigma_B'} \mathbb{P}_{\sigma_A',\sigma_B'}(W)$ up to ε
Concurrent games

- Need for randomization!
- Randomized strategy: choose rows/columns according to a distribution
- Given randomized strategies σ_A and σ_B, the payoff (for A) is the probability $\mathbb{P}_{\sigma_A,\sigma_B}(W)$
- Optimal strategy for B σ_B that minimizes $\sup_{\sigma_A} \mathbb{P}_{\sigma_A,\sigma_B}(W)$
- ϵ-optimal strategy for A: σ_A that achieves $\sup_{\sigma_A'} \inf_{\sigma_B} \mathbb{P}_{\sigma_A',\sigma_B}(W)$ up to ϵ
- There are optimal strategies for both players:

« Matching-penny game »
Concurrent games

- Need for randomization!
 - Randomized strategy: choose rows/columns according to a distribution
 - Given randomized strategies σ_A and σ_B, the payoff (for A) is the probability $\mathbb{P}_{\sigma_A,\sigma_B}(W)$
 - Optimal strategy for B
 σ_B that minimizes $\sup_{\sigma_A} \mathbb{P}_{\sigma_A,\sigma_B}(W)$
 - ϵ-optimal strategy for A:
 σ_A that achieves $\sup_{\sigma_A'} \inf_{\sigma_B'} \mathbb{P}_{\sigma_A',\sigma_B'}(W)$ up to ϵ
- There are optimal strategies for both players:
 - Player A: chooses uniformly at random a row

« Matching-penny game »
Concurrent games

- Need for randomization!
- Randomized strategy: choose rows/columns according to a distribution
- Given randomized strategies σ_A and σ_B, the payoff (for A) is the probability $\mathbb{P}_{\sigma_A, \sigma_B}(W)$
- Optimal strategy for B σ_B that minimizes $\sup_{\sigma_A} \mathbb{P}_{\sigma_A, \sigma_B}(W)$
- ϵ-optimal strategy for A: σ_A that achieves $\sup_{\sigma_A'} \inf_{\sigma_B} \mathbb{P}_{\sigma_A', \sigma_B}(W)$ up to ϵ
- There are optimal strategies for both players:
 - Player A: chooses uniformly at random a row
 - Player B: chooses uniformly at random a column

« Matching-penny game »
Concurrent games

- Need for randomization!
- Randomized strategy:
 choose rows/columns according to a distribution
- Given randomized strategies σ_A and σ_B, the payoff (for A) is the probability $\mathbb{P}_{\sigma_A,\sigma_B}(W)$
- Optimal strategy for B
 σ_B that minimizes $\sup \mathbb{P}_{\sigma_A,\sigma_B}(W)$
- ϵ-optimal strategy for A:
 σ_A that achieves $\sup \inf \mathbb{P}_{\sigma_A',\sigma_B}(W)$ up to ϵ
- There are optimal strategies for both players:
 - Player A: chooses uniformly at random a row
 - Player B: chooses uniformly at random a column
- Value of the game: $\frac{1}{2}$
Properties of concurrent games

Martin’s determinacy theorem for Blackwell games

Concurrent games with Borel objectives have values:

\[v(q) = \sup_{\sigma_A} \inf_{\sigma_B} \mathbb{P}_{\sigma_A, \sigma_B}(W) = \inf_{\sigma_B} \sup_{\sigma_A} \mathbb{P}_{\sigma_A, \sigma_B}(W) \]
Properties of concurrent games

Martin’s determinacy theorem for Blackwell games

Concurrent games with Borel objectives have values:

\[\nu(q) = \sup_{\sigma_A} \inf_{\sigma_B} \mathbb{P}_{\sigma_A,\sigma_B}(W) = \inf_{\sigma_B} \sup_{\sigma_A} \mathbb{P}_{\sigma_A,\sigma_B}(W) \]

- Optimal strategies might not exist in general (except for safety objectives)
Properties of concurrent games

- Optimal strategies might not exist in general (except for safety objectives)
- (Infinite) Memory is sometimes needed by optimal and almost-optimal strategies
 - Parity games require infinite memory for both optimal and almost-optimal strategies

Martin’s determinacy theorem for Blackwell games

Concurrent games with Borel objectives have values:

\[\nu(q) = \sup_{\sigma_A} \inf_{\sigma_B} \mathbb{P}_{\sigma_A,\sigma_B}(W) = \inf_{\sigma_B} \sup_{\sigma_A} \mathbb{P}_{\sigma_A,\sigma_B}(W) \]
Properties of concurrent games

Martin’s determinacy theorem for Blackwell games

Concurrent games with Borel objectives have values:

$$\nu(q) = \sup_{\sigma_A} \inf_{\sigma_B} \mathbb{P}_{\sigma_A,\sigma_B}(W) = \inf_{\sigma_B} \sup_{\sigma_A} \mathbb{P}_{\sigma_A,\sigma_B}(W)$$

- Optimal strategies might not exist in general (except for safety objectives)
- (Infinite) Memory is sometimes needed by optimal and almost-optimal strategies
 - Parity games require infinite memory for both optimal and almost-optimal strategies
- Note: this is specific to concurrent games! (as compared to turn-based)
An example of a Büchi game

"The snowball game"

[AH00] L. De Alfaro, T. Henzinger. Concurrent omega-regular games (LICS’00)
An example of a Büchi game

- Objective is to visit T infinitely often

« The snowball game »

[AH00] L. De Alfaro, T. Henzinger. Concurrent omega-regular games (LICS’00)
An example of a Büchi game

- Objective is to visit T infinitely often
- Value of the game is 1

« The snowball game »

[AH00] L. De Alfaro, T. Henzinger. Concurrent omega-regular games (LICS’00)
An example of a Büchi game

- Objective is to visit T infinitely often
- Value of the game is 1
- Player A (rows) has no optimal strat.

« The snowball game »

[AH00] L. De Alfaro, T. Henzinger. Concurrent omega-regular games (LICS’00)
An example of a Büchi game

- Objective is to visit T infinitely often
- Value of the game is 1
- Player A (rows) has no optimal strat.
- Every finite-memory strat. has value 0

« The snowball game »

[AH00] L. De Alfaro, T. Henzinger. Concurrent omega-regular games (LICS’00)
An example of a Büchi game

- Objective is to visit T infinitely often
- Value of the game is 1
- Player A (rows) has no optimal strat.
- Every finite-memory strat. has value 0
- Player A needs infinite memory to play ε-optimal for every $\varepsilon > 0$:
 - Play first row with probability $1 - \varepsilon_k$ and second row with probability ε_k
 - k is the number of visits to T
 - $(\varepsilon_k)_k$ quickly decreases to 0

« The snowball game »

[AH00] L. De Alfaro, T. Henzinger. Concurrent omega-regular games (LICS’00)
The approach of this work
The approach of this work

- We are interested in **low memory requirements** for optimal and almost-optimal strategies in concurrent games with parity objectives in general, and more specifically Büchi and co-Büchi objectives
We are interested in low memory requirements for optimal and almost-optimal strategies in concurrent games with parity objectives in general, and more specifically Büchi and co-Büchi objectives.

- Low memory requirement = positional strategies
The approach of this work

- We are interested in **low memory requirements** for optimal and almost-optimal strategies in concurrent games with parity objectives in general, and more specifically Büchi and co-Büchi objectives.

- Low memory requirement = **positional** strategies

- σ_A is positional if it depends only on the last visited state.
The approach of this work

- We are interested in **low memory requirements** for optimal and almost-optimal strategies in concurrent games with parity objectives in general, and more specifically Büchi and co-Büchi objectives.

- Low memory requirement = **positional** strategies

- σ_A is positional if it depends only on the last visited state.

Our approach: focus on interactions, and characterize well-behaved interactions.
A tool to apprehend concurrent interactions: game forms
A tool to apprehend concurrent interactions: game forms

Game form

\[
\begin{bmatrix}
x & y \\
y & z
\end{bmatrix}
\]
A tool to apprehend concurrent interactions: game forms

Elementary brick
A tool to apprehend concurrent interactions: game forms

Nice constructions ← Elementary brick → Nice bricks
A tool to apprehend concurrent interactions: game forms

Games on graphs with good properties

Game forms with good properties

Game form:

\[
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
\]
Approach in this work
Approach in this work

- \mathcal{I} set of game forms
Approach in this work

- \(\mathcal{I} \) set of game forms
- Identify properties of \(\mathcal{I} \) so that all concurrent games built using game forms \(\mathcal{I} \) behave well
Approach in this work

- \(\mathcal{F} \) set of game forms

- Identify properties of \(\mathcal{F} \) so that all concurrent games built using game forms \(\mathcal{F} \) behave well
Approach in this work

- \mathcal{I} set of game forms

- Identify properties of \mathcal{I} so that all concurrent games built using game forms \mathcal{I} behave well
Approach in this work

- \mathcal{F} set of game forms
- Identify properties of \mathcal{F} so that all concurrent games built using game forms \mathcal{F} behave well

Behave well = positional (almost-)optimal strategies are sufficient
Approach in this work

- \mathcal{I} set of game forms
- Identify properties of \mathcal{I} so that all concurrent games built using game forms \mathcal{I} behave well

Behave well = positional (almost-)optimal strategies are sufficient
Previous works with a similar methodology

[BBL21] Bordais, Bouyer, Le Roux. From local to global determinacy in concurrent graph games (FSTTCS’21)
[BBL22] Bordais, Bouyer, Le Roux. Optimal Strategies in Concurrent Reachability Games (CSL’22)
Previous works with a similar methodology

- Determinacy of deterministic games [BBL21]
 - The matching-penny is not a good game form
 - Local determinacy condition on game forms

[BBL21] Bordais, Bouyer, Le Roux. From local to global determinacy in concurrent graph games (FSTTCS’21)
[BBL22] Bordais, Bouyer, Le Roux. Optimal Strategies in Concurrent Reachability Games (CSL’22)
Previous works with a similar methodology

- Determinacy of deterministic games [BBL21]
 - The matching-penny is not a good game form
 - Local determinacy condition on game forms

- Reachability objectives [BBL22]
 - Optimal and almost-optimal strategies can be chosen positional (when they exist)
 - Local condition (called RM) on game forms to ensure existence (and therefore positionality) of optimal strategies everywhere

[BBL21] Bordais, Bouyer, Le Roux. From local to global determinacy in concurrent graph games (FSTTCS’21)
[BBL22] Bordais, Bouyer, Le Roux. Optimal Strategies in Concurrent Reachability Games (CSL’22)
What game theory tells us

- One can associate to each state q of the game its value $v(q)$, and these values satisfy local optimality equations.
One can associate to each state q of the game its value $v(q)$, and these values satisfy local optimality equations.
What game theory tells us

- One can associate to each state q of the game its value $v(q)$, and these values satisfy local optimality equations.

![Diagram of a game in normal form]

Game in normal form:

$$\begin{bmatrix}
\frac{1}{2} & 1/4 \\
\frac{1}{2} & 3/4
\end{bmatrix}$$
What game theory tells us

- One can associate to each state q of the game its value $v(q)$, and these values satisfy local optimality equations.

- Both players have (local) optimal strategies in this game in normal form.

Game in normal form

$$
\begin{bmatrix}
1/2 & 1/4 \\
1/2 & 3/4
\end{bmatrix}
$$

MinMax theorem (van Neumann)
What game theory tells us

- One can associate to each state q of the game its value $v(q)$, and these values satisfy local optimality equations.

- Both players have (local) optimal strategies in this game in normal form.

- All globally optimal strategies (in the graph) are locally optimal.
What game theory tells us

- One can associate to each state q of the game its value $v(q)$, and these values satisfy local optimality equations.

- Both players have (local) optimal strategies in this game in normal form.

- All globally optimal strategies (in the graph) are locally optimal.

- Locally optimal strategies may not be globally optimal (in the graph).

Game in normal form:

\[
\begin{bmatrix}
1/2 & 1/4 \\
1/2 & 3/4 \\
\end{bmatrix}
\]

MinMax theorem (van Neumann)
Example

$q_0, \begin{bmatrix} q_0 & T & \perp \end{bmatrix}$
Example
Example

Locally optimal strategy σ_A:
Example

Locally optimal strategy σ_A:
- Player A chooses the first row
Example

Locally optimal strategy σ_A:
- Player A chooses the first row
- This is obviously not globally optimal
Example

Locally optimal strategy σ_A:
- Player A chooses the first row
- This is obviously not globally optimal
- What is wrong?
Example

Locally optimal strategy σ_A:
- Player A chooses the first row
- This is obviously not globally optimal

What is wrong?
- In the MDP generated by σ_A, there is an end-component which is losing
Our contributions
Our contributions

Characterize positional (almost-)optimal strategies using locally (almost-)optimal strategies (applies to tail objectives)
Our contributions

Characterize positional (almost-)optimal strategies using locally (almost-)optimal strategies (applies to tail objectives)

Büchi objectives

- Optimal strategies may not exist (known)
- When optimal strategies exist from all states, they can be chosen positional (inherited from reachability games)
- Almost-optimal strategies may require infinite memory (known)
- Characterization of nice game forms (aBM) for ensuring:
 - Positional almost-optimal strategies
Our contributions

Characterize positional (almost-)optimal strategies using locally (almost-)optimal strategies (applies to tail objectives)

Büchi objectives

- Optimal strategies may not exist (known)
- When optimal strategies exist from all states, they can be chosen positional (inherited from reachability games)
- Almost-optimal strategies may require infinite memory (known)
- Characterization of nice game forms (aBM) for ensuring:
 - Positional almost-optimal strategies

co-Büchi objectives

- Optimal strategies may not exist (known)
- When optimal strategies exist, they may require infinite memory
- Almost-optimal strategies can be chosen positional (known [CDAH06])
- Characterization of nice game forms (coBM) for ensuring:
 - Positional optimal strategies

Our contributions

Characterize positional (almost-)optimal strategies using locally (almost-)optimal strategies (applies to tail objectives)

Büchi objectives
- Optimal strategies may not exist (known)
- When optimal strategies exist from all states, they can be chosen positional (inherited from reachability games)
- Almost-optimal strategies may require infinite memory (known)
- Characterization of nice game forms (aBM) for ensuring:
 - Positional almost-optimal strategies

co-Büchi objectives
- Optimal strategies may not exist (known)
- When optimal strategies exist, they may require infinite memory
- Almost-optimal strategies can be chosen positional (known [CDAH06])
- Characterization of nice game forms (coBM) for ensuring:
 - Positional optimal strategies

Recall: there exist Büchi games where infinite memory is required to play ε-optimally.
Recall: there exist Büchi games where infinite memory is required to play ϵ-optimally.

How should we restrict interactions to avoid this phenomenon?
Recall: there exist Büchi games where infinite memory is required to play ϵ-optimally.

How should we restrict interactions to avoid this phenomenon?

$$\mathcal{F} = \begin{bmatrix} x & y \\ y & z \end{bmatrix}$$
Recall: there exist Büchi games where infinite memory is required to play ϵ-optimally.

How should we restrict interactions to avoid this phenomenon?

$q_0, \begin{bmatrix} q_0 & T & \bot \\ T & \bot & \bot \end{bmatrix}$

$\mathcal{F} = \begin{bmatrix} \bot & \bot & \bot \\ \bot & \bot & \bot \end{bmatrix}$
Focus on Büchi conditions

\[
\begin{bmatrix}
x & y \\
y & z
\end{bmatrix}
\]
Focus on Büchi conditions

\[
\begin{bmatrix}
x & y \\
y & z \\
\end{bmatrix}
\]

Several local « environments »
Focus on Büchi conditions

\[
\begin{bmatrix}
 x & y \\
 y & z
\end{bmatrix}
\]

Several local « environments »

\[
\begin{bmatrix}
 \overline{T} & T \\
 T & 0
\end{bmatrix}
\]

Target

Not target
Focus on Büchi conditions

\[
\begin{bmatrix}
x & y \\
y & z
\end{bmatrix}
\]

Several local «environments»

Payoff if the game proceeds to here

Target

Not target
Focus on Büchi conditions

$\begin{bmatrix} x & y \\ y & z \end{bmatrix}$

Several local « environments »

Payoff if the game proceeds to here
Focus on Büchi conditions

\[
\begin{bmatrix}
x & y \\
y & z
\end{bmatrix}
\]

Several local « environments »

Payoff if the game proceeds to here

Target

Not target
Focus on Büchi conditions

Several local « environments »

Local environment

- O set of variables ($\{x, y, z\}$ in the example)
- One small game
 - for every $E \subseteq O$, $p_T : E \rightarrow [0,1]$, and
 - for every $\alpha : O \setminus E \rightarrow [0,1]$

O set of variables ($\{x, y, z\}$ in the example)
- One small game
 - for every $E \subseteq O$, $p_T : E \rightarrow [0,1]$, and
 - for every $\alpha : O \setminus E \rightarrow [0,1]$

Payoff if the game proceeds to here
Definition of aBM (almost-Büchi maximizable)

- A game form \mathcal{F} is aBM whenever every embedding of \mathcal{F} into a local environment admits a positional ε-optimal strategy for every $\varepsilon > 0$.
A game form \mathcal{F} is aBM whenever every embedding of \mathcal{F} into a local environment admits a positional ε-optimal strategy for every $\varepsilon > 0$.

An aBM game form can be characterized and decided (it can be encoded as a formula of the first-order theory of the reals).
Characterization

Definition of aBM (almost-Büchi maximizable)

- A game form \mathcal{F} is aBM whenever every embedding of \mathcal{F} into a local environment admits a positional ε-optimal strategy for every $\varepsilon > 0$.

- An aBM game form can be characterized and decided (it can be encoded as a formula of the first-order theory of the reals)

Characterization

- If all game forms used in a concurrent game \mathcal{G} are aBM, then \mathcal{G} admits positional ε-optimal strategies for every $\varepsilon > 0$.
- If a game form is not aBM, then there is a concurrent game which does not admit a positional ε-optimal strategy for some $\varepsilon > 0$.
How to ensure positional (almost-)optimal strategies?

Existence of positional optimal or ϵ-optimal strategies under the following restrictions on game forms:

<table>
<thead>
<tr>
<th></th>
<th>Positional opt. strat.</th>
<th>Positional almost-opt. strat.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Target</td>
<td>Not target</td>
</tr>
<tr>
<td>Reach. obj.</td>
<td>No restr.</td>
<td>RM</td>
</tr>
<tr>
<td>Büchi obj.</td>
<td>No restr.</td>
<td>RM</td>
</tr>
<tr>
<td>co-Büchi obj.</td>
<td>RM</td>
<td>coBM</td>
</tr>
</tbody>
</table>
How to ensure positional (almost-)optimal strategies?

Existence of positional optimal or ε-optimal strategies under the following restrictions on game forms:

<table>
<thead>
<tr>
<th></th>
<th>Positional opt. strat.</th>
<th>Positional almost-opt. strat.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Target</td>
<td>Not target</td>
</tr>
<tr>
<td>Reach. obj.</td>
<td>No restr.</td>
<td>RM</td>
</tr>
<tr>
<td>Büchi obj.</td>
<td>No restr.</td>
<td>RM</td>
</tr>
<tr>
<td>co-Büchi obj.</td>
<td>RM</td>
<td>coBM</td>
</tr>
</tbody>
</table>

If game forms satisfy the properties below, then positional strategies exist and can be chosen positional.
How to ensure positional (almost-)optimal strategies?

Existence of positional optimal or ε-optimal strategies under the following restrictions on game forms:

<table>
<thead>
<tr>
<th>Safety obj.</th>
<th>Reach. obj.</th>
<th>Büchi obj.</th>
<th>co-Büchi obj.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Not target</td>
<td>Target</td>
<td>Not target</td>
</tr>
<tr>
<td>Pos. opt. strat.</td>
<td>No restr.</td>
<td>RM</td>
<td>No restr.</td>
</tr>
<tr>
<td>Pos. almost-opt. strat.</td>
<td>No restr.</td>
<td>aBM</td>
<td>No restr.</td>
</tr>
<tr>
<td>Target</td>
<td>Not target</td>
<td>Target</td>
<td>Not target</td>
</tr>
<tr>
<td>Pos. opt. strat.</td>
<td>No restr.</td>
<td>RM</td>
<td>No restr.</td>
</tr>
<tr>
<td>Pos. almost-opt. strat.</td>
<td>No restr.</td>
<td>aBM</td>
<td>No restr.</td>
</tr>
</tbody>
</table>

If game forms satisfy the properties below, then positional strategies exist and can be chosen positional.

If game forms at states not in target are coBM and in targets are RM, then optimal strategies exist and can be chosen positional.
How to ensure positional (almost-)optimal strategies?

Existence of positional optimal or ε-optimal strategies under the following restrictions on game forms:

<table>
<thead>
<tr>
<th></th>
<th>Positional opt. strat.</th>
<th>Positional almost-opt. strat.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Target</td>
<td>Not target</td>
</tr>
<tr>
<td>Reach. obj.</td>
<td>No restr.</td>
<td>RM</td>
</tr>
<tr>
<td>Büchi obj.</td>
<td>No restr.</td>
<td>RM</td>
</tr>
<tr>
<td>co-Büchi obj.</td>
<td>RM</td>
<td>coBM</td>
</tr>
</tbody>
</table>

If game forms satisfy the properties below, then positional strategies exist and can be chosen positional.

- If game forms at states not in target are coBM and in targets are RM, then optimal strategies exist and can be chosen positional.
- If game forms at states not in target are aBM then ε-optimal strategies can be chosen positional.
How to ensure positional (almost-)optimal strategies?

Existence of positional optimal or ε-optimal strategies under the following restrictions on game forms:

<table>
<thead>
<tr>
<th></th>
<th>Positional opt. strat.</th>
<th>Positional almost-opt. strat.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Target</td>
<td>Not target</td>
</tr>
<tr>
<td>Reach. obj.</td>
<td>No restr.</td>
<td>RM</td>
</tr>
<tr>
<td>Büchi obj.</td>
<td>No restr.</td>
<td>RM</td>
</tr>
<tr>
<td>co-Büchi obj.</td>
<td>RM</td>
<td>coBM</td>
</tr>
</tbody>
</table>

If game forms satisfy the properties below, then positional strategies exist and can be chosen positional.

- If game forms at states not in target are coBM and in targets are RM, then optimal strategies exist and can be chosen positional.
- ε-optimal strategies can always be chosen positional.
How to ensure positional (almost-)optimal strategies?

Existence of positional optimal or ε-optimal strategies under the following restrictions on game forms:

<table>
<thead>
<tr>
<th></th>
<th>Positional opt. strat.</th>
<th>Positional almost-opt. strat.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Target</td>
<td>Not target</td>
</tr>
<tr>
<td>Reach. obj.</td>
<td>No restr.</td>
<td>RM</td>
</tr>
<tr>
<td>Büchi obj.</td>
<td>No restr.</td>
<td>RM</td>
</tr>
<tr>
<td>co-Büchi obj.</td>
<td>RM</td>
<td>coBM</td>
</tr>
</tbody>
</table>
Properties of game forms
Properties of game forms

- All these notions RM, coBM, aBM, ... can be decided (can be expressed in \(\text{FO}(\mathbb{R}) \))
Properties of game forms

- All these notions RM, coBM, aBM, ... can be decided (can be expressed in FO(ℝ))

- coBM ⊆ RM ⊆ aBM
Properties of game forms

- All these notions RM, coBM, aBM, ... can be decided (can be expressed in \(\text{FO}(\mathbb{R}) \))

- coBM \(\subseteq \) RM \(\subseteq \) aBM

- These game forms are coBM:
 - « Turn-based » game forms:

 \[
 \begin{bmatrix}
 x & y & z \\
 x & y & z \\
 \end{bmatrix}
 \]

 - Two-variable game forms:

 \[
 \begin{bmatrix}
 x & y & x \\
 y & x & x \\
 \end{bmatrix}
 \]

 - Permutation game forms:

 \[
 \begin{bmatrix}
 x & y & z \\
 z & x & y \\
 y & z & x \\
 \end{bmatrix}
 \]
What you can bring home
What you can bring home

- **Concurrent games** behave much less smoothly than turn-based games
 - Optimal strategies might not exist
 - (Almost-)Optimal strategies might require infinite memory
What you can bring home

- **Concurrent games** behave much less smoothly than turn-based games
 - Optimal strategies might not exist
 - (Almost-)Optimal strategies might require infinite memory

- Methodology:
 - Study interactions (**game forms**) as first-class citizens
 - Identify interactions (game forms) that are well-behaved (with a property in mind)
 - Show that, all games on graphs with interactions taken in the set of well-behaved game forms behave well; and that this set is maximal
What you can bring home

- **Concurrent games** behave much less smoothly than turn-based games
 - Optimal strategies might not exist
 - (Almost-)Optimal strategies might require infinite memory

- Methodology:
 - Study interactions (**game forms**) as first-class citizens
 - Identify interactions (**game forms**) that are well-behaved (with a property in mind)
 - Show that, all games on graphs with interactions taken in the set of well-behaved game forms behave well; and that this set is maximal

- Going further:
 - Understand beyond (co-)Büchi conditions, e.g. parity conditions
 - (Ongoing work) A different approach, which should be able to deal with parity conditions