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Introduction

We now live in a digital society. Some digital systems might just be helpful in everyday
life : GPS-based navigation, connected home, home appliance... If they fail it usually causes
in the worst case an annoying discomfort. But as we trust more and more digital systems to
handle complex tasks, many lives become dependent on their safe execution. Errors in software
controlling airplanes or automatic subways could, in an instant, put hundreds of people’s lives
at risk. Now that robots can provide surgical assistance, a bug in their execution could be
lethal for the patient. Now that we trust software with more and more personal sensible data,
a flaw could expose millions of users to impersonation. Now that algorithms rule the financial
system, who knows if some faulty algorithm could provoke the next economic crisis... The next
generation may even not be able to live without the assistance of digital systems, somehow like
the previous generation couldn’t imagine running a society without steam engines or electricity.

As digital systems take more power in society, they must assume more responsibility. This
responsibility falls on the engineers and computer scientists who design, develop and study those
systems. Digital systems execution errors might come from implementation errors – which can
be detected and corrected only with the execution of the system – or from design error – which
can be detected and corrected in advance by the study of models of the real system. Formal
methods can be of help to detect them in both cases. For design matters, formal verification
can be used to prove or disprove properties of the said design. The system is thus described as
a mathematical model – such as automata and extensions thereof – in order to represent and
reason about its behaviors. Various algorithmic techniques are then applied to ensure safety,
liveness, or any set of properties expressed in some fixed logical language. Among them we can
cite, model checking algorithms [26] [25], deductive verification [37] [31] or testing [51]. Those
methods are usually costly in terms of computation, and sometimes too strong a requirement.
On another hand, the implementation phase can add errors independently from the correctness
of the design. For those kinds of errors, the methods described previously provide no help.
Runtime verification instead aims at checking properties of a running system [40]. Runtime
methods can then be used in a testing phase but also during real system execution to alert
about possible errors and try to prevent them to happen. In comparison to formal verification,
runtime verification can’t ensure general safety but they usually can be used in a wider range of
cases and perform often better. Fault diagnosis is a prominent problem in runtime verification:
it consists in (deciding the existence and) building a diagnoser, whose role is to monitor real
executions of a (partially-observable) system, and decide on-line whether some property holds
(e.g., whether some unobservable fault has occurred) [47] [52]. The related problem of prediction,
a.k.a. prognosis, (that e.g. no fault may occur in the next five steps) [34], is also of particular
interest in runtime verification.

There exists a large variety of digital systems with different complexity levels and different
constraints. To represent them a large variety of mathematical models have been introduced,
focusing on one or another aspect of the system, depending on its nature and on the properties
we aim to ensure. Real-time systems are of particular interest. These are hybrid systems made
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of both physical parts and software parts. They usually obey quantitative constraints based on
physical parameters such as time, temperature, pressure. . . Discrete models, such as finite-state
transition systems, are not adequate to model such quantitative constraints. They have been
extended in various ways to be used for verification on real-time systems [35] [2] [50] [3] [22]
[44]. Timed systems (which involve only time as a physical parameter) have their own set of
models [4],[42], [36], [2], [17]. Timed automata [4], developed at the end of the eighties, provides
a convenient framework for both representing and efficiently reasoning about computer systems
subject to real-time constraints. They have been restricted and extended in many ways [6] [5]
[1] [19] [49]. Efficient off-line verification techniques for timed automata have been developed
[12] and have been implemented in various tools such as Uppaal [11], Kronos [23] and RED
[55]. The diagnosis of timed automata, however, has received less attention. A diagnoser can
usually be built (for finite-state models) by determinizing a model of the system, using the
powerset construction; it will keep track of all possible states that can be reached after each
(observable) step of the system, thereby computing whether a fault may or must have occurred.
For timed automata this problem is made difficult by the fact that timed automata can in
general not be determinized [54] [33] [4]. This has been circumvented by either restricting to
classes of determinizable timed automata [5], or by keeping track of all possible configurations
of the automaton after a (finite) execution [53]. The latter approach is computationally very
expensive, as one step consists in maintaining the set of all configurations that can be reached
by following (arbitrarily long) sequences of unobservable transitions; this limits the applicability
of the approach.

In this thesis, we address the problem of efficient diagnosis for timed automata. This problem
has already been addressed in [18] with the restriction that the diagnoser should be himself
a timed automaton. The authors prove that such a diagnoser can be constructed for some
restricted classes of timed automata known to be determinizable. Then they propose a game
approach to construct a diagnoser when it is possible. Our approach is different and follows
the idea of [53]. We construct a diagnoser which is not necessarily a timed automaton itself
but still can be computed. The challenge is then to make this diagnoser so it is computable
and efficient enough to on-line monitor the system. The construction of the diagnoser is made
possible by prior results of ours about the determinization of timed automata within a wider
class of timed systems. This class called automata on timed structures is introduced the first
time by us in a publication at FORMATS 2017 conference [20] (under the name of automata on
timed domains). We prove in this paper that timed automata fit in this class of timed models
and that within this class it is always possible to construct from an automaton without silent
transitions a deterministic automaton finitely representable and computable [20]. We managed
to use this deterministic automaton for one-clock timed automata diagnosis and proved that
it allows displacing a heavy part of the computation time as pre-computing calculations. This
is the subject of our publication at RV 18 conference [21]. We provide an implementation
of this diagnoser and compare it with an implementation we’ve made of the diagnoser of [53]
(sources accessible at http://www.lsv.fr/~jaziri/DOTA.zip). In this thesis, we improve the
formalism proposed in [20] and propose an improved proof for the determinization results found
in this paper. We discuss the various implication of those results in greater detail and try to
put them in perspective with already known determinization results for subclasses of timed
automata, in particular with input-determined automata. We integrate the work done [21]
which now perfectly fits within the formalism of automata on timed structures.

The precise outline of this thesis is given below. This manuscript is split into three parts.
Parts one and two are based on the work done in [20] and part three is based on the work done
in [21].
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The first part is dedicated to the introduction of the model of automata on timed structures.
After some basic notions, we introduce part by part the different layers of the formalism we use
in the next parts.

Chapter 1 : This chapters present some basic notions about transition systems and the
associated equivalence notions. This chapter does not present original work
and is inspired by common computer science knowledge. Though we took
the liberty to adapt some definition to fit our needs for this thesis and we
advise special care for the reader used to those notions in their more
classical definition.

Chapter 2 : In this chapter we introduce timed structures, a formal
framework to model quantitative variables.

Chapter 3 : We introduce automata on timed structures, a quantitative model which
is made of both a continuous part, inherited from the timed structure and
a discrete part in the form of a finite automaton build on top of this
timed structure. An idea which is at the basis of hybrid automata [35]

Chapter 4 : Controls are an original idea of ours which allow to split the definition
of the model and the definition of its observable actions and hence of its
recognized languages. They provide a nice setting to speak about different
recognized languages and better understand the case of event-clock timed
automata.

The second part presents the determinization results obtained in [20] and how each already
known determinization results compare to each other in the framework of automata on timed
structures.

Chapter 5 : In this chapter we prove that an automaton on timed structures without
silent transitions can be determinized using a powerset construction.
We also show that the deterministic automata on timed structures constructed
is finitely representable and computable.

Chapter 6 : This chapter is a technical interlude for the application of the results of the
previous chapter.

Chapter 7 : We use then the results of last two chapters to recover some known
determinization results about timed automata. We compare them to each other in
our framework to get more insight about their similarities and their differences.

Chapter 8 : In this chapter we use automata on timed strutures to recover determinization
results on input-determined automata and discuss, with the new point of view
given by our formalism, what could make those systems determinizable.

Finally last part is dedicated to the use of our powerset construction for determinization in
the context of fault-diagnosis.

Chapter 9 : In this first chapter we introduce the problem of fault diagnosis
in the framework of automata on timed structures and see how the work done
in part two can be of use for the construction of an efficient diagnoser for
one-clock timed automata.

Chapter 10 : This chapter introduce the data structure we use to store sets of clocks
in the diagnoser. We call them regular timed markings and they have the
good properties of being finitely representable, of allowing efficient calculation
and can be used to store information during a pre-calculus phase.
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Chapter 11 : We construct in this chapter using to regular timed
markings, the final diagnoser and discuss its computability.

Chapter 12 : Finally in the last chapter of this thesis we present our implementation
of a diagnoser for one-clock timed automata, and compare it to an
implementation of a diagnoser of [53].
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Part I

Timed Systems Modeling
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Chapter 1

Basic Notions on Transition Systems

Modeling Dynamic Systems

All physical systems in nature – and therefore all software dedicated to control them –
are dynamic systems. Those systems are in evolution, which means that all the parameters
describing a particular state of the system vary according to intrinsic physical laws of evolution
or external interventions. To ensure, with the help of formal methods, safety properties on such
systems, we need models which encompass the whole variety of the possible configurations of
the system in their evolution.

Transition systems model the evolution of a dynamic system by giving the means to entirely
describe the reachability links between all its possible configurations. In some cases, for example
in the modeling of a – not too complex – software, the system can be described by a finite
set of such possibilities. Finite transition systems benefits of a robust formalism and a large
variety of problems about them can be algorithmically solved [8]. In other cases, like for
systems with physical quantities, the system cannot be modeled with a finite transition system.
Several different models can then be used depending on the needs. Infinite transition systems
remain though the main formal object used to define the semantic of those models (timed
transition systems [36] [2], weighted transition systems [50], stochastic transition systems [3],
game structures [22],. . . ). The theory around the infinite case is not as robust as in the finite
case, but the recent work of [32] on well-structured transition systems, provide both an elegant
theory to work in and algorithmic tools to effectively study them with formal methods.

In the infinite case, the one we are interested in this thesis, transition systems are still too
generic to allow finite representation or implementation. That is the reason why – even though
we come back to transition systems when it comes to defining a formal semantics – weaker
models are usually preferred when it comes to efficiently represent a dynamic system (timed
automata [4], timed Petri net [42], weighted automata [44], . . . ). This also explains the interest
of the community in the research and computation of similarities between transition systems,
aiming to link a transition system to a simpler or more efficient equivalent version. The most
famous notion of similarity being the notion of bisimulation equivalence.

In this chapter, we will give a selected reminder of the formal framework we are going to
work in. We present definitions and results which are not part of our contribution but have to
be credited to many of our predecessors in this field. We freely adapted some of them to suit our
particular needs for this thesis. First we recall some definitions and define some notations about
partial functions (section 1.1) – at the basis of our definition of bisimilation. We recall then some
definitions about transition systems (section 1.2) and define the notations used throughout this
thesis. In last section 1.3 we formally introduce the notion of functional bisimulation which is
weaker than bisimulation equivalence but adapted in the context of this thesis.
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1.1 Partial Functions

We give in this section a quick reminder of the definition of partial functions and the objects
and notations, we will be using throughout this thesis.

Definition 1.1.1. Given two sets E1 and E2, a partial function from E1 to E2, written f :
E1 ⇀ E2, is a relation f ∈ E1 × E2 such that for all e1 ∈ E1 there is at most one element
e2 ∈ E2 such that (e1, e2) ∈ f .

The set of partial functions from E1 to E2 is written [E1 ⇀ E2].

Let f : E1 ⇀ E2 be a partial function. We write

dom(f) = {e1 ∈ E1 | ∃e2 ∈ E2, (e1, e2) ∈ f}

Given e1 ∈ E1 and e2 ∈ E2, we write f(e1) = e2 for e1 ∈ dom(f) and (e1, e2) ∈ f .
If g : E1 ⇀ E2 is another partial function and e1 ∈ E1, f(e1) = g(e1) implies e1 ∈

dom(f)∩ dom(g) or e1 6∈ dom(f)∪ dom(g). All the more, f = g implies dom(f) = dom(g).
We write

im(f) = {e2 ∈ E2 | ∃e1 ∈ E1, (e1, e2) ∈ f}

We say that f is injective if and only if for all e1 6= e′1 ∈ dom(f), f(e1) 6= f(e′1). We say that
f is surjective if and only if im(f) = E2. We say that f is bijective if and only if f is injective
and surjective.

A total function f ∈ [E1 ⇀ E2] is a partial function with dom(f) = E1.

We will be using partial functions between two alphabets in this thesis. So we need to extend
them on words. We introduce below a canonical way to extend a partial function between
alphabets into a partial morphism of free monoids.

Fix A and B two sets. The free monoid of A is the set of all the sequences of 0 or more
elements of A, called words of A. It is written A∗. εA stands for the sequence of 0 elements of
A. Given two words w1 and w2 in A∗, we write w1 · w2, called the concatenation of w1 and w2

to be the sequence w1 immediately followed by the sequence w2.
A partial morphism between A∗ and B∗ is a partial function φ such that:

• εA ∈ dom(φ)

• for all w,w′ ∈ A∗, w · w′ ∈ dom(φ) if and only if w ∈ dom(φ) and w′ ∈ dom(φ).

• for all w,w′ ∈ A∗, φ(w · w′) = φ(w) · φ(w′)

Suppose now ψ : A ⇀ B is a partial function from A to B. ψ is naturally extended on A∗

in the following way : for all w = a1 . . . an ∈ dom(ψ), ψ(w) = ψ(a1) · · · · · ψ(an). ψ : A∗ ⇀ B∗

is a partial morphism between A∗ and B∗.

1.2 Labeled Transition System

The idea behind transition systems is simplistic and at the same time encompasses the
whole variety and complexity of dynamic systems. Each of those systems is assumed to be
reducible to a set of configurations and a relation describing the law of evolution between those
configurations.

Definition 1.2.1. A transition system T , is a pair 〈C,→〉 where C is a set called configuration
space and → ∈ P(C2) is a relation on C called transition relation.
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If the configuration space of a transition system is finite, then we call it a finite transition
system, otherwise, it is called an infinite transition system.

In the modelization process, the configuration space and the transition relation are related
to the internal behavior of the system. An outside observer may not grasp the whole effect of
a transition on the configuration space. To model this loss of information we introduce labels.

Definition 1.2.2. A labeled transition system, T , is a triple 〈C,→, L〉 where C is a set called
configuration space, L is a set called label space and →: L −→ P(C2) maps every label in L to
a relation on C called transition relation labeled by l.

We say that a labeled transition system is finite if and only if both the configuration space
and the label space are finite. Otherwise, we call it infinite.

For all l ∈ L and c, c′ ∈ C, we write
l−→ instead of →(l) and c

l−→ c′ instead of (c, c′) ∈ l−→.

We recall below the definition related to labeled transition systems. Fix a transition system
T = 〈C,→, L〉. A path, π, of T is a sequence π = c0 · l1 · c1 . . . cn−1 · ln · cn ∈ C × (L×C)∗ such
that for all 1 ≤ i ≤ n, ci−1

li−→ ci. For such a path we define:

• len(π) = n is the length of the path

• start(π) = c0 is the starting configuration of π

• end(π) = cn is the ending configuration of π.

• w(π) = l1 . . . ln ∈ L∗ is the word recognized by π.

Given two configurations c and c′ in C,

• For all word w ∈ L∗, Path(T,w, c, c′) stands for the set of all paths of T starting in c,
ending in c′ and recognizing the word w.

Path(T,w, c) =
⋃
c′′∈C Path(T,w, c, c′′).

• Path(T, c, c′) =
⋃
w∈L∗ Path(T,w, c, c′) stands for the set of all paths of T starting in c

and ending in c′.

Path(T, c) =
⋃
c′′∈C Path(T, c, c′′).

• L(T, c, c′) = {w ∈ L∗ | Path(T,w, c, c′) 6= ∅} stands for the set of all words recognized
by a path of Path(T, c, c′). It is called the language of T from c to c′.

• For all c ∈ C and for all F ⊆ C, we also define L(T, c, F ) =
⋃
c′∈F L(T, c, c′). For short

we write L(T, c) = L(T, c, C).

If Path(T, c, c′) is not empty we say that c′ is reachable from c and write c→∗ c′. If for a word
w ∈ L∗, Path(T,w, c, c′) is not empty we’ll write c

w−→∗ c′. Given c ∈ C and w ∈ L∗, we write
Reach(T, c) = {c′ ∈ C | c→∗ c′} and Reach(T,w, c) = {c′ ∈ C | c w−→∗ c′}.

Path and Reach concentrate all the information on the behavior of the transition system
whereas L describes the information available to an external observer. Those are the objects
we are usually interested in when studying transition systems, and this thesis will not be an
exception.
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Finally we recall below the formal definitions of determinism and completeness.

Definition 1.2.3. Let T = 〈C,→, L〉 be a transition system. We say that T is deterministic if
and only if for all l ∈ L,

l−→ is a partial function from C to C, i.e. for all c ∈ C, there exists at
most one c′ ∈ C such that c

l−→ c′.

In a deterministic transition system, we get by induction that for all configuration c and for
all word w, there is at most one configuration in Reach(T,w, c).

Definition 1.2.4. Let T = 〈C,→, L〉 be a transition system. We say that T is complete if and
only if for all l ∈ L, for all c ∈ C, there exists at least one c′ ∈ C such that c

l−→ c′.

In a complete transition system, we get by induction that for all configuration c and for all
word w, there is at least one configuration in Reach(T,w, c).

Finally a transition system T = 〈C,→, L〉 is both deterministic and complete if and only
if for all l ∈ L,

l−→ is a function from C to C. In which case for all w ∈ L∗, we can define the
function ⊕T : C × L∗ → C such that c⊕T w is the only configuration c′ such that c

w−→∗ c′. We
omit to mention the transition system, and will write only ⊕, if it can be easily deduced from
the context.

1.3 Bisimulation on Labeled Transition Systems

Two transition systems which somehow have a similar set of paths or a similar language
will lead to the same theoretical results, allowing us to transfer any result from one to the other
and conversely. It is frequent though that one transition system has some advantage upon the
other, either because it is easier to study, or because it is easier to implement, etc. Depending on
our goal some transition systems can, therefore, be better than others. A big part of our work
will be on finding good representations of the same object to generalize results or get efficient
implementations, hence the notion of similarity between systems is, for us, an important notion,
which lies at the core of this thesis.

A classical notion of similarity between transition systems is the notion of bisimulation
equivalence which informally states that two states c and c′ are equivalent if and only if they
can always mimic each other in all their possible evolution.

Definition 1.3.1. Let T1 = 〈C1,→1, L〉 and T2 = 〈C2,→2, L〉 be two labeled transition systems
sharing the same label space. A simulation is a relation ∼ ⊆ C1 × C2 such that for all c1 ∼ c2,
for all l ∈ L, and for all c′1 ∈ C1,

c1
l−→1 c

′
1 =⇒ ∃c′2 ∈ C2, c

′
2 ∼ c′1 and c2

l−→2 c
′
2

A bisimulation is a simulation ∼ ⊆ C1 ×C2 such that ∼−1 is a simulation, i.e. for all c1 ∼ c2,
for all l ∈ L, and for all c′2 ∈ C2,

c2
l−→2 c

′
2 =⇒ ∃c′1 ∈ C1, c

′
1 ∼ c′2 and c1

l−→1 c
′
1

To better suit our future usage of this notion we restrict our selves to a weakened version
of the definition which enforces the relation to be a function. Definition 1.3.1 is then adapted
using different label spaces and stated with a functional form.
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Definition 1.3.2. Let T1 = 〈C1,→1, L1〉 and T2 = 〈C2,→2, L2〉 be two labeled transition sys-
tems. A functional simulation from T1 to T2 is a pair of functions (φ, ψ) with: ψ being a partial
function from L1 to L2, and φ being a partial function from C1 to C2 such that for all l1 ∈ L1,
for all c1 ∈ dom(φ), c′1 ∈ C1

c1
l1−→1 c

′
1 =⇒ c′1 ∈ dom(φ), l1 ∈ dom(ψ) and φ(c1)

ψ(l1)−−−→2 φ(c′1)

A functional bisimulation from T1 to T2 is a functional simulation (φ, ψ) such that for all
c1 ∈ dom(φ), c′2 ∈ C2 and l2 ∈ L2

φ(c1)
l2−→2 c

′
2 =⇒ ∃c′1 ∈ φ−1(c′2), ∃l1 ∈ ψ−1(l2), c1

l1−→1 c
′
1

It is clear by this definition, that the existence of a functional bisimulation (φ, id) between
two transition systems T1 = 〈C1,→1, L〉 and T2 = 〈C2,→2, L〉 implies the existence of a bisim-
ulation relation (one can easily prove that the relation c ∼ c′ ⇐⇒ c′ = φ(c) over C1 × C2

is a bisimulation relation). However, the reverse implication is not true. Hence this idea of
weakened version.

We introduced the possibility of having two different label spaces in definition 1.3.2 which
prevents direct comparison between definition 1.3.2 and 1.3.1.

Next proposition ensure that a functional bisimulation describes what we expected from
a concept of similarity between transition systems, i.e. that the existence of a bisimulation
between T1 and T2 ensures that every behavior of T1 is mapped to a behavior of T2, and,
conversely, every behavior of T2 is the mapping of a behavior of T1.

Proposition 1.3.3. Let two transition systems T1 = 〈C1,→1, L1〉 and T2 = 〈C2,→2, L2〉 and
suppose their exists a functional simulation, (φ, ψ) between T1 and T2. Then :

• For all c1 ∈ dom(φ) and w1 ∈ L∗1,

φ(Reach(T1, w1, c1)) ⊆ Reach(T2, ψ
∗(w1), φ(c1))

• For all c1 ∈ dom(φ) and c′1 ∈ C1,

ψ∗(L(T1, c1, c
′
1)) ⊆ L(T2, φ(c1), φ(c′1))

If moreover (φ, ψ) is a functional bisimulation, then:

• For all c1 ∈ dom(φ) and w2 ∈ L∗2,⋃
w1∈ψ∗−1(w2)

φ(Reach(T1, w1, c1)) = Reach(T2, w2, φ(c1))

• For all c1 ∈ dom(φ) and c2 ∈ C2,⋃
c′1∈φ−1(c2)

ψ∗(L(T1, c1, c
′
1)) = L(T2, φ(c1), c2)

12



Proof.

Notice that for all c1 ∈ dom(φ) and w1 ∈ L∗1, Reach(T1, w1, c1) is included in dom(φ) by
a simple induction on the size of w1. Also for all c1 ∈ dom(φ) and c′1 ∈ C1, L(T1, c1, c

′
1)

is included in dom(ψ∗) by another induction on the length of the path.
Then in all cases, the proof can be easily made using an induction on the size of the

words. �

Functional bisimulation is a tool to transfer objects of T1 into T2. Further in this thesis,
we will seek to construct from T1 a similar transition system T2 or conversely, given only a
transformation of the configuration and label space. For now, we describe only the case where
a renaming of the labels is given. We can then easily construct a new transition system by
relabeling the transitions.

Let T = 〈C,→, L〉 and L′ a set of labels. A labeling ψ, of T on L′ is a (total) function from
L to L′. The L′-renaming of T by ψ is the labeled transition system Tψ = (C,→L′ , L

′), such
that for all l′ ∈ L′,

l′−→L′= {(c, c′) ∈ C2 | ∃l ∈ ψ−1(l′) such that c
l−→ c′}

Proposition 1.3.4. Let T = 〈C,→, L〉, L′ a set of labels and ψ a labeling of T on L′.
Φ = (IdC , ψ) is a functional bisimulation from T to Tψ.

Proof.

The proof can be easily done relating definition 1.3.2 and the definition of Tψ. �

We base our model on labeled transition systems, using them to define the semantics of our
objects as it is usually done. As we said in the introduction though, infinite transition systems
are not a model easy to handle when it comes to representation and implementation. More
than a particular subclass of labeled transition systems, the model of timed structures – and
of automata on timed structures – that we introduce in the following chapters is a change of
view, or rather of organization, in the modelization process; which we believe is better suited
for representation and implementation matters.
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Chapter 2

Timed Structures

Modeling Timed Variables

Transition systems are meant to model physical systems having several – possibly an infinite
number of – configurations and evolving from one configuration to an other. It is not specified
within the model whether this evolution is intrinsic or due to external action. In a state the
information of a discrete state (e.g. button pressed/released, robot moving forward/backward
or not moving . . . ) and that of a quantitative variable (e.g. temperature, speed, timer value
. . . ) can be both stored.

Keeping the spirit of hybrid automata introduced by [35] we aim at adapting transition
systems to split modeling of the quantitative variables – evolving consistently to their evolution
laws – and the modeling of discrete states, which might change following an external action,
possibly modifying the evolution rules of the quantitative variables. We choose though not to
use hybrid automata nor timed transition systems [2] [36] because we need for our work a more
expressively powerful model.

Our model, that we call automata on timed structures, is to be given its final definition in
chapter 3. In the present chapter, we begin by giving a formal framework to model quantitative
variables and their evolution only. We call it timed structures. The definition of automata on
timed structures will, in the end, consist in building on top of a timed structure a framework
which adds discrete states and steps.

Timed structures definition is itself split into three parts corresponding to the three sections
of this chapter:

Section 2.1 : the description of the intrinsic laws driving the evolution of the quantitative
variables using timed domains.

Section 2.2 : the description of the possible effect of an external action on the quantitative
variables using updates.
A timed domain equipped with a set of updates will be called a timed structure.

Section 2.3 : the description of the requirements on the values of the quantitative variables
for an external action to be doable.
We define guards and guard basis. A timed structure enhanced with a
guard basis is then called a guarded timed structure.

As an example, suppose a timed structure is meant to model the evolution of the temperature
inside a room. The timed domain describes the natural evolution of the temperature. Turning
on the heat would be an update that changes the evolution law of the temperature. Quickly
opening a window on a windy day could be viewed as an update which decreases instantaneously
the temperature without modifying its evolution law. Finally, if the heat can only be turned
on if the temperature is below 25 degrees Celsius, this could be modeled using guards.

14



2.1 Timed Domains

Hybrid systems confine the evolution of quantitative variables into solutions of differential
equations. In our approach, we seek to allow as many behaviors as possible for the quantitative
variables and lose as few expressive power as possible with regards to transition systems.

Timed transition system [36] [2] already allow modeling a very large variety of timed systems.
We recall the formal definition of timed systems below.

Definition 2.1.1. Let Σ be a finite alphabet. A Σ-timed transition system is a labeled transition
system T = 〈C,→,R≥0 ] Σ〉 such that for all d, d′ ∈ R≥0 :

(1) for all c ∈ C, c
0−→ c

(2) for all c ∈ C, exists c′ ∈ C such that c
d−→ c′

(3) for all c, c′, c′′ ∈ C, c
d−→ c′ and c

d−→ c′′ implies c′ = c′′

(4) for all c, c′ ∈ C, exists c′′ ∈ C such that c
d−→ c′′ and c′′

d′−→ c′ if and only if c
d+d′−−−→ c′.

They can model evolution laws that differential equations cannot.

Example 2.1.1. Suppose the quantitative variable we want to model is both the data of a timer
(or clock) x taking values in R≥0 and a color c within { blue, red }. The evolution law described
in figure 2.1 can’t be described as a differential equation.

time

x

0

2

4

6

0
3 6 9

Figure 2.1: Evolution law of the variable (x, c)

However it can easily be described as the timed transition system T = 〈R≥0×{ blue, red },→
,R≥0〉 where, for all d ∈ R≥0, for all (x, c) ∈ R≥0 × { blue, red },

(x, c)
d−→ (x′, c′) with x′ = (x+

5× d
3

) mod 5 and c′ = c if b
x+ 5×d

3

5
c is even, c otherwise

Where red = blue, blue = red and mod states for the classical modulo operator: a
mod b = a− bab cb.

T is a well-defined timed transition system. (1), (2) and (3) can easily be verified. Suppose
(x, c) ∈ R≥0 × { blue, red } and d, d′ ∈ R.

(
[(x+

5× d
3

) mod 5] +
5× d′

3
)
)

mod 5 = (x+
5× (d+ d′)

3
) mod 5

which allows us to conclude that (4) is verified
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We will not be using timed transition systems in this thesis but a slight variation we call
timed domains. The easiest way to make this new model of quantitative variables as powerful
as transition systems, . . . is to use transition systems themselves.

The fact that timed transition systems are called timed, might make us say that an infinite
transition system is by default untimed. Obviously, it doesn’t mean that time does not intervene
in transition systems. If so, how could one speak of evolution? It should mean that absolute
physical time value is not used by the model, therefore that there is no timer. Time itself
plays its role but it is not explicitly quantified. This is only in this sense that we shall call a
transition systems untimed. Timed domains are meant, like timed transition systems, to enforce
the quantification of time to take part in the model.

We will consider that a transition system is timed if it includes some way to measure time.
We will restrict ourselves to continuous time, i.e. a measure of time expressed within the real
numbers. How to include this measurement in the model? A natural approach is to consider a
particular quantitative variable recording time. Let’s say that a transition system 〈V, ↪−→〉models
the evolution of a quantitative variable whose values are taken within the set V and such that
↪−→ describes which value can evolve into which. We will construct a transition system of the
form 〈V × R, ↪→〉. The value (v, d) ∈ V × R in which every configuration represents both the
information of the value of the quantitative variable and the point in time when the quantitative
variable takes this value (absolute physical time or a timer launched at some starting point). In
this setting if (v, d) evolves into (v′, d′) we have access to the quantity of time elapsed between
those two values through the quantity d′ − d.

However, adding a timer as we would add any other quantitative variable to our model is
not what we really want. Indeed in this transition system, the quantitative variable and the
timer might be interdependent. Moreover the evolution of the global system or the possibility
for discrete actions might strongly depend not only on the value of the quantitative variable
but also on the value of the timer. Considering the timer as any quantitative variable would
mean in short that we care about its absolute value. For some models, we might indeed care.
But for the notion of timed domain we aim to introduce, we wish to add only a way to measure
time. This means that all that matters for the evolving transition is the delay between two
related values and not the exact timestamps when they happen. Formally speaking we want
that for two values v and v′ in V , whatever the timestamps d and d′ in R and the delay δ in
R≥0, (v, d)↪→(v′, d + δ) if and only if (v, d′)↪→(v′, d′ + δ). Notice that with this constraint, the
information of the value of the timer becomes unrelevent.

Additionally, we introduce below more constraints which implies some loss of expressive
power with regards to transition systems. Still they remain in conformity with our goal to
provide a framework which measures time. First we don’t want time to “stop”at some point,
i.e. we expect for all value v, and all time stamps d1 < d2 to have a v′ such that v, d1↪→v′, d2.

We also want time to be directed. Evolution have to be made continuously, in one direction.
It means that for all v ∈ V and d, d′ ∈ R≥0, there exists v′ ∈ V such that (v, d)↪→(v′, d′) if
and only if d < d′. The direction of time is what allows us to situate configurations using a
notion of posteriority and anteriority. In formal terms it correspond to a transitivity property
on the evolving transition : for all three time stamps d1 < d2 < d3 and three values v1, v2, v3, if
(v1, d1)↪→(v2, d2)↪→(v3, d3) then (v1, d1)↪→(v3, d3).

In the end, what we’ll call a timed domain is a transition system enhanced with a timer
whose exact value is loss and respecting the above constraints. Formally :
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Definition 2.1.2. A timed domain is a couple 〈V, ↪→〉 where V is a set called value space and
↪→ is a function from R≥0 to P(V × V ) called delay transition, such that

• for all v ∈ V , (v, v) ∈ ↪→(0)

• for all v ∈ V and d ∈ R≥0, there exists v′ ∈ V such that (v, v′) ∈ ↪→(d)

• for all d, d′ ∈ R≥0, for all v, v′, v′′ ∈ V ,

if (v, v′) ∈ ↪→(d) and (v′, v′′) ∈ ↪→(d′) then (v, v′′) ∈ ↪→(d+ d′)

We write for all d ∈ R≥0,
d
↪−→= ↪→(d) and v

d
↪−→ v′ as a shorthand for (v, v′) ∈ d

↪−→.

Remark 2.1.1. A timed domain is not a timed transition system stripped of all action transitions,
because we didn’t enforce time determinism (condition (3) in definition 2.1.1).

Remark 2.1.2. If 〈V, ↪→〉 is a timed domain, then 〈V, ↪→,R≥0〉 is a labeled transition system. It
is complete by definition. We can export on timed domains all the notions of labeled transition
systems, like paths, reachability,. . .

In particular, we can export determinism and speak of deterministic timed domain. If the
timed domain is deterministic, for all d ∈ R≥0, we know that

d
↪−→ is actually a function from V

to V . In that case we’ll write for all v ∈ V and d ∈ R≥0, v ⊕〈V,↪→〉 d =
d
↪−→ (v) or just v ⊕ d

when the timed domain is clear from the context.

We redefine the notion of functional bisimulation on timed domains.

Definition 2.1.3. Let D1 = 〈V1, ↪→1〉 and D2 = 〈V2, ↪→2〉 be two timed domains. A functional
bisimulation from D1 to D2 is a partial function φ : V1 ⇀ V2 such that (φ, idR≥0

) is a functional
bisimulation between labeled transition system from 〈V1, ↪→1,R≥0〉 to 〈V2, ↪→2,R≥0〉.

We take some more time to introduce particular timed domain relevant in this thesis.

1. Clock Domain. This is the timed domain modeling a timer. This timer is classically
called a clock, hence the name. Those are the clocks used in timed automata [4]. The clock can
have an arbitrary real value between 0 and a maximal value M ∈ N. Strictly over M , the timer
is stuck on value ∞ (arbitrary value larger than M).

Formally, let M ∈ N, we write CM = [0,M ] ∪ {∞}. We define the delay relation as follows,
for all x ∈ CM and d ∈ R≥0:

• if x ∈ [0,M ]

– if x+ d ≤M , x
d
↪−→ x+ d

– else x
d
↪−→∞

• ∞ d
↪−→∞

(CM , ↪−→) is a well-defined deterministic timed domain called the M -clock domain.
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2. Perturbed-Clock Domain. This is the timed domain modeling a clock evolving at
an imprecise rate. Those clocks are defined to mimic the ones used in perturbed automata [6].
Like in the clock domain, the clock can have an arbitrary real value between 0 and a maximal
value M ∈ N. Strictly over M , the timer is stuck on value ∞.

However, in the perturbed clock domain, clocks evolve with a non-deterministically chosen
rate ranging between 1− ε and 1 + ε for some fixed ε.

Formally, let M ∈ N and ε ∈ [0, 1[, we write CM = [0,M ] ∪ {∞}. We define the delay
relation as follows, for all x ∈ CM and d ∈ R≥0:

• if x ∈ [0,M ], for all x′ ∈ [x+ d(1− ε), x+ d(1 + ε)],

– if x′ ≤M , x
d
↪−→ε x

′

– else x
d
↪−→ε ∞

• ∞ d
↪−→ε ∞

(CM , ↪−→ε) is a well-defined non-deterministic timed domain called the (M, ε)-perturbed clock
domain.

3. Predicting-Clock Domain. This is a timed domain to model countdown timers. The
timer, or clock, is considered as initially set to some real value and decreases until it reaches 0,
at which point it stops. We will use those clocks to translate event-predicting timed automata
[5] into our formalism.

Formally, we write PR≥0 = R≥0 ] {⊥}. We define the delay relation, ↪→P as follows, for all
x ∈ R≥0 and d ∈ R≥0:

• if x− d ≥ 0, x
d
↪−→P x− d

• else x
d
↪−→P ⊥

• ⊥ d
↪−→P ⊥

(PR≥0, ↪−→P) is a well-defined deterministic timed domain.

4. Timed-Stack Domain. This is the timed domain modeling a timed stack, i.e. a stack
where every stack symbol is equipped with a clock evolving with time. The timed stack is
inspired by [1] and [16]. Clocks are exactly the ones described in the clock domain.

Formally, let M ∈ N and Z be a finite stack alphabet, we write CM = [0,M ] ∪ {∞} and
ZM,Z = (Z × CM )∗. We define the delay relation as follows, for all (z0, x0) . . . (zn, xn) ∈ ZM,Z

and d ∈ R≥0:

(z0, x0) . . . (zn, xn)
d
↪−→ (z0, x0 ⊕〈CM ,↪→〉 d) . . . (zn, xn ⊕〈CM ,↪→〉 d)

where 〈CM , ↪→〉 stands for the clock domain defined above.
(ZM,Z , ↪−→) is a well-defined deterministic timed domain called the (M,Z)-timed stack do-

main.
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2.2 Updates and Timed Structures

Modeling the autonomous behavior of a quantitative variable is now possible, but life (or
at least verification) would be boring if we would not allow, and model external interventions.
Those interventions could have artificial or natural causes, what matters is that we ideally want
them to be punctual. They may have either a direct impact on the value of the quantitative
variables modeled by the timed domain, an impact on the laws of evolution of those variable or
both.

Formally external interventions are modeled through updates. Updates are functions defined
on the value space, modeling the possible effects of external interventions on the values of the
quantitative variables.

Definition 2.2.1. Let D = 〈V, ↪→〉 be a timed domain. An update set on D is a subset of V V .

In this thesis, we consider that the basis of any modelization of quantitative variables is
the data of a timed domain equipped with an update set. We call this combination a timed
structure.

Definition 2.2.2. A timed structure is a triple T = 〈V, ↪→, U〉 where 〈V, ↪→〉 is a timed domain
and U is an update set on 〈V, ↪→〉.

We say that a structure S = 〈V, ↪→, U〉 is deterministic if and only if 〈V, ↪→〉 is. In that case
we write for all v ∈ V and d ∈ R≥0, v ⊕S d = v ⊕〈V,↪→〉 d or just v ⊕ d if the timed structure is
clear from the context.

We describe below some important structures for this thesis.

1. Clock Structure. This is a timed structure modeling a timer with a reset button. It
is based on the clock domain (CM , ↪−→) equipped with two updates, one does nothing and the
other resets the timer. Those updates correspond to the reset operation used in timed automata
[4].

Formally, let M ∈ N. Let id and 0 defined for all x ∈ CM as id(x) = x and 0(x) = 0.
(CM , ↪→, {id,0}) is a well-defined timed structure called the M -clock structure.

2. Perturbed-Clock Structure. This is an adaptation of the clock structure, to consider
perturbed clocks.

Formally, let M ∈ N and ε ∈ [0, 1[. Let id and 0 defined as above. (CM , ↪→ε, {id,0}) is a
well-defined timed structure called the (M, ε)-perturbed clock structure.

3. Predicting-Clock Structure. This is a timed structure to model countdown timers
which can be initialized through an update to any real value. It is based on the deterministic
timed domain (PR≥0, ↪−→P).

We write for all d ∈ R≥0, d : PR≥0 → PR≥0 the constant function mapping every elements
to d. And ⊥ : PR≥0 → PR≥0 the constant function mapping every elements to ⊥ Let UR≥0 =
{d, d ∈ R≥0} ∪ {⊥}.

PC = (PR≥0, ↪→P,UR≥0∪{id}) is a well-defined timed structure called the predicting-clock
structure.
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4. Timed-Stack Structure. This is a timed structure to model push and pop opera-
tions on the stack [1].

Formally, let M ∈ N and Z be a stack alphabet. Let for all z ∈ Z, pushz : ZM,Z → ZM,Z

mapping every stack z ∈ ZM,Z to pushz(z) = z ·(z, 0). Let also pop : ZM,Z → ZM,Z mapping ε
to ε and every stack z ·(z, x) ∈ ZM,Z to pop(z ·(z, x)) = z. Let UM,Z = {pop, id}∪{pushz, z ∈
Z}.

ZM,Z = (ZM,Z , ↪→, UM,Z) is a well-defined timed structure called the (M,Z)-timed-stack
structure.

As we already said, timed structures are at the core of our way of modeling timed systems.
We didn’t impose any restriction on the evolution laws of the quantitative variables we model
and neither did we on the updates. This was our point of divergence with hybrid systems.

In consequence, not all timed structures can be finitely represented or effectively used. Of
course for a timed structure to be effectively used we must require that all updates and all
delays are computable. In this case, we say that the timed structure is computable, although
those properties do not ensure finite representation. This is what motivates the introduction of
a general notion of guards in the next section.

2.3 About Guards and Guarded Timed Structures

In most existing timed models, finite representation and computability of quantitative vari-
ables with infinite value space are made possible by enforcing some regularity on the behavior
of the model within a finite and computable partition of the value space. We formalize below
this kind of partitioning within timed structures. The object at the core of this formalization
is guards, introduced below.

Definition 2.3.1. Given a timed structure S = (V, ↪→, U) we call guard on S any subset of
V × U . We write G(S) for the set of guards on S.

We will often need to associate a guard with each pair of elements of a given set. Most of
the time this set will correspond to a pair of sets, and the guard associated with a pair of states
describes the prerequisites on the values to change state and which updates have then to be
applied. We introduce then the convenient notion of guard function defined below.

Definition 2.3.2. Let S = 〈S, ↪→, U〉 be a timed structure and E be a finite set. A guard
function on S and E is a function from E × E to G(S).

Guards are the tool we use to partition our value space. We introduce now guard bases, the
tool we use to enforce finite representation and computability.

Let S = 〈V, ↪→, U〉 be a timed structure. Let G be a set of elements of P(V )× P(U) and g
be a guard on S.

We say that g is (finitely) decomposable in G if,

∃n ∈ N, ∃(νi, µi)1≤i≤n ∈ Gn, g =

n⋃
i=1

νi × µi

Since we will never use a decomposition other than finite we will omit to precise it. Notice
that the empty guard is always decomposable on a set G.

If g is a guard function on S and some finite set E, we say that g is decomposable on G if
for all e, e′ ∈ E, g(e, e′) is decomposable on G.
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Definition 2.3.3. We call guard basis on S any set G of elements of P(V )×P(U) such that
for all (ν, µ), (ν ′, µ′) ∈ G, (ν × µ) ∩ (ν ′ × µ′) = ∅.

We say that G is spanning if and only if for all (v, u) ∈ V × U , exists (ν, µ) ∈ G such that
(v, u) ∈ (ν, µ).

If G is a guard basis and if a guard g can be decomposed on G, it has a unique decomposition.
We write then g = {(ν1, µ1), . . . , (νn, µn)} meaning g =

⋃n
i=1 νi × µi and (ν, µ) ∈ g meaning

∃1 ≤ i ≤ n, ν = νi and µ = µi.

Example 2.3.1. In the timed automata model of [4], the term guard is used to describe a
conjunction of inequalities that describes the prerequisite on the clocks to be able to change
state. The reset or not of a clock is a piece of information given aside. For example consider
that between two states of the timed automaton we can find two distinct transitions equipped
respectively by the information 2 < x ≤ 4, x := 0 and x = 1. The guard we would define in our
formalism to describe the same possibilities would be the set g = {(x,0) | x ∈ (2, 4]}∪{(1, id)}.

Moreover, in timed automata those inequalities suffer a restriction: they may involve only
integers between 0 and a fixed constant, M . Guard bases are exactly the tool we introduced
to be able to enforce such a restriction, in a larger variety of models than timed automata. To
enforce the same kind of restriction on the clock-structure than on timed automata guards we
can introduce for any integer M the M -clock guard basis.

Let IM = {[n, n] | n ∈ [[1,M ]]} ∪ {(n, n + 1) | n ∈ [[1,M − 1]]} ∪ {(M,+∞)} be the set of
all real open intervals bounded by two consecutive integers smaller than or equal to M and all
integer singletons smaller or equal to M . We define the M -clock guard basis on the M -clock
structure as

GM = (IM ∪ {{∞}})× {{id}, {0}}
Any combination of guards and resets used in a timed automaton of [4], can be represented

by a guard of our formalism decomposable in GM . For example the guard g defined above can
be decomposed as

{〈[1, 1], id〉, 〈(2, 3), {0}〉, 〈[3, 3], {0}〉, 〈(3, 4), {0}〉, 〈[4, 4], {0}〉}

Remark 2.3.1. It is frequent, in particular in clock structures that a guard is decomposed
into several elements of the guard basis with different value part (element of P(V )) and the
same update part (element of P(U)). In this case we use the following shorthand : instead of
{(ν1, µ1), (ν2, µ1), (ν3, µ1), (ν4, µ2), (ν5, µ2)} we write {(ν1, ν2, ν3, µ1), (ν4, ν5, µ2)}. For example
we could rewrite the decomposition in example 2.3.1 as :

{〈[1, 1], id〉, 〈(2, 3), [3, 3], (3, 4), [4, 4], {0}〉}

Example 2.3.2. Let Z be a stack alphabet, M be an integer and IM be the set of all real intervals
bounded by two consecutive integers smaller or equal to M . We define the (M,Z)-timed-stack
guard basis on the (M,Z)-timed-stack structure as

GM,Z = {(Z×CM )∗}×({pushz, z ∈ Z}∪{id}) ∪ {(Z×CM )∗ ·({z}×I), z ∈ Z, I ∈ IM}×{pop}

This guard basis enforces that a push or id operation can be done whatever the stack value
and that a pop operation can have a prerequisite on the value associated with the last stack
symbol, but that this prerequisite is restricted in the same way inequalities on timed automata
are : involving only integer bounds.

Notice that in our formalism the update pop does not enforce itself any symbol on the top
of the stack to be applied. It is the definition of the guard basis which allows a model respecting
it to enforce a particular symbol on the top of the stack to allow a transition with a pop update.
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When we equip a timed structure with a guard basis we try to enforce some restrictions on
how transitions will be made. It will become clear how in chapter 3.

Definition 2.3.4. Let S = 〈V, ↪→, U〉 be a timed structure and let G be a guard basis on S.
The tuple SG = 〈V, ↪→, U,G〉, is named guarded timed structure.

If S is a computable timed structure and G is a guard basis such that all its elements are
computable and finitely representable we will say that SG is computable.

Example 2.3.3. Let M be an integer. The M -clock structure guarded by the M -clock guard
basis, CM = 〈CM , ↪→, {id,0},GM 〉, is called the M -clock guarded structure and the structure
we will use to define one-clock timed automata [4] in our framework.

Before introducing the discrete part of our modelization in the chapter 3, we present below
three ways of constructing new guarded timed structures from existing ones.

1. Product. Let S1 = 〈V1, ↪→1, U1〉 and S2 = 〈V2, ↪→2, U2〉 be two timed structures
modeling two quantitative variables. The product intuitively aims to model the evolution and
updates of both quantitative variables considered as evolving in parallel and independently.

Formally we define S1 × S2 = 〈V1 × V2, ↪→×, U×〉 with:

• for all d ∈ R≥0,
d
↪−→= {((v1, v2), (v′1, v

′
2)) | v1

d
↪−→1 v

′
1 and v2

d
↪−→2 v

′
2}

• for all f, g ∈ U1, U2 and v1, v2 ∈ V1, V2 we define a function (f, g)(v1, v2) = (f(v1), g(v2))
and write U× = {(f, g), f ∈ U1, g ∈ U2}

If G1 and G2 are guard basis on S1 and S2 respectively, we write

G× = {(ν1 × ν2, µ1 × µ2), (ν1, µ1) ∈ G1, (ν2, µ2) ∈ G2}

G× is a well-defined guard basis on S1 × S2 since G1 and G2 are.
Given n ∈ N≥0 and a timed structure S, we write Sn for the product of S with itself n times.

If G is a guard basis on S, we write Gn = {(ν1×· · ·×νn, µ1×· · ·×µn), (ν1, µ1), . . . , (νn, µn) ∈ G}.
Gn is a guard basis on Sn. We write then SnG for SnGn .

Notice finally that for all n,m ∈ N, (Sn)m = Snm and (SnG)m = SnmG
Example 2.3.4. Let M,n be two integers. CnM is the (M,n)-clock guarded structure and is the
structure used to define n-clocks timed automata [4] in our framework.

Example 2.3.5. Let M,n be two integers and Z be a stack alphabet. We write ZM,n,Z for the
product of the two guarded timed structures CnM and (ZM,Z)GM,Z . This guarded timed structure
is the structure used to define pushdown timed automata in our framework, according to prior
definition of the model found in [1] and [16].

2. E-maps. Let S = 〈V, ↪→, U〉 be a timed structure and E be a finite set. The quanti-
tative variable modeled by S is considered here as a resource which can be allocated, deleted,
copied and stored in different spaces labeled by E. All resources evolve synchronously following
the same evolution law, and updates are now a composition of updates defined in S and resource
operation like the ones enumerated above.
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Formally we define [E ⇀ S] = 〈[E ⇀ V ], ↪→E , UE〉 with :

• for all d ∈ R≥0,
d
↪−→E= {(v,v′) | dom(v) = dom(v′) and ∀e ∈ dom(v),v(e)

d
↪−→ v′(e)}

• For all f ∈ [E ⇀ (U ×E)] we define a function, uf , such that for all v ∈ [E ⇀ V ], uf (v)
is a partial function from E to V defined for all e′ ∈ dom(f) as uf (v)(e′) = u(v(e)), if
f(e′) = (u, e) and e ∈ dom(v).

We write then UE = {uf , f ∈ [E ⇀ U × E]}.

Let G be a guard basis on S. Let g : E ⇀ P(V ) × P(U) such that for all e ∈ dom(g),
g(e) = (νe, µ

1
e ∪ · · · ∪ µne ) with for all 1 ≤ i ≤ n (νe, µ

i
e) ∈ G. Let f ∈ [E ⇀ U × E] such that

for all e ∈ dom(g), µ1
e ∪ · · · ∪ µne = {u ∈ U | ∃e′ ∈ dom(f), f(e′) = (u, e)}). Then we say that

uf ,g are compatible with G and we write,

Gg,uf = ({v ∈ P([E ⇀ V ]),dom(v) = dom(g) and ∀e ∈ dom(v),v(e) ∈ νe}, {uf})

GE is the set of all Gg,u with g,u compatible with G. This is a guard basis on [E ⇀ S]
since G is a guard basis on S. We write then [E ⇀ SG] for [E ⇀ S]GE .

Example 2.3.6. Let M be an integer and E be a set. [E ⇀ CM ] is the (M,E)-enhanced clock
guarded structure.

Concretely suppose E = {x, y, z}. The delay transition does what one would expect of it
and increases synchronously x,y and z with time. Let’s have a closer look at updates. f defines
for all clock, which update to do (or if the clock will be deactivated) and on which value, among
all clocks values, to do it. Suppose f maps x to (0, z) and y to (id, z) (z is not part of the
domain of f). Then the update uf applied on a valuation v, defines v′ such that x new value
is 0 (the old value of z on which we apply 0), y new value is v(z) the old value of z and z is
now inactive. This could have been symbolically summarized as x 7→ 0, y 7→ z, z 7→ ⊥.

Guards despite their complex formal definition still can be easily written in the form z ∈
(1, 2), x 7→ 0, y 7→ z, z 7→ ⊥.

Remark 2.3.2. In general in an E-map construction an update uf can be symbolically repre-
sented as a conjunction of operations :

• x 7→ u(y) where x and y are elements of E, u is an update of the original timed structure
and f(x) = (u, y)

• x 7→ ⊥, where x is an element of E which is not in the domain of f

Remark 2.3.3. Let M ∈ N, n ∈ N>0 and E be a finite set. [E ⇀ CnM ] define the same guarded
timed structure as [E × [[1, n]] ⇀ CM ].

Indeed a partial function x from E to CnM can easily be viewed as a partial function x′ from
E × [[1, n]] to CM by mapping every (e, i) ∈ E × [[1, n]] to the ith element of x(e).

An update uf ∈ U×,E can also be viewed as an update u′f ′ ∈ UE×[[1,n]], by defining f ′(e′, i) =
(ui, (e, i)) if f(e′) = ((u1, . . . , un), e).

Finally a guard Gg,uf ∈ [E ⇀ GM,×] can be viewed as a guard G′g′,u′
f ′
∈ [E × [[1, n]] ⇀ GM ]

with g′ compatible with f ′ and g′(e, i) = (νi, µ) if g(e) = (ν1 × · · · × νn, µ1 × · · · × µn) and
µ = {u ∈ U | ∃(e′, j) ∈ dom(f ′), f ′(e′, j) = (u, (e, i))}. g′ verifies the hypothesis necessary so
that G′g′,u′

f ′
is a guard, since g does and because in GM , whatever u ∈ {id,0}, (ν, {u}) ∈ G.
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3. E-markings. Let S = 〈V, ↪→, U〉 be a timed structure and E be a finite set. There
is less intuition behind the following construction, but roughly speaking, one could view here
again the quantitative variable as a resource, with all possible operations already described for
the E-map construction, but, this time, there’s no limit to the number of resources which can
be allocated. They are no longer stored in spaces labeled by E, but grouped into classes labeled
by E. This type of structure appears naturally in the determinization process, which is the
reason why we bother to introduce it here.

Formally we define MES = 〈MEV, ↪→M ,MEU〉 with :

• MEV = P(V )E is called the set of markings on E. We define a function supp : MEV →
P(E) as, for all ν ∈MEV , supp(ν) = {e ∈ E | ν(e) 6= ∅}.

• for all d ∈ R≥0,
d
↪−→M= {(ν,ν ′) ∈MEV | ∀e ∈ E,ν ′(e) = {v′ ∈ V | ∃v ∈ ν(e), v

d
↪−→ v′}}

• We define for all guard function g, on S and E the function Ug : MEV → MEV such
that:

Ug(ν)(e′) = {u(v) ∈ V | ∃e ∈ E,∃v ∈ ν(e), (v, u) ∈ g(e, e′)}

We write MEU = {Ug,g ∈ G(S)E×E}.

Suppose G is a guard basis on S. let g be a guard function decomposable on G, let ρ, ρ′ ∈
P(E). We define

Gρ,g,ρ′ = {ν ∈MEV | supp(ν) = ρ and supp(Ug(ν)) = ρ′}

We write MEG = {(Gρ,g,ρ′ , {Ug}),g a guard function decomposable on G}. MEG is a
guard basis on MES, since supp is a function.

We write then MESG = 〈MEV, ↪→M ,MEU,MEG〉.

All constructions preserve determinism of the timed structure. We claim also that product
and map preserve computability. However, the computability of markings might depend on the
initial timed structure we work with. We will be confronted with this problem in part III.
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Chapter 3

Automata on Timed Structures

Modeling Timed Systems

Timed structures, as we have already seen, are meant to model the evolution law of some
quantitative variables and the possible effect of some external actions on this variable. An au-
tomaton on a given timed structure additionally describes what are the different discrete states
of the system, how and when we can evolve from one state to another, and what consequences
this evolution has on the quantitative variables.

Hybrid automata [35] consist of a finite set of states and transitions which allow evolving
from one state to another instantaneously. Those transitions are equipped with requirements
on some quantitative variables. Each state determines the evolution laws of those variables by
the mean of a differential equation. Finally, it is allowed in the model to alter the variables
after a transition is applied (e.g. reinitializing it to 0). We know that all hybrid automata
can’t be determinized, which motivates our will to use a more powerful model when it comes to
diagnosis. As we will see in chapter 5, an automaton on timed structures can be simulated by
another automaton on timed structures which is deterministic and has good enough properties
to be used in practice. It makes it in our opinion a better tool for diagnosis. We argue more on
this matter in chapter 9.

An automaton on a given timed structure possesses a finite set of states and a set of tran-
sitions with requirements on the quantitative variables like in hybrid automata. However, the
evolution laws are no longer specified in each state but are fixed by the timed structures. With
updates, the timed structure also fixes what alterations are possible after a transition. Also if
the timed structure is guarded, it fixes the shape of those requirements and alterations (e.g.
the requirement should be in the form of an interval bounded by integers, or we cannot reset a
negative clock, . . . ). It doesn’t imply that automata on timed structures are unable to model
different evolution laws in each state. If we would be to model the temperature in a room t,
we would define a timed structure which takes into account the two possible laws of evolution
of t. For example it could be S = 〈R× {on, off}, ↪→, {on,off}〉 with : (1) the updates on and
off just changing the second member of the variable, e.g. on(12.5, off) = (12.5, on); (2) and ↪→
making the temperature drop if the state of the variable if off , e.g. (13, off)

1
↪−→ (12.5, off);

and making the temperature rise if the state if on, e.g. (12.5, on)
5
↪−→ (13, on). In an automaton

on S, we must equip the update on on any transition modeling an external intervention which
turns on the heat. The change in the law of evolution is this way prerecorded in S.

This chapter first exposes in section 3.1 the definition of automata on timed structures and
guarded timed structures along with their representations. Then in section 3.2 we extend the
notion of functional bisimulation on automata on timed structures and prove some technical,
yet important, propositions we will use as tools in several proofs later in this thesis.
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3.1 Definition and Representation

An automaton on timed structures, as its name says, is defined for a fixed timed structure.
We give the formal definition of this model below. Because we are interested in determinization,
and therefore in languages, we decide to explicit in the definition, initial and final states.

Definition 3.1.1. Fix S = 〈V, ↪→, U〉, a timed structure. An automaton on S is a tuple
A = 〈Q, I, T, F 〉 where Q is a finite set of states, I ⊆ Q× V is the set of initial configurations,
T ⊆ Q× V × U ×Q is the transition relation, and F ⊆ Q is the set of final states.

We write A(S) for the set of automata over the timed structure S.

In an automaton on a timed structure S, Q defines all the possible (discrete) states the model
can be in, S describes how the quantitative variables evolve independently to the state we are
in (as we discussed it in the introduction) and T describes which state can be accessed from
which state, with which requirement on the value of the quantitative variables and applying
which update. For now, guards are not given any role. They will be treated later in this section.
Finally I and F describe initial and final states, used in the definition of the language of an
automaton. Notice however that I is a set of states and values and F is only a set of states.

As it is commonly done we define below the semantics of automata on timed structures. The
data, at some point of the execution of the system, of both the discrete state of the automaton
and the values of the quantitative variables is called a configuration. We associate to each
automaton on timed structures a labeled transition system, called its semantics, describing how
the configurations of the model evolve from one to another; in other terms which configurations
are reachable from which configurations. We formalize it below.

Fix a timed structure S = (V, ↪→, U) and an automaton A on S. A configuration of A is an
element of Q×V . Conf(A) = Q×V is then called the configuration space of A. A configuration
describes at a given moment in time all the relevant information describing the system we model.
There may be several possible evolutions of the system from a configuration.

If there are no external interventions and we let the time flow, only the quantitative variables
will evolve in the way defined by the timed structure. Formally we define for all d ∈ R≥0, the
relation

d−→A on Conf(A)×Conf(A) defined as
d−→A= {((q, v), (q, v′)) | q ∈ Q, v, v′ ∈ V and v

d
↪−→

v′}.
If now we consider an external intervention, it is modeled by the effect of a transition in the

automaton. Let t = (q, v, u, q′) ∈ T , t means that in our model, if we are in the configuration
(q, v) the transition t can be applied with as effect, a change of state – toward q′ – and the
application of an update – u – in such a way that we end in configuration (q′, u(v)). Formally
we define for all t = (q, v, u, q′) ∈ T , the relation

t−→A on Conf(A) × Conf(A) defined as
t−→A= {((q, v), (q′, u(v)))}.

The semantics of A is then the labeled transition system Sem(A) = (Conf(A),→A, T]R≥0)
with →: T ] R≥0 → P(Conf(A)×Conf(A)) defined as →(x) =

x−→.
All configuration ci ∈ I are called initial configurations. A run of A is a path of TA starting

from an initial configuration. We write Reach(A) for
⋃
ci∈I Reach(Sem(A), ci), the reachable

configurations following a run of A.
A configuration (q, v) ∈ Conf(A) is said to be final if q ∈ F . The language of A is then

the set of words recognized by a path starting in an initial configuration and ending in a final
configuration. Formally we write

L(A) =
⋃
ci∈C
L(Sem(A), ci, F × V )
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Now we focus more on the syntax of the model and its representation. By fixing a particular
timed structure S we obtained a set A(S) of automata. Though without some more regularity
in the model there is little hope to be able to represent nor compute anything. Those guards
are the tools which enforce this regularity and stand at the basis of the classification we make
within A(S) and the representation we define for automata on timed structures.

Using guarded structures we impose a particular shape on the guards of the automata.
That’s one way to define computable classes of automata on timed structures. We expose below
step by step how.

Actually the definition of an automaton on a timed structure naturally defines some guards
on the timed structure, in the way describe below:

Definition 3.1.2. Let S = 〈S, ↪→, U〉 be a timed structure, A = 〈Q, I, T, F 〉 ∈ A(S) be a
automaton over S and q, q′ ∈ Q. We call guard from q to q′ the guard defined by

gA(q, q′) = {(v, u) ∈ V × U | (q, v, u, q′) ∈ T}

gA is called the guard function of A.

Notice that a guard gA(q, q′) between two states q, q′ may contain some superfluous informa-
tion in terms of reachability. Indeed q may not be reachable, which makes all the information
provided by this guard superfluous. Or q may be reachable only with a set of values strictly
smaller than the one considered in the guard. We introduce an object useful in our work which
filtrates all the superfluous transitions of the model. Guards again naturally arise as the right
object to do so. The guard is called minimal because no more information can be removed
without impacting the set of reachable configurations of the model.

Definition 3.1.3. Let S = 〈V, ↪→, U〉 be a timed structure and A = 〈Q, I, T, F 〉 be an automaton
over S. For all q, q′ ∈ Q, the minimal guard from q to q′, is defined as:

gaccA (q, q′) = {(v, u) ∈ V × U | (q, v) ∈ Reach(A) and (q, v, u, q′) ∈ T}

An automaton can always be purged of its superfluous transitions by redefining its transition
relation so that the new guards between states are minimal. This purge would preserve the set
of reachable configuration from any configuration.

We can then define below how an automaton on a timed structure can be defined so that it
respects a given guard base.

Definition 3.1.4. Let SG be a guarded timed structure and A = 〈Q, I, T, F 〉 ∈ A(S) be a
automaton on S. We say that A is compatible with G if gA is decomposable in G.

Whenever an automaton A on S is compatible with G, we say for short that A is an au-
tomaton on SG.

Let A(SG) be the set of all automata on SG.

If SG are computable, we say that all automata A ∈ A(SG) is computable and that A(SG)
is a computable class of automata on a timed domain.
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Below we give some examples of classes of automata on guarded timed structures and in
the meantime show how some classical classes we are interested in throughout this thesis, fit
in our new model. To have an even better understanding of the concrete effect of guarded
timed structures we advise the reader to advance pass those examples to see how we represent
automata on guarded timed structures and see the example of representation we provide.

Example 3.1.1. Let M ∈ N and n ∈ N>0.
The class of M -bounded n-clocks timed automata [4] is the set, TAn

M , of all automata on
CnM , the (M,n)-clock guarded structure defined in example 2.3.4 and 2.3.1. Recall that this
guarded structure requires for a guard to impose: one or both of the updates 0 or id ; and the
values to belong to an integer bounded interval with bounds smaller than M. An automaton
which guards respect the (M,n)-clock guarded structure must have a transition relation which
respects the same rules as a transition relation of a timed automata of [4]. To be exact, such an
automaton in our formalism would differ from a timed automaton of [4] only in the sense that
it is notlabeled. This will be fixed in chapter 4 with the introduction of controls.

Example 3.1.2. Let M ∈ N and C be a finite set of clocks.
The class of M -bounded C-enhanced timed automata is the set, TAC

M , of all automata on
[C ⇀ CM ], the M,C-enhanced clock guarded structure defined in example 2.3.6.

Example 3.1.3. Let M ∈ N, n ∈ N>0 and Z a stack alphabet.
The class of M -bounded n-clock Z-pushdown timed automata is the set, PDTAn

M,Z, of all
automata on ZM,n,Z defined in example 2.3.5.

A canonic way of representing an automaton on a guarded timed structure is through what
we call its graph. Fix a guarded timed structure SG and let A = 〈Q, I, T, F 〉 ∈ A(SG). Formally
we define the graph of A as the labeled directed multi-graph GA = 〈Q,EA, G〉 with Q the set of
nodes, G the set of labels, and EA ⊆ Q×G×Q the set of labeled directed edges, defined as

EA = {(q, ν, µ, q′) ∈ Q×G×Q | (ν, µ) ∈ gA(q, q′)}

Because A is compatible with G, we have that GA is finite, which is a property we expect from
a representation.

Each edge (q, ν, µ, q′) ∈ EA has to be understood as: from every configuration (q, v) with
v ∈ ν it is possible to take a transition toward q′ and any update within µ can be (non-
deterministically) applied.

Example 3.1.4. Let SG be a guarded timed structure such that G = {(ν1, µ1), (ν2, µ2), (ν3, µ3)}.

q1 q2

ν1, µ1 ν1, µ1

ν3, µ3

ν1, µ1

ν2, µ2

Figure 3.1: Graph of an automaton on SG
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The automaton on SG whose graph is depicted on Figure 3.1 is the automaton A = 〈{q1, q2},
{q1}, T, {q2}〉 where

T = {(q1, v, u, q1), (v, u) ∈ ν1 × µ1} ∪
{(q1, v, u, q2), (v, u) ∈ ν1 × µ1} ∪
{(q2, v, u, q2), (v, u) ∈ ν1 × µ1} ∪
{(q2, v, u, q2), (v, u) ∈ ν3 × µ3} ∪
{(q2, v, u, q1), (v, u) ∈ ν2 × µ2}

The initial state is colored in yellow and the final state in green.

Example 3.1.5. In example 3.1.1 we formalized in our framework the class of timed automata.
Consider M = 2, n = 2, Q = {q1, q2}, we define a 2-bounded 2-clock timed automaton A with
Q as set of states. The set of transition T cannot be define freely: we imposed that the guards
of A are decomposable in G2

2, the guard base of the (2, 2)-clock guarded structure on which
A is defined. T must then be defined such that the guards between two states of Q require
that the values of both clocks (we name them x and y) are within an integer bounded interval
(c.f. example 2.3.1. Suppose we choose T = {(q1, v, (id,0), q2), v ∈ (1,+∞) × (1,+∞)×} ∪
{(q2, (x, 1), (0,0), q2), x > 1}, the guards are

gA(q1, q1) = ∅
gA(q1, q2) = (1,+∞)× (1,+∞)× {(id,0)}

= {〈(1, 2)× (1, 2), [2, 2]× (1, 2), (2,+∞)× (1, 2), . . . , (2,+∞)× (2,+∞), {(id,0)}〉}
gA(q2, q2) = (1,+∞)× [1, 1]× {(0,0)}

= {〈(1, 2)× [1, 1], [2, 2]× [1, 1], (2,+∞)× [1, 1], {(0,0)}〉}

which are all decomposable on G2
2. Adding for example only one transition (q1, 1.5, 1, (0, id), q2)

would be impossible since A must respect the guard base. Suppose I = {(q1, (0, 0))} and
F = {q2} the graph of A can be found on figure 3.2. Which exactly correspond to the timed
automata in figure 3.3, represented this time with the standard notation of [4].

q1 q2

(1,+∞)× [1, 1], {(0,0)}

(1,+∞)× (1,+∞), {(id,0)}

Figure 3.2: Representation of the timed automata A

q1 q2

x > 1, y = 1, x := 0, y := 0

x > 1, y > 1, y := 0

Figure 3.3: Representation of the timed automata A as in [4]

Example 3.1.6. In example 3.1.2 we formalized the class of enhanced timed automata, we give
another example of how we can define and represent an automaton in this context. Consider
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M = 2, C = {x, y}, Q = {q1, q2}, we define a 2-bounded C-enhanced timed automata B
with Q as set of states. The set of transitions T must respect GC

2 , the guard base of the
(2, C)-clock guarded structure on which B is defined. We choose T = {(q1, v,uf1 , q2), v ∈
(1,+∞)× (1,+∞)×} ∪ {(q2, (1, y),uf2 , q2), y > 1}, where f1 maps x to (0, x) and y to (id, x);
and f2 maps y to (0, y) and x is not in its domain. We use as a shorthand (E1×E2)C when we
really mean, all the partial functions on C such that whose image is included in E1 × E2. The
guards are

gA(q1, q1) = ∅
gA(q1, q2) = ((1,+∞)× (1,+∞))C × {uf1}

= {〈((1, 2)× (1, 2))C , ([2, 2]× (1, 2))C , . . . , ((2,+∞)× (2,+∞))C , {uf1}〉}
gA(q2, q2) = ([1, 1]× (1,+∞))C × {uf2}

= {〈((1, 2)× [1, 1])C , ([2, 2]× [1, 1])C , ((2,+∞)× [1, 1])C , {uf2}〉}

which are all decomposable on GC
2 . Suppose I = {(q1, (x, y) 7→ (0, 0))} and F = {q2} the

graph of B can be found on figure 3.4. This representation may not seem easily understandable
but with an adequate symbolic representation of uf as described in 2.3.6 we come closer to a
representation we understand as furnished in figure 3.5.

q1 q2

([1, 1]× (1,+∞))C , {uf2}

((1,+∞)× (1,+∞))C , {uf1}

Figure 3.4: Representation of the enhanced timed automata B

q1 q2

x = 1, y > 1, y 7→ 0, x 7→ ⊥

x > 1, y > 1, x 7→ 0, y 7→ x

Figure 3.5: Representation of the timed automata B with symbolic notations

Keep in mind that for now, we seek to describe the complete mechanism of our system,
where each effect of each evolution law is known and specified in the model. The modeling of
indistinguishable behavior, will be introduced with controls in chapter 4.
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3.2 Bisimulation for Automata on Timed Structures

As we argued in section 1.3, similarities between models have an important role to play in
our work. Since we associated with each automaton on a timed structure, a semantic in the
form of a labeled transition system, it seems natural to define similarity between automata by
extending similarity between their semantics.

More formally we say that an automaton A1 simulates an automaton A2 if there exists a
functional bisimulation from Sem(A1) to Sem(A2) which preserves the initial and the final
configurations. Formally the functional bisimulation (φ, ψ) has to respect :

• φ(I1) = I2 with I1 and I2 the initial states of A1 and A2 respectively

• for all configuration of A1, (q1, v1) ∈ dom(φ), (q1, v1) is a final configuration of A1 if and
only if φ(q1, v1) is a final configuration of A2.

In this case, we can conclude using Proposition 1.3.3 that ψ(L(A1)) = L(A2).

Remark 3.2.1. Recall that a functional bisimulation is a weaker notion than bisimulation equiv-
alence. In particular, due to its functional form, if A1 simulates A2, it doesn’t necessarily mean
that A2 simulates A1.

However, to avoid going back to the semantics each time we want to speak about simulation,
we avoid using directly this definition of simulation between automata and adapt the notion of
functional bisimulation to be defined directly with the automata specification rather than on
the semantic. This new notion of simulation is weaker than the functional bisimulation between
labeled transition systems, but suits our needs better.

Recall that we adapted the notion of function bisimulation between two timed domains (c.f.
section 2.1) and that it is characterized by a partial function between their value space.

Proposition 3.2.1. Let S1 = 〈V1, ↪→1, U1〉 and S2 = 〈V2, ↪→2, U2〉 be two timed structures and
A1 = 〈Q1, I1, T1, F1〉 and A2 = 〈Q2, I2, T2, F2〉 be two automata on S1 and S2 respectively.

Suppose there exists a triple Ξ = (ζ, φ, ψ) such that:

(1) ζ : Q1 → Q2 is a function such that ζ(F1) = F2

(2) φ = (φq1)q1∈Q1 is a family of functional bisimulations from 〈V1, ↪→1〉 to 〈V2, ↪→2〉 such that

(2.1) {(ζ(q1), φq1(v1)), (q1, v1) ∈ I1} = I2.

(2.2) for all q1 ∈ Q1, {v ∈ V1 | (q1, v) ∈ Reach(A1)} ⊆ dom(φq1)

(3) ψ = (ψq1,q′1)q1,q′1∈Q1
is a family of partial functions from dom(φq1) × U1 to U2 such that

for all q1, q
′
1 ∈ Q1 and for all (v1, u1) ∈ dom(φq1)× U1,

(3.1) gaccA1
(q1, q

′
1) ⊆ dom(ψq1,q′1)

(3.2) u1(v1) ∈ dom(φq′1) and φq′1(u1(v1)) = ψq1,q′1(v1, u1)(φq1(v1))

(3.3) (φq1(v1), ψq1,q′1(v1, u1)) ∈ gA2(ζ(q1), ζ(q′1))

(4) Finally, for all q1, v1 ∈ Reach(A1), for all q′2 ∈ Q2, for all u2 ∈ U2,
if (φq1(v1), u2) ∈ gaccA2

(ζ(q1), q′2) then there exists q′1 ∈ ζ−1(q′2) and u1 ∈ U1 such that

ψq1,q′1(v1, u1) = u2 and (q1, v1, u1, q
′
1) ∈ T1

In this case A1 simulates A2.
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Proof.

Let us define

Φ : Conf(A1) ⇀ Conf(A2)
(q1, v1) 7→ (ζ(q1), φq1(v1)) if (q1, v1) ∈ Reach(A1)

and let

Ψ : R≥0 ] T1 ⇀ R≥0 ] T2

d 7→ d if d ∈ R≥0

(q1, v1, u1, q
′
1) 7→ (ζ(q1), φq1(v1), ψq1,q′1(v1, u1), ζ(q′1)) if (v1, u1) ∈ gaccA (q1, q

′
1)

Φ and Ψ are well defined, by hypothesis on the domains of φq1 and ψq1,q′1 .
We prove that (Φ,Ψ) is a functional bisimulation from Sem(A1) to Sem(A2).

We prove first that (Φ,Ψ) is a functional simulation.
Let l1 ∈ R≥0 ] T1, (q1, v1) ∈ dom(Φ) and (q′1, v

′
1) ∈ Q1 × V1, such that (q1, v1)

l1−→1 (q′1, v
′
1).

(q′1, v
′
1) ∈ Reach(A1) = dom(Φ).

I Suppose l1 = d ∈ R≥0.
First l1 ∈ dom(Ψ) by definition.
Then q′1 = q1 and v1

d
↪−→1 v

′
1.

Therefore ζ(q1) = ζ(q′1) and since φq1 is a functional simulation of timed domains,
φq1(v1)

d
↪−→2 φq1(v′1).

As consequence since Ψ(l1) = l1 = d,
Φ(q1, v1) = (ζ(q1), φq1(v1))

Ψ(l1)−−−→2 (ζ(q′1), φq′1(v′1)) = Φ(q′1, v
′
1).

I Suppose l1 ∈ T1.
Then l1 = (q1, v1, u1, q

′
1) and v′1 = u1(v1) by definition.

This also means that (v1, u1) ∈ gaccA (q1, q
′
1) = dom(Ψ) since (q1, v1) ∈ Reach(A1).

(v′′1 , u1) ∈ gaccA1
(q′′1 , q

′
1), therefore

Ψ(l1) = (ζ(q1), φq1(v1), ψq1,q′1(v1, u1), ζ(q′1)) ∈ T2 by hypothesis and

(ζ(q1), φq1(v1))
Ψ(l1)−−−→2 (ζ(q′1), ψq1,q′1(v1, u1)(φq1(v1))).

Which is equivalent, by hypothesis, as
(ζ(q1), φq1(v1))

Ψ∗(l1)−−−−→2 (ζ(q′1), φq′1(u1(v1))) and finally as

Φ(q1, v1)
Ψ(l1)−−−→2 Φ(q′1, v

′
1).

This proves that (Φ,Ψ) is a functional simulation from Sem(A1) to Sem(A2).

We prove now that (Φ,Ψ) is a functional bisimulation.
Let l2 ∈ (R≥0 ] T2), (q1, v1) ∈ dom(Φ) = Reach(A1) and
(q′2, v

′
2) ∈ Q2 × V2, such that Φ(q1, v1)

l2−→2 (q′2, v
′
2).

I Suppose l2 = d ∈ R≥0.
Then q′2 = ζ(q1) and φq1(v1)

d
↪−→2 v

′
2.

Therefore since φq1 is a functional bisimulation of timed domains,
exists v′1 ∈ φ−1

q1 (v′2) such that v1
d
↪−→1 v

′
1.

As consequence since Ψ(l2) = l2 = d and q1, v1
d−→1 q1, v

′
1,

q1, v
′
1 and d are matching candidates for the required existence property.
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I Suppose now l2 ∈ T2,
then exists u2 ∈ U2 such that l2 = (ζ(q1), φq1(v1), u2, q

′
2) ∈ T2 and

u2(φq1(v1)) = v′2.
Since (Φ,Ψ) is a functional simulation, according to proposition 1.3.3,
(ζ(q1), φq1(v1)) ∈ Reach(A2).
We have then (φq1(v1), u2) ∈ gaccA2

(ζ(q1), q′2).

The end of the proof is straight-forward
using condition (3) and (4) and since (q1, v1) ∈ Reach(A1).

Now it only remains to prove that Φ preserves initial and final configurations:

• Φ(I1) = I2 by definition of Φ and according to hypothesis (2.1)

• Let (q1, v1) ∈ dom(Φ), using hypothesis (1) we know that q1 ∈ F1 if and only if
ζ(q1) ∈ F2. We can easily prove from the definition of Φ that (q1, v1) is a final
configuration of A1 if and only Φ(q1, v1) is a final configuration of A2.

In conclusion, by definition, A1 simulates A2. �

A triple Ξ = (ζ, φ, ψ), satisfying conditions (1) to (3) of proposition 3.2.1 above is called a
functional simulation from A1 to A2. And indeed the first part of the proof of proposition 3.2.1
which proves that Ψ is a functional simulation does not use item (4).

If moreover Ξ satisfy (4) we call it a functional bisimulation from A1 to A2.

In several cases in this thesis we will be confronted with the task of constructing, given an
automaton A on a timed structure S, an automaton A′ on a different timed structure S′ which
simulates A. For example in chapter 6 we dedicate two sections to such proofs, the section 6.1
proves in particular that an enhanced timed automaton can always be simulated by a timed
automaton.

Classically such proof is done by exhibiting the automaton A′ and then proving that it
simulates A, for example, we would do it using proposition 3.2.1. The next proposition provides
a tool to merge those two steps of the proof, by exhibiting only a pre-functional bisimulation
from a state of Q′ and a timed structure S′. A pre-functional bisimulation is like a cooking
recipe to construct A′ with the benefits of satisfying all the good properties to be a functional
bisimulation once A′ constructed. Indeed after a description of the properties a pre-functional
bisimulation must verify, proposition 3.2.2 provide two things :

• A definition of the automaton A′ on timed structure S′, based on the pre-functional
bisimulation, and with Q′ as set of state.

• A proof that the pre-functional bisimulation is a functional bisimulation from A′ to A.

The second part is the main part of the proof of the proposition.
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Proposition 3.2.2. Let S2 = 〈V2, ↪→2, U2〉 be a timed structure and A2 = 〈Q2, I2, T2, F2〉 be an
automaton over S2.

Let S1 = 〈V1, ↪→1, U1〉 be a timed structure and Q1 be a finite set.
Suppose there exists a triple Ξ = (ζ, φ, ψ) such that:

(A) ζ : Q1 → Q2 is function such that ζ(Q1 = ζ(Q2) a surjective function.

(B) φ = (φq1)q1∈Q1 is a family of functional bisimulations from 〈V1, ↪→1〉 to 〈V2, ↪→2〉 such that
for all (q2, v2) ∈ I2, there exists q1 ∈ ζ−1(q2) such that v2 ∈ im(φq1).

(C) ψ = (ψq1,q′1)q1,q′1∈Q1
is a family of partial function from dom(φq1) × U1 to U2 such that

for all q1, q
′
1 ∈ Q1 and for all (v1, u1) ∈ dom(ψq1,q′1)

(C.1) u1(v1) ∈ dom(φq′1) and φq′1(u1(v1)) = ψq1,q′1(v1, u1)(φq1(v1))

(C.2) (φq1(v1), ψq1,q′1(v1, u1)) ∈ gA2(ζ(q1), ζ(q′1))

(D) for all q1, v1 ∈ Q1 × dom(φq1), for all q′2 ∈ Q2, for all u2 ∈ U2, if (φq1(v1), u2) ∈
gaccA2

(ζ(q1), q′2) then exists q′1 ∈ ζ−1(q′2) and u1 ∈ U1 such that

ψq1,q′1(v1, u1) = u2

Then A1 = 〈Q1, I1, T1, F1〉, where I1 = {(q1, v1) ∈ Q1 × V1 | (ζ(q1), φq1(v1)) ∈ I2}, F1 =
ζ−1(F2) and

T1 = {(q1, v1, u1, q
′
1) ∈ Q1 × V1 × U1 ×Q1 | (v1, u1) ∈ dom(ψq1,q′1)}

is a automaton on S1 which simulates A2.

Proof.

We just prove that the triple (ζ, φ, ψ) with ψ = (φq1)q1∈Q1 and ψ = (ψq1,q′1)q1,q′1∈Q1
is

a functional bisimulation from A1 to A2 by showing it verifies every four conditions of
proposition 3.2.1.

(1) Condition (1) is verified by surjectivity of ζ (A) and definition of F1.

(2) (2.1) Condition (2.1) can be easily proved using surjectivity of ζ (A),
hypothesis (B), and definition of I1.

(2.2) Let q1 ∈ Q1 and v1 ∈ V1, such that (q1, v1) ∈ Reach(A1).
We prove by induction on the length of the run of A1

ending on (q1, v1) that v1 ∈ dom(φq1).
I If (q1, v1) is reachable with a run of length 0 then (q1, v1) is an initial

configuration, and v1 ∈ dom(φq1) by definition of I1.
I If there exists (q1, v

′
1) reachable with a run of length n and (q1, v

′
1)

d−→A1 (q1, v1)
with d ∈ R≥0, then v′1

d
↪−→ v1.

By induction hypothesis v′1 ∈ dom(φq1) and since φq1 is a functional
bisimulation of timed domain, v1 ∈ dom(φq1).

I If finally there exists (q′1, v
′
1) reachable with a run of length n and

(q′1, v
′
1)

(q′1,v
′
1,u1,q1)−−−−−−−−→1 (q1, v1), then u1(v′1) = v1 and (v′1, u1) ∈ dom(ψq′1,q1).

By induction hypothesis v′1 ∈ dom(φq′1) and by hypothesis then

v1 = u1(v′1) ∈ dom(φq1).

(3) For all q1, q
′
1 ∈ Q1, gaccA1

(q1, q
′
1) ⊆ gA1(q1, q

′
1) = dom(ψq1,q′1) by definition,
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which prove (3.1).
(3.2) and (3.3) are enforced on ψq1,q′1 by hypothesis (C.1) and (C.2) respectively.

(4) Let q1, v1 ∈ Reach(A1), let q′2 ∈ Q2, let u2 ∈ U2.
Suppose that (φq1(v1), u2) ∈ gaccA2

(ζ(q1), q′2).

We already proved that v1 ∈ dom(φq1) (condition (2)).
According to hypothesis (4), we know that there exists q′1 ∈ ζ−1(q′2) and u1 ∈ U1

such that ψq1,q′1(v1, u1) = u2.

This implies also that (v1, u1) ∈ dom(ψq1,q′1), hence that (q1, v1, u1, q
′
1) ∈ T1.

This concludes the proof that Ξ is a functional bisimulation from A1 to A2, i.e. that A1

simulates A2.
�

A triple Ξ = (ζ, φ, ψ) satisfying conditions (A) to (D) is called a pre-functional bisimulation
from Q1,S1 to A2. A1 is then called the inverse image of A2 and is written Ξ−1(A2).

We prove below our first extension of proposition 3.2.1 to encompass preservation of guard
compatibility.

Proposition 3.2.3. Let S2 = 〈V2, ↪→2, U2〉 be a timed structure and A2 = 〈Q2, I2, T2, F2〉 be an
automaton over S2.

Let SG = 〈V1, ↪→1, U1, G〉 be a guarded timed structure, Q1 be a finite set and Ξ = (ζ, φ, ψ)
be a pre-functional bisimulation from Q1,S1 to A2 with φ = (φq1)q1∈Q1 and ψ = (ψq1,q′1)q1,q′1∈Q1

.
Suppose for all q1, q

′
1 ∈ Q1:

dom(ψq1,q′1) is decomposable on G

Then Ξ−1(A2) is an automaton on S1, compatible with G, which simulates A2.

Proof.

Notice just that A1 = Ξ−1(A2) is compatible with G since for all q1, q
′
1 ∈ Q1, gA1(q1, q

′
1) =

dom(ψq1,q′1) is decomposable on G by hypothesis (c.f. proof of proposition 3.2.1). The
rest is just by application of proposition 3.2.1. �

In this case Ξ is called a G-compatible pre-functional bisimulation from Q1,S1 to A2.

The proof scheme we will use in this thesis to get simulations will always consist of proving
that an automaton (or a class of automata) on a timed structure S can be simulated by an
automaton (or a class of automata) on another timed structure S ′ by exhibiting a set of state Q′

and a pre-functional bisimulation from Q′ and S′ (or an extension of it defined on proposition
3.2.3 or on other proposition in chapter 4.). This technique is used in particular in chapter 6
and 11.
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Chapter 4

Controls

Determinism, Languages and Bisimulations

Automata on timed domains introduced in the last chapter are unlabeled : transitions have
no labels (precisely they are labeled with their name). In the verification field, labeling is
essential for language theoretical studies including determinization and simulation of formal
model studies. Therefore it is often considered part of the formal model definition [4] [27] [16]
[22] [13]. On another hand, labeling consists of an important aspect of the modeling process
since it allows the formalization of indistinguishable and unobservable behaviors with regards to
an external observer. In a formal point of view it allows the introduction non-determinism into
the model. It then goes without saying that any work on the diagnosis of timed systems must
consider labeled formal models. This is this chapter’s goal. We choose however to separate the
labeling part of the modeling from the behavioral part using an original tool we call controls.

In timed automata and more generally in timed systems we are often confronted with sev-
eral notions of language (timed and untimed languages) and simulations (abstract and strong
bisimulation equivalence, language equivalence) [4] [2] [13]. Even though determinism usually
keeps a stable definition, determinization implies the preservation of languages and simulation
implies the preservation of a bisimulation equivalence. We are thus confronted with a choice
of language or bisimulation to preserve. Our target in this thesis is to keep our work as gen-
eral as possible so it can be applied to as many timed systems as possible and encompass as
many known results of determinization as possible. Results of this approach will be discussed
in chapters 7 and 8. Since in the literature we encountered several choices of determinization
and simulation [6] [5] [13], we decided not to settle for one or the other.

With the help of controls, different choices in languages or bisimulation equivalence are
reduced to different labeling choices. Instead of fixing one way to label automata on timed
systems on a given alphabet, we define in section 4.1 a framework in which we can define
various ways of labeling them. A labeling defined through a control can be anything while it
respects the underlying behavior of the automaton on which it is defined. In particular, controls
allow the definition of labeling which alters delay transition information. It is rarely the case
though that we take an interest in such labelings. In section 4.2 we define specific controls we
call timed controls. Those controls produce labelings that necessarily allow complete and precise
observation of time delays.

As a consequence, in this thesis, the labeling of an automaton is considered as an external
parameter: it can be changed. All notions of language, determinism, equivalence. . . will be
dependent on the control we equip on the automaton and will change with it. This might imply
adjustment time and heavier notations for the reader, but we hope that as counterpart it will
give new insights on the determinization results on timed systems proved until now.
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4.1 General Definition

Following the discussion in the introduction, a control on an automaton should describe how
transitions are viewed from the point-of-view of an external observer. Our choice of modeling
is to give the possibility to the observer to see a whole labeled transition system describing the
behavior of the observed automaton. Specifically: configurations are observable, reachability is
preserved, but transitions and their labels can be altered. The formal definition is given below.

Definition 4.1.1. Let Γ be a set of names called control alphabet. Let S be a timed structure
and A ∈ A(S) an automaton on S. A Γ-control K, on A is a labeled transition system of the
form K = (Conf(A),→K ,Γ), satisfying for all initial configuration ci of A:

Reach(Sem(A), ci) = Reach(K, ci)

If Γ and S are fixed, we say for short that 〈A,K〉 ∈ A(S,Γ) meaning that A ∈ A(S) and
K is a Γ-control on A. We also say that A is equipped with K, or that 〈A,K〉 is a Γ-controlled
automaton on S.

Remark 4.1.1. Notice that given an automaton A = 〈Q, I, T, F 〉, any labeling κ of Sem(A) on
a control alphabet Γ, defines a Γ-control, Sem(A)κ on A. (c.f. section 1.3, proposition 1.3.4).

Because a control is a labeled transition system, every property or object defined on labeled
transition systems is a property or an object on controls, and hence can be extended to controlled
automata.

Definition 4.1.2. Let Γ be a control alphabet, S be a timed structure and 〈A,K〉 ∈ A(S,Γ) be
a Γ-controlled automaton on S. We say that A is K-deterministic (resp. K-complete) if and
only if K is a deterministic (resp. complete) labeled transition system.

Languages can also be extended to languages of controlled automata, defined below.

Definition 4.1.3. Let Γ be a control alphabet, S = 〈V, ↪→, U〉 be a timed structure and 〈A,K〉
a Γ-controlled automaton on S. The language recognized by A equipped with K, written LK(A)
is the union of all languages recognized by K from any initial to any final configuration of A.
Formally:

LK(A) =
⋃
ci∈I
L(K, ci, F × V )

Example 4.1.1. Let Γ = {δ, a, b}∪R≥0. We expose two ways among others to equip a Γ-control
on the automaton A = 〈{q1, q2}, {q1}, T, {q2}〉 on S = 〈V, ↪→, U〉 of Figure 3.1 drawn again
below.

q1 q2

ν1, µ1 ν1, µ1

ν3, µ3

ν1, µ1

ν2, µ2

Figure 3.1: Graph of an automaton (repeated from page 28)
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• Let κ : T ∪ R≥0 → Γ defined as:

– κ((q, v, u, q)) = a for all q ∈ {q1, q2}, v ∈ V , u ∈ U and (q, v, u, q) ∈ T .

– κ((q, v, u, q′)) = b for all q 6= q′ ∈ {q1, q2}, v ∈ V , u ∈ U and (q, v, u, q′) ∈ T .

– κ(d) = δ for all d ∈ R≥0.

κ is a labeling of Sem(A) on Γ, and Sem(A)κ is a Γ-control on A.

• Let:

–
a−→K = {(c, c), c ∈ Conf(A)}

–
b−→K = {((q1, v), (q2, u(v))), v ∈ ν1 and u ∈ µ1} ∪

{((q2, v), (q1, u(v))), v ∈ ν2 and u ∈ µ2}
–

d−→K =
d−→A for all d ∈ R≥0.

–
δ−→K = ∅

K = (Conf(A),→K ,Γ) is a Γ-control on A. Moreover, if µ1 and µ2 are singletons, then
A is K-deterministic.

Suppose now S = C1 = 〈C1, ↪−→, {id,0}〉 is the 1-clock structure, and

(ν1, µ1) = ([0, 0], {0})
(ν2, µ2) = ([1, 1], {0})

(ν3, µ3) = ([0, 1], {id})

A representation is given in figure 4.2.

q1 q2

[0, 0], {0} [0, 0], {0}

[0, 1], {id}

[0, 0], {0}

[1, 1], {0}

Figure 4.2: Graph of the automaton of figure 3.1 on C1

We have then

LSem(A)κ(A) =
(
(a+ δ)∗ · b · (a+ δ)∗ · b

)∗ · (a+ δ)∗ · b · (a+ δ)∗

LK(A) =
(
(a+ 0)∗ · b · 〈a∗〉=1 · b

)∗ · (a+ 0)∗ · b · (a+ R≥0)∗

where 〈a∗〉=1 states for the set of all words of (R≥0 ∨ a)∗ of duration 1 (this is the sum of all
real labels appearing in the word. c.f. section 4.2). The notation is inspired of timed regular
expressions of [9].

We can finally adjust the concept of simulation. Let S1 and S2 be two timed structures,
Γ be a control alphabet, 〈A1,K1〉 ∈ A(S1,Γ) and 〈A2,K2〉 ∈ A(S2,Γ). We say that 〈A1,K1〉
simulates 〈A2,K2〉 if A1 simulates A2 (c.f. section 3.2) language and determinism are preserved,
i.e. LK1(A1) = LK2(A2), and if A2 is K2-deterministic then A1 is K1-deterministic.
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The notion of control we just introduced is very general. For this thesis purpose, we can
restrict ourselves to the study of what we call timed controls, defined in the next section. Timed
controls encompass most of the varied notions of determinism and language we are interested
in. However the notion of untimed language used especially for timed automata don’t fit in the,
to be defined, timed controls. It is covered though by the notion of control in the following way.

Definition 4.1.4. Let Σ be a finite alphabet, S = 〈V, ↪→, U〉 be a timed structure, A = 〈Q, I,
T, F 〉 an automaton on S.

A Σ-untimed control is a Σ ] {ε}-control, KU, on A such that KU = Sem(A)κ for some
labeling κ from T ] R≥0 to Σ ] {ε} verifying for all d ∈ R≥0, κ(d) = ε and κ(T ) ⊆ Σ.

Example 4.1.2. In the continuity of example 4.1.1, the automaton A on S the 1-clock structure,
can be equipped by an untimed command.

Let κ : T ∪ R≥0 → {a, b, ε} defined as:

• κ((q, v, u, q)) = a for all q ∈ {q1, q2}, v ∈ V , u ∈ U and (q, v, u, q) ∈ T .

• κ((q, v, u, q′)) = b for all q 6= q′ ∈ {q1, q2}, v ∈ V , u ∈ U and (q, v, u, q′) ∈ T .

• κ(d) = ε for all d ∈ R≥0.

κ is a labeling of Sem(A) on {a, b, ε}, and T κ is a {a, b}-untimed control on A.
We have then LSem(A)κ(A) = (a∗ · b)+ · a∗.

4.2 Timed Controls

Timed controls are a restricted class of controls where we allow the observer to have always
access to the precise durations in the runs of the automaton. A discrete transition might be
partially or completely invisible from an external observer, though if the observer can see some
information about a discrete transition he can be sure it corresponds to exactly one discrete
transition of the automaton. We give the formal definition of timed controls below, right after
a formal definition of the duration of a word.

Given a set Γ. The duration of a word of (R≥0]Γ)∗ is the sum of all real numbers appearing
in the words. Formally we define by induction for all Γ the function δΓ : (R≥0 ] Γ)∗ → R≥0

• δΓ(ε) = 0

• δΓ(γ) = 0 if γ ∈ Γ

• δΓ(d) = d if d ∈ R≥0

• δΓ(w · w′) = δ(w) + δ(w′)

For all w ∈ (R≥0 ] Γ)∗, δΓ(w) is the duration of w.
A timed control is obtained by a special renaming of the discrete transition. Delay transitions

are not renamed, so the observer can see exactly what amount of time has elapsed. Like in a
labeling (c.f. remark 4.1.1 and 1.3.4) transitions can be mapped to labels in a fixed finite
alphabet Σ – this is formalized by the first item in definition 4.2.1. But contrarily to a labeling,
not all transitions are mapped to labels (which makes the class of timed control not reducible
to those definable with a labeling). The transitions which are not mapped to any label are
considered silent. Those transitions are not observable, meaning concretely that when the
observer sees a delay transition, any (finite) number of those transitions may have been taken
by the system – this is formalized by the second item of definition 4.2.1. Formally a timed
control is characterized by a partial function describing how discrete transitions are labeled;
silent transitions being those which are not in the domain of this partial function.
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Definition 4.2.1. Let Σ be a finite alphabet, S = 〈V, ↪→, U〉 be a timed structure, A = 〈Q, I,
T, F 〉 an automaton on S.

A Σ-timed control is a labeled transition system, T = 〈Conf(A),→,Σ ] R≥0〉 satisfying:

• there exists a partial function κ : T ⇀ Σ such that for all σ ∈ Σ and c, c′ ∈ C2
A,

c
σ−→T c′ ⇐⇒ ∃t ∈ κ−1(σ), c

t−→A c
′

We write then Tε = T \ dom(κ) and for all σ ∈ Σ, Tσ = κ−1(σ). Any transition t ∈ Tε is
called a silent transition.

• for all d ∈ R≥0 and c, c′ ∈ C2
A,

c
d−→T c′ ⇐⇒ ∃w ∈ (Tε ] R≥0)∗, δTε(w) = d and c′ ∈ Reach(Sem(A), w, c)

We verify that a Σ-timed control is a control in the sense of definition 4.1.1.

Proposition 4.2.2. Let Σ be a finite alphabet, S = 〈V, ↪→, U〉 be a timed structure, A = 〈Q, I,
T, F 〉 an automaton on S. A Σ-timed control is a Σ ] R≥0-control on A.

Proof.

We make sure below that a timed control is a well-defined control. Let T be a Σ-timed con-
trol. We prove by double inclusion that for all configuration ci ∈ I, Reach(Sem(A), ci) =
Reach(T, ci).

(⊆) Let c ∈ Reach(Sem(A), ci) with ci ∈ I. Exists a word w ∈ (T ] R≥0)∗ such that
c ∈ Reach(Sem(A), w, ci). Let us decompose w into w1 · t1 · w2 · · · · · wn · tn · wn+1, with
w1, . . . , wn+1 ∈ (Tε ] R≥0)∗ and t1, . . . , tn ∈ dom(κ). By definition

c ∈ Reach(T, δTε(w1) · κ(t1) · δTε(w2) · · · · · δTε(wn) · κ(tn) · δTε(wn+1), ci)

(⊇) Conversely let c ∈ Reach(T, ci) with ci ∈ I. Exists a word w ∈ (Σ ] R≥0)∗ such
that c ∈ Reach(T, w, cinit). Let us decompose w into d1 · σ1 · d2 · · · · · dn · σn · dn+1, with
d1, . . . , dn+1 ∈ R∗≥0 and σ1, . . . , σn ∈ Σ. By definition exists w1, . . . , wn+1 ∈ (Tε ] R≥0)∗

and t1, . . . , tn ∈ dom(κ), such that for all 1 ≤ i ≤ n + 1, δTε(wi) = di, for all 1 ≤ i ≤ n,
κ(ti) = σi and

c ∈ Reach(Sem(A), w1 · t1 · w2 · . . . wn · tn · wn+1, ci)

�

In short, for a fixed alphabet Σ, we write that Tκ is a Σ-timed control meaning that Tκ is
a timed control based on the partial function κ (see remark 4.2.1 below about the ambiguity
with labeling notation). We also write 〈A,Tκ〉 ∈ A(S,Σ), meaning that A ∈ A(S) and Tκ is a
Σ-timed control on A.

Remark 4.2.1. In particular if dom(κ) = T then, writing κ′ : R≥0 ] T → R≥0 ] Σ such that κ′

coincide with κ and is the identity on R≥0, the Σ-timed control Tκ is exactly the (R≥0 ] Σ)-
renaming, Sem(A)κ

′
, of Sem(A) by κ′. This justifies the choice of notation, which could seem

a little bit confusing at first. In this case we say that 〈A,Tκ〉 is without silent transitions.

Given Tκ being a Σ-timed control over some automaton A, we write for short A is κ-
deterministic instead of A is Tκ-deterministic, and Lκ(A) instead of LTκ(A). We say that π is
a run of 〈A,Tκ〉 any time π is a path of Tκ starting in an initial configuration of A and ending
in a final configuration of A.
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Remark 4.2.2. As it was implicitly done in the proof of definition 4.2.1, given a Σ-timed control
κ on a automaton A = 〈Q, I, T, F 〉, we can extend κ on (T ] R≥0)∗ in the following way. If
w ∈ (T ] R≥0)∗ is uniquely decomposed as w1 · t1 · w2 · · · · · wn · tn · wn+1, with w1, . . . , wn+1 ∈
(Tε ] R≥0)∗ and t1, . . . , tn ∈ dom(κ) we define

κ(w) = δTε(w1) · κ(t1) · δTε(w2) · · · · · δTε(wn) · κ(tn) · δTε(wn+1)

And by definition we know that if Reach(Sem(A), w, c) 6= ∅ then Reach(Tκ, κ(w), c) 6= ∅.
Example 4.2.1. In the continuity of example 4.1.1, the automaton A on S the 1-clock structure,
can be equipped by different {a}-timed control in the following ways.

Let κ : T ∪ R≥0 → {a} defined as:

• κ((q, v, id, q)) = a for all q ∈ {q1, q2}, v ∈ V , u ∈ U and (q, v, u, q) ∈ T .

κ is a partial function from T to {a} so we can define using definition 4.2.1 the timed control
T κ on A. In this case Ta = {(q2, v, id, q2), v ∈ [0, 1]} and Tε = {(q, 0,0, q), q ∈ {q1, q2)} ∪
{(q2, 1,0, q1), (q1, 0,0, q2)}

A second example could be κ : T ∪ R≥0 → {a} defined as:

• κ((q, v, id, q)) = a for all q ∈ {q1, q2}, v ∈ V , u ∈ U and (q, v, u, q) ∈ T .

• κ((q, v, id, q′)) = b for all q 6= q′ ∈ {q1, q2}, v ∈ V , u ∈ U and (q, v, u, q) ∈ T .

κ is a total function from T to {a} so we can define using definition 4.2.1 the timed control
T κ on A. In this case Ta = T and Tε = ∅. We could easily extend κ following remark 4.2.2 to
transform it into a labeling (proposition 1.3.4). We say that 〈A,Tκ〉 is without silent transitions;

The timed control defined below has some importance because it gives to the observer the
information about the updates done at all transitions. As we will see in chapter 8, this is all
that is enough to always know the values at any point of the run of the automaton, leaving only
uncertain the state it is in. It is called for this reason the full control.

Definition 4.2.3. Let Σ be a finite alphabet, S = 〈V, ↪→, U〉 be a timed structure with U a finite
set, A = 〈Q, I, T, F 〉 an automaton on S.

A Σ-full control is a ([Σ×U ]]R≥0)-timed control, Tκ, on A such that for all t = (q, v, u, q′) ∈
T , exists a ∈ Σ such that κ(t) = (a, u).

Example 4.2.2. Again in the continuity of example 4.1.1, the automaton A on S where S is the
1-clock structure, can be equipped by a full control. To point out that the control is not just
timed but more specifically full, we use F instead of κ when we define full controls. To see a
graphical representation of the automaton A equipped with TF see example 4.3 in section 4.3
at the end of this chapter. Let F : T → {a, b} defined as:

• F((q, v, id, q)) = (a, id) for all q ∈ {q1, q2}, v ∈ V and (q, v, id, q) ∈ T .

• F((q, v,0, q)) = (a,0) for all q ∈ {q1, q2}, v ∈ V and (q, v,0, q) ∈ T .

• F((q, v,0, q′)) = (b, id) for all q 6= q′ ∈ {q1, q2}, v ∈ V and (q, v,0, q′) ∈ T .

TF is a {a}-full control on A.
We have then

LF(A) =
(
((a,0) ∨ 0)∗ · (b,0) · ((a,0) ∨ 0 ∨ (a, id))∗ · 〈(a, id)∗〉=1 · (b,0)

)∗·
((a,0) ∨ 0)∗ · (b,0) · ((a,0) ∨ 0 ∨ (a, id))∗ · 〈(a, id)∗〉≤1 · R∗≥0

where 〈a∗〉=1 and 〈a∗〉≤1 states for the set of all words of (R≥0 ∨ a)∗ with duration 1 and less
than 1 respectively.

41



4.3 Graph and Bisimulation of Timed Controlled Automata

For automata equipped with timed controls we alter the notion of guards to take in to account
what is seen by the observer. Recall that we argued that guards are a way to enforce some
regularity on the laws of evolution of the model. Here we are seeking to maintain this regularity
from the eyes of the external observer so he too can be able to study our model and maybe
compute things about it. Informally we impose now that not only the guards of the automaton
respects some guard bases but also the guards obtained by grouping transitions with the same
labeling.

Definition 4.3.1. Let S = 〈V, ↪→, U〉 be a timed structure, A = 〈Q, I, T, F 〉 an automaton on
S and q, q′ ∈ Q. Let Σ be a finite alphabet, Tκ be a Σ-timed control on A and σ ∈ Σ ] {ε}.

Recall that Tσ stands for κ−1(σ), and Tε for T \ dom(κ) (c.f. definition 4.2.1), We call
guard of label σ from q to q′ the guard defined by

gκ(q, σ, q′) = {(v, u) ∈ V × U | (q, v, u, q′) ∈ Tσ1}

Definition 4.3.2. Let SG be a guarded timed structure, A = 〈Q, I, T, F 〉 an automaton on S.
Let Σ be a finite alphabet, Tκ be a Σ-timed control on A and σ ∈ Σ.

We say that Tκ is compatible with G if for all q, q′ ∈ Q and σ ∈ Σ ] {ε}, gκ(q, σ, q′) is
decomposable in G.

Whenever A represents an automaton on a guarded structure with guard bases G, we say
for short that Tκ is a compatible Σ-timed control on A, meaning that it is compatible with G.

Example 4.3.1. Let Σ be a finite alphabet, M ∈ N and n ∈ N>0.
We define ΣTAn

M to be the set of all controlled timed automata 〈A,Tκ〉 with A ∈ TAn
M and

Tκ a compatible Σ-timed control on A. See example 3.1.1 for the definition of timed automata.

Example 4.3.2. Let Σ be a finite alphabet, M ∈ N and C a finite set
We define ΣTAC

M to be the set of all controlled enhanced timed automata 〈A,Tκ〉 with
A ∈ TAC

M and Tκ a compatible Σ-timed control on A. See example 3.1.2 for the definition of
enhanced timed automata.

The following proposition exposes the link between automata guards and control guards.

Proposition 4.3.3. Let SG be a guarded timed structure, A = 〈Q, I, T, F 〉 an automaton on
SG. Let Σ be a finite alphabet, Tκ be a Σ-timed control on A.

Suppose Tκ is compatible with G ; then A is compatible with G.

Proof.

Just notice that since T =
⋃
σ∈Σ]{ε} Tσ, for all q, q′ ∈ Q,

gA(q, q′) = {(u, v) ∈ V × U | (q, v, u, q′) ∈ T}

=
⋃

σ∈Σ]{ε}

{(v, u) ∈ V × U | (q, v, u, q′) ∈ Tσ}

=
⋃

σ∈Σ]{ε}

gκ(q, σ, q′)

1
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Since gκ(q, σ, q′) is decomposable in G for all σ ∈ Σ ] {ε} then gA(q, q′) is decomposable
in G. �

We can, therefore, define a canonical way of representing an automaton on a guarded timed
structure equipped with a compatible timed control, in a very similar way as the definition of
the graph of an automaton.

Fix a guarded timed structure SG and let A = 〈Q, I, T, F 〉 ∈ A(SG). Fix Σ a finite alphabet
and Tκ a compatible Σ-timed control on A. Formally we define the graph of 〈A,Tκ〉 as the
labeled directed multi-graph GA,κ = 〈Q,EA,κ, G〉 with Q the set of nodes, G the set of labels,
and EA,κ ⊆ Q× Σ×G×Q the set of labeled directed edges, defined as

EA,κ = {(q, σ, ν, µ, q′) ∈ Q× Σ×G×Q | (ν, µ) ∈ gκ(q, σ, q′)}

Because Tκ is compatible with G, we have that GA,κ is finite.
Each edge (q, σ, ν, µ, q′) ∈ EA has to be understood as: from every configuration (q, v) with

v ∈ ν it is possible to take a transition toward q′ which is labeled by σ in the control Tκ and
any update within µ can be (non-deterministically) applied.

Example 4.3.3. Still in the continuity of example 4.1.1, recall that the automaton A on S where
S is the 1-clock structure and G is as described above, has been equipped with a full control
TF defined in example 4.2.2.

The graph of the controlled automaton 〈A,TF〉 is given on figure 4.3

q1 q2

(a,0), [0, 0], {0} (a,0), [0, 0], {0}

(a, id), [0, 1], {id}

(b,0), [0, 0], {0}

(b,0), [1, 1], {0}

Figure 4.3: Graph of the controlled automaton 〈A,TF〉

Example 4.3.4. On figure 4.4 we can find the representation, in our formalism, of the non-
determinizable timed automaton (in the classical sense [4]), named B, introduced in [4].

q1 q2 q3

a,C1, {id}

a,C1, {0}

a,C1 \ {1}, {id}

a, {1}, {id}

Figure 4.4: B, a non-determinizable TA

We already introduced a concept of simulation for controlled automata in section 4.1. We
end part I below with the last extension of proposition 3.2.1. Recall that this proposition states
that if we are given a pre-functional bisimulation from a set of state Q1 and a timed structure
S1 to an automaton A2 on a timed structure S2, then there exists an automaton A1 on S1 with,
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as set of states, Q1 which simulates A2 and we can construct it automatically from the pre-
functional bisimulation expression. If now S1 is a guarded timed structure, we already provided
an extension of the proposition to construct a simulating automaton compatible with S1. Next,
we suppose that A2 is equipped with a timed control Tκ2 . The extension of proposition 3.2.1 we
prove below, help us avoid adapting A1, defining a timed control κ1 and proving by hand that
〈A1,T

κ1〉 is compatible with S1 and that determinism is preserved. By adding some additional
property to be respected by the pre-functional bisimulation we make sure that 〈A1, κ1〉 respects
them automatically by construction from the expression of such pre-functional bisimulation.

Let Σ be a finite alphabet. Let S2 = 〈V2, ↪→2, U2〉 be a timed structure and A2 = 〈Q2, I2,
T2, F2〉 be an automaton over S2. Let Tκ2 be a Σ-timed control on A2. Let SG1 = 〈V1, ↪→1,
U1, G1〉 be a guarded timed structure, Q1 be a finite set and Ξ = (ζ, φ, ψ) be a pre-functional
bisimulation from Q1,S1 to A2, with φ = (φq1)q1∈Q1 and ψ = (ψq1,q′1)q1,q′1∈Q1

.
For all q1, q

′
1 ∈ Q1 and σ ∈ Σ ] {ε} we define

domσ(ψq1,q′1) = {(v1, u1) ∈ dom(ψq1,q′1) | (φq1(v1), ψq1,q′1(v1, u1)) ∈ gκ2(ζ(q1), σ, ζ(q′1))}

Also if Ξ satisfies:

• for all q1, q
′
1 ∈ Q1 and σ ∈ Σ ] {ε}:

domσ(ψq1,q′1) is decomposable on G1

we say that Ξ is a Σ, G1-compatible pre-functional bisimulation from Q1,S1 to A2.

• for all q1, v1 ∈ Q1 × V1 and σ ∈ Σ, exists at most one pair u1, q
′
1 ∈ U1 ×Q1 such that,

(v1, u1) ∈ domσ(ψq1,q′1)

and for all q1, q
′
1 ∈ Q1

domε(ψq1,q′1) = ∅
we say that Ξ is a Σ-deterministic pre-functional bisimulation from Q1,S1 to A2.

Let A1 = Ξ−1(A2) = 〈Q1, I1, T1, F1〉.
Let also

κ1 : T1 ⇀ Σ
(q1, v1, u1, q

′
1) 7→ σ if (v1, u1) ∈ domσ(ψq1,q′1)

Then Tκ1 is a Σ-timed control on A1. κ1 is then called the inverse image of κ2 by Ξ and is
written Ξ−1(κ2).

Proposition 4.3.4. Let Σ be a finite alphabet. Let S2 = 〈V2, ↪→2, U2〉 be a timed structure
and A2 = 〈Q2, I2, T2, F2〉 be an automaton over S2. Let Tκ2 be a Σ-timed control on A2. Let
SG = 〈V1, ↪→1, U1, G〉 be a guarded timed structure, Q1 be a finite set and Ξ = (ζ, φ, ψ) be a
pre-functional bisimulation from Q1,S1 to A2, with φ = (φq1)q1∈Q1 and ψ = (ψq1,q′1)q1,q′1∈Q1

.

If Ξ is a Σ, G-compatible pre-functional bisimulation from Q1,S1 to A2 then TΞ−1(κ2) is
compatible with G.

Proof.

Let A1 = Ξ−1(A2) = 〈Q1, I1, T1, F1〉 and κ1 = Ξ−1(κ2).
Recall that for all q1, q

′
1 ∈ Q1 and for all σ ∈ Σ,

gκ1(q1, σ, q
′
1) = {(v1, u1) ∈ V1 × U1 | (q1, v1, u1, q

′
1) ∈ κ−1

1 (σ)}

By definition this means that gκ1(q1, σ, q
′
1) = domσ(ψq1,q′1).
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Also for ε, gκ1(q1, ε, q
′
1) = {(v1, u1) ∈ V1 × U1 | (q1, v1, u1, q

′
1) ∈ T1 \ dom(κ1)}.

Since dom(ψq1,q′1) =
⋃
σ∈Σ]{ε} domσ(ψq1,q′1), by definition of domσ(ψq1,q′1) and of a pre-

functional bisimulation, we get that gκ1(q1, ε, q
′
1) = domε(ψq1,q′1).

In all cases, for all σ ∈ Σ]{ε}, gκ1(q1, σ, q
′
1) = domσ(ψq1,q′1) is decomposable on G by

hypothesis. �

Proposition 4.3.5. Let Σ be a finite alphabet. Let S2 = 〈V2, ↪→2, U2〉 be a timed structure
and A2 = 〈Q2, I2, T2, F2〉 be an automaton over S2. Let Tκ2 be a Σ-timed control on A2. Let
SG = 〈V1, ↪→1, U1, G〉 be a guarded timed structure, Q1 be a finite set and Ξ = (ζ, φ, ψ) be a
pre-functional bisimulation from Q1,S1 to A2, with φ = (φq1)q1∈Q1 and ψ = (ψq1,q′1)q1,q′1∈Q1

.
If Ξ is a Σ-deterministic pre-functional bisimulation from Q1,S1 to A2 and 〈V1, ↪−→1〉 is

deterministic, then Ξ−1(A2) is TΞ−1(κ2) deterministic.

Proof.

Let A1 = Ξ−1(A2) = 〈Q1, I1, T1, F1〉 and κ1 = Ξ−1(κ2).
Let l ∈ R≥0 ∪Σ and let (q1, v1) ∈ CA1 be a configuration in Tκ1 . We prove that exists

at most one configuration (q′1, v
′
1) ∈ CA1 such that (q1, v1)

l−→ (q′1, v
′
1) in Tκ1 .

Suppose l = d ∈ R≥0 and suppose (q1, v1)
d−→ (q′1, v

′
1). By definition of a Σ-timed

control, ∃w ∈ (T1/ε ] R≥0)∗, δTε(w) = d and (q′1, v
′
1) ∈ Reach(Sem(A), w, (q1, v1)). But

by hypothesis Tε = {(q, v, u, q′) ∈ T1 | (v, u) ∈ domε(ψq,q′)} is empty. So this means that
w ∈ (R≥0)∗ which means, by definition of a Sem(A) and of a timed domain that q′1 = q1

and that v′1 = v1 ⊕ d.
Suppose now l = σ ∈ Σ and suppose (q1, v1)

σ−→ (q′1, v
′
1), then ∃t ∈ κ−1

1 (σ), (q1, v1)
t−→A

(q′1, v
′
1). This means that exists u1 ∈ U1 such that t = (q1, v1, u1, q

′
1) and v′1 = u1(v1),

therefore that (v1, u1) ∈ domσ(ψq1,q′1). We know that there exists at most one pair
(u1, q

′
1) ∈ U1 ×Q1 verifying that property, this proves the unicity of (q′1, v

′
1). �

This ends the definition of the model and the introduction of the theoretical tools we need
for the rest of this thesis. Most important ones being :

• Guarded timed structures (chapter 2) to model quantitative variables, their evolution,
updates and level of regularity with regard to those updates - 〈V, ↪→, U,G〉 where

– 〈V, ↪→, U〉 is a timed structure which models both quantitative variables evolution
(through the timed domain 〈V, ↪→〉) and quantitative variables updates (through a
set of update U on V).

– G is a guard basis which enforces some regularity on the behavior of the quantitative
variable with regards to updates.

• Automata on (guarded) timed structure (chapter 3) to model discrete states and discrete
actions in the model, build on top of the timed structure - 〈Q, I, T, F 〉.

• Timed control (chapter 4) to allow generic modelisation of indistinguishable behavior,
unobservable actions, and non-determinism - Tκ with κ a particular partial function on
labels.

• Pre-functional bisimulation between automata on timed structures (chapter 3 and chapter
4) ) to construct new equivalent automata from existing ones, on different timed structures
or/and label spaces.
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In the next part, we discuss the questions of determinization for our model. Notice that in the
framework we just introduced, determinism is not an absolute notion but is a concept which
depends on the control we equip our automaton with. That’s why in some sense we will be
able to prove in the next part that every automaton on any timed structure (without silent
transition) is determinizable . . . and in the meantime, this statement’s lack of rigor could imply
lots of misunderstandings . . .

46



Part II

Determinization of Timed Systems
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Chapter 5

Timed Control Determinization

A Generalized Powerset Construction

Determinization is a common problem addressed in computer science. Non-deterministic
transitions are a useful tool used in modeling or theoretical proofs, but when it comes to
implementation it becomes an obstacle. Therefore it is usually asked for a formal model class
to be closed by determinization, meaning informally that every non-deterministic model of such
class is equivalent to a deterministic one (in which sense it is equivalent, it is one of the issues
of the problem).

In the most general setting, we know that every model expressible as a Turing machine
is equivalent to deterministic Turing Machine [41]. However, it is often not satisfactory to
have to go back to Turing machine to obtain determinism. In most cases, it is wanted that
an equivalent model within a circumscribed class exists within this same class, as it is the
case for finite automata [41]. In quantitative models, it is rare though that a whole class is
closed by determinization. It is indeed not the case for pushdown automata [38], weighted
automata [39] [43] or timed automata [4]. One of the underlying reasons for the problem is
that the determinization process needs an exponential increase in the size of the model. When
the model is finite it is not an intractable obstacle, but when the model is of infinite size, the
exponential increase requires a configuration space of higher cardinality.

Solutions to circumvent this problem are usually found by exposing subclasses of models,
either stable by determinization, either determinizable within the class – see the discussion in
chapter 7. We exploit the opposite idea to propose a solution to this problem in the context of
automata with timed domains: intuitively we propose for some classes of automata on timed
domains a determinization process toward a super class of automata on timed domain. As
we said it is always possible to do so if we go all the way back to Turing Machines, but our
result’s interest lies in the good properties verified by this superclass: simple representation and
computability. Two fundamental properties to allow efficiency and complexity estimation in
the context of diagnosis. The superclass considered will be constructed by expanding the timed
structure using a kind of ”power construction”. Here the E-marking construction presented
page 24 will be useful.

It remains, however, to be specified what does equivalent stands for in our context. De-
terminization classically focuses on language preservation, and this is what interests us for our
purpose to build a diagnoser. In the case of timed automata, this is highlighted by the dif-
ference between untimed language, timed language and event-clock automata. Constructing a
deterministic timed automaton recognizing the same untimed language than another one can be
done using the region abstraction [4]. Now consider a timed automaton where each transition
has a label which hardcode its update, then it can be determinized with a simple powerset
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construction on discrete states (c.f. chapter 8). Event-clock automata could be viewed as timed
automata with such labels. However, preserving the equivalence of timed languages cannot
always be done (and it can’t be decided if it can be done) [4]. In our formalism, those differ-
ences correspond to different choices of controls and it was made clear that languages depend
on the control we equip the automaton we wish to determinize. We will see in chapter 8 that
the choice of control has great importance, determinization of timed automaton not being so
difficult if they are equipped with full controls. In this chapter, we focus on determinization
of automata on timed structures equipped with a Σ-timed controls without silent transitions, Σ
being fixed. We prove that for each of them there exists a deterministic automaton on a pow-
erset construction of the timed structure, also equipped by a Σ-timed structure without silent
transitions. This determinized automaton, called powerset automaton, is at the basis of our
diagnoser construction in chapter 9 and 11.
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5.1 Determinization of Timed Controlled Automata on Timed
Systems

First we formalize below what determinization means to us. Following the discussion in
the introduction, in this thesis determinizability implies the construction of a new controlled
automaton recognizing the same language, but does not imply that the new controlled automa-
ton has to be on the same time structure. Recall that 〈A,Tκ〉 ∈ A(S,Σ) means that A is an
automaton on the timed structure S equipped with a Σ-timed control Tκ (c.f. page 40).

Definition 5.1.1. Let Σ a finite alphabet, S a timed structure and 〈A,Tκ〉 ∈ A(S,Σ).
We say that 〈A,Tκ〉 is Σ-determinizable if and only if exist a timed structure S′ and

〈A′,Tκ′〉 ∈ A(S′,Σ) such that A′ is κ′-deterministic, without silent transitions and Lκ(A) =
Lκ′(A′).
〈A′,Tκ′〉 is called a Σ-determinized automaton of 〈A,Tκ〉.

To solve the determinization problem we introduce below a kind of powerset construction
valid for any kind of controlled automata on any timed structure.

Fix Σ a finite alphabet, S = 〈V, ↪→, U〉 a timed structure, A = 〈Q, I, T, F 〉 an automaton
on S and Tκ a Σ-timed control on A. We construct the powerset automaton of 〈A,Tκ〉 on a
timed structure very close to the Q-markings timed structure defined page 24. Recall that in
this context we defined MQV = P(V )Q.

For all γ ∈ Σ ] R≥0, let Uγ : MQV →MQV defined for all ν ∈MQV and for all q′ ∈ Q as

Uγ(ν)(q′) = {v′ ∈ V | ∃q ∈ Q,∃v ∈ ν(q), (q, v)
γ−→Tκ (q′, v′)}

For all w ∈ (Σ]R≥0)∗ such that w = γ1 · · · · ·γn, with n ∈ N and for all 1 ≤ i ≤ n, γi ∈ Σ]R≥0,
we write Uw = Uγn ◦ · · · ◦Uγ1 .

We prove below that Uσ ∈ MQU for all σ ∈ Σ. Recall that MQU is the set of updates
obtained in the Q-marking construction. Each update of MQU is of the form Ug with g ∈
G(S)E×E a guard function. Ug maps a marking ν ∈ MQV to another marking ν ′ ∈ MQV
which can be intuitively obtained by applying all transitions derived from g on ν (for formal
definition see page 24) Let for all σ ∈ Σ, gσ : Q2 → G(S) defined as gσ(q, q′) = gκ(q, σ, q′) for
all q, q′ ∈ Q.

Lemma 5.1.2. For all σ ∈ Σ, Uσ = Ugσ .

Proof.

Let ν ∈MQV and for all q′ ∈ Q,
Recall (p. 24) that Ugσ(ν)(q′) = {u(v) ∈ V | ∃q ∈ Q, v ∈ ν(q) and (v, u) ∈ gσ(q, q′)}

Uσ(ν)(q′) = {v′ ∈ V | ∃q ∈ Q,∃v ∈ ν(q), (q, v)
σ−→Tκ (q′, v′)}

= {v′ ∈ V | ∃t ∈ κ−1(σ), ∃q ∈ Q,∃v ∈ ν(q), (q, v)
t−→A (q′, v′)}

= {u(v) ∈ V | ∃q ∈ Q, v ∈ ν(q) and (q, v, u, q′) ∈ κ−1(σ)}
= {u(v) ∈ V | ∃q ∈ Q, v ∈ ν(q) and (v, u) ∈ gκ(q, σ, q′)}
= {u(v) ∈ V | ∃q ∈ Q, v ∈ ν(q) and (v, u) ∈ gσ(q, q′)}
= Ugσ(ν)(q′)

�
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For all d ∈ R≥0, we define then

d
↪−→A,κ= {(ν,Ud(ν)),ν ∈MQV }

and the timed structure:
DA,κS = 〈MQV, ↪→A,κ,MQU〉

This timed structure is heavily dependent on A. Values are markings whose support is the set
of states of A and updates simulate simultaneous applications of all transitions of A for a given
label. Informally, the result of the application of an update on a marking is then a new marking
where each value in any state is obtained by following a transition of A from a state and a
value in the original marking. It means that every state in the support of a marking obtained
by successive updates is reachable in A following the same run. However, the converse is not
true since the support may omit some states reachable through a sequence of silent transitions
directly following the last visible action.

We introduce then a new function suppε : MQV → P(Q) mapping each marking to the
set of states which are mapped to the empty set on this marking but will be mapped to a non-
empty set sometime in the future. This function, even if it doesn’t tell us exactly when each
state is reached, computes all the possible reachable states through silent transitions. Hence the
information of supp and suppε obtained just after application of an update covers all possible
reachable state of A following some run. This is useful in the context of diagnosis, where we
wish to know if a faulty state can be reached without having to compute again the new support
each time a delay transition is taken.

Formally suppε is defined for each ν ∈MQV as

suppε(ν) = {q ∈ Q \ supp(ν) | ∃d ∈ R>0, q ∈ supp(Ud(ν))}

We define DκA = 〈P(Q)× P(Q), {DκcI},DκT,DκF 〉 on DA,κS with:

• DκcI = ([supp(νI), suppε(νI)],νI)

with νI ∈MQV such that for all (q, v) ∈ Q× V , v ∈ νI(q) ⇐⇒ (q, v) ∈ I.

• DκF = {[ρ, ρ′] ∈ P(Q)2 | ρ ∩ F 6= ∅}

• DκT = {([ρ, ρ′],ν,Uσ, [supp(Uσ(ν)), suppε(Uσ(ν))]),ν ∈MQV, σ ∈ Σ, ρ, ρ′ ∈ P(Q)}

We also consider the Σ-timed control TDκ defined as for all R1, R2 ∈ P(Q)2,ν ∈MQV and
σ ∈ Σ, Dκ((R1,ν,Uσ, R2)) = σ.

Definition 5.1.3. 〈DκA,T
Dκ〉 constructed above is called the powerset automaton of 〈A,Tκ〉.

The powerset automaton of 〈A,Tκ〉 has some important good properties described in the
next proposition:

Proposition 5.1.4. Let Σ be a finite alphabet, S a timed structure and 〈A,Tκ〉 ∈ A(S,Σ).

(1) DκA is TDκ-deterministic.

(2) DκA is TDκ-complete.

(3) 〈DκA,T
Dκ〉 is without silent transitions (c.f. remark 4.2.1).

(4) For all w ∈ (Σ ] R≥0)∗ and (q, v) ∈ Q× V ,

[ q ∈ supp(Uw(DκcI)) and v ∈ Uw(DκcI)(q) ] ⇐⇒ ∃ci ∈ I, (q, v) ∈ Reach(Tκ, w, ci)
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Proof.

Let’s write A = 〈Q, I, T, F 〉 and recall that DκcI = ((supp(νI), suppε(νI)),νI)

(1) Let (R,ν) and (R′,ν ′) in P(Q)2 ×MQV .
Let d ∈ R≥0, (R,ν)

d−→TDκ (R′,ν ′) if and only if R′ = R and ν ′ = Ud(ν).
Let σ ∈ Σ, (R,ν)

σ−→TDκ (R′,ν ′) if and only if ν ′ = Uσ(ν) and R′ = supp(ν ′).
This proves that for all c ∈ CDκA, for all γ ∈ (Σ ] R≥0)∗, there is at most
one configuration c′ such that c

γ−→TDκ c′.
DκA is then Dκ-deterministic.

(2) By design DκA is Dκ-complete.

(3) By definition 〈DκA,T
Dκ〉 is without silent transitions.

(4) We write for all w ∈ (Σ× R≥0)∗, ρw = supp(Uw(DcI)) and νw = Uw(DcI)(q)
We make the proof by induction on the length of w.
I Initialization is trivial by definition of νI .
I Let w ∈ (Σ ] R≥0)n+1, w′ ∈ (Σ ] R≥0)n and γ ∈ (Σ ] R≥0) such that w = w′ · γ.

Let (q, v) ∈ Q× V .
q ∈ ρw and v ∈ νw(q) ⇐⇒ v ∈ Uγ(νw′)(q)

⇐⇒ ∃q′ ∈ Q,∃v′ ∈ νw′(q
′), (q′, v′)

γ−→Tκ (q, v)
⇐⇒ ∃q′ ∈ ρw′ ,∃v′ ∈ νw′(q

′), (q′, v′)
γ−→Tκ (q, v)

⇐⇒ ∃ci ∈ I, ∃(q′, v′) ∈ Reach(Tκ, w′, ci),
(q′, v′)

γ−→Tκ (q, v) by induction hypothesis.
⇐⇒ ∃ci ∈ I, (q, v) ∈ Reach(Tκ, w, ci)

This ends the induction. �

However, those properties are not enough to be able to conclude that DκA would be a
Σ-determinized of A. The problem lies in the existence of silent transitions in the original
automaton. In fact, even if through the item (4) of property 5.1.4 just above, we can see
that the powerset automaton simulates exactly the behavior of the original automaton, not
all accepting runs of A correspond to accepting runs of DκA. According to the definition of
DκF , an accepting run of A which ends by a silent transition departing from a non-final state
may give a non-accepting run of DκA. For example, the simple automaton which has to wait
exactly one time unit and make a silent transition to a final state (figure 5.1), recognizes the
language L1 = {w ∈ R∗ | δ(w) ≥ 1} of all words of R>0 with duration greater than 1; but
its powerset automaton recognizes the empty language. Indeed the initial configuration of the
powerset automaton is 〈qi 7→ {0}, qf 7→ ∅〉, hence its initial state is [{qi}, {qf}] which is not final.
And since there is no visible transition in the original automaton there is no possible updates
to do and therefore no transition in the powerset automaton exiting [{qi}, {qf}].

qi qf
ε, {1}, {id}

Figure 5.1: A timed automata recognizing L1

With the introduction of suppε we have the information that the final state is reachable
with a silent run, however it is not enough to make it a final state since we don’t know when
exactly the final state will be reachable (and we can’t hard-code it in the state since it could
depend on the previous date of arrival in the said state). We give below three solutions to make
this powerset automaton directly a Σ-determinized automaton of A.
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• We could change the definition of Σ-determinization to allow silent transitions.

• We could change the model and allow some possible changes of discrete states by the
simple passage of time (which is close to the original idea of silent transitions).

• Finally we could forbid accepting runs ending by a silent transition, in which case the
results of this section still holds.

This last solution circumscribes the difficulty posed by silent transitions. A difficulty which we
conjecture to prevent any general construction of a Σ-determinized automaton for automata on
timed domain with silent transitions.

However, the powerset automaton is still a great tool to simulate the original automaton
with or without silent transitions, which is interesting in the context of diagnosis as we’ll see
in part III. Also, if we consider now the determinization problem on automata without silent
transitions, the powerset automaton becomes the Σ-determinized automaton. Indeed, now
suppε is the empty set and the following proposition holds:

Proposition 5.1.5. Let Σ a finite alphabet, S a timed structure and 〈A,Tκ〉 ∈ A(S,Σ) a
controlled automaton without silent transitions. Then DA,κS = MQS and for all w ∈ (Σ]R≥0)∗

Reach(TDκ, w, cI) = {([supp(Uw(ν0)), ∅], Uw(ν0)}

Proof.

From the definition of Ud knowing that A is without silent transition, it is clear that for
all d ∈ R≥0,

d
↪−→M= {(ν,Ud(ν)),ν ∈MQE} =

d
↪−→A,κ

Hence DA,κS = MQS.
The second property can then easily be proved by induction using property 5.1.4 since

suppε is constant equal to ∅ and for all d ∈ R≥0,and for all ν ∈MQV , Ud(ν) = ν⊕MQS d
so supp(ν) = supp(Ud(ν)). �

In this case, we omit the suppε part in the states and consider that the state space of DκA
is P(Q) instead of P(Q)2. We’ll write for all w ∈ (Σ×R≥0)∗, ρw = supp(Uw(DcI)) and νw =
Uw(DcI)(q), which means according to last proposition (5.1.5) and with the new notation, that
for all w ∈ (Σ ] R≥0)∗

Reach(TDκ, w, cI) = {(ρw,νw)}

We are ready to state now the main result of this part: every controlled automaton without
silent transitions is determinizable:

Theorem 5.1.6. Let Σ a finite alphabet, S a timed structure and 〈A,Tκ〉 ∈ A(S,Σ) without
silent transitions.
〈A,Tκ〉 is Σ-determinisable.

Proof.

According to proposition 5.1.4, DκA is Dκ-deterministic, and without silent transitions.
We prove here that Lκ(A) = LDκ(DκA).

Let’s write A = 〈Q, I, T, F 〉 and recall that DκcI = ((supp(νI), suppε(νI)),νI)

w ∈ Lκ(A) ⇐⇒ ∃ci ∈ I, ∃q ∈ F,∃v ∈ V, (q, v) ∈ Reach(Tκ, w, ci)
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by definition. According to proposition 5.1.4 we have then :

w ∈ Lκ(A) ⇐⇒ ∃q ∈ F,∃v ∈ V, q ∈ ρw and v ∈ νw(q)

But by definition of supp and of DκF we know that for all w ∈ (Σ ] R≥0)∗,

∃q ∈ F, q ∈ ρw ⇐⇒ ρw ∈ DκF

and ∀q ∈ Q,
∃v ∈ νw(q) ⇐⇒ q ∈ supp(νw(q)) = ρw

Hence,
w ∈ Lκ(A) ⇐⇒ ρw ∈ DκF

Finally, according to proposition 5.1.5,

w ∈ Lκ(A) ⇐⇒ ∃ρ ∈ DκF,∃ν ∈MQV, (ρ,ν) ∈ Reach(TDκ, w, cI)

w ∈ Lκ(A) ⇐⇒ w ∈ LDκ(DκA)

which concludes the proof of the theorem. �

Before ending this section, we suggest taking a look at the questions of representation and
computation of our newly defined powerset automaton. We focus only on the case when the
initial automaton A is without silent transitions.

If A has no silent transition we defined a lot of superfluous transition in DκA. Indeed
according to proposition 5.1.5 we know that we can consider DκT to be equal to:

DκT = {(supp(ν),ν,Uσ, supp(Uσ(ν))),ν ∈ P(V )Q, σ ∈ Σ}

with no impact on the semantic of DκA.
This being said we can prove the following proposition.

Proposition 5.1.7. Let Σ a finite alphabet, SG a guarded timed structure and 〈A,Tκ〉 ∈
A(SG,Σ) without silent transitions.
〈DκA,Dκ〉 is compatible with MQG.

Proof.

Just notice that in this context the guard of DκA can be written, for all ρ, ρ′ ∈ P(Q) and
for all σ ∈ Σ as

gDκ(ρ, σ, ρ′) = {(ν,Uσ),ν ∈MQV | supp(ν) = ρ and supp(Uσ(ν)) = ρ′}

Which means, if we recall that Uσ = Ugσ ∈MQU , that

gDκ(ρ, σ, ρ′) = (Gρ,gσ ,ρ′ ,Ugσ) ∈MQG

This proves the proposition. �

We describe below how to finitely represent and compute ν ∈ Gρ,gσ ,ρ′ taking support on the
initial automaton. Fix a guard based G such that 〈A, κ〉 is compatible with G.

Recall that for all ν ∈MQG, for all σ ∈ Σ and q′ ∈ Q we have

Uσ(ν)(q′) = {u(v) ∈ V | ∃q ∈ Q, v ∈ ν(q) and (v, u) ∈ gκ(q, γ, q′)}
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But if gκ can be decomposed on G it means that for all q, q′ ∈ Q and σ ∈ Σ, there exists
ν1
q,σ,q′ , . . . , ν

mq,σ,q′

q,σ,q′ and µ1
q,σ,q′ , . . . , µ

mq,σ,q′

q,σ,q′ such that gκ(q, γ, q′) =
⋃mq,σ,q′
i=1 νiq,σ,q′ × µiq,σ,q′ . Hence

if we write Q = {q1, . . . , qn}:

Uσ(ν)(q′) = {u(v) ∈ V | v ∈ ν(q1) ∩ ν1
q1,σ,q′ and u ∈ µ1

q1,σ,q′

or v ∈ ν(q1) ∩ ν2
q1,σ,q′ and u ∈ µ2

q1,σ,q′

...

or v ∈ ν(q1) ∩ ν
mq1,σ,q′

q1,σ,q′
and u ∈ µ

mq1,σ,q′

q1,σ,q′

or v ∈ ν(q2) ∩ ν1
q2,σ,q′ and u ∈ µ1

q2,σ,q′

...

...

or v ∈ ν(qn) ∩ νmqn,σ,q′qn,σ,q′
and u ∈ µmqn,σ,q′qn,σ,q′

}

This means that for all σ ∈ Σ, Uσ can be entirely described by a finite disjunction of rules of
the type

if v ∈ ν(q) ∩ ν then for all u ∈ µ, u(v)→ ν ′(q′)

which are easily understandable in a representation, and easily computable if we can enumerate
the set of v ∈ ν(q) and u ∈ µ.

Remark 5.1.1. This is exactly how we implement the update Uσ in our tool for diagnosis,
DOTA, which we will present in part III.

If we write ρ = {a1, . . . , amρ} and ρ′ = {b1, . . . , bm′ρ}, this also means that we have for all ν
such that supp(ν) = ρ:

supp(Uσ(ν)) = ρ′ ⇐⇒ ∀b ∈ ρ′,
[ν(a1) ∩ ν1

a1,σ,b1 6= ∅
or ν(a1) ∩ ν2

a1,σ,b 6= ∅
...

or ν(a1) ∩ νma1,σ,ba1,σ,b
6= ∅

or ν(a2) ∩ ν1
a2,σ,b 6= ∅

...

or ν(amρ) ∩ ν
mamρ,σ,b

amρ ,σ,b
6= ∅ ]

and ∀b 6∈ ρ′,
[ ν(a1) ∩ ν1

a1,σ,b = ∅
and ν(a1) ∩ ν2

a1,σ,b = ∅
...

and ν(amρ) ∩ ν
mamρ,σ,b

amρ ,σ,b
= ∅ ]
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This means that for all σ ∈ Σ, ν ∈ Gρ′,gσ ,ρ′ can be entirely described by the combination of a
simple formula describing supp(ν) = ρ and a finite formula with as atomic propositions

ν(q) ∩ ν 6= ∅ or ν(q) ∩ ν = ∅

which are again easily understandable in a representation, and easily computable if we can
decide ν(q) ∩ ν = ∅.

In the next section we take a look at what this construction looks like when applied to a
timed automaton.

5.2 Application to Timed Automata

Obviously timed automata as defined in this thesis (c.f. example 3.1.1) are concerned by
theorem 5.1.6.

Corollary 5.2.1. Let Σ a finite alphabet, M ∈ N and n ∈ N>0. All controlled timed automata
〈A,Tκ〉 ∈ ΣTAn

M without silent transitions is Σ-determinizable.

We propose in this section to take a look at the particular shape of the powerset automaton
of a timed automaton.

Fix below a finite alphabet Σ, M ∈ N, n ∈ N>0 and 〈A,Tκ〉 ∈ ΣTAn
M a timed automaton

without silent transition. We write A = 〈Q, I, T, F 〉.

I The powerset automaton of A, DκA is an automaton on MQCnM . The values are maps
from Q to sets of vectors of clocks which evolve all synchronously with time. This can be
easily implemented by lists of arrays.

I Updates can be represented by a finite disjunction of rules of the type

q : (x1 ∈ I1 ∧ x2 ∈ I2 · · · ∧ xn ∈ In) =⇒
m∧
i=0

instri

with m ∈ N. This expression if obtained by rewriting the updates form described at
the end of last section if v ∈ ν(q) ∩ ν then for all u ∈ µ, u(v) → ν ′(q′) in the context
of timed automata. We consider ”q : ” to stand for ”∀(x1, . . . , xn) ∈ ν(q)”, =⇒ is a
shortcut for if . . . then and for all i ∈ [[1,m]], instri is of the form,

0→ q′ or xk → q′ (for some k ∈ [[1, n]])

An instruction x → q means that in the resulting marking x will belong to the set asso-
ciated with q.

Those instructions can be easily computed.

I Guards can be represented by an update and a boolean formula with atomic propositions
of the form

q ∩ I = ∅

with q a state, I being either CnM , either a product of n intervals with as bounds two
consecutive integers, and q ∩ I stand for ν(q) ∩ I.

Those constraints can easily be effectively tested.
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In conclusion powerset automata of a timed automaton can be finitely represented and are
easily implementable. This makes them an interesting tool in the context of fault diagnosis and
we’ll dedicate the third part of this thesis to this problem.

Example 5.2.1. On figure 5.2 we give a representation of the powerset automaton of a famous
non-determinizable (in the sense of [4] ) timed automata, B, described on example 4.3.4 and
figure 4.4 .

For clarity sake, we omit in the representation to precise the part of the guard constraint
imposing supp(ν) = ρ since it can be deduced from the source state labeled by ρ (∀q ∈ ρ,ν(q) 6=
∅ and ∀q 6∈ ρ,ν(q) = ∅). We also omit to write x ∈ C1 =⇒ . . . and leave it blank instead.

{q1} {q1, q2}

{q1, q2, q3}

a,[
q1 : x→ q1

q1 : 0→ q2

] a, q2 ∩ {1} = ∅, q1 : x→ q1

q1 : 0→ q2

q2 : x 6= 1 =⇒ x→ q2



a, q2 ∩ {1} 6= ∅,
q1 : x→ q1

q1 : 0→ q2

q2 : x 6= 1 =⇒ x→ q2

q2 : x = 1 =⇒ x→ q3



a, q2 ∩ {1} 6= ∅,
q1 : x→ q1

q1 : 0→ q2

q2 : x 6= 1 =⇒ x→ q2

q2 : x = 1 =⇒ x→ q3



a, q2 ∩ {1} = ∅, q1 : x→ q1

q1 : 0→ q2

q2 : x 6= 1 =⇒ x→ q2



Figure 5.2: DB - Determinized automaton of B of Figure 4.4

We show on figure 5.4 an example of the runs associated to w = a · 2 · a · 0.3 · a · 0.4 · a · 0.6 · a
executed synchronously in B (example 4.4) and its powerset automaton DB (figure 5.2). The
tree at the top of figure 5.4 is the possible runs of the timed automaton B with, in gray, delays
and, in red, actions. The run below is the only run which recognizes w in DB, with delay in
gray and actions in red. The cyan dotted lines show how the configurations of DB summarize
all the reachable configurations of B at any moment of the run.

q1 q2 q3

a,C1, {id}

a,C1, {0}

a,C1 \ {1}, {id}

a, {1}, {id}

Figure 4.4: B, a non-determinizable TA (repeated from page 43)
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q1, 0B : q1, 2

q1, 2 q1, 2.3

q2, 0 q2, 0.3

q1, 2.3 q1, 2.7

q2, 0 q2, 0.4

q2, 0.3 q2, 0.7

q1, 2.7 q1, 3.3

q2, 0 q2, 0.6

q2, 0.4 q2, 1

q2, 0.7 q2, 1.3

q1, 3.3

q2, 0

q2, 0.6

q2, 1

q3, 1

q2, 1.3

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

2

0.3

0.3

0.4

0.4

0.4

0.6

0.6

0.6

0.6

{q1}
q1 {0}
q2 ∅
q3 ∅

DB :

{q1}
q1 {2}
q2 ∅
q3 ∅

{q1, q2}
q1 {2}
q2 {0}
q3 ∅

{q1, q2}
q1 {2.3}
q2 {0.3}
q3 ∅

{q1, q2}
q1 {2.3}
q2 {0,0.3}

q3 ∅

{q1, q2}
q1 {2.7}
q2 {0.4,0.7}

q3 ∅

{q1, q2}
q1 {2.7}
q2 {0,0.4,0.7}

q3 ∅

{q1, q2}
q1 {3.3}
q2 {0.6,1,1.3}

q3 ∅

{q1, q2, q3}
q1 {3.3}
q2 {0,0.6,1,1.3}

q3 {1}

a a a a2 0.3 0.4 0.6

Figure 5.4: Simulation of a · 2 · a · 0.3 · a · 0.4 · a · 0.6 · a
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Chapter 6

Timed Structure Equivalences

A Step Toward Strong Determinization

The last chapter introduced a determinization construction for all automata on timed do-
mains equipped with a timed control without silent transitions. The determinized automaton
is however constructed on a different timed structure obtained by an E-marking construction
(c.f. page 24), a kind of powerset construction. In the next chapter, we will prove that this
construction can also be used to study the more classical problem of determinization within
the same class, i.e. in our framework: without changing the timed structure. We will use our
technique to prove again the determinization results one can find in the literature and study
how they relate to each other.

In this overview of our work, this chapter consists of a theoretical interlude between those
two chapters. Its goal is to introduce two equivalences between timed structures which build an
important bridge between the clock structure (c.f. example 2.3.4 page 22) and the Q-marking
construction of the clock structure, i.e. a bridge between the timed structure used to model a
timed automaton and the timed structure model used in its powerset automata. This bridge will
help us expose some sufficient conditions allowing to construct from the powerset automaton of
a timed automaton, an equivalent deterministic timed automaton, i.e. to construct thanks to
our powerset construction the determinized timed automaton of a timed automaton.

Those equivalences are intuitive but their proofs require heavy technicalities, therefore we
chose to detail them in a separate chapter. We dedicate one section for each equivalence.

Section 6.1 : The first equivalence is similar to the equivalence result presented in [19]
between updatable timed automata and timed automata. It proves that an
enhanced timed automata without silent transitions can be simulated by a
timed automata without silent transitions. Recall that an enhanced timed
automaton is defined as an automaton on the enhanced clock timed structure
where values are partial functions and updates can reset, disable or swap
clocks (c.f. example 2.3.6 page 23).

Section 6.2 : The second equivalence closes the gap between an enhanced clock structure and
the timed structure of the powerset automaton of a timed automaton.
Precisely, given any timed structure S, we prove the equivalence between an
automaton on the E-marking construction of S bounded by some integer n
– the notion of bounded automaton will be defined in the section – and an
automaton on the E × [[1, n]] -map construction of S (c.f page 22).

Putting together those two equivalences draws an equivalence between bounded powerset au-
tomata of timed automata without silent transitions and timed automata without silent tran-
sitions.
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6.1 From Product to Maps

Let us study the particular shape of updates in the enhanced clock structure. We suppose
E = {x1, . . . , xn}.

Recall that an update uf is based on a partial function f from E to {id,0} × E. Let x be
a value in [E ⇀ CM ], let y = uf (x) and let e′ ∈ E. y(e′) = u(x(e)) with uf (e′) = (u, e) and
e ∈ dom(x) by definition. So if u = id, then y(e′) = x(e) and if u = 0, then y(e′) = 0. It’s
easy to see that the effect of uf on a value x can be intuitively represented by a combination
of operations of the type xi := 0 (reset of a clock, xi is mapped to 0 by uf (x)) or xi := xj (xi
is mapped to the previous value of xj uf (x)).

With this notice, the idea of the proof is to simulate a configuration (q,x) of an enhanced
timed automaton by a configuration ((q, f),−→y ) of a timed automaton such that f is partial
function describing where the value of a clock xi of x can be found within the clocks in −→y .

x
x1 x3 x6 x2 x5 x4

1.1 0.5 ⊥ 1.1 3.4 0.5

−→y
1 2 3 4 5 6

5.3 0.5 1.1 3.4 1.1 0.5

f

Figure 6.1: How x is recovered from a partial function f and a vector ~y

Then an update uf in the enhanced timed automaton is simulated by an update −→u depend-
ing on f and the adequate choice of a function f ′ for the destination state. They are chosen
such that all operations xi := 0 of u are simulated by the reset of one clock y0 in −→y and the
fact that f ′ picks the value of xi on y0; all operations xi := xj enforce that the clock y giving
its value to xj must not be reset by −→u and f ′ picks the value of xi on y.

x
x1 x3 x6 x2 x5 x4

1.1 0.5 ⊥ 1.1 3.4 0.5

−→y
1 2 3 4 5 6

5.3 0.5 1.1 3.4 1.1 0.5

f

=⇒

u : x3 := x2,
x2 := ⊥
x1 := 0

=⇒

−→u ′ : y1 := 0

u(x)
x1 x3 x6 x2 x5 x4

0 1.1 ⊥ ⊥ 3.4 0.5

−→y
1 2 3 4 5 6

0 0.5 1.1 3.4 1.1 0.5

f ′

Figure 6.2: How u is simulated by constructing ~u′ and f ′

Formally we provide below the formal statement and proof of the result.

Theorem 6.1.1. Let Σ be a finite alphabet, M ∈ N and C be a finite set.
For all controlled enhanced timed automata 〈A2,T

κ2〉 ∈ ΣTAC
M without silent transitions,

there exists a controlled timed automata 〈A1,T
κ1〉 ∈ ΣTA

|C|
M without silent transition which

simulates 〈A2,T
κ2〉.
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Proof.

Let’s writeA2 = 〈Q2, I2, T2, F2〉 and n = |C|. Let ind be any bijection from C to [[1, n]]. Let
Q1 = Q2 × [C ⇀ [[1, n]]], we are going to construct Ξ = (ζ, φ, ψ) candidate to be a Σ,Gn

M -
compatible, pre-functional bisimulation from Q1, CnM to A2, which is Σ-deterministic if
〈A2, κ2〉 is.

I Let ζ = Q1 → Q2 be the projection of Q1 on Q2. For all (q, f) ∈ Q1, ζ(q, f) = q.
The following lemma is trivial:

Lemma 6.1.2. ζ is surjective.

I For all (q, f) ∈ Q1, let φ(q,f) : CnM → CCM mapping any (x1, . . . , xn) to

φ(q,f)(x1, . . . , xn) : C ⇀ CM
e 7→ xf(e) if e ∈ dom(f)

Lemma 6.1.3. For all (q, f) ∈ Q1, φq1 is a functional bisimulation of timed domains.
For all q2,x2 ∈ I2, there exists f ∈ [C ⇀ [[1, n]]], there exists −→x 1 ∈ CnM , such that
φ(q2,f)(~x1) = x2.

Proof.

I Let (q, f) ∈ Q1. CnM and CCM are both deterministic and trivially for all d ∈ R≥0,

φ(q,f)((x1, . . . , xn)⊕ d) = φ(q,f)((x1, . . . , xn))⊕ d

so φ(q,f) is a functional bisimulation of timed domains.

I Let now q2,x2 ∈ I2.
Let f : C ⇀ [[1, n]], e 7→ ind(e) if e ∈ dom(x2).
Let −→x 1 = (x1, . . . , xn) with for all 1 ≤ i ≤ n :
• xi = x2(ind−1(i)) if ind−1(i) ∈ dom(x2)
• xi = 0 otherwise.

Then φ(q2,f)(
−→x 1) = x2.

�

We need to go through several steps before defining ψ. The first of which being the
introduction of a family ψ0 of functions at the core of the definition of ψ.

I For all f, f ′ ∈ [C ⇀ [[1, n]]]:
If dom(f) 6= ∅ then we write mf = ind−1(min(ind(dom(f)))).
mf is a clock of dom(f) mapped to the smallest element of [[1, n]].
We also fix a partial function pickf,f ′ : C ⇀ C such that:

• dom(pickf,f ′) = dom(f ′) ∩ f ′−1(im(f))

• for all e ∈ dom(pickf,f ′), pickf,f ′(e) ∈ f−1(f ′(e)).

We call such function the picking function on f and f ′.
This function returns, given a clock e mapped to i by f ′, another clock e′ mapped to
the same number i by f ′.
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I Now for all q1 = (q, f), q′1 = (q′, f ′) ∈ Q1:
Let ψ0

q1,q′1
: {id,0}n ⇀ [C ⇀ {id,0} × C] such that dom(ψ0

q1,q′1
) = ∅ if dom(f) = ∅,

otherwise:

dom(ψ0
q1,q′1

) = {(u1, . . . , un) ∈ {id,0}n | ∀1 ≤ i ≤ n, i 6∈ im(f) =⇒ ui = 0}

and defined for all (u1, . . . , un) ∈ dom(ψ0
q1,q′1

) by:

ψ0
q1,q′1

(u1, . . . , un) : C ⇀ {id,0} × C

e 7→ (id,pickf,f ′(e)) if uf ′(e) = id

e 7→ (0,mf ) if uf ′(e) = 0 and dom(f) 6= ∅

Notice that if uf ′(e) = id implies e ∈ dom(pickf,f ′) by definition of dom(ψ0
q1,q′1

).

For short we write for all −→u ∈ dom(ψ0
q1,q′1

), uq1,q′1,
−→u for the update of UC associated

to the partial function ψ0
q1,q′1

(−→u ).

Lemma 6.1.4. For all q1 = (q, f), q′1 = (q′, f ′) ∈ Q1, for all −→x ∈ CnM and for all
−→u ∈ dom(ψ0

q1,q′1
), it holds that

φq′1(−→u (−→x )) = uq1,q′1,
−→u (φq1(−→x ))

Proof.

I If dom(f) = ∅, dom(ψ0
q1,q′1

) = ∅ and the result is trivially true.

I Assume dom(f) 6= ∅.
Let’s write −→x = (x1, . . . , xn) and −→u = (u1, . . . , un).
Let e ∈ C.
I Suppose uf ′(e) = id,

φq′1(−→u (−→x ))(e) = uf ′(e)(xf ′(e)) = xf ′(e)

= xf(pickf,f ′ (e))
= uf ′(e)(xf(pickf,f ′ (e))

)

= uq1,q′1,
−→u (φq1(−→x ))(e)

I Suppose uf ′(e) = 0

φq′1(−→u (−→x ))(e) = uf ′(e)(xf ′(e))

= 0

= uf ′(e)(mf )

= uq1,q′1,
−→u (φq1(−→x ))(e)

I Suppose finally e 6∈ dom(f ′).
φq1(−→u (−→x ))(e) is not defined and uq1,q′1,

−→u (φq1(−→x ))(e) is not defined either.

�
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I Let now q1 = (q, f) ∈ Q1, q′ ∈ Q2 and g ∈ [C ⇀ {id,0} × C]:
I We define, for all 1 ≤ i ≤ n,

ui =


0 if i 6∈ im(f)
0 if i ∈ im(f) and ∀e′ ∈ f−1(i), (id, e′) 6∈ im(g)
id otherwise

and −→u q1,q′,g = (u1, . . . , un).

Let i0 = min1≤i≤n(ui = 0) if it exists. Notice that:

If there exists e ∈ dom(g) such that g(e) = (0, e′) with e′ ∈ dom(f) and uf(e′) = id,
then i0 is well-defined.

Indeed, exists (id, e′′) ∈ im(g) such that f(e′′) = f(e′), so:
I If e′′ 6= e′, then f is not injective and im(f) 6= [[1, n]], which ensures the

existence of i0.

I If e′′ = e′, then there exists e(3) ∈ C such that neither (id, e(3)) nor (0, e(3))
are in im(g), by a cardinality argument.

I If e(3) 6∈ dom(f) then im(f) 6= [[1, n]] which ensures the existence of i0.

I Else if f−1(f(e(3)) is not reduced to e(3), then f is not injective
and im(f) 6= [[1, n]] which ensures the existence of i0.

I Finally if f−1(f(e(3)) is reduced to e(3), the property:

∀e(4) ∈ f−1(f(e(3)), (e(4), id) 6∈ u2(C)
is verified and uf(e(3)) = 0, which ensures the existence of i0.

�

I We define f ′q1,q′,g : C ⇀ [[1, n]] as follows:

− if e ∈ dom(g) and g(e) = (id, e′) with e′ ∈ dom(f):
f ′q1,q′,g(e) = f(e′)

− if e ∈ dom(g), g(e) = (0, e′) with e′ ∈ dom(f) and uf(e′) = 0:

f ′q1,q′,g(e) = f(e′)

− if e ∈ dom(g), g(e) = (0, e′) with e′ ∈ dom(f) and uf(e′) = id:

f ′q1,q′,g(e) = i0
We write qq1,q′,g = (q′, fq1,q′,g).

Finally we write uq1,q′,g = uq1,qq1,q′,g ,
−→u q1,q′,g

.
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Lemma 6.1.5. For all −→x ∈ CnM , uq1,q′,g(φq1(−→x )) = ug(φq1(−→x )).

Proof.

Let e ∈ C and let’s write −→x = (x1, . . . , xn) ∈ CnM .
Let x = φ(q,f)(

−→x ).

I Suppose dom(f) = ∅.
Then dom(f ′q1, q

′, g) = ∅ and uq1,q′,g(x)(e) is not defined, neither is ug(x)(e).
I Suppose now dom(f) 6= ∅.
I Suppose e ∈ dom(g) and g(e) = (u, e′) with u ∈ {id,0} and e′ 6∈ dom(f).

Then ug(x)(e) is not defined.
Also e 6∈ dom(f ′q1, q

′, g) and uq1,q′,g(x)(e) is not defined either.
I Suppose e ∈ dom(g) and g(e) = (id, e′) with e′ ∈ dom(f).

Then f ′q1,q′,g(e) = f(e′) and uf ′
q1,q
′,g(e) = id.

uq1,q′,g(x)(e) = x(pickf,f ′
q1,q
′,g

(e))

= xf(pickf,f ′
q1,q
′,g

(e))

= xf ′
q1,q
′,g(e)

= xf(e′) = x(e′) = ug(x)(e)

I Suppose e ∈ dom(g) and g(e) = (0, e′) with e′ ∈ dom(f).
I Suppose uf(e′) = 0.

Then f ′q1,q′,g(e) = f(e′) and uf ′
q1,q
′,g(e) = 0.

uq1,q′,g(x)(e) = 0 = ug(x)(e)
I Suppose uf(e′) = id.

Then f ′q1,q′,g(e) = i0 and uf ′
q1,q
′,g(e) = ui0 = 0.

uq1,q′,g(x)(e) = 0 = ug(x)(e)
�

For all q1 = (q, f) ∈ Q1 and Gg,ug ∈ GM,C a guard on CCM , we say that f and g are
coherent if and only if:

• dom(g) = dom(f)

• for all e, e′,∈ dom(f), if f(e) = f(e′) then νe = ν ′e, where g(e) = (νe, µe) and
g(e′) = ν ′e, µ

′
e

Let again q1 = (q, f) ∈ Q1, q′ ∈ Q2 and g ∈ [C ⇀ {id,0} × C].
Let also Gg,ug = (ν, {ug}) ∈ GM,C such that f and g are coherent.

Let νq1,q′,g,g = I1 × · · · × In with for all 1 ≤ i ≤ n:
• If i 6∈ im(f) then Ii = CM
• Else Ii = νe given any e ∈ f−1(i) with g(e) = (νe, µe), which is well-defined since,

by coherence of f and g, the choice of the inverse image of i by f does not matter.
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Lemma 6.1.6. (φ−1
q1 (ν), {−→u q1,q′,g}) = (νq1,q′,g,g), {−→u q1,q′,g}) is decomposable on Gn

M

Proof.

Obviously (νq1,q′,g,g, {
−→u q1,q′,g}) is decomposable in Gn

M .
I By definition of φq1 and Gg,ug , for all −→x ∈ νq1,q′,g,g, φq1(−→x ) ∈ ν.
I Let now −→x = (x1, . . . , xn) ∈ φ−1

q1 (ν), then for all 1 ≤ i ≤ n:

• If i 6∈ im(f), then xi ∈ Ii = CM .
• If i ∈ im(f), then xi = xf(e) = φq1(−→x )(e) for some e ∈ f−1(i).

Since dom(f) = dom(g), e ∈ dom(g) and
since φq1(−→x ) ∈ ν, xf(e) ∈ νe = Ii with g(e) = (νe, µe).

So finally −→x ∈ νq,f,q′,g,g.

By double inclusion we proved that

(φ−1
q1 (ν), {−→u q1,q′,g}) = (νq1,q′,g,g), {−→u q1,q′,g}) is decomposable on Gn

M

�

We are ready now to define ψ. Let q1 = (q, f), q′1 = (q′, f ′) ∈ Q1 and σ ∈ Σ.

gκ2(q, σ, q′) is decomposable on GM,C .
Hence there exists Gg1,ug1

, . . . , Ggn,ugn ∈ GM,C such that gκ2(q, σ, q′) = {Gg1,ug1
, . . . , Ggn,ugn}.

I We define Dq1,q′1,σ
as the set of pairs (−→x ,−→u ) ∈ CnM × {id,0}n for which there

exists 1 ≤ i ≤ n such that :
• −→x ∈ νq1,q′,gi,gi
• −→u = −→u q1,q′,gi
• gi and f are coherent
• f ′ = f ′q1,q′,gi

I We also define Dq1,q′1
as the set of pairs (−→x ,−→u ) ∈ CnM × {id,0}n for which

there exists σ ∈ Σ such that (−→x ,−→u ) ∈ Dq1,q′1,σ
.

I We can define then:

ψq1,q′1 : CnM × {id,0}n ⇀ {id,0}C
(−→x ,−→u ) 7→ ug if (−→x ,−→u ) ∈ Dq1,q′1

and −→u = −→u q1,q′,g

Let’s prove below that Ξ = (ζ, φ, ψ) with φ = (φq1)q1∈Q1 and ψ = (ψq1,q′1)q1,q′1∈Q1
is a

pre-functional bisimulation from Q1,CnM to A2.
We check it verifies conditions (A) to (D) of proposition 3.2.2.

(A/B) This is lemma 6.1.2 and 6.1.3.

(C) For all q1, q
′
1 ∈ Q1:

(C.1) According to lemma 6.1.4 and lemma 6.1.5 for all (−→x ,−→u ) ∈ Dq1,q′1
such that

−→u = −→u q1,q′,g:

φq1(−→u (−→x )) = uq1,q′1,
−→u (φq1(−→x )) = ug(φq1(−→x )) = ψq1,q′1(−→x ,−→u )(φq1(−→x ))

(C.2) By definition of Dq1,q′1
, we also know that there exists σ ∈ Σ,

(φq1(−→x ), ψq1,q′1(−→x ,−→u )) ∈ gκ2(q, σ, q′) ⊆ gA2(q, q′)
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(D) Let now q1 = (q, f) ∈ Q1, −→x ∈ dom(φq1), q′ ∈ Q2 and g ∈ [C ⇀ {id,0} × C].
Suppose (φq1(−→x ),ug) ∈ gaccA2

(q, q′).

I We show below that (−→x ,−→u q1,q′,g) ∈ Dq1,q′1
.

Let Gg,ug = (ν, {ug}) ∈ gκ2(q, κ2(q, φq1(−→x ),ug, q
′), q′) such that φq1(−→x ) ∈ ν.

Such Gg,ug exists since (φ1(−→x ),ug) ∈ gaccA2
(q, q′).

dom(g) = dom(φq1(−→x )) = f by definition.
Let e, e′ ∈ dom(f).
Suppose f(e) = f(e′).
Then φq1(−→x )(e) = xf(e) = xf(e′) = φq1(−→x )(e′), and if we write,

g(e) = (νe, µe) and g(e′) = (ν ′e, µ
′
e), this means that xf(e) ∈ νe ∩ ν ′e.

Since GM is a guard base, νe ∩ νe′ 6= ∅ implies νe × {id} ∩ νe′ × {id} 6= ∅
which means that νe = ν ′e are that g and f are coherent.
This allows us to conclude that:
(−→x ,−→u q1,q′,g) ∈ νq1,q′,g,g × {

−→u q1,q′,g} ⊆ Dq1,q′1
.

By definition then, ψq1,(q′,f ′q1,q′,g
)(
−→x ,−→u q1,q′,g) = ug.

According to proposition 3.2.2 then, Ξ is a pre-functional bisimulation from Q1, CnM to A2.

I Moreover, we constructed ψ such that for all q1 = (q, f), q′1 = (q′, f ′) ∈ Q1, for all
σ ∈ Σ, if Gq1,q′1,σ

= {Gg,ug ∈ gκ2(q, σ, q′) | g and f are coherent and f ′ = f ′q1,q′,g)},
then:

domσ(ψq1,q′1) = Dq1,q′1,σ
=

⋃
Gg,ug∈Gq1,q

′
1,σ

νq1,q′,g,g × {
−→u q1,q′,g)}

is decomposable on Gn
M by definition.

Hence Ξ is a Σ,Gn
M -compatible pre-functional bisimulation from Q1, CnM to A2.

I Suppose finally that A2 is κ2-deterministic.
I Let q1, q

′
1 ∈ Q1.

By design domε(ψq1,q′1) = ∅.
I Let now (q1,

−→x ) ∈ Q1 × CnM and σ ∈ Σ.
Suppose there exists −→u ∈ {id,0}n and q′1 = (q′, f ′) ∈ Q1 such that (−→x ,−→u ) ∈ domσ(ψq1,q′1).

Then ug = ψq1,q′1(−→x ,−→u ) is the unique update and q′ is the unique state such that

(φq1(−→x ),ug) ∈ gκ2(q, σ, q′) by κ2-determinism of A2.
Let Gg,ug be the unique element of gκ2(q, σ, q′) such that (φq1(−→x ),ug) ∈ Gg,ug .
It exists since T κ2 is compatible with the guard base {id,0}C .
Necessarily then f ′ = f ′q1,q′,g and −→u = −→u q1,q′,g by definition of domσ(ψq1,q′1).

Finally notice that (CnM , ↪→) is deterministic so, in fine
Ξ is a Σ-deterministic, Σ,Gn

M -compatible pre-functional bisimulation
from Q1, CnM to A2.

By application of proposition 4.3.5 and 4.3.4, there exists a controlled timed automata

〈A1,T
κ1〉 ∈ ΣTA

|C|
M which simulates simulates 〈A2,T

κ2〉.
By definition of Ξ−1(κ2), since domε(ψq1,q′1) = ∅, 〈A1,T

κ1〉 is without silent transitions
�
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For examples of the simulations of enhanced timed automata by timed automata and for a
simpler proof of this result made in the classical framework of timed automata, we advise the
reader to see the work of [19]. The goal of this section is to formally ensure that we recover
their result in our new framework.

6.2 From Maps to Bounded Markings

The idea of the proof is to simulate a configuration (q,ν) of an automaton on MES, by a
configuration (q,x) of a automaton on [E × [[1, n]] ⇀ S] where n is the bound on the size of the
sets associated to each elements of e. All elements in ν(e) are distributed within the indexes
(e, 1) to (e, n) in x.

ν

e1 e2 e3

{v1; v2} { v3 } { v4 }

x
e1; 1 e1; 2 e2; 1 e2; 2 e3; 1 e3; 2
v1 v2 v3 ⊥ v4 ⊥

x(ei × [[1, n]]) = ν(ei)

Figure 6.3: How marking ν bounded by 2 is recovered from a partial function x

Indirectly an update in MEU repeatedly select in a set ν(e) all values within some set
(defined by the guard function), apply to them all the update in U in another set (also defined
by the guard function) and finally put them in another set ν(e′). If there is no more than n
of such update in U to be applied we can track one by one which update is applied to which
value in which set and put in what set, and be able to reconstruct an update in UE with that
information.

ν

{v1; v2} { v3 } { v4 }
e1 e2 e3

Uσ(ν)
e1 e2 e3

{ u1(v1),
u1(v4) } {} { u2(v4),

u2(v2) }

Uσ

ν1,{u1}
ν2,{u2}

ν4,
{u2}

ν4,{u1}

=⇒

=⇒ x
e1; 0 e1; 1 e2; 0 e2; 1 e3; 0 e3; 1
v1 v2 v3 ⊥ v4 ⊥

u(x)
e1; 0 e1; 1 e2; 0 e2; 1 e3; 0 e3; 1
u1(v1)u1(v4) ⊥ ⊥ u2(v4)u2(v2)

u u1
u1

u2 u2

Figure 6.4: How Uσ is simulated by constructing u

We have to begin with some definitions to formally state the hypotheses an automaton has
to satisfy.

A marking ν ∈MEV is said to be bounded by an integer n ∈ N if for all e ∈ E, |ν(e)| ≤ n.
We write MEV≤n for the set of markings bounded by n. We say that a set of markings
is bounded by n if all of its elements are bounded by n. Given an automaton A = 〈Q, I,
T, F 〉 ∈ A(MES), we say that A is bounded by n if {ν ∈MEV | ∃q ∈ Q, (q,ν) ∈ Reach(A)}
is bounded by n.

Given an automaton A = 〈Q, I, T, F 〉 ∈ A(MES), we say that A is strongly bounded by n if
for all (q,ν) ∈ I, ν ∈MEV≤n and for all q, q′ ∈ Q, for all (ν,Ug) ∈ gaccA (q, q′), for all e′ ∈ E,

|{(v, u) ∈ V × U | ∃e ∈ E, v ∈ ν(e) and (v, u) ∈ g(e, e′)}| ≤ n
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We can easily prove by induction that an automaton strongly-bounded by n is bounded by n.
Let, for some finite alphabet Σ, 〈A, κ〉 ∈ A(MES,Σ), we say that 〈A,Tκ〉 is bounded (resp.

strongly bounded) by an integer n if A is bounded (resp. strongly bounded).
Finally we say that a guard base G is strongly disjoint if and only if for all (ν, µ), (ν ′, µ′) ∈ G,

ν = ν ′ or ν ∩ ν ′ = ∅.

Theorem 6.2.1. Let Σ be a finite alphabet and n ∈ N. Let SG be a guarded deterministic
timed structure, with G finite, spanning (definition 2.3.3) and strongly disjoint. Let 〈A2,T

κ
2〉 ∈

A(MESG,Σ), strongly bounded by n and without silent transitions.

There exists a deterministic controlled automaton 〈A1,T
κ
1〉 ∈ A(SE×[[1,n]]

G ,Σ) without silent
transitions which simulates 〈A2,T

κ
2〉.

Proof.

Let’s write A2 = 〈Q2, I2, T2, F2〉 and S = 〈V, ↪→, U〉.
Let Q1 = Q2 = Q, we are going to construct Ξ = (ζ, φ, ψ) candidate to be a
Σ, [E × [[1, n]] ⇀ G]-compatible, Σ-deterministic pre-functional bisimulation from

Q1,SE×[[1,n]] to A2.
I Let ζ = idQ. Trivially

Lemma 6.2.2. ζ is surjective.

I For all q ∈ Q1, let φq : [E × [[1, n]] ⇀ V ]→MEV mapping any x to

φq(x) : E ⇀ P(V )

e 7→ x({e} × [[1, n]])

We clearly have φq(V
E×[[1,n]]) = MEV≤n.

Lemma 6.2.3. For all q ∈ Q, φq is a functional bisimulation of timed domains. For all
q2,ν2 ∈ I2, exists x1 ∈ [E × [[1, n]] ⇀ V ] such that φq(x1) = ν2.

Proof.

I Let q ∈ Q. Since S is deterministic, both [E ⇀ S] and MES are deterministic
and for all d ∈ R≥0,

φq(x⊕ d) = φq(x)⊕ d

by definition. Hence φq is a functional bisimulation of timed domains.

I Let now (q2,ν2 ∈ I2).
We choose x1 within φ−1

q (ν2), and q1 = q2.

�

We need to prove several intermediate results before being able to define φ. First, we’ll
try to outline the guards which will enter in the definition of the domain of ψ. Then we’ll
discuss how to construct an update in UE which simulates an update Ug.
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I Fix a guard (Gρ,g,ρ′ ,Ug) ∈MEG and let’s write for all e, e′ ∈ E,

g(e, e′) =

me,e′⋃
k=1

νke,e′ × µke,e′

such that for all e, e′ ∈ E, for all k 6= j ∈ [[1,me,e′ ]],

• νke,e′ 6= νje,e′
• µke,e′ = µ1 ∪ · · · ∪ µl with for all 1 ≤ i ≤ l, (νke,e′ , µi) ∈ G.

Let q, q′ ∈ Q and x ∈ φ−1
q (Gρ,g,ρ′).

We write ν = φq(x).
Suppose (ν,Ug) ∈ gaccA2

(q, q′), we say that x is φq-accessible.

I By hypothesis we know since A2 is strongly bounded by n that for all e′ ∈ E,
|Fx,e′ | ≤ n, where Fx,e′ = {(v, u) ∈ V × U | ∃e ∈ E, v ∈ ν(e) and (v, u) ∈ g(e, e′)}.
Let for all e′ ∈ E, indx,e′ be an injection from Fx,e′ to [[1, n]].
We define for all e′ ∈ E, f0

x,e′ : Fx,e′ → E × [[1, n]] such that

for all (v, u) ∈ Fe′ , x(f0
x,e′(v, u)) = v.

Such function f0
x,e′ exists by definition of φq.

We define then fx : E × [[1, n]] ⇀ U × E × [[1, n]] such that
dom(fx) = {(e′, j) ∈ E × [[1, n]] | j ∈ im(indx,e′)} and
for all (e′, j) ∈ dom(fx), fx(e′, j) = (u, f0

x,e′(v, u)) with indx,e′(v, u) = j.

Because G is a spanning guard base, we know that exists hx such that ufx ,hx is
compatible with G and (x,ufx) ∈ Ghx,ufx

× {ufx}.

Let’s write for all (e, i) ∈ E × [[1, n]],

hx(e, i) = (νe,i, µe,i)
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Lemma 6.2.4. For all x, φq-accessible, for all y ∈ Ghx,ufx

φq(y) ∈ Gρ,g,ρ′ and φq′(ufx(y)) = Ug(φq(y))

Proof.

Let x, φq-accessible and y ∈ Ghx,ufx
.

I For all e′ ∈ E, by definition :
φq′(ufx(y))(e′) = {ux(y)(e′, j), j ∈ [[1, n]]} and
Ug(φq′(y))(e′) = {u(v), (u, v) ∈ Fy,e′}.

I We prove below that for all e′ ∈ E,
{ux(y)(e′, j), j ∈ [[1, n]]} = {u(v), (u, v) ∈ Fy,e′}.
Let e′ ∈ E.
I Let j ∈ [[1, n]] and suppose (e′, j) ∈ dom(ux(y)) .

Then (e′, j) ∈ dom(fx) and fx(e′, j) = (u, f0
x,e′(u, v)) with

ind−1
x,e′(j) = (u, v), by definition.

Let (e, i) = f0
x,e′(u, v).

By definition v = x(e, i) ∈ νe,i and exists k ∈ [[1,me,e′ ]] such that
(v, u) ∈ νke,e′ × µke,e′ .
Since G is strongly disjoint this means that νe,i = νke,e′ .

We know by hypothesis on y that y(e, i) ∈ νe,i.
Hence (y(e, i), u) ∈ νke,e′ × µke,e′ and (y(e, i), u) ∈ Fy,e′ .

Since ux(y)(e′, j) = u(y(f0
x,e′(u, v))) = u(y(e, i)),

ux(y)(e′, j) ∈ {u(v), (u, v) ∈ Fy,e′}.
I Let (u, v) ∈ Fy,e′ .

By definition exists (e, i) ∈ E × [[1, n]] such that y(e, i) = v.
This means that v ∈ νe,i.
Exists also k ∈ [[1,me,e′ ]] such that (v, u) ∈ νke,e′ × µke,e′ .
Since G is strongly disjoint this means that νe,i = νke,e′ .

Let v′ = x(e, i), well-defined since dom(x) = dom(hx) = dom(y).
(v′, u) ∈ νe,i × µke,e′ = νke,e′ × µke,e′ .
This means that (v′, u) ∈ Fx,e′ , let j = indx,e′(v

′, u)).
fx(e′, j) = (u, f0

x,e′(v
′, u)) = (u, (e, i)).

So u(v) = u(y(e, i)) = ufx(y)(e′, j) ∈ {ux(y)(e′, j), j ∈ [[1, n]]}.
This proves that φq′(ufx(y)) = Ug(φq(y)).

I Notice that since dom(x) = dom(hx) = dom(y),
by definition of φq, supp(φq(y)) = supp(φq(x)) = ρ.
And according to what we just proved:
supp(Ug(φq(y))) = supp(φq′(ufx(y)))

= supp(φq′(ufx(y)))
= {e′ ∈ E,∃j ∈ [[1, n]], (e′, j) ∈= dom(fx)}
= supp(φq′(ufx(x)))
= ρ′

So φq(y) ∈ Gρ,g,ρ′ .
�
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We are ready now to define ψ. Let q, q′ ∈ Q and σ ∈ Σ.

I We define:

Dq,σ,q′ =
⋃

(Gρ,g,ρ′ ,Uσ)∈gκ2 (q,σ,q′)

⋃
x∈φ−1

q (Gρ,g,ρ′ ) | (φq(x),Ug)∈gaccA2
(q,q′)

Ghx,ufx
× {ufx}

and
Dq,q′ =

⋃
σ∈Σ

Dq,σ,q′

I We define then:

ψq,q′ : [E × [[1, n]] ⇀ V ]× UE ⇀ MEU

(x,ufx) 7→ Ug if (x,ufx) ∈ Dq,σ,q′ and (x,ufx) ∈ Ghx,ufx
× {uffx}

Let’s prove below that Ξ = (ζ, φ, ψ) with φ = (φq)q∈Q and ψ = (ψq,q′)q,q′∈Q1 is a
pre-functional bisimulation from Q,[E[[1, n]] ⇀ S] to A2.

We check it verifies conditions (A) to (D) of proposition 3.2.2.

(A) This is lemma 6.2.2.

(B) This is lemma 6.2.3.

(C) Let q, q′ ∈ Q1, let (y,u) ∈ dom(ψq,q′).

(C.1) We know that exists σ ∈ Σ, (Gρ,g,ρ′ , Ug) ∈ gκ2(q, σ, q′), and x ∈ φ−1
q (Gρ,g,ρ′)

such that (φq(x),Ug) ∈ gaccA2
(q, q′) and (y,u) ∈ Ghx,ufx

×{ufx}. Then u = ufx ,
ψq,q′(x,u) = Ug and according to lemma 6.2.4:

φq′(u)(y)) = ψq,q′(x,u)(φq(y))

(C.2) According to lemma 6.2.4, we know that

(φq(y), Ug) ∈ Gρ,g,ρ′ × {Ug} ⊆ gκ2(q, σ, q′) ⊆ gA2(q, q′)

which is enough to conclude.

(D) Let now q ∈ Q, x ∈ dom(φq), q
′ ∈ Q2 and Ug ∈MEU .

Suppose (φq(x),Ug) ∈ gaccA2
(q, q′).

Because Tκ
2 is compatible with MEG, we know that

exists σ ∈ Σ and (Gρ,g,ρ′ ,Ug) ∈ gκ2(q, σ, q′) such that (φq(x),Ug) ∈ (Gρ,g,rho′ ,Ug).
By definition of Dq,σ,q′ , this implies that Ghx,ufx

⊆ dom(φq,q′),

which means that ψq,q′(x,ufx) = Ug.

According to proposition 3.2.2 then, Ξ is a pre-functional bisimulation from Q1, CnM to A2.

71



I Moreover, we constructed ψ such that for all q, q′ ∈ Q, for all σ ∈ Σ,
domσ(ψq,q′) = Dq,σ,q′ is a union of elements of [E ⇀ G].
We just have to notice that G being finite by hypothesis, [E ⇀ G] is finite and
Dq,σ,q′ is then a finite union of elements of [E ⇀ G].
So domσ(ψq,q′) is decomposable on [E ⇀ G],
Hence Ξ is a Σ, [E ⇀ G]-compatible pre-functional bisimulation from Q, [E ⇀ G] to A2.

I Suppose finally that A2 is κ2-deterministic.
I Let q, q′ ∈ Q1.

By design domε(ψq,q′) = ∅.
I Let now (q,x) ∈ Q× [E ⇀ V ] and σ ∈ Σ.

Suppose exists u ∈ UE and q′ ∈ Q such that (x,u) ∈ domσ(ψq,q′).
Then Ug = ψq,q′(x,u) is the unique update and q′ is the unique state such that
(φq(x),Ug) ∈ gκ2(q, σ, q′) by κ2-determinism of A2.
By definition then u have to be equal to ufx .
And (ufx , q

′) is the unique pair such that (x,ufx) ∈ domσ(()ψq,q′).

Finally notice that by hypothesis S is deterministic so, in fine
Ξ is a Σ-deterministic, Σ,Gn

M -compatible pre-functional bisimulation
from Q1, CnM to A2.

By application of proposition 4.3.5 and 4.3.4, exists a controlled timed automata
〈A1,T

κ1〉 ∈ A([E ⇀ S],Σ) which simulates simulates 〈A2,T
κ2〉.

By definition of Ξ−1(κ2), since domε(ψq1,q′1) = ∅, 〈A1,T
κ1〉 is without silent transitions

�

We give below an example of the construction of an enhanced timed automata simulating
the powerset automaton of the timed automata A of figure 6.5 below.

q1 q0 q2

a, x = 1, x := 0

b, x = 1, x := 0

a, x = 1, x := 0

b, x < 1

Figure 6.5: Timed Automaton A

The graph of the powerset automaton of A constructed following the method of chapter 5
is given in figure 6.6 below.

This powerset automaton is strongly bounded by 2, therefore we can apply our construction
to create a deterministic enhanced timed automaton which simulates the powerset automaton
of A, hence simulates A. We give a representation of the enhanced automaton obtained by this
technique in figure 6.7 below. According to the construction we’ve described in this section,
the enhanced timed automaton we get has six clocks, x1

q0 , x
2
q0 , x

1
q1 , x

2
q1 , x

1
q2 and x2

q2 . The initial
configuration is (q0, [x

1
q0 7→ 0]) (meaning that all other clocks are undefined).
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{q0} {q1, q2}

a, q0 ∩ {1} 6= ∅[
q0 : x = 1 =⇒ 0→ q1

q1 : x = 1 =⇒ 0→ q2

]

b, q1 ∩ [0, 1[∪q2 ∩ {1} 6= ∅[
q1 : x < 1 =⇒ x→ q0

q2 : x = 1 =⇒ 0→ q0

]
Figure 6.6: Powerset Automaton of A

{q0} {q1, q2}

g1

g2

g3

g4

g1 : a, x1
q0 = 1 ∨ x2

q0 = 1, x1
q0 := ⊥, x2

q0 := ⊥, x1
q1 := 0, x2

q2 := 0

g2 : b, x1
q1 < 1 ∧ x1

q2 6= 1, x1
q1 := ⊥, x1

q2 := ⊥, x1
q0 := x1

q1

g3 : b, x1
q1 >= 1 ∧ x1

q2 = 1, x1
q1 := ⊥, x1

q2 := ⊥, x1
q0 := 0

g4 : b, x1
q1 < 1 ∧ x1

q2 = 1, x1
q1 := ⊥, x1

q2 := ⊥, x1
q0 := x1

q1 , x
2
q0 := 0

Figure 6.7: Deterministic Enhanced Timed Automaton Simulating A
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Chapter 7

Application to Classes of Timed
Automata

Recovering Determinizable Classes

In chapter 5 we already recalled that a formal model is usually called determinizable if it
is closed by determinization. When this property is proved to be false the considered solution
is to expose subclasses of the said models, either stable by determinization, or determinizable
within the class.

For quantitative systems, which are rarely closed by determinization, there has been a
certain amount of work done to find determinizable subclasses. Visibly pushdown automata are
proved to be stable by determinization [7]. There are semi-algorithms which provide when they
terminate, a determinized weighted automata [39] [43]. For timed automata, several subclasses
have been proved to be stable w.r.t. determinization [5] [45] ; also several algorithm allow
determinization of some timed automaton which respects given properties [10] [15] [48].

Our results on the determinization of automata on timed systems exposed on chapter 5 and
not only useful for diagnoser construction but can also be used in the search of classes closed by
determinization. We show this can be done in the last two chapters of this part of the thesis.
Chapter 8 will focus on the classes we could classify as input determined, whereas this chapter
recovers the other determinization results known about timed automata :

Section 7.1 : First we prove that for a timed automaton which admits a bounded powerset
automaton, we can construct an equivalent deterministic timed automaton.
This result is to be put in relation with the work done in [10].

Section 7.2 : In the second section we discuss the application to our results to strongly
non-Zeno timed automata [10], 0-bounded timed automata [45], integer reset
timed automata [49] and perturbed timed automata [6]. We also study a new
class of timed automata where at some point different clock values do not imply
different behaviors. We call them finally imprecise timed automata.

Thanks to our more general new approach we can put those results in perspective and sketch a
common property for all those classes. Our conclusion on this matter is that, even if the variety,
not only of classes but also of determinization notions considered, harden the definition of a
clear and formal common property, it appears that we can establish the link, for an automaton
on a timed structure, between the existence of a determinized automaton on the same time
structure, and the ability to bound in some sense its powerset automaton. The intuitive idea we
emitted above relies on the similarity we found in the proofs in our framework of those different
results.
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7.1 Application to Timed Automata

We’ve already discussed how theorem 5.1.6 can be set for timed automaton without silent
transitions and said a few words about the powerset automaton of a timed automaton. In this
section, we look at how theorems of chapter 6 can be applied to strongly determinize a timed
automaton (i.e. construct a deterministic timed automaton which simulates the original).

Theorem 7.1.1. Let Σ be a finite alphabet and M,B, n ∈ N with n > 0. Let 〈A,Tκ〉 ∈ ΣTAn
M

without silent transitions, such that A = 〈Q, I, T, F 〉.
If DκA is bounded by B then there exists 〈A′,Tκ′〉 ∈ ΣTA

2nB|Q|2
M deterministic and without

silent transitions such that Lκ′(A′) = Lκ(A).

For the proof of this theorem, we advise the reader to get familiar again with the definitions
given in section 6.2. In particular those of spanning guards page 21, of strongly disjoint guards
page 68 and of strong boundedness page 67.

Proof.

Recall that A ∈ A(CnM ).
This implies that DκA is in A(MQCnM ) by theorem 5.1.6.
Gn
M is finite, spanning and strongly disjoint by definition.

I We prove below that DκA is strongly bounded by 2|Q|B.
By hypothesis, DκA is bounded by B.
We are sure then that for all (ρ,ν) ∈ DκI, ν ∈MQ(CnM )≤2|Q|B.

Consider now ρ, ρ′ ∈ P(Q), (ν,Uσ) ∈ gaccDκA
(ρ, ρ′) and q′ ∈ Q.

|{(v, u) ∈ CnM × {id,0}|∃q ∈ Q, v ∈ ν(q) and (v, u) ∈ gDκ(q, σ, q′)}|
≤ |{(v, u) ∈ CnM × {id,0}|∃q ∈ Q, v ∈ ν(q)}|
≤ |{(v, u) ∈ ν(q)× {id,0}, q ∈ Q}
≤ 2Σq∈Q|ν(q)|
≤ 2|Q||B| by hypothesis, because, since ν is reachable, ν is bounded.
Which proves that DκA is strongly bounded by 2|Q|B.

According to theorem 6.2.1, there exist 〈A′′, κ′′〉 ∈ A((CnM )Q×[[1,2|Q|B]],Σ)
without silent transitions which simulates 〈DκA,T

Dκ〉.
This means that A′′ is κ′′-deterministic and that Lκ′(A′′) = LDκ(DκA) = Lκ(A).

As noticed in remark 2.3.3, it is equivalent to say that A′′ ∈ A(CQ×[[1,2|Q|B]]×[[1,n]]
M ).

In other words 〈A′′,Tκ′′〉 ∈ ΣTA
Q×[[1,2|Q|B]]×[[1,n]]
M .

Applying theorem 6.1.1, we get the existence of 〈A′,Tκ′〉 ∈ ΣTA
|Q|×2|Q|B×n
M )

without silent transitions which simulates 〈A′′,Tκ′′〉.
This means that A′ is κ′-deterministic and that Lκ′(A′) = Lκ′′(A′′) = Lκ(A).

�

This last theorem is in close relation to the result of [10] . We find in both results and
proofs, this idea that the set of different values that can be reached following one run has to be
bounded. In [10] this allows the authors to fix a finite set of clocks and, by permutation of the
clocks, to always be able to represent all possible clocks reached with only a finite set. In our
work boundedness allows us to simulate the powerset automaton with a automaton using maps
between finite sets of clocks.
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7.2 About Other Determinizable Classes

We do not know if all timed automata verifying hypotheses of theorem 7.1.1 satisfy the
hypothesis required in [10] and conversely. We didn’t try to compare them because it would
take a lot of effort to make the work of [10] enter in our formalism to be able to formally compare
the hypotheses.

However, we think the statement of theorem 7.1.1 might provide us easier hypotheses to
verify on a timed automaton.

Strongly non-Zeno timed automata. As an example consider all n-clock timed au-
tomaton bounded by M such that on every transitions we have as constraint a conjunction with
the constraint z >= δ and among the updates z := 0, for some special clock z and some value
δ > 0. We know that there will never be more than dM+1

δ e clocks with different values since the
distance between their values have to be greater than δ and one cannot fit more than dM+1

δ e
different values in CM = [0;M ]∪{∞}. This means that the powerset automaton of such timed
automata will be bounded by dM+1

δ e and thus that theorem 7.1.1 is applicable.
This class of timed automata is therefore strongly determinizable – determinizable in the

classical sense. This result was already deduced in [10].

0-bounded timed automata. Another example is the case of the class described in [45]
of timed automata with constant only 0. By the choice of modeling the set of clock values by
C0 = [0; 0]] {∞} we get immediately that the powerset automaton of a timed automaton with
constant only 0 is bounded by 2. Theorem 7.1.1 is applicable and this class of timed automata
is strongly determinizable.

Integer Reset Timed Automata. Finally, we can also obtain strong determinization
of the class of integer reset timed automata (IRTA) [49] with this reasoning. Indeed in an
M -bounded n-clock IRTA, there can be a reset update on a clock if and only if there is at least
one constraint of the guard of the type x = k for some clock x and some integer k ≤ M . We
can prove by a simple induction on the size of the run, that any time a clock is reset along a
run of a duration d, d have to be in N so the valuation we take the transition on maps every
clock to an integer.

In the powerset automaton, this also means that a reset can be simulated only after a
integer duration, where all values in the markings map every clock to an integer. One can
easily notice that the only way to increase the number of different valuations appearing in a
reachable marking of the powerset automaton is to simulate at least one reset (while keeping
the initial value we reset). This means that each time we are in the situation to add a value in
a marking, all other values are within ([[1,M ]] ∪ {∞})n. Hence the size of such marking can’t
exceed (M + 2)n|Q|. Since this is the only way to increase the size of a marking, this means
that the power set automaton of an M -bounded n-clock IRTA is bounded by (M + 2)n|Q| and
theorem 7.1.1 is applicable which makes this class of timed automata strongly determinizable.

Finally imprecise timed automata. Theorem 7.1.1 is a sufficient condition of strong
determinization but we know that this is not a necessary condition. We give a counter example in
figure 7.1 and 7.2 of a timed automaton which is strongly determinizable but does not directly
satisfies the hypotheses of theorem 7.1.1. Indeed the automaton in figure 7.1 recognizes the
language of all timed sequences of a satifying : exists one a such that no a is done exactly 1
time unit after. The powerset automaton of this timed automaton can reach any configuration
({q1, q2, q3},ν) where ν(q1) = {d}, ν(q2) is a finite set included in C1 \ {1} and ν(q3) = ν(q2).
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q1 q2 q3

a,C1, {id}

a,C1, {0}

a,C1 \ {1}, {id}

a,C1 \ {1}, {id}

Figure 7.1: A determinizable TA . . .

q1 q2

a, {1}, {0}

a,C1 \ {1}, {0}

a,C1 \ {1}, {0}

a, {1}, {0}

Figure 7.2: . . . and its determinized TA.

Even though the marking of q2 have no bound, the only important information to do an
action a is knowing that there exists at least one clock which is not equal to 1 in q2. This can be
intuitively achieved by only keeping the information of two different clocks in q2 (such that if one
is equal to 1 we know the other one is not). Hence even if we may have an unbounded amount
of information stored in q2, most of it is superfluous and is not needed in the construction of a
determinized automaton.

This scenario may concern a whole class of timed automata we call finally imprecise timed
automata.

Definition 7.2.1. Let Σ be a finite alphabet, M ∈ N and n ∈ N>0. Let 〈A,Tκ〉 ∈ ΣTAn
M be a

timed automaton such that A = 〈Q, I, T, F 〉.
We say that q ∈ Q is imprecise if for all −→x1,

−→x2 ∈ InM 1 the languages recognized in A from
(q,−→x1) and (q,−→x2) are the same, i.e.

L(Tκ, (q,−→x1), F × CnM ) = L(Tκ, (q,−→x2), F × CnM )

The principle of an imprecise state is that it doesn’t matter if you reach it with some value
or another. This means that all the variety of values we can reach the state with can be ignored
and reduced to just one value per guards, cutting, in fact, a lot of possibilities. We ensure
then that all reachable states are imprecise; we could bound from this point all the possibilities
to the number of states times the number of guards, making the class strongly determinizable
without effectively rendering the powerset automaton bounded.

Definition 7.2.2. Let Σ be a finite alphabet, M ∈ N and n ∈ N>0. We say that a timed
automaton 〈A,Tκ〉 ∈ ΣTAn

M is finally imprecise if there exists an integer m such that all states
reached with a run of length greater than m is imprecise.

In the context of [20] we proved that this kind of automata can be strongly determinized.
In the setting of this thesis, the proof of strong determinizability of the class of finally imprecise
timed automata could be made by an adaptation of the proof of theorem 6.2.1. We just give
some hint below to avoid an additional technical construction of a functional bisimulation.

One just need, when constructing the update ufx associated to (φq(x),Ug) to pick only one
element by (product of) interval to be updated and mapped to the resulting partial function.
In the setting of the proof of theorem 6.2.1, if there exist q ∈ Q and k ∈ [[1,me,e′ ]] such that
v and v′ are in ν(e) ∩ νke,e′ , when constructing ufx we only implement the update made on v
and forget about those made on v′. This way we can remain in a finite setting without loss of
expressiveness.

1IM is the set of all real intervals bounded by two consecutive integers c.f. 2.3.1
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1-bounded 1-clock perturbed timed automata. At last, we say a few words about
the work of [6] on one-clock perturbed timed automata. We’ve defined on page 19 the perturbed
clock structure. A one-clock perturbed timed automaton can be easily defined in our formalism
as an automaton on the perturbed clock structure, guarded by GM .

Our first remark is that the result of determinization proposed in [6] differs from all the
results we discussed above. As discussed in the introduction of chapter 5, determinization
usually stands for the construction, for any automaton of a particular class, of a deterministic
automaton within the same class, which recognizes the same language. In [6] the authors
prove that for any one-clock perturbed timed automata, one can construct a deterministic timed
automaton which recognizes the same language, which are two models of distinct classes. On
one side, a timed automata is just a particular case of perturbed timed automata; however, we
can see in our formalism that the nature of the timed structure both models are defined on are
really different. This is the fundamental reason we can’t obtain determinizability of perturbed
timed automata as a consequence of the work we’ve done in this part.

The perturbed clock structure is a non-deterministic timed structure contrarily to the clock
structure. It doesn’t prevent us to construct the powerset automaton of a perturbed automaton
– and we will take a look to its particular shape below – but it prevents the application of
theorem 5.1.6. Also, we draw the attention of the reader to the fact that in the construction of
[6]; the guards of the final timed automaton are modified to allow constant of the type 1 − ε
and 1 + ε. In our formalism, this means a change of guarded timed structure.

This doesn’t mean that the result of [6] can’t be proved in our formalism but it means the
proof is more about proving that a class of automata can be simulated by another one. Actually,
we made the proof of this result in [20] with a slightly different formal context and results. In
the formalism we used in this thesis we could again recover the proof but it would mean coming
back nearly to a raw proof of bisimulation between two transition systems, and hence in some
sense re-doing the proof of [6] . Indeed even the tool of functional bisimulation is too high level
to be used to prove the equivalence between the different models.

Still, our construction is not entirely useless for this case. We take a look below to the powerset
automaton of a one-clock perturbed timed automaton, and see how it helps us understand the
fundamental reason which makes the class of perturbed timed automata translatable into timed
automata.

If we fix 〈A, κ〉 a one-clock perturbed timed automaton, the configurations of its powerset
automaton 〈DκA,T

Dκ〉 are a combination of a set of states and a marking on the states. The
marking maps each state to a set of values. Because the perturbed clock structure is non-
deterministic and because a clock can be perturbed by any δ between 1− ε and 1 + ε, the first
thing to notice about those markings – which we recover in the proof of [6] – is that they map
each state to a finite union of intervals.

This makes those sets uncountable at first glance. But if we manage to represent an interval
by two values (representing in some way their lower and upper bound), we would just have to
prove that the number of disjoint intervals is bounded. We could hence represent those unions
by a finite number of pairs of values. If we restrict our selves to a (1, ε)-perturbed clock structure
(as they do in [6] ) we can split C1 into the intervals

Gα = {{0}, (0, α), {α}, (α, 2α), . . . , (b 1

α
cα, 1), {1}, {∞}}

with α = ε
1+ε . If the marking is reachable we can prove, because all intervals are of the form

[x(1− ε), x(1 + ε)] that in the set associated to a state q,
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• All intervals I such that I ∩
(
[1
2 , 1] ∪ {∞}

)
6= ∅ can’t be included in an interval J ∈ Gα.

• From all disjoint intervals I1, I2 included in some interval J ∈ Gα, if I is the convex hull
of I1 ∪ I2, A recognizes the same words from any configuration (q, x) with x ∈ I. This is
a consequence of the fact that a guard constraint is either {0}, (0, 1) or {1}, and by the
time any value of I1 or I2 contains the value 1, they would have merged and would have
generated the same values as I (c.f. figure 7.3). [20]

With those last remarks we could consider an automaton equivalent to DκA, where every update
merges intervals in the same J ∈ Gα. In such an automaton there would be no more than |Gα|
disjoint intervals as components of a set in the markings.

0 α 2× α 1. . .
[ ]
I1

[ ]
I2

δ...

after d . . .

0 α 2× α 1. . .
[ ]
I1

[ ]
I2

δ − 2dε

...

after 1
2 . . .

0 (m+ 1)αmα
1
2 1. . .. . .

[ ]
I1

[ ]
I2

δ − ε ≤ α− ε < 0

Figure 7.3: Evolution of the possible values of a perturbed clock

Proving that this last automaton is similar to the powerset automaton requires some work.
Proving that this automaton is similar to an enhanced timed automaton requires some more
work. This could be done with techniques very close to what is done in [20] . Though we can
already see with the remarks above that the core of the proof is again that we could in some
sense have a bounded representation of the powerset automaton.
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Chapter 8

Full Control Determinization

Input-Determinacy Revisited

Input-determinacy is the property satisfied by systems in which for every accepted word it
is possible to know the value of the quantitative variables at each moment of the run whatever
the sequence of visited states. This property was first observed for event-clock automata [4] and
was given a logical formalization by [29]. Contrarily to deterministic systems, along the run
one may face a non-deterministic choice – and hence all words are not necessarily recognized
by only one run –, but when one reaches a final state, it disambiguates the taken path and
one can be sure of which run has been followed. The best example of such behavior is that
of event-predicting clocks: such clocks store the time before the next instance of a particular
event, they are non-deterministically chosen, and one knows their exact value only when the
event is actually taken [4].

Section 8.1 : Input-determinacy property is verified by any automaton on a timed structure
equipped with a full control. In this section we prove actually a stronger
result which implies both input-determinacy property and stability with
regards to full control determinization.

Section 8.2 : In this section we study results on input-determined systems determinization
to sketch – thanks to our new framework – how full control determinization
and input-determined systems relate. We can’t provide formal conclusive
results but we managed to establish a link between some input-determined
system’s determinization and the existence of an isomorphism between full
control and timed control language.
The problems we focus on in section 8.2 are those of event-recording
and event-predicting clocks [4], integer reset automata [49] [16],
visibly pushdown automata [7] and their extension to dense time [1] [16].

We believe that those techniques could provide a general method to obtain determinization
of input-determined systems for free.
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8.1 Full Controlled ATS are always Strongly Determinizable

The fundamental property of a full controlled automaton on a deterministic timed structure
is that the observer can know at any point of execution what is exactly the value of the quanti-
tative variables. This is not without reminding us the notion of input-determinacy introduced
in [24] .

Indeed recall that in a full control, the alphabet is the combination of a label and an update.
Hence the observer knows the value, v, of the quantitative variable at some point:

• if he observes a delay d then he can deduce the reached value by computing v ⊕ d,

• if he observes a discrete action (a, u) then he can deduce the value reached by computing
u(v).

Formally this is expressed in the following proposition.

Proposition 8.1.1. Let Σ be a finite alphabet, SG = 〈V, ↪→, U,G〉 a guarded deterministic
timed structure where U is finite and A = 〈Q, I, T, F 〉 ∈ A(SG) equipped with a compatible
Σ-full control TF.

For all ci = (qi, vi) ∈ I and w ∈ [(Σ× U) ] R≥0]∗ there exist at most one v ∈ V such that

∃q ∈ Q, (q, v) ∈ Reach(TF, w, ci)

Proof.

Let ci = (qi, vi) ∈ I and w ∈ [(Σ× U) ] R≥0]∗

We make this proof by induction on the size of w.
I Initialization is obvious since Reach(TF, ε, ci) = {ci}
I Suppose we proved the property for all w ∈ [(Σ× U) ] R≥0]n and

let w ∈ [(Σ× U) ] R≥0]n+1.
I Suppose w = w0 · d with w0 ∈ [(Σ× U) ] R≥0]n and d ∈ R≥0.

If Reach(TF, w0, ci) = ∅ then Reach(TF, w, ci) = ∅.
Else we know that Reach(TF, w0, ci) = ρ× {v0} with v0 ∈ V and ρ ⊆ Q.
In this case Reach(TF, w, ci) = ρ× {v0 ⊕ d} by definition of TF and
because SG is deterministic.

I Suppose w = w0 · (a, u) with w0 ∈ [(Σ× U) ] R≥0]n and (a, u) ∈ Σ× U .
If Reach(TF, w0, ci) = ∅ then Reach(TF, w, ci) = ∅.
Else we know that Reach(TF, w0, ci) = ρ× {v0} with v0 ∈ V and ρ ⊆ Q.
In this case Reach(TF, w, ci) = ρ′ × {u(v0)} with
ρ′ = {q′ ∈ Q | ∃q ∈ ρ, (q, v0, u, q

′) ∈ T(a,u)}
by definition of TF and because SG is deterministic.

In all cases the property is verified at rank n+ 1.
This ends the proof by induction of the proposition.

�

The only data undetermined is then which discrete state we are in. But to palliate to this
last indeterminacy we can always make a standard powerset construction on the states.

From this observation and proposition 8.1.1 we get the core of the proof of the theorem
below.

Theorem 8.1.2. Let Σ a finite alphabet, SG a guarded deterministic timed structure where U
is finite and A ∈ A(SG) equipped with a compatible Σ-full control TF.

There exist A′ ∈ A(SG) and TF′ a compatible Σ-full control on A′ such that A′ is F′-
deterministic and LF′(A′) = LF(A).
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Proof.

Let’s write A = 〈Q, I, T, F 〉 and SG = 〈V, ↪−→, U,G〉.
We define Ad = 〈P(Q), Id, Td, Fd〉 such that
• Id = {(ρ, v) ∈ P(Q)× V | ρ = {q ∈ Q | (q, v) ∈ I}}
• For all (a, u) ∈ Σ× U ,
Td,(a,u) = {(ρ, v, u, ρ′) ∈ P(Q)× V × U × P(Q) |

ρ′ = {q′ ∈ Q | ∃q ∈ ρ, (q, v, u, q′) ∈ T(a,u)} }
And then Td =

⋃
(a,u)∈Σ×U Td,(a,u)

• Fd = {ρ ∈ P(Q) | ρ ∩ F 6= ∅}
We define also Fd : T → Σ× U such that for all (a, u) ∈ Σ× U ,
t ∈ Td,(a,u) implies Fd(t) = (a, u).

Fd is a well-defined full control on Ad.

Let (a, u) ∈ Σ× U .
We prove that for all ρ, ρ′ ∈ P(Q), gFd

(ρ, (a, u), ρ′) is decomposable in G.
gFd

(ρ, (a, u), ρ′) = {(v, u) ∈ V × U | ρ′ = {q′ ∈ Q | ∃q ∈ ρ, (q, v, u, q′) ∈ T(a,u)} }
= {(v, u) ∈ V × U | ρ′ = {q′ ∈ Q | ∃q ∈ ρ, (v, u) ∈ gF(q, (a, u), q′)} }

and because G is a guard base and TF is compatible with G:

gFd
(ρ, (a, u), ρ′) =

⋃
(ν,µ)∈G | ρ′={q′∈Q | ∃q∈ρ,(ν,µ)∈gF(q,(a,u),q′)}

ν × µ

Since gF(q, (a, u), q′) is decomposable on G, the decomposition above is finite and
gFd

(ρ, (a, u), ρ′) is decomposable on G.

We proved that 〈Ad,T
Fd〉 is in A(SG,Σ), we prove now that:

Ad is Fd-deterministic and Fd-complete.

Indeed let (ρ, v) be a configuration in TF′ .
I Let d ∈ R≥0.

Because SG is deterministic, the only reachable configuration by a transition d
is (ρ, v ⊕ d).

I Let (a, u) ∈ Σ× U .
There exist at most one transition in t = T(a,u) applicable on (ρ, v) and

this is (ρ, v, u, ρ′) with ρ′ = {q′ ∈ Q | ∃q ∈ ρ, (q, v, u, q′) ∈ T(a,u)}
by definition of Td and Fd.
So the only reachable configuration by a transition (a, u) is (ρ′, u(v))

Finally there is exactly one reachable configuration from (ρ, v)
Which proves the property.

�

We proved that 〈Ad,T
Fd〉 is a good candidate to be the determinized of 〈A,TF〉.

In order to prove the language equality we need an intermediate result.
We prove now that for all w ∈ [(Σ× U) ] R≥0]∗, by induction that:
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(1) For all (ρi, vi) ∈ Id, for all (ρ, v) ∈ Reach(TFd , w, (ρi, vi)), for all q ∈ ρ,
exists qi ∈ ρi such that (q, v) ∈ Reach(TF, w, (qi, vi)).

I Initialization is directly obtained by definition of Id.
I Suppose we proved the property for all words of length n ∈ N.

Let w ∈ [(Σ× U) ] R≥0]n+1.
I Suppose w = w0 · d with w0 ∈ [(Σ× U) ] R≥0]n and d ∈ R≥0.

Let (ρi, vi) ∈ Id, (ρ, v) ∈ Reach(TFd , w, (ρi, vi)), and q ∈ ρ.
It means that there exist (ρ′, v′) ∈ Reach(TFd , w0, (ρi, vi)) such that
(ρ′, v′)

d−→TFd (ρ, v).
So ρ′ = ρ and v = v′ ⊕ d.
By induction hypothesis, there exist qi ∈ ρi such that for all q′ ∈ ρ,
(q′, v′) ∈ Reach(TF, w0, (qi, vi)).
Hence in particular (q, v′) ∈ Reach(TF, w0, (qi, vi)),
and (q, v′ ⊕ d) ∈ Reach(TF, w, (qi, vi)).

I Suppose w = w0 · (a, u) with w0 ∈ [(Σ× U) ] R≥0]n and (a, u) ∈ Σ× U .
Let (ρi, vi) ∈ Id, (ρ, v) ∈ Reach(TFd , w, (ρi, vi)), and q ∈ ρ.
It means that there exist (ρ′, v′) ∈ Reach(TFd , w0, (ρi, vi)) such that
(ρ′, v′)

(a,u)−−−→TFd (ρ, v).
So ρ = {q′ ∈ Q | ∃q′′ ∈ ρ′, (q′′, v, u, q′) ∈ T(a,u)} and v = u(v′).

Therefore there exist q′ ∈ ρ′ such that (q′, v′, u, q) ∈ T(a,u).

By induction hypothesis, there exist qi ∈ ρi such that
(q′, v′) ∈ Reach(TF, w0, (qi, vi)).
Hence (q, u(v′)) ∈ Reach(TF, w, (qi, vi)).

This proves property (1) by induction.
�

and that:

(2) For all (qi, vi) ∈ I, for all (q, v) ∈ Reach(TF, w, (qi, vi)),
exists ρi, ρ ∈ P(Q) such that qi ∈ ρi, q ∈ ρ and (ρ, v) ∈ Reach(TFd , w, (ρi, vi)).
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I Initialization is directly obtained by definition of Id.
I Suppose we proved the property for all words of length n ∈ N.

Let w ∈ [(Σ× U) ] R≥0]n+1.
I Suppose w = w0 · d with w0 ∈ [(Σ× U) ] R≥0]n and d ∈ R≥0.

Let (qi, vi) ∈ I, and (q, v) ∈ Reach(TF, w, (qi, vi))
It means that there exist (q′, v′) ∈ Reach(TF, w0, (qi, vi)) such that
(q′, v′)

d−→TF (q, v).
So q′ = q and v = v′ ⊕ d.
By induction hypothesis, there exist ρi, ρ ∈ P(Q) such that qi ∈ ρi, q ∈ ρ and
(ρ, v′) ∈ Reach(TFd , w0, (ρi, vi)).
Hence this means that (ρ, v′ ⊕ d) ∈ Reach(TFd , w, (ρi, vi)).

I Suppose w = w0 · (a, u) with w0 ∈ [(Σ× U) ] R≥0]n and (a, u) ∈ Σ× U .
Let (qi, vi) ∈ I, and (q, v) ∈ Reach(TF, w, (qi, vi))
It means that there exist (q′, v′) ∈ Reach(TF, w0, (qi, vi)) such that
(q′, v′)

(a,u)−−−→TF (q, v).
So v = u(v′) and (q′, v′, u, q) ∈ T(a,u).

By induction hypothesis, there exist ρi, ρ
′ ∈ P(Q) such that qi ∈ ρi, q′ ∈ ρ′ and

(ρ′, v′) ∈ Reach(TFd , w0, (ρi, vi)).
Let ρ = {l ∈ Q | ∃l′ ∈ ρ′, (l′, v, u, l) ∈ T(a,u)}.
q ∈ ρ and (ρ′, v′, u, ρ) ∈ Td by definition.
Hence (ρ, u(v′)) ∈ Reach(TFd , w, (ρi, vi)).

This proves property (2) by induction.
�

We can now prove that LF(A) = LFd
(Ad).

We proceed by double inclusion.
I Let w ∈ LF(A) and π a run recognizing w in 〈A,TF〉.

Let ci = start(π) = (qi, vi) ∈ I and (q, v) = end(π) ∈ F × V .
According to (2), there exist ρi, ρ ∈ P(Q) such that
qi ∈ ρi, q ∈ ρ and (ρ, v) ∈ Reach(TFd , w, (ρi, vi)).
Since q ∈ F and q ∈ ρ, then ρ ∈ Fd.
Which means that w ∈ LFd

(Ad).
I Let w ∈ LFd

(Ad) and π a run recognizing w in 〈Ad,T
Fd〉.

Let ci = start(π) = (ρi, vi) ∈ Id and (ρ, v) = end(π) ∈ Fd × V .
Let q ∈ ρ ∩ Fd.
According to (1), there exist qi ∈ ρi such that (q, v) ∈ Reach(TF, w, (qi, vi)).
Since q ∈ F and qi, vi ∈ I by definition of Id,
w ∈ LF(A).

Which proves the language equality and ends the proof.

�

This theorem (8.1.2) provides us a way to determinize an automaton, with regard to a full
control, within the same timed structure. Even though the full control does not seem to be an
interesting restriction – because it gives a lot of information to the observer by giving him the
update – we show in the next section how it can be used to recover some determinization results
about input-determined models.
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8.2 Application to Input-Determined Models

In this section, we show how we can retrieve some results about input-determined timed
automata by using full control determinization. As we noticed in section 8.1, an automaton
controlled by a full control satisfies a kind of input-determinacy property exposed in proposition
8.1.1. We wondered if, conversely, there is a link between input-determinacy and full controls.

We don’t claim we have an answer to this question, but we show that this idea seems to be
confirmed by the studies we make below on event-clock timed automata [4] , strict integer reset
timed automata [49] [16] and dense-timed integer reset visibly pushdown automata. [1] [16]

Those studies are based on the results we expose below which transfer properties expressed
about full-controls into properties about timed controls. Fix Σ a finite alphabet, SG a guarded
deterministic timed structure with U finite and A = 〈Q, {ci}, T, F 〉 ∈ A(SG) equipped with a
compatible Σ-full control TF. Notice that we imposed here that A have only one initial state.
We can construct from F a Σ-timed control Π(F) defined for all t ∈ T as Π(F)(t) = p(F(t))
where p : Σ × U → Σ is the projection on Σ of Σ × U . TΠ(F) is a compatible Σ-timed control
on A. Let’s write p∗ for the extension of p on [(Σ× U) ] R≥0]∗ where we consider p(d) = d for
all d ∈ R≥0. Notice that conversely, it is easy to construct from any Σ-timed control Tκ on A,

a compatible Σ-full control TΠ−1(κ), defined for all t = (q, v, u, q′) ∈ T by Π−1(κ)(t) = (κ(t), u).

Corollary 8.2.1. There exist A′ ∈ A(SG) and TF′ a compatible Σ-full control such that A′ is
F′-deterministic and LΠ(F′)(A

′) = LΠ(F)(A).

Proof.

By application of theorem 8.1.2 we know that there exist A′ ∈ A(SG) and TF′ a compatible
Σ-full control such that A′ is F′-deterministic and LF′(A′) = LF(A).

We get then

LΠ(F)(A) = p∗(LF(A)) = p∗(LF′(A)) = LΠ(F′)(A)

�

Below we state a corollary which allows us to recover one main property of input-determined
systems.

Corollary 8.2.2. Suppose p∗ is a bijection from LF(A) to LΠ(F)(A)

There exist A′ ∈ A(SG) and TF′ a compatible Σ-full control such that A′ is F′-deterministic,
LΠ(F′)(A

′) = LΠ(F)(A) and for all w ∈ LΠ(F′)(A
′) there exist exactly one run π of 〈A′,TΠ(F′)〉

such that w(π) = w.

Proof.

By application of corollary 8.2.1 we know that there exist A′ ∈ A(SG) and TF′ a compatible
Σ-full control such that A′ is F′-deterministic and LΠ(F′)(A

′) = LΠ(F)(A).

Let w ∈ LΠ(F′)(A
′) and wf = p∗−1(w).

wf is unique and well-defined because p∗ is a bijection.

Let πf be a run of 〈A′,TF′〉 such that w(πf ) = w.

πf is unique because 〈A′,TF′〉 is deterministic and A′ has only one initial configuration,
(given that A has only one initial configuration, c.f. proof of theorem 8.1.2).
We write πf = c0

γ1−→ c1
γ2−→ . . .

γn−→ cn.
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Of course, π = c0
p∗(γ1)−−−−→ c1

p∗(γ2)−−−−→ . . .
p∗(γn)−−−−→ cn is a run of 〈A′,TΠ(F′)〉 such that w(π) = w.

Let π′ a run of 〈A′,TΠ(F′)〉 such that w(π) = w.
We write π = c0

γ′1−→ c1
γ′2−→ . . .

γ′n−→ cn.
For all 1 ≤ i ≤ n:
we define γi = d if γ′i = d;
else if γi = a ∈ Σ, we know by definition of Π(F′) that there exist u ∈ U such that

ci−1
(a,u)−−−→ ci in TF′ ; we define then γi = (a, u).

This means that π′f = c0
γ1−→ c1

γ2−→ . . .
γn−→ cn is a run of 〈A′,TF′〉 such that p∗(w(π′f )) = w.

By injectivity of p∗ and determinism of 〈A′,TF′〉,
this means that p′f = pf and thus that π′ = π.

This proves existence and unicity of π.

�
Finally in some very particular case corresponding to a labeling which pairs each label with

exactly one update being two by two distinct, we get a strong determinizability result:

Corollary 8.2.3. Suppose p is a bijection from im(F) to im(Π(F)).
There exist A′ ∈ A(SG) and TF′ a compatible Σ-full control such that A′ is

Π(F′)-deterministic, LΠ(F′)(A
′) = LΠ(F)(A).

Proof.

By application of corollary 8.2.1 we know that there exist A′ ∈ A(SG) and TF′ a compatible
Σ-full control such that A′ is F′-deterministic and LΠ(F′)(A

′) = LΠ(F)(A).

We proves that A′ is actually Π(F′)-deterministic.
I Let (q, v) ∈ CA′ and d ∈ R≥0.

Because SG is deterministic, the only reachable configuration by a transition d
is (q, v ⊕ d).

I Let a ∈ Σ.
If a 6∈ im(Π(F)), then there is no transition a from c.
Otherwise, if a ∈ im(Π(F)), then let (a, u) ∈ im(F).
Such element exists by hypothesis on p.

Suppose c
a−→ c′ in TΠ(F′), this means that there exist (a, u′) ∈ im(F) such that

c
(a,u′)−−−→ c′ in TF′ by definition of Π(F′).

By injectivity of p though, it means that u = u′ and c
(a,u)−−−→ c′.

Finally by determinism of 〈A′,TF′〉, c′ is then unique.
This proves that A′ is Π(F′)-deterministic.

�

Event-recording automata. Let Σ be a finite alphabet and M ∈ N. An M -bounded
event-recording automaton on Σ as defined in [5] is a special M -bounded |Σ|-clocks timed au-
tomata on Σ without silent transition, having one clock for each element of Σ being reset each
time, and only when, the corresponding action is taken.

Formally speaking, fix ind : Σ→ [[1, |Σ|]] any bijection, and write for all σ ∈ Σ,

0σ = (id, . . . , id︸ ︷︷ ︸
ind(σ)−1

,0, id, . . . , id︸ ︷︷ ︸
|Σ|−ind(σ)

)
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〈A,Tκ〉 with A = 〈Q, {(qi,
−→
0 )}, T, F 〉 is an M -bounded event-recording automata on Σ, if and

only if for all q, q′ ∈ Q and for all σ ∈ Σ, there exist ν ⊆ C|Σ|M such that

gκ(q, σ, q′) = ν × {0σ}

With this constraint is is clear that for every M -bounded event-recording timed automata on
Σ, 〈A,Tκ〉, p – the projection of Σ× {id,0} on Σ – is a bijection from im(Π−1(κ)) to im(κ).

Indeed im(κ) corresponds to all the actions, a, attributed to a transition, and we know that
then those transitions have as only possible update, 0σ. So (a,0σ) is in im(Π−1(κ)), because it
is attributed to those same transition in the full control Π−1(κ) (by definition of it). And the
only possible inverse image of a by p becomes (a,0σ).

This means that corollary 8.2.3 is applicable and that the class of event-recording automata
is strongly determinizable.

Event-predicting automata. Let Σ be a finite alphabet and M ∈ N. An event-predicting
automaton on Σ as defined in [5] one clock for any action in Σ. is an automaton on the predicting
clock structure (c.f. page 19). At each transition, a guard is enforcing the clock associated with
the label of this transition to be 0 and non-deterministically updating the clock to the delay
until the next occurrence of this letter using an update in UR≥0.

Recall that UR≥0 = {d, d ∈ R≥0}. Formally fix ind : Σ→ [[1, |Σ|]] any bijection, we define

PGM = IM 1 ∪ {⊥} ×UR≥0

we also define for all σ ∈ Σ.

Gσ = {
(

[I1, . . . ,Iind(σ)−1, [0; 0], Iind(σ)+1, . . . , I|Σ|−ind(σ)],

[{id}, . . . , {id}︸ ︷︷ ︸
ind(σ)−1

,UR≥0, {id}, . . . , {id}︸ ︷︷ ︸
|Σ|−ind(σ)

]
)
, I1, . . . , I|Σ| ∈ IM}

Gσ describes all guards imposing xσ = 0 and updating only xσ to a random value, where xσ
stand for the clock associated to σ.

An M,Σ-event-predicting automaton, is:

• An automaton A = 〈Q, {(qi,
−→
0 )}, T, F 〉 on the guarded structure PC

|Σ|
PGM . The initial

state puts all clock value to ⊥. They will have to be initialized.

• Equipped with a Σ ] {#}-timed control κ without silent transitions. # is the starting
symbol which role is to initialize all values.

• Satisfying for all q ∈ Q \ F , for all σ ∈ Σ, gκ(qi, σ, q
′) = ∅ and

gκ(qi,#, q
′) = (

−→
{0},UR≥0

|Σ|)

for all q ∈ Q \ {qi}, for all q′ ∈ F , gκ(q,#, q′) = ∅ and for all σ ∈ Σ,

gκ(q, σ, q′) =
(

[{⊥}, . . . , {⊥}︸ ︷︷ ︸
ind(σ)−1

,[0; 0], {⊥}, . . . , {⊥}︸ ︷︷ ︸
|Σ|−ind(σ)

], [{id}, . . . , {id}︸ ︷︷ ︸
ind(σ)−1

,⊥, {id}, . . . , {id}︸ ︷︷ ︸
|Σ|−ind(σ)

]
)

and finally for all q, q′ ∈ Q \ F ∪ {qi}, gκ(q,#, q′) = ∅ and for all σ ∈ Σ, there exist
G1, . . . , Gm ∈ Gσ such that

gκ(q, σ, q′) =

m⋃
i=1

Gi

1The set of real intervals with two consecutive integers as bounds (c.f example 3.1.1)
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With this setting, because an accepting run has to end with value
−→
⊥ and each transition has

to be made when the corresponding clock is equal to 0, one can proves that p∗ – the extension
of the projection of (Σ∪ {#})× (UR≥0 ∪ {id}) on Σ∪ {#} – is a bijection from LΠ−1(κ)(A) to
Lκ(A). In fact, given an accepted word, we can easily retrieve which sequence of updates have
been made along the run. To do so we compute at each action along the run the time elapsed
since the previous occurrence of this same action.

We can therefore apply corollary 8.2.2 and get for each event-predicting automaton an
automaton recognizing the same κ language and such that each accepted word is recognized
by exactly one run. Notice that this new automaton is not κ-deterministic, it is only Π−1(κ)-
deterministic. In fact, the difference is that, even if one accepted word corresponds exactly
to one run, it does not mean that from each configuration of the automaton there is only one
configuration reachable per action. This is the acceptance condition that enforces the unicity
of the accepting run, and not the definition of the transition relation.

We could observe a similar thing for event-clock automaton as defined in [4] , which are
a combination of event-recording and event-predicting clocks. In our formalism it would be
modeled by an automaton on (CM ×PC)|Σ|.

Strict Integer Reset Timed Automata. Let Σ be a finite alphabet and M ∈ N. A
strict integer reset timed automaton on Σ as defined in [16] is an integer reset timed automaton
as defined in section 7.2 with only one clock, reset each time a transition is made on an integer
timestamp.

We already proved that such an automaton is strongly determinizable w.r.t. to timed
controls in section 7.2. We could prove it using full controls. One can prove, as it is kind
of done in [16] that hypothesis of corollary 8.2.2 are verified and thus that we can construct
for any strictIRTA 〈A, κ〉 a strictIRTA 〈A′, κ′〉 such that every accepted word is recognized
exactly by one run. We can’t use directly corollary 8.2.3 to get strong determinizability, but
from 〈A′, κ′〉, which we know is Π−1(κ)-deterministic we would just have to notice that for all
configuration (q, x) the update is entirely determined by the fact that x ∈ N (in which case the
update of all transition leaving have to be 0), to be able to prove that A′ is κ′-deterministic.

Visibly Timed Pushdown Automata Visibly Pushdown Automata as introduced in
[7] define a determinizable class of pushdown automata. The idea is close to the idea of event-
clock automata: associating labels to particular updates. In visibly pushdown automata we
split actions between popping and pushing actions. In [16], visibly pushdown automata are
extended with ages for the stack symbols and additional clocks that can be reset only on integer
timestamps.

We give here as an example of how our work can extend to quantitative models (i.e. not
pure clock models), a modelization of some altered, simpler, versions of those models and how
we could prove it has the input-determinacy property.

Formally fix M ∈ N, and Z be a stack alphabet, recall that UM,Z = {pop, id}∪{pushz, z ∈
Z} and that ZM,Z stands for the M,Z-timed stack structure.

An M,Z,Σ-visibly pushdown timed automata, is:

• An automaton A = 〈Q, {(qi, ε)}, T, F 〉 on the guarded structure ZM,Z . The initial state
require all clocks value to 0 and the stack to be empty.

• Equipped with a Σpop ∪ Σpush ∪ Σ-timed control κ without silent transitions. Σpop

corresponds to the labels of transitions with a pop update, Σpush corresponds to the
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labels of transitions with a push update, and Σ corresponds to the labels of transitions
with an id update.

• Verifying for all q, q′ ∈ Q and for all σ ∈ Σpop, there exist ν ⊆ Zm,Z such that

gκ(q, σ, q′) = ν × {pop}

and for all σ ∈ Σpush , there exist ν ⊆ Zm,Z and z ∈ Z such that

gκ(q, σ, q′) = ν × {pushz}

and for all σ ∈ Σ, there exist ν ⊆ Zm,Z such that

gκ(q, σ, q′) = ν × {id}

If we consider Z to be reduced to one element Z = {z}, then it is easy to see that the hypoth-
esizes of corollary 8.2.3 are satisfied and that such an automaton can be strongly determinized.

In the case of multiple stack symbols, suppose we impose that all final states are reached
with an empty stack. Although given an accepted word, we can track back what are the
possible sequences of push and pop updates which leads to an empty stack, the automaton
does not directly verify the hypothesis of corollary 8.2.2. This is because two different push
and pop sequences can lead to the same stack value. We would need a prior transformation
of the automaton, as they do in [7], to merge the different possibilities into one and then we
could conclude, first using corollary 8.2.2 to construct an automaton with an input-determinacy
property, which recognizes the same language.

Finally as the last example, suppose we extend this model to work on the guarded time
structure ZM,1,Z and impose that all final states are reached with an empty stack and that the
clock is reset at all integer time stamp like in strictIRTA. In [16] they prove this model has
the input-determinacy property, even though they prove that, given an accepted word, only the
clock value is deductible at any point of the run. In our setting input-determinacy would require
both the clock and the stack value to be deductible. As was the case in previous examples, the
automaton does not directly satisfy the hypothesis of corollary 8.2.2 – for the same reason. We
think that the same kind of construction as above would allow us to construct an automaton
with an input-determinacy property, which recognizes the same language.

Those studies make us think that the notion of controls might help us better understand
the link between input-determinacy and determinization, and more generally determinization
results in their different shapes. We hope those remarks could be useful to unify the different
results about determinization, for input-determined systems and the others.
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Part III

Diagnosis of Timed Automata
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Chapter 9

Diagnosis for Timed Automata

Overview of the problem

In this part, we address the problem of diagnosis for timed automata as an application of
the framework of automata on timed structures. Diagnosis is an on-the-fly verification method.
When one cannot ensure safety properties using model-checking or want to execute a non-safe
system, it can still observe a live execution of its system and try to predict if and when a fault
can occur so it can prevent it from happening.

A diagnoser [47] is a machine that automatically performs those observations and predic-
tions. It can be constructed based on formal modeling of the system and ran in parallel to the
system, observing each observable actions and providing predictions about fault occurrences if
it can. . .

Indeed it is not always possible to construct such a machine. To be able to exactly state if
a fault is going to occur or not, the model of the system must not have ambiguous behavior.
However, even if ambiguous behaviors are inherent to the model, it is still possible to construct
a diagnoser if we consider a third status which says that a fault may occur, without being able
to state nor safety nor fault. The diagnoser is asked to be computable and efficient so it can
quickly simulate and compute the status of the system. That’s one reason why in the literature
a diagnoser is usually sought within the same class as the model (to ensure computability and
easy efficiency comparison).

Theoretically, the disambiguation of the system is achieved using determinization and silent
transition elimination, even if it is not always sufficient. Like many other models, as already
mentioned, timed automata are not stable by determinization [4] or by silent transition elim-
ination [14], which prevents the automatic construction for any timed automata of a timed
automata diagnoser. To circumvent this problem, in [18] the authors first address the problem
on determinizable classes of timed automata. They also provide a game approach to decide if a
timed automaton is diagnosable which can be put in close relationship with the game approach
used in [15] to decide if a timed automaton with silent transitions can be determinized. Whereas
in [53] the preferred solution is to construct a diagnoser outside the class of timed automata
which can still be computed.

Our approach falls within the second type of solution. Using automata on timed structures
we use the power-construction of the clock domain to construct a diagnoser which belongs to
a super-class of timed automata. We will in particular need to address the problem of silent
transition elimination and solve it by considering again a super-class of timed automata. A
similar idea was exploited in [28] in a different framework, leading to different constructions.

This chapter’s goal is to formally translate the problem of diagnosis in our framework and
introduce what is our contribution to the problem in comparison to the work done in [53].
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9.1 General Context

In this section, we take some time to introduce the context of the work. We’ll recall some
definitions and results to situate our work in what was already done. We will also explain what
exactly enters in our formalism and what does not. Indeed the work of [53] considers timed
automata with state invariants, and because we chose not to model them some results become
irrelevant in our framework. Also because we are not interested in languages in this part, final
states are not relevant and we will usually define the set of final states as being the empty set.

Fix for all this section a finite alphabet Σ and a Σ-timed automaton Aκ = 〈A,Tκ〉. We
write A = 〈Q, I, T, F 〉. We recall that κ can be naturally extended on words of (T ] R≥0)∗ in
the way exposed in remark 4.2.2.

We suppose that there exist a set Tf ⊆ T modeling a set of faulty transitions. A faulty path
of Aκ is a path π of TA such that a transition in Tf appears in w(π).

Example 9.1.1. Fix Σ = {a} and consider for example the 1-clock 1-bounded timed automaton
〈B, η〉 ∈ ΣTA1

1 described below.

B = ({q1, q2, qf}, {(q1, 0)}, TB, ∅)

such that

gη(q1, a, q1) = (0, 1)× {0}
gη(q1, a, q2) = (0, 1)× {0}
gη(q2, a, q1) = (0, 1)× {0}
gη(q2, ε, qf ) = {1,∞}× {id}
gη(qf , a, q2) = {1,∞}× {0}

with unspecifieds guard implicitly defined as empty. Its canonical graph is given in figure 9.1.

q1 q2 qf

a, (0, 1), {0}

a, (0, 1), {0}

a, (0, 1), {0} ε, {1,∞}, {id}

a, {1,∞}, {0}

Figure 9.1: A one-clock timed automaton B with a faulty transition

If we consider that Tf = {(q2, v, {id}, qf ), v ∈ {1,∞}} then the run

πf = (q1, 0)
0.4−−→ (q1, 0.4)

(q1,0.4,0,q1)−−−−−−−→ (q1, 0)
(q1,0,0,q2)−−−−−−→ (q2, 0)

2−→ (q2,∞)
(q2,∞,id,qf )−−−−−−−→ (qf ,∞)

is a faulty path.

Diagnosability is defined in [53] as the ability to distinguish faulty paths from non-faulty
paths based on the observable actions of those paths. In particular, this means that a timed
automaton will not be diagnosable if we can find two paths, one faulty, the other not, which
involves the same observable behavior. In this case, it would be indeed impossible to distinguish
the two paths and to state with absolute certainty that we just observed a faulty path or on the
contrary a non-faulty behavior. Moreover, the author of [53] defines a notion of ∆-diagnosability
which is the ability to distinguish faulty paths from non-faulty within ∆ time units after the
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occurrence of the faulty transition. This notion of ∆-diagnosability is not relevant for our
settings because we didn’t model state invariants. Because we can always indefinitely delay
in any state of the automaton, only observable actions can ensure to a diagnoser whether the
automaton performed a faulty action or not. Therefore to translate the notion of diagnosability
in our formalism, we would need to introduce diagnosability after n step which corresponds
to n observable actions. This is not the subject of our work so we chose not to explore those
questions.

∆-diagnosability is decidable on timed automata as it is proved in [53]. In this thesis,
we don’t work on diagnosability checks and hence won’t claim any result on decidability of
diagnosability after n steps.

We focus, in this part of the thesis, only on the construction of a diagnoser. More precisely
we work on the construction of a state estimator or observer for Aκ.

A diagnoser as defined in [53] is a deterministic (computable) machine which is allowed to
observe all observable actions of Aκ and to react to it. It must announce a fault only if the path
in A is faulty and never stop announcing it. Such a machine can be constructed as explained
in [53]. An observer is also a deterministic (computable) machine which is allowed to observe
all observable actions of Aκ and to react to it. It keeps track of all the reachable configurations
of Aκ. As it said in [53] [30] a diagnoser and an observer are similar objects with a different
goal. An observer usually computes a state estimation. From this observer, we could obtain a
diagnoser by keeping track of the possible transitions made to reach the states (if we know that
the automaton is diagnosable after n-steps we only have to store n transitions).

In the next section, we will impose a context where our observer can be easily used as a
diagnoser, and describe how.

Example 9.1.2. Consider the automaton 〈B, η〉 defined in example 9.1.1. We show below what
could be the outcome of an observer OηB and diagnoser DηB on a faulty path in 〈B, η〉.

B : (q1, 0.4)
a−→ (q2, 0)

2−→ (q2,∞)
ε−→ (qf ,∞)

a−→ (q2, 0)

OηB : (q1, 0.4)
a−→ {(q1, 0), (q2, 0)} 2−→ {q1, q2, qf} × {∞}

a−→ {(q2, 0)}

DηB : safe
a−→ safe

2−→ maybe faulty
a−→ faulty

The diagnoser of [53] works by keeping track of pairs of states and polyhedra and simulating
all possible reachable configurations after each observable transition and after each fixed discrete
time step of value TO. We claim, and show in the next section, that the powerset automaton of
Aκ is an observer of Aκ, very similar to the machine constructed in [53].

9.2 Diagnosis with Automata On Timed Structures

Fix for all this section a finite alphabet Σ, S = 〈V, ↪−→, U〉 a timed structure and fix Aκ =
〈A,Tκ〉 ∈ A(S,Σ), a controlled automaton on S. We write A = 〈Q, I, T, F 〉. We recall that the
powerset automaton of Aκ is written 〈DκA,T

Dκ〉 and is an automaton on the timed structure
Dκ,AS = 〈MQV, ↪−→A,κ,MQU〉 defined as the power construction (c.f section 5.1) of S. Recall
that we defined for all ν ∈ MQV , suppε(ν) to be the set of states, q, of A such that ν maps
it to an empty set but after some delay d, Ud(ν) no longer maps it to an empty set. Recall
also that we extended update Uγ with γ ∈ Σ]R≥0 into function Uw for all w ∈ (Σ]R≥0)∗ by
sequentially composing the updates.
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Let us define the function conf from MQV to P(CA) as follow:

conf(ν) = {(q, v) ∈ CA | q ∈ Q, v ∈ ν(q)}

We define also conf ε from MQV to P(CA):

conf ε(ν) = {(q, v) ∈ CA | q ∈ Q,∃d ∈ R≥0, v ∈ Ud(ν)(q)}

By definition supp(ν) = {q ∈ Q | ∃v ∈ V, (q, v) ∈ conf(ν)} and suppε(ν) = {q ∈ Q | ∃v ∈
V, (q, v) ∈ conf ε(ν)}. We obtain directly from proposition 5.1.4 that for all w ∈ (Σ ] R≥0)∗,

• conf(Uw(DκcI)) =
⋃
ci∈I Reach(Tκ, w, ci)

• conf ε(Uw(DκcI)) =
⋃
d∈R≥0

⋃
ci∈I Reach(Tκ, w · d, ci)

We also know that DκA is deterministic according to the same proposition 5.1.4. This
exactly means that DκA can be used as an observer by simply converting its configurations into
sets of configurations of A using conf . It has an interest if and only if DκA can be computed.

We explore below how the powerset automaton can be turned into a diagnoser. This is
possible if we consider, as it is done in [53], the following hypotheses:

• The set of states of Aκ is divided into faulty and non faulty state, say Qf and Qs respec-
tively.

• In Aκ, all states reachable from a faulty states are faulty.

• A path of TA starting in an initial configuration is faulty if and only if it ends in a faulty
state.

As this is explained in [53], it is easy to transform an automaton to an automaton satisfying
the above condition. We show on example 9.2.1 how to transform 〈B,Tη〉 defined in example
9.1.1.

Example 9.2.1. We duplicate q1 and q2 to define a faulty version of them, qf1 and qf2 . The tran-

sitions (qf , v,0, q2) with v ∈ {1,∞} are then transformed into (qf , v,0, q
f
2 ). And all transitions

between q1 and q2 are duplicated on qf1 and qf2 . We get the automaton describe in figure 9.2
where red states are faulty states.

q1 q2 qf qf2 qf1

a, (0, 1), {0}

a, (0, 1), {0}

a, (0, 1), {0} ε, {1,∞}, {id} a, {1,∞}, {0}

ε, {1,∞}, {id}

a, (0, 1), {0}

a, (0, 1), {0}

a, (0, 1), {0}

Figure 9.2: A one-clock timed automata B with a faulty transition

Provided that Aκ satisfies those hypotheses we can deport the detection of a faulty transition
onto the detection of faulty states. Now a path is faulty if and only if it ends in a faulty state.
So, given that we have an observer, if we observe a set of configurations, call it E, three cases
are possible :

• E ∩ (Qf ×V ) = ∅, in which case we are sure the path is non-faulty. We say that E is safe.
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• E ⊆ (Qf × V ), in which case we are sure the path is faulty. We say that E is faulty.

• E ∩ (Qf × V ) 6= ∅ and E 6⊆ (Qf × V ), in which case we don’t know for sure if the path is
faulty. We say that E is maybe faulty.

Hence if we define the function diag from MQV to P(CA) as follow:

diag(ν) =


safe if conf(ν) is safe
maybe faulty if conf(ν) is maybe safe
faulty if conf(ν) is faulty

we can use DκA as a diagnoser by simply converting its configurations using diag. And again
it can be used as such if and only if it can be computed.

We can even obtain more information and predict if and when a configuration can turn into
maybe faulty sometime in the future providing that we do not observe any action.

We define also conf ε from MQV to P(CA):

diagε(ν) =


always safe if silent if conf ε(ν) is safe
soon maybe faulty if silent if conf ε(ν) is maybe safe
always faulty if silent if conf ε(ν) is faulty

Remark 9.2.1. Suppose diagε(ν) = soon maybe faulty if silent, we can actually compute
when exactly the configuration will become soon maybe faulty if silent by computing

inf{d ∈ R≥0 | conf ε(Ud(ν)) is soon maybe faulty if silent}

Notice that the function conf and diag are based on markings and never take in account
the state reached by the powerset automaton. This is mainly because, as you recall from section
5.1, the powerset automaton of an automaton with silent transitions cannot store statically in
its state the information of the reachable states of Aκ. A state of the powerset automaton stores
two informations: first the states of Aκ reached directly after the observed action, and then
the states of Aκ not reached yet but reachable through an unobservable sequence of action.
Though it does not know when exactly the not-yet reached states will be, indeed, reached.
Still we could provide just from observing the states of DκA the information that a state is
soon maybe faulty thanks to suppε ; we would just not be able to tell exactly when the runs
become maybe faulty given only the current state information.

In conclusion DκA can be easily translated into an observer or a diagnoser. We didn’t impose
any restriction on the timed structure until now so the method can be easily adapted for several
models. The only, but nonetheless important point which makes DκA not directly and not
always usable is that it may not be necessarily computed.

As discussed in section 5.1, the updates Uσ can be computed, given that Aκ is compatible
with a computable guard base, that all updates are computable and that we can enumerate ν.
Still to be able to compute Ud we need to be able to compute the reachable sets of Aκ reduced
to its silent part (keeping only the silent transitions).

In the case of timed automata, all those hypotheses are satisfied and thus we can recover
the result of [53] that it is possible to construct a diagnoser for timed automata. The three
last chapters of this thesis are about how we try to take advantage of the particular shape
of the powerset automaton of a (one-clock) timed automaton to (try to) make, by using pre-
computations, a diagnoser more efficient than the one proposed in [53]. We choose to focus on
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the one-clock case to avoid the combinatorial explosion of the configuration space of n-clock
timed automata both in the definition of the data structure we need and in the reasoning we
will do on those structures. We discuss in the conclusion leads to extend our work to n-clock
timed automata.

Our approach is summarized in figure 9.3. We know how to define Ud which takes a marking
ν and simulates a delay and a finite sequence of silent transitions to construct as result another
marking ν ′ (top arrow of figure 9.3). In this diagram ν is difficult to represent and Ud is
difficult to compute. We propose then a simpler representation of ν into a timed interval
marking represented by I and I′ in figure 9.3 (chapter 10). This representation will also allow
simpler simulation of time delays, converting it into a closure operator involving set operations
(ε in figure 9.3) and additions over the reals (chapter 11) (+d in figure 9.3). Our work will
hence consist of defining what the dotted arrows of figure 9.3 do.

ν ν ′

I I′

Ud

ε,+d

Figure 9.3: Work Plan
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Chapter 10

Timed Set Algebra

A Framework for Precomputation

In this section, we focus on defining what will be the shape of I and I′ in our work plan
(c.f. figure 10.1. We said before that we sought to find a finite representation for markings
that allow efficient computation of delays and action transitions. We propose timed sets and
dedicate all this chapter to their definition, representation and their basic algebraic operations.
Which makes it rather technical.

ν ν ′

I I′

Ud

ε,+d

Figure 10.1: Work Plan - Timed Sets

Consider M ∈ N and ν a value of the powerset automaton of some M -bounded one-clock
timed automata. The motivation to introduce timed sets comes directly from our goal of finding
a representation of a marking ν. Recall that ν maps each state to a set of values that will
evolve synchronously with time. The major complication, due to silent transition simulation, is
that after some delay some new value can appear. This will create a new value of ν ′ which can
be very different from ν and which is not easily deducible from ν. So the idea is the following:
we try to concentrate all the information of the future values reachable (by a silent run) from
ν into a single object. The simplest object which does that is the function fν : R≥0 →MECM
defined for all d ∈ R≥0 as fν(d) = Ud(ν).

Based on this intuition we begin with this function (defined on the reals instead of CM )
and construct simpler computable objects, from the atomic and simple timed sets (c.f. section
10.1) to the regular timed markings (c.f. section 10.3). Regular timed marking is the adapted
data structure used in elements I and I′ of figure 10.1. We give them a finite representation
and describe how to compute basic set operations on them. We need before that to introduce
the notion of regular union of intervals in section 10.2.

How to go from a marking of the powerset automaton to a regular timed marking will be
the question addressed and solved in chapter 11.
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10.1 Timed Sets

Recall that we restricted ourselves to one-clock timed automata. Let us fix M ∈ N for all
this section.

Remark 10.1.1. We should work then in CM = [0,M ]∪{∞}. For simplicity sake we will however
work here in R≥0. In the end we will view elements of R≥0 as element of CM considering the
following transformation on R≥0:

pM(d) =

{
d if d ∈ [0,M ]
∞ if d ∈]M,+∞[

For all d0, d ∈ R≥0, recall that ⊕〈CM ,↪−→〉 stands for the deterministic delay transition between

elements of CM (simple real value addition, with rounding to ∞ when going over M). Notice
that pM(d0 + d) = pM(d0)⊕〈CM ,↪−→〉 d.

Example 10.1.1. As an example, supposing that M = 12,

• pM(144) =∞,

• pM([6, 21[) = [6, 12] ∪ {∞},

• pM(]12, 16]) = {∞}.

We need to introduce some notations we’ll use for all this part. For any set E ⊆ R, and any
real d ∈ R, we recall that

E + d = {x+ d, x ∈ E}

For r ∈ [[0,M ]], we define the following intervals of R:

7→r = [r; +∞) →r = (r; +∞)

→

r = (−∞; r)

7→

r = (−∞; r].

We let ĈM = { 7→r, →r | r ∈ [[0,M ]]}; in the sequel, elements of ĈM are denoted with r̂. Similarly,
we let ĈM = {

7→

r,

→

r | r ∈ [[0,M ]]} ∪ {

→

+∞}, with

→

+∞ = R, and use notation r̂ for intervals

in ĈM . The elements of ĈM can be (totally) ordered using inclusion: we write r̂ ≺ r̂′ whenever
r̂′ ⊂ r̂ (so that r < r′ entails →r ≺ →r′). ĈM and ĈM are stable by union and intersection and
r̂ ∩ r̂′ = max(r̂, r̂′), r̂ ∪ r̂′ = min(r̂, r̂′), r̂ ∩ r̂′ = min(r̂, r̂′) and r̂ ∪ r̂′ = max(r̂, r̂′).

As just discussed in the introduction, a timed set is hence a function mapping every delay
d ∈ R≥0 to the value (being a set) the timed set will have after d time units. Also in our context
values can appear and grow but they can’t disappear, decrease or remains constant. Formally,

Definition 10.1.1. A timed set is a function from R≥0 to P(R≥0) such that for all d, d′ ∈ R≥0,
f(d) + d′ ⊆ f(d+ d′).

The set of timed sets is written FR≥0
.

If f ∈ FR≥0
, f(0) can be understood as the initial state of the set and f(d) as its states after

d times units.

Example 10.1.2. The function which maps every d ∈ R≥0 to [d, d+ 3[ represent a set of possible
value of a clock evolving from [0, 3[ to [12, 15[ after 12 time units, [144, 147[ after 144 time units,
etc.
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We extend below set theoretic operations on timed sets. Let f, f ′ ∈ FR≥0
. For all d ∈ R≥0,

• (f ∪ f ′)(d) = f(d) ∪ f ′(d)

• (f ∩ f ′)(d) = f(d) ∩ f ′(d)

• f(d) = f(d)

with E = R≥0 \ E for all subset E of R≥0.

Proposition 10.1.2. For all f, f ′ ∈ FR≥0
, f ∪ f ′ and f ∩ f ′ are timed sets.

Proof.

This is a simple consequence of the fact that for all E,F ⊆ R≥0 and d ∈ R≥0, (E∪F )+d =
(E + d) ∪ (F + d) and (E ∩ F ) + d = (E + d) ∩ (F + d). �

Notice that in the other hand f is not a timed set because values which were appearing in f
now are disappearing in f . For example let f which maps every real d ∈ R≥0 to f(d) = [0, d+3].
f(0) + 1 = (−∞, 1) ∪ [4,+∞) wich is not included in f(1) = (−∞, 0) ∪ [4,+∞) .

We define also for all family (fi)i∈N ∈ FN
R≥0

, for all d ∈ R≥0,

(
⋃
i∈N

fi)(d) =
⋃
i∈N

fi(d)

Proposition 10.1.3. For all family (fi)i∈N ∈ FN
R≥0

,
⋃
i∈N fi is a timed set.

Proof.

This is a consequence again of the fact that for all family (Ei)i∈N ∈ P(R≥0)N and d ∈ R≥0,
(
⋃
i∈NEi) + d =

⋃
i∈N(Ei + d). �

Finally we define an operation f + d between a timed set f and a positive real d ∈ R≥0

which is not the natural extension of the set operation E + d: for all d′ ∈ R≥0,

(f + d)(d′) = f(d+ d′)

This operation simulates a delay d on the time sets in such way that (f + d)(0) takes the value
of f(d).

Example 10.1.3. For f ∈ FR≥0
mapping d′ ∈ R≥0 to [d, d + 3[. (f + 12)(0) = [12, 15[ and

(f + 12)(132) = [144, 147[, etc.

Proposition 10.1.4. For all f ∈ FR≥0
and d ∈ R≥0, f + d is a timed set.

Proof.

By definition, since for all d′, d′′ ∈ R≥0, f(d+ d′) + d′′ ⊆ f(d+ d′ + d′′). �

We extend set inclusion. Let f, f ′ ∈ FR≥0
:

f ⊆ f ′ ⇐⇒ ∀d ∈ R≥0, f(d) ⊆ f ′(d)

with as consequence f = f ′ ⇐⇒ (f ⊆ f ′ and f ′ ⊆ f). Other classical propositions can be
retrieved such as f ⊆ f ′ =⇒ f ∪ f ′ = f ′, f1 ⊆ f ′1 and f2 ⊆ f ′2 =⇒ f1 ∪ f2 ⊆ f ′1 ∪ f ′2 or
f = f ′ =⇒ f ∪ f ′′ = f ′ ∪ f ′′ . . .
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The timed set at the basis of all our representations of markings, is a timed set where values
appear always with a fixed value. It will not be a restriction in the future to impose that those
values are taken within [[0,M ]].

Definition 10.1.5. An atomic timed set is a timed set f for which exists E ⊆ R and r̂ ∈ ĈM
such that for all d ∈ R≥0

f(d) = (E + d) ∩ r̂

f is then written (E; r̂)

In an atomic timed set (E, r̂), E is called the dynamic part of the timed set and r̂ is called
the static part. The reason of those appellations can be intuited on figure 10.2.

Remark 10.1.2. Notice that this writing for an atomic timed set is not always unique. Indeed
([12, 13], 7→12) and ([12, 13], →0) are two different writings for the same timed set. However if
E 6⊆ r̂, in this case there exists only one writing for (E; r̂).

Notice also that E can contain negative values. Because r̂ ⊆ R≥0, f is a well-defined timed
set.

Example 10.1.4. Figure 10.2 displays an example of an atomic timed set f = (E; 7→1), with
E = [−3;−1] ∪ [0; 2]. The picture displays the sets f(0) = [1; 2] and f(3) = [1; 2] ∪ [3; 5].

−3 −2 −1 0 1 2 3 4 5

r = 1

E f(0) = [1; 2]

−3 −2 −1 0 1 2 3 4 5

E + 3

r = 1
f(3) = [1; 2] ∪ [3; 5]

Figure 10.2: Example of an atomic timed set f = ([−3;−1] ∪ [0; 2]; 7→1).

In the following proposition, we prove some rewriting properties along with the stability of
atomic timed sets with regards to addition by a positive real. Recall that (E; r̂) represents a
function so equality stands for function equality.

Proposition 10.1.6. Let E,F ⊆ R, r̂, r̂′ ∈ ĈM and d ∈ R≥0.

• (E; r̂) ∪ (F ; r̂) = (E ∪ F ; r̂)

• (E; r̂) ∪ (E; r̂′) = (E; min(r̂, r̂′))

• (E; r̂) + d = (E + d; r̂)

Proof.

By definition, using set theoretic operation factorization and by noticing that for all E,F ⊆
R≥0 and d ∈ R≥0, (E∪F )+d = (E+d)∪ (F +d) and (E∩F )+d = (E+d)∩ (F +d). �

We also state a stability result for countable unions,
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Proposition 10.1.7. Let (Ei)i∈NP(R)N and r̂ ∈ ĈM .⋃
i∈N

(Ei; r̂) = (
⋃
i∈N

Ei; r̂)

Proof.

By definition again, using set theoretic operation factorization. �

Definition 10.1.8. A finite union of atomic timed sets is called a simple timed set.

We will prove in chapter 11 that values of the powerset automaton of a one-clock timed
automaton can be represented by simple timed sets. That’s the reason why we focus, in the
rest of this chapter, only on those particular timed sets.

Example 10.1.5. The simple timed set ([−3, 1] ∪ [1, 2]; →1) ∪ ([−1.5,−0.5] ∪ [0, 0.5]; →2) is rep-
resented through its graph in figure 10.5. The x-axis represents the delay d to wait and
the y-axis the set of value contained in f(d). We highlight in particular f(0) = [1, 2] and
f(3) = [1, 2.5] ∪ [3, 3.5] ∪ [4, 5].

This graph can be obtain by union of the graphs of ([−3, 1] ∪ [1, 2]; →1) in figure 10.3 and

([−1.5,−0.5] ∪ [0, 0.5]; 2̂) in figure 10.4. Their graphs are obtained by intersection of the gray
zone, corresponding to the static part of the atomic timed sets (resp 1̂ and 2̂) and the red zone
corresponding to the dynamic part of the atomic timed sets evolving with time (at absciss d we
respresent respectively [−3,−1] ∪ [1, 2] + d and [−1.5,−0.5] ∪ [0, 0.5] + d).

A simple timed set can be represented by a function from ĈM to P(R), called representation
of the timed set in the following way: let ι : ĈM → P(R) be such a function, then ι is a
representation of the simple timed set f if and only if

fι =
⋃

r̂∈ĈM

(ι(r̂); r̂)

On the other hand if f ∈ FR≥0
can be written

⋃m
i=0(Ei; r̂i), we can define for all r̂ ∈ ĈM , and

according to proposition 10.1.6 fιf = f and ιf is a

ιf (r̂) =
⋃

i∈[[0,m]] | r̂i=r̂

Ei

representation of f . However, such a function does not characterize f , in the sense that several
different functions can define the same simple timed set.

Example 10.1.6. Fix M = 1. The three following writings represent the same simple timed
function.

• ([−2, 0] ; 7→0) ∪ ([0, 0] ; →0) ∪ ([0, 3] ; 7→1) ∪ (∅ ; →1)

• ([−2, 0] ∪ [1, 3] ; 7→0) ∪ (∅ ; →0) ∪ (]0, 1[ ; 7→1) ∪ (∅ ; →1)

• ([−2, 0] ∪ [1, 3] ; 7→0) ∪ ([−2, 0] ∪ [1, 3] ; →0) ∪ ([−2, 3] ; 7→1) ∪ ([−2, 3] ; →1)
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Figure 10.3: f = ([−3, 1] ∪ [1, 2]; ↑ 1)
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Figure 10.4: f = ([−1.5, 0.5] ∪ [0, 0.5]; ↑ 2)
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Figure 10.5: f = ([−3, 1] ∪ [1, 2]; ↑ 1) ∪ ([−1.5,−0.5] ∪ [0, 0.5]; ↑ 2)
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In the first writing of example 10.1.6 there is redundant information. Indeed f(1) = [0, 1] ∪
[1, 1] ∪ [1, 4] ∪ ∅] which provides in three different ways that 1 is in the set : ([0, 3]; 7→1) states
that a value 1 will appear in exactly 1 time unit; but ([0, 0]; →0) states that a value 0 has just
appeared and this value will be equal to 1 in 1 time unit, . . . . This representation is therefore
not minimal.

We can remove redundant information by imposing that given a representation ι of a simple
timed set, for all r̂ 6= r̂′ ∈ ĈM , ι(r̂)∩ ι(r̂′) = ∅. As it is done in the second writing. We say that
such a representation is disjoint. However a disjoint representation still does not characterize a
simple timed set, since, for example in example 10.1.6, the information that [1, 3] is in the timed
set from the beginning is here given by ([−2, 0] ∪ [1, 3]; 7→0) but could be given by (]0, 3]; 7→1) if
we choose to.

The last writing takes the opposite point of view and gathers all information available by
imposing that for all r̂ ≺ r̂′ ∈ ĈM , ι(r̂) ⊆ ι(r̂′). A representation satisfying such a hypothesis
is called complete. It is still not a characterizing representation for the same reason as for the
disjoint representations.

We could make both the disjoint and complete representations characterizing by imposing
the following additional hypothesis, called slicing hypothesis, on the representation: for all
r̂ ∈ ĈM \ { 7→0}, ι(r̂) ∩ r̂ = ∅. We could prove then that a simple timed set is characterized by
a sliced disjoint (or complete) representation, called then disjoint (or complete) normal form,
and that this normal form is computable. It is not interesting for the goal we have of building
a diagnoser, hence we will save the reader from additional technical proof. It could be done
by examining exactly what happens when time flows on the appearing points of the timed set
(0,0+,. . . ,M ,M+, with r+ meaning an infinitesimal time after r).

Given two arbitrary representations ι, ι′ of two simple timed sets f, f ′ ∈ FR≥0
we can easily

construct the representation of f ∪ f ′ (which is obviously a simple timed set) in the following
way: for all r̂ ∈ ĈM we define,

(ι ∪ ι′)(r̂) = ι(r̂) ∪ ι′(r̂′)

Proposition 10.1.9. Let f, f ′ be two simple timed sets and ι, ι′ be two representations of f .
Then (ι ∪ ι′) is a representation of f ∪ f ′.

Proof.

By writing down the definition of a representation and according to proposition 10.1.6,

f ∪ f ′ =
[ ⋃
r̂∈ĈM

(ι(r̂); r̂)
]
∪
[ ⋃
r̂∈ĈM

(ι′(r̂); r̂)
]

=
⋃

r̂∈ĈM

(ι(r̂) ∪ ι′(r̂); r̂) =
[ ⋃
r̂∈ĈM

((ι ∪ ι′)(r̂); r̂)
]
�

We can extend this result on countable unions of simple timed sets and prove that simple
timed sets are stable by countable unions. Given (fi)i∈N be a family of simple timed sets and
(ιi)i∈N be a family of representations such that for all i ∈ N, ιi is a representation of fi we can
construct the representation of

⋃
i∈N fi in the following way: for all r̂ ∈ ĈM we define,

(
⋃
i∈N

ιi)(r̂) =
⋃
i∈N

ιi(r̂)

Proposition 10.1.10. Let (fi)i∈N be a family of simple timed sets and (ιi)i∈N be a family of
representations such that for all i ∈ N, ιi is a representation of fi.

Then
⋃
i∈N ιi is a representation of

⋃
i∈N fi.
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Proof.

By writing down the definition of a representation and according to proposition 10.1.7. �

Remark 10.1.3. Besides the use we make of representation in the proofs of chapter 11, represen-
tation are an especially important object because they represent exactly the way we encoded
simple timed sets in our prototype DOTA. Simple timed sets are represented as arrays of length
|ĈM | where each cell contain ι(r̂i) for some representation ι and where ĈM is linearly ordered
and r̂i is the ith element of ĈM . ι is computed by defining a base representation of an atomic
timed set and computing unions of representation following proposition 10.1.6 when needed.

Remark 10.1.4. The definition of atomic and simple timed sets is dependent on the integer M .
We will always make sure in the rest of this thesis that M is fixed, before speaking of such
timed sets. We will then implicitly mean that those atomic or simple timed sets depend on this
fixed integer M .

We imposed some regularity on the appearing value of a simple timed set, by working on its
static parts and imposing that they have to be within a finite set of values. We focus, in the
next section on imposing some regularity on the moment in time they will appear.

10.2 Regular Timed Interval

Let us fix M ∈ N again for all this section.

Giving some continuity to the moment in time a value appears in an atomic timed set is
possible using restrictions on its dynamic part. For example for an atomic timed set f =
([1, 2]; 7→3) we know that the value 3 is going to appear in exactly 1 time unit, will continue to
appear during 1 time unit and will appear for the last time in 2 time unit.

Considering finite unions of intervals as dynamic parts for atomic timed sets is a good way to
give the continuity we can observe in the values of the powerset automaton of a one-clock timed
automaton. They also have the important property of being finitely and easily representable,
and to allow efficient membership test, intersection and union computation.

Definition 10.2.1. A timed interval is an atomic timed set (E; r̂) such that E is an interval
of R.

Notice that this definition is valid because given an atomic timed set, all its possible writings
have the same dynamic part (c.f. lemma 10.1.6).

A finite union of timed intervals is then a simple timed set and for any representation ι of
a finite union of timed intervals, for all r̂ ∈ ĈM , ι(r̂) is a finite union of intervals of R.

However finite unions of timed intervals are not enough to represent all the possible values a
powerset automaton can take as we show in example 10.2.1.

Example 10.2.1. Consider the silent timed automaton of figure 10.6. In its powerset automaton,
the initial marking νI maps q0 to {0} and q1 to ∅. We represent as an atomic timed set (in
figure 10.6) the evolution of νI(q1) with time, let’s write for all d ∈ R≥0 fI(d) = Ud(νI)(q1).

First notice that fI(0) is the closure by silent runs of νI , and because we can instantly
make one, fI(0) = {0}. Then, this value grows with time, but even if we can still take a silent
transition for 1 time unit (strictly) we never add another possible value (since we cannot take
the transition from q1 to q0), so fI(d) = {d} for d ∈ [0, 1). We have to wait 1 time unit exactly,
at which point a branching is possible: we can stay in q1 or make two silent transitions, adding
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a new possible value 0 for q1. Hence fI(1) = {1, 0}. Again we find ourselves in the same
situation and can wait for 1 time units at which point we’ll add another 0 as possible value for
q1, therefore having fI(2) = {2, 1, 0}. . .

Such a timed state cannot be represented by a finite union of timed intervals, because finite
unions of intervals of R must have an infimum, and once this infimum value has grown past
M we can be sure no other value is going to appear. We need an infinite (countable) union
of intervals of R to represent the timed set. In our case, we can represent fI as the following
simple timed set

fI = (
⋃
n∈N

[−n,−n]; 7→0)

q0

q1

ε,
[0, 1),
{id}

ε,
[1, 1],
{0} −3 −2 −1 0 1 2

. . .

r = 0

Figure 10.6: A silent timed automaton

To palliate this problem, one solution is to consider countable unions of timed intervals (as
it is done in example 10.2.1). As we have seen in section 10.1, countable unions of timed interval
are still simple timed sets. For any representation ι of a countable union of timed interval, for
all r̂ ∈ ĈM , ι(r̂) is a countable union of intervals of R.

Still, with countable unions of intervals, we introduce another problem which is that we can’t
always finitely represent such unions and test membership or compute unions and intersections.
That’s why we need to introduce a special class of countable unions of (real) intervals, which
is both: wide enough to encompass all the possible shapes of simple timed set issued from
the powerset automaton values representation (as we will prove in chapter 11) and finitely
representable and allowing efficient computation. We name this class regular unions of intervals.

Definition 10.2.2. A regular union of intervals is a subset of R of the form

E = I ∪
⋃
k≥m

J + k · p

where I and J are finite unions of interval and m and p are non-negative integers, and such
that J ⊆ [0, p[.

E is then written (I, J, p,m).

In a regular union of intervals (I, J, p,m), I is called the base interval, J is called the repeated
interval, p is called the period and m the offset.

Remark 10.2.1. A finite union of interval is a regular union of interval represented by (I, ∅, 0, 0).

Remark 10.2.2. The representation (I, J, p,m) for E is not unique, for several reasons. We
could, for example, integrate into the base the first repetition of J or duplicate J and double
the period, . . .

We explore below the different behaviors of regular unions of intervals through union, inter-
section, and addition of a real number. Recall that given two sets, E − F stands for the set of
all x− f with x ∈ E and f ∈ F .

105



Proposition 10.2.3. Let E = (I, J, p,m) and E′ = (I ′, J ′, p′,m′) be two regular unions of
intervals, K be an interval with a finite upper bound, and d ∈ R. Then E ∪E′, E ∩E′, E −K
and E + d are regular unions of intervals. E ∩K is a finite union of intervals.

Proof.

Recall that we have :

E = I ∪
+∞⋃
k=m

J + k · p E′ = I ′ ∪
+∞⋃
k=m′

J ′ + k′ · p′.

Let q = lcm(p, p′) and a, a′ ∈ N such that q = a · p and q = a′ · p′. We let also b, b′ ∈ N,
respectively the quotient of the Euclidian division of m by a and of m′ by a′. Finally let
c = max(b+ 1, b′ + 1) Then we can write

E =

(
I ∪

c·a−1⋃
k=m

J + k · p

)
∪

+∞⋃
k=c

[(
a−1⋃
r=0

J + r · p

)
+ k · a · p

]
.

and

E′ =

(
I ′ ∪

c·a′−1⋃
k=m′

J ′ + k · p′
)
∪

+∞⋃
k=c

[(
a′−1⋃
r=0

J ′ + r · p′
)

+ k · a′ · p′
]
.

Let’s write

I1 = I ∪
c·a−1⋃
k=m

J + k · p I ′1 = I ′ ∪
c·a′−1⋃
k=m′

J ′ + k · p′

J1 =
a−1⋃
r=0

J + r · p J ′1 =
a′−1⋃
r=0

J ′ + r · p′

Since J ⊆ [0, p), we have J1 ⊆ [0, a · p) = [0, q), and similarly for J ′1.

I We focus here on E ∪ E′. Taking the union of the equalities above, we get

E ∪ E′ = I1 ∪ I ′1 ∪
+∞⋃
k=c

[
J1 ∪ J ′1 + k · q

]
.

Since J1 ∪ J ′1 ⊆ [0, q), E ∪ E′ is a regular union of intervals represented by (I1 ∪
I ′1, J1 ∪ J ′1, c, q).

I We focus now on E ∩ K. Let l = supK ∈ R since K as an upper bound. For all
k > d lpe, J + kp ⊆ (l,+∞). Hence we can write,

E ∩K = (I ∩K) ∪
d l
p
e⋃

k=m

(J + k · p) ∩K

which is a finite union of interval.

I We focus here on E ∩ E′. As seen just before, any intersection between a regular
union of intervals and a finite union of intervals creates a finite union of intervals.
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By distributivity there exists then a finite union of intervals, I ′′, such that we can
write

E ∩ E′ = I ′′ ∪

(
+∞⋃
k=c

[J1 + k · q] ∩
+∞⋃
k=c

[
J ′1 + k · q

])
But because for all k ≥ c, J1 + kq ⊆ [kq, kq + 1) and J ′1 + kq ⊆ [kq, kq + 1), we can
write

E ∩ E′ = I ′′ ∪
+∞⋃
k=c

[
J1 ∩ J ′1 + k · q

]
Since J1 ∩ J ′1 ⊆ [0, q), E ∩E′ is a regular union of intervals represented by (I ′′, J1 ∩
J ′1, c, q).

I Finally to compute E + d, let n = bdpc (possibly negative) and r = d− np < p. Let
K1 = J+r∩ [0, p) and K2 = J+r∩ [p, p+1). We know for sure that J+r = K1∪K2.
We write then

E + d = I + d ∪
+∞⋃
k=m

J + kp+ d

= I + d ∪
+∞⋃
k=m

J + kp+ np+ r

= I + d ∪
max(m,n)−1⋃

k=m

(J + r) + (k + n)p ∪
+∞⋃

k=max(m,n)+n

(J + r) + kp

= I ′′ ∪
+∞⋃

k=max(m,n)+n

K1 + kp ∪
+∞⋃

k=max(m,n)+n

K2 + kp

with I ′′ = I+d ∪
⋃max(m,n)−1
k=m (J+r)+(k+n)p. I ′′ have been introduced to be sure

that the first index of the infinite repetition part is a natural number. We define
then I(3) = I ′′ ∪K1 + (max(m,n) + n)p. Then :

E + d = I(3) ∪
+∞⋃

k=max(m,n)+n+1

K1 + kp ∪
+∞⋃

k=max(m,n)+n+1

(K2 − p) + kp

= I(3) ∪
+∞⋃

k=max(m,n)+n+1

(K1 ∪K2 − p) + kp

with K1 ∪K2 − p ⊆ [0, p). Which means that E + d is a regular union of intervals
represented by (I(3),K1 ∪K2 − p,max(m,n) + n+ 1, p).

�
Remark 10.2.3. We will need the properties just proved in proposition 10.2.3 for the proofs in
chapter 11. But more than its theoretic interest, this proof describes exactly how we will handle
regular unions of intervals in DOTA. Regular unions of intervals are represented as a tuple of
four elements exactly as it is done in this section. The union is computed by first rewriting E
and E′ with the same period and then by computing the union of the bases and repeated parts
– as it is done in the proof of proposition 10.2.3 exactly.
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We also need to compute intersections of regular unions of intervals and finite unions of
intervals in DOTA. It is done in the same way we have proved that such an intersection builds
a finite union of intervals: by reducing the infinite repetition of J into a finite one.

In DOTA however we do not compute the addition by a real (E + d) as it is done in
proposition 10.2.3. Comforted by the fact that E + d is indeed a regular union of intervals,
we only store at each point the accumulated delays which have been elapsed since the last
observable action. We noticed indeed that every time we need to access to some information
on the regular union of intervals – for example to compute the set of reached or soon to be
reached states of the observed timed automaton – we do first some intersection of a finite union
of intervals with an upper bound, say K. Because (E + d)∩K = (E ∩K − d) + d we can avoid
making heavy computations of E + d and instead make two simple computation of an addition
of two finite unions of intervals with a real.

We prove one intermediate result, implemented in DOTA, and useful in the proof of the
two succeeding propositions.

Lemma 10.2.4. Let I and J be finite unions of interval and m and p be two integers and let

E = I ∪
⋃
k≥m

J + k · p

Suppose there exists b ∈ N such that J ⊆ [−b, b), then E is a regular union of interval.

Proof.

Though J is not included in [0, p), it is not difficult to adapt the repeated part so it fits
in [0, p). We show how below.
First consider J ′ = J + (b bpc + 1)p, we know have J ′ ⊆ [0, 2b + 1) and E = I ∪⋃
k=m+b b

p
c+1 J

′ + k · p.

Let N = d2b+1
p e and

J ′′ =

N−1⋃
i=0

J ′ − i · p ∩ [0, p)

by definition J ′′ ⊆ [0, p).

E = I ∪
⋃
k∈N

J ′ + k · p

= I ∪
⋃
l∈N

(
⋃
k∈N

J ′ + k · p) ∩ [l · p, (l + 1) · p)

= I ∪

(
(
⋃
k∈N

J ′ + k · p) ∩ [0, N · p)

)
∪

+∞⋃
l=N

(⋃
k∈N

J ′ + k · p

)
∩ [l · p, (l + 1) · p)

but since J ′ ⊆ [0, N · p) it means that for all l, k ∈ N,

J ′ + k · p ∩ [l · p, (l + 1) · p) 6= ∅ ⇐⇒ k < l + 1 and k > l −N
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Hence, if we write I ′ = I ∪
(
(
⋃
k∈N J

′ + k · p) ∩ [0, N · p)
)
,

E = I ′ ∪
+∞⋃
l=N

(
l⋃

k=l−N+1

J ′ + k · p

)
∩ [l · p, (l + 1) · p)

= I ′ ∪
+∞⋃
l=N

(
N−1⋃
k=0

J ′ + (k + l −N + 1) · p

)
∩ [l · p, (l + 1) · p)

= I ′ ∪
+∞⋃
l=N

N−1⋃
k=0

(
J ′ + (k + l −N + 1) · p ∩ [l · p, (l + 1) · p)

)
= I ′ ∪

+∞⋃
l=N

N−1⋃
k=0

(
J ′ + (k −N + 1) · p+ l · p ∩ ( [0, p) + l · p)

)
= I ′ ∪

+∞⋃
l=N

N−1⋃
k=0

(
J ′ + (k −N + 1) · p ∩ [0, p)

)
+ l · p

= I ′ ∪
+∞⋃
l=N

(
N−1⋃
k=0

J ′ − k · p ∩ [0, p)

)
+ l · p

= I ′ ∪
+∞⋃
l=N

J ′′ + l · p

In conclusion, E is a regular union of intervals represented by (I ′, J ′′, N, p). �

Remark 10.2.4. This adaptation of the repeating interval is implemented in DOTA and in the
precomputation process.

The following proposition is again a stability property useful in chapter 11. It is a direct
consequence of lemma 10.2.4.

Proposition 10.2.5. For all regular union of intervals E, and for all bounded interval K, I−K
is a regular union of intervals.

Proof.

Let E = I ∪
⋃+∞
k=m J − kp.

E − J = (I −K) ∪ (
+∞⋃
k=m

J −K + kp)

is a regular union of timed interval since J −K ⊆ [− supK, p − inf K] and according to
lemma 10.2.4. �

Below we prove a property of regular unions of intervals at the heart of our future proof that
reachable values in a powerset automaton can be represented by regular unions of intervals.

Proposition 10.2.6. Let I, J be two finite unions of intervals such that J has a lower bound,
n ∈ N and p1, . . . , pn be n strictly positive integers.

E = I ∪
⋃

k1,...,kn∈Nn
J + k1 · p1 + k2 · p2 + . . . kn · pn

is a regular union of interval.
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Proof.

First suppose that sup J = +∞, then E = I ∪ J is a finite union of interval. Suppose now
that sup J = j+ ∈ R≥0.

Let p = lcm1≤i≤n(pi). For all 1 ≤ i ≤ n, let’s define ai = p
pi
∈ N.

E = I ∪
⋃

q1,...,qn∈N,r1,...,rn∈[[1,a1]]×···×[[1,an]]

J + (q1 · a1 + r1)p1 + · · ·+ (qn · an + rn) · pn

= I ∪
⋃

q1,...,qn∈N

⋃
r1,...,rn∈[[1,a1]]×···×[[1,an]]

J + (q1 · a1 + r1)p1 + · · ·+ (qn · an + rn) · pn

= I ∪
⋃

q1,...,qn∈N

 ⋃
r1,...,rn∈[[1,a1]]×···×[[1,an]]

J + r1 · p1 + · · ·+ rn · pn

+ (q1 + · · ·+ qn) · p

= I ∪
⋃
k∈N

J ′ + k · p

with J ′ =
(⋃

r1,...,rn∈[[1,a1]]×···×[[1,an]] J + r1 · p1 + · · ·+ rn · pn
)

. Let j′+ = j+ + Σn
i=1(ai −

1) · pi and N = d j
′
+

p e. We have then J ′ ⊆ [0, N · p). E is then a regular union of intervals
according to lemma 10.2.4. �

Remark 10.2.5. Again, this proof gives with the theoretical result, the algorithm to convert the
expression given in the statement of the proposition – which is the archetype of the expression
we have to work with at some point during the precomputation in DOTA – into a regular
union of intervals. We implemented this conversion in DOTA exactly in the way it is depicted
in the proof of 10.2.6

Regular unions of intervals can store an infinite number of possible values of a clock while
being finitely representable and so that we can efficiently compute unions, additions by a real,
and even complex repetitions with multiple periods. They will be useful to the representation
of the values reached by the powerset automaton, we will use them particularly in the form of
timed regular intervals defined below.

Definition 10.2.7. A timed regular interval is an atomic timed set (−E; r̂) with E being a
regular union of intervals.

Remark 10.2.6. Notice that technically, the dynamic part of a timed regular interval is not a
regular union of intervals but the opposite of a regular union of intervals.

As one can expect we allow finite unions of timed regular intervals and call them regular
timed sets. In particular, regular timed sets are simple timed sets.

Regular timed sets are at the heart of the representation of a marking ν reachable in the
powerset automaton, but they are not a marking themselves. We use them to define regular
timed markings in section 10.3, which are exactly the object we use to represent reachable
markings.

Remark 10.2.7. Following remark 10.1.4 the definition of regular timed sets is also dependent
on the integer M . We will use the same precaution as for atomic and simple timed sets.
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10.3 Regular Timed Markings

Let us fix M again for all this section. We also fix a finite set Q, which can be considered
as the set of state of a one-clock timed automaton.

Timed markings are functions from Q to the set of timed sets. Intuitively, a timed marking
m, maps each state, q, to a timed set representing the evolution over time of the possible values
that can take the clock while being in q. We write MQ for the set of timed markings.

Example 10.3.1. For example, if we work with the 2-bounded one-clock timed automaton of
figure 10.7 we can represent the evolution of the possible values of x by the two timed sets on
the right. The higher time set represent the possible values of x when we are in q0, that is 0
(initial value), 0 in 2 time units (after one cycle), 0 in 4 time units (after two cycles), etc. The
lower time set represent the possible values of x when we are in q1, that is 1 in 1 time unit (first
time we take the transition), 1 in 3 time units (after one cycle and taking the transition from
q0 to q1), etc.

q0

q1

ε,
[1, 1],
{id}

ε,
[2, 2],
{0}

−3 −2 −1 0 1 2

q1 : . . .

r = 1

−3 −2 −1 0 1 2

q0 : . . .

r = 0

Figure 10.7: Another silent timed automaton

As we discussed it in the introduction of this chapter we can intuitively associate with each
marking a timed marking – and conversely. We can’t formally make a bijection between the
two spaces for two reasons. First because a marking ν is different from U0(ν) which applies all
possible silent transitions on the marking and possibly adds new possible values of the clock.
Then because a marking takes value in P(C1) and a timed marking P(R≥0).

However, this won’t bother us for this work. We will show how the correspondence is made
in chapter 11. In that chapter we will also prove that, in fact, markings obtained by execution
of the powerset automaton of a one-clock automaton can be put in correspondence to a regular
timed markings defined below.

Definition 10.3.1. Regular timed markings are function from Q to P(R), mapping each state
in Q to a regular timed set.

We can also define a simple timed marking as a function from Q to P(R), mapping each
state in Q to a simple timed set. A regular timed marking is then a simple timed marking;

Timed markings (and then regular timed markings) behave, like timed sets, well with regards
to set theoretic operations. We can extend them on timed markings as follows: let m and m′

be two timed markings, d ∈ R≥0, for all q ∈ Q,

• (m ∪m′)(q) = m(q) ∪m′(q)

• (m ∩m′)(q) = m(q) ∪m′(q)

• (m + d)(q) = m(q) + d

According to proposition 10.1.2 and 10.1.4, those operations define new timed markings.
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Given a family (mi)i∈N of timed markings, we also define for all q ∈ Q:

(
⋃
i∈N

mi)(q) =
⋃
i∈N

mi(q)

According to proposition 10.1.3, the countable union of timed markings are timed markings.

We can also extend the notion of representation of simple timed sets to simple timed markings.
A representation, ι, of a simple timed marking, m, is a function from Q × ĈM to P(R) such
that for all q ∈ Q,

m(q) =
⋃

r̂∈ĈM

(ιm(q, r̂); r̂)

Conversely, if m is a simple timed marking we can define for all q ∈ Q and for all r̂ ∈ ĈM ,

ιm(q, r̂) = ιm(q)(r̂)

which is a representation of m.

Finally, we introduce an atomic decomposition for timed markings. An atomic marking , m,
is a timed marking such that there exists q ∈ Q such that m(q) is an atomic timed set, (E; r̂)
and for all q′ ∈ Q \ {q} m(q′) is the empty timed set (mapping all d ∈ R≥0 to ∅). Such a
marking is written mq,(E;r̂).

An atomic marking mq,(E;r̂) is a regular atomic marking if and only if E is a regular union
of intervals.

Every simple timed marking can be decomposed as a finite union of simple timed markings.

Proposition 10.3.2. Let m be a simple timed marking. There exists a finite number of pairs
of states and atomic timed sets, (q1, (E1; r̂1)), . . . , (qn, (En; r̂n)), such that

m =
n⋃
i=1

mqi,(Ei;r̂i)

Moreover, if m is regular then for all i ∈ [[1, n]], (Ei; r̂i) can be chosen to be regular ; conversely
if for all i ∈ [[1, n]], (Ei; r̂i) is regular then m is regular too.

Proof.

Just recall that for all q ∈ Q, m(q) =
⋃
r̂∈ĈM (ιm(q, r̂); r̂). Hence we can write

m =
⋃
q∈Q

⋃
r̂∈ĈM

mq,(ιm(q,r̂);r̂)

I If m is regular then we can choose a representation of m such that for all q ∈ Q
and r̂ ∈ ĈM , ιm(q, r̂) is a regular union of intervals.
I If conversely for all i ∈ [[1, n]], Ei is a regular union of intervals, then by proposition

10.2.3, m is regular. �

Remark 10.3.1. Following remarks 10.1.4 and 10.2.7 the definition of regular timed markings is
also dependent on the integer M and the set Q. We will use the same precaution as for regular
timed sets.
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In chapter 11 we will construct a diagnoser working on timed markings, similar to the power
set automaton. We will focus first on the definition of this automaton and the proof it simulates
the powerset automaton, and in a second time we will focus on proving that this automaton
works actually on regular timed markings and expose how updates can be efficiently computed.
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Chapter 11

Precomputing with Timed Sets

Theoretical and Algorithmic Aspects

Now that we introduced regular timed markings and defined the nature of I and I ′ in
our work plan (figure 11.1), we focus on describing the transformation from ν to I, i.e. from
markings to regular timed markings, and the translation of update Ud. The difficulty is that our
translation of a marking into a regular timed marking does not immediately allow the simulation
of Ud by a simple addition +d. First, the regular timed marking needs to be closed under silent
transitions. To do so we need to introduce an operator ε which completes the regular timed
markings adding all possible future values accessible through silent runs. Once completed using
ε a delay can be simulated on the regular timed marking by simple addition. This is proved in
theorem 11.1.7, whose conclusion ensures the coherence of our work plan scheme in figure 11.1
: the translation of Ud(ν) is equal to the translation of ν closed by ε to which d is added.

ν ν ′

I I′

Ud

ε,+d

Figure 11.1: Work Plan - ε-closure

This allows us to construct a diagnoser on a new timed structure based on regular timed
markings. This is theorem 11.1.9, which is the important result of section 11.1.

At this point, the diagnoser would have the good properties of using finite representation
for values (regular timed markings) and efficient ways of computing action transition using set
operations. Delay transitions could be efficiently computed using simple addition if we can
efficiently compute the closure operation ε.

Section 11.2 is dedicated to the rather technical proof of theorem 11.2.1 that indeed ε :

• maps a regular timed marking to another regular timed marking,

• and as importantly can be efficiently computed using precomputed tables of regular timed
markings.
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11.1 Timed Marking Diagnoser

Fix in all this section M ∈ N and Σ a finite alphabet. We also fix 〈A, κ〉 ∈ ΣTA1
M an

M -bounded one-clock Σ-timed automaton. We write A = 〈Q, I, T, F 〉.
In this section, we construct an efficient diagnoser similar to the powerset automaton. This

construction is made by putting in evidence a functional bisimulation from the timed marking
structure – defined below – to the (M, 1)-clock structure.

To define the timed marking structure we need to define a delay transition and a set of updates
which will simulate respectively the effects of Ud with d ∈ R≥0 and Uσ with σ ∈ Σ.
I First we extend pM , the projection from R≥0 to C1 defined in chapter 10, on timed

markings in the following way. For all m ∈MQ, for all q′ ∈ Q we define

pM(m) : q 7→ pM(m(q)(0))

I Then we extend Uσ over MQ. We define then for all σ ∈ Σ, the function UT
σ such that

for all m ∈MQ, for all q′ ∈ Q:

UT
σ (m)(q′) = ({u(v) ∈ R≥0 | ∃q ∈ Q,∃v ∈m(q)(0), (pM(v), u) ∈ gκ(q, σ, q′)}; 0̂)

which corresponds to the set of valuations reached from m after an action transition labeled by
σ.

Lemma 11.1.1. For all timed marking m, pM(UT
σ (m)) = Uσ(pM(m)).

Proof.

Let m be a timed marking and q′ ∈ Q. Notice that, because R≥0 is stable with regards to
one-clock timed automata updates id and 0,

UT
σ (m)(q′)(0) = {u(v) ∈ R≥0 | ∃q ∈ Q,∃v ∈m(q)(0), (pM(v), u) ∈ gκ(q, σ, q′)}

Hence,

pM(UT
σ (m))(q′) = pM({u(v) ∈ R≥0 | ∃q ∈ Q,∃v ∈m(q)(0), (pM(v), u) ∈ gκ(q, σ, q′)})

= {pM(u(v)) ∈ R≥0 | ∃q ∈ Q,∃v ∈m(q)(0), (pM(v), u) ∈ gκ(q, σ, q′)}

Notice then that for all v ∈ R≥0, pM(id(v)) = id(pM(v)) = pM(v) and pM(0(v)) =
0(pM(v)) = 0. Thus we can write,

pM(UT
σ (m))(q′) = {u(pM(v)) ∈ R≥0 | ∃q ∈ Q,∃v ∈m(q)(0), (pM(v), u) ∈ gκ(q, σ, q′)}

= {u(v) ∈ C1 | ∃q ∈ Q,∃v ∈ pM(m)(q), (v, u) ∈ gκ(q, σ, q′)}
= Uσ(pM(m))(q′)

�

I Finally we define the delay transitions. The delay transition definition needs more work
and some new object definitions. The idea is the following. We ideally want to have m

d
↪−→m+d.

However, this would not be taking in account for the possible silent transition like it is done
with Ud. Indeed consider the automaton of example 10.3.1, the initial marking would map
q0 to {0} and q1 to ∅ and we can’t simulate a delay 3 by just adding 3 to the marking (c.f.
example 10.3.1). As it is done in example 10.3.1 we first need to close the initial marking by
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silent transitions, so it maps q0 to (
⋃
n≥0−2n; →0) and q1 to (

⋃
n≥0−2n; →1). Then a delay can

be simulated by a simple addition on the marking.
We introduce then a closure operator, ε, in such a way that we will be able to write m

d
↪−→

ε(m)+d. With this, we could reduce the computation of delays to, first, a computation of ε(m)
and then only a simple addition by a real number. We will discuss that later.

To compute the closure of a timed marking through silent transitions we will need to work
on the silent component of A, i.e. the component of A restricted to its silent transitions.
We introduce then an M -bounded one-clock timed automaton, Aε, representing this silent
component of A.

Recall that Tε represents T \dom(κ), the set of silent transitions of A (c.f. definition 4.2.1).
Formally we define

Aε = 〈Q, I, Tε, F 〉

We know that 〈A, κ〉 is compatible with G1. By definition it implies that for all q, q′ ∈ Q,
gAε(q, q

′) = gκ(q, ε, q′) is decomposable on G1. So Aε is compatible with G1.

We can then write for all q, q′ ∈ Q, gAε(q, q
′) =

⋃nid,q,q′
i=1 I id,q,q

′

i × {id} ∪
⋃n0,q,q′
j=1 I0,q,q

′

j × {0}
with for all i ∈ [[1, nid,q,q′ ]], I

id,q,q′

i are real intervals bounded by two consecutive integers (c.f.

example 2.3.1) pairwise disjoints; and similarly for all j ∈ [[1, n0,q,q′ ]], I
0,q,q′

i are real intervals
bounded by two consecutive integers (c.f. example 2.3.1) paiwise disjoints – by definition of G1.

We define two alphabets

Σid
ε = {tid,q,q

′

i , q, q′ ∈ Q, i ∈ [[1, nid,q,q′ ]]} and Σ0
ε = {t0,q,q

′

i , q, q′ ∈ Q, i ∈ [[1, n0,q,q′ ]]}

and a timed control Tκε such that for all (q, v, u, q′) ∈ Tε – we know that there exists a unique

index i ∈ [[1, nu,q,q′ ]] such that v ∈ Iu,q,q
′

i and – we define

κε(q, v, u, q
′) = tu,q,q

′

i

Therefore, if we write Σε = Σid
ε ∪ Σ0

ε , 〈Aε, κε〉 ∈ ΣεTA1
M is a M, 1-clock Σε-controlled timed

automaton without silent transitions since we labeled each silent transition with a unique name.

Finally notice that for all u ∈ {0, id}, q, q′ ∈ Q and i ∈ [[1, nu,q,q′ ]], since Iu,q,q
′

i is bounded
by two consecutive (or equal) positive integers smaller or equal to M (as defined in 2.3.1) there

exists two uniques intervals b̂u,q,q
′

i ∈ ĈM and b̂u,q,q
′

i ∈ ĈM such that

p−1
M (Iu,q,q

′

i ) = b̂u,q,q
′

i ∩ b̂u,q,q
′

i

Unicity is obtained by definition of ĈM and ĈM , since the bounds are within [[1,M ]], with only
one way to represent {∞} by using →M ∩

→

+∞. For simplicity sake, we will often use the

following notation in the rest of this thesis: given t ∈ Σε, we write t̂ and t̂ for the intervals b̂u,q,q
′

i

and b̂u,q,q
′

i such that t = tu,q,q
′

i .

The general idea to compute the closure is first to see how we could compute the closure of
a timed marking by one silent transition (adding all possible values taken by the clock after
taking this particular silent transition any time in the future); then we extend this closure on a
finite sequence of silent transitions by sequentially applying the closure by one silent transition;
and finally we compute the countable union of all the closures by sequences of silent transitions.
To compute the closure by one silent transition we will proceed by defining first the closure on
an atomic timed set, extend it on simple timed sets and then on simple timed markings.
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To compute the closure by a silent transition with a reset (labeled in Σ0
ε ), we need to

introduce a particular set operation ./, defined for all subsets E,F of R as:

E ./ F = (E − F ) ∩ R≤0

We also say that E ≤ F if and only if for all e ∈ E and f ∈ F , e ≤ f . The following lemma
holds:

Lemma 11.1.2. • E ./ F = −{d ∈ R≥0 | (E+d)∩F 6= ∅} = −{d ∈ R≥0 | E∩ (F −d) 6=
∅}

• if E ≤ F then E ./ F = E − F

• if E > F then E ./ F = ∅.

Proof.

I By a simple rewriting,

E ./ F = (E − F ) ∩ R≤0

= {e− f ∈ R≤0 | e ∈ E, f ∈ F}
= −{f − e ∈ R≥0 | f ∈ F, e ∈ E}
= −{d ∈ R≥0 | ∃f ∈ F, e ∈ E, d = f − e}
= −{d ∈ R≥0 | ∃e ∈ E, d+ e ∈ F}
= −{d ∈ R≥0 | ∃x ∈ E + d, x ∈ F}
= −{d ∈ R≥0 | ∃x ∈ E + d ∩ F}
= −{d ∈ R≥0 | E + d ∩ F 6= ∅}

I if E ≤ F then for all e ∈ E, f ∈ F , e− f ∈ R≤0 so E − F ∩ R≤0 = E − F .
I if E > F then for all e ∈ E, f ∈ F , e− f ∈ R>0 so E − F ∩ R≤0 = ∅. �

[

e1

]

e2

[

f1

]

f2

dmin = f1 − e2

dmax = f2 − e1

d ∈ E ./ F

Figure 11.2: Illustration of lemma 11.1.2

So in particular if E ⊆ R≤0 and F ⊆ R≥0 then E ./ F = E − F . So in particular for any
three subsets, E,F of R and G of R≥0, (E ./ F ) ./ G = (E ./ F )−G. Notice moreover than if
E and F are real intervals then E ./ F is a real interval.

We define then the closure of an atomic timed set by a silent transition. Let (E; r̂) be an
atomic timed set and t ∈ Σε.

ε((E; r̂), t) =


(∅; →0) if r̂ ∩ t̂ = ∅
(E ∩ t̂; max(r̂, t̂)) if r̂ ∩ t̂ 6= ∅ and t ∈ Σid

ε

(E ./ (r̂ ∩ t̂ ∩ t̂); →0) if r̂ ∩ t̂ 6= ∅ and t ∈ Σ0
ε
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ε is well-defined, i.e. the definition does not depend on the representation. Indeed, suppose
an atomic timed set, f , has two equivalent and different representations (E, r̂) and (F, ŝ), we
already noticed in remark 10.1.2 that E ⊆ r̂ and F ⊆ ŝ. Hence E = f(0) = F .
I Suppose r̂∩ t̂ = ∅ and ŝ∩ t̂ 6= ∅ (or conversely), then F = E > t̂ and ε((F, ŝ), t) = (∅; →0)

whatever t (using lemma 11.1.2 in the case t ∈ Σ0
ε ).

I Suppose r̂ ∩ t̂ 6= ∅, ŝ ∩ t̂ 6= ∅ and t ∈ Σid
ε . If r̂ > t̂ then E ∩ t̂ ⊆ r̂ = max(r̂, t̂) and

F ∩ t̂ = E ∩ t̂ ⊆ ŝ ∩ t̂. Hence (E ∩ t̂; max(r̂, t̂)) and (F ∩ t̂; max(ŝ, t̂)) are two representations of
the same timed set.

Else if r̂ ≤ t̂ and ŝ ≤ t then max(r̂, t̂) = t̂ = max(ŝ, t̂) and ε((F, ŝ), t) = ε((E, r̂), t).
I Suppose r̂∩ t̂ 6= ∅, ŝ∩ t̂ 6= ∅ and t ∈ Σ0

ε . Notice that since E ⊆ r̂, for all d ∈ R≥0 E+d ⊆ r̂
and {d ∈ R≥0 | E+d∩ r̂∩ t̂∩ t̂ 6= ∅} is equal to the set {d ∈ R≥0 | E+d∩ t̂∩ t̂ 6= ∅}. Similarly
for F , so according to lemma 11.1.2 E ./ (r̂∩ t̂∩ t̂) = F ./ (r̂∩ t̂∩ t̂) and ε((F, ŝ), t) = ε((E, r̂), t).

This proves that ε is well-defined. Notice also that ε maps an atomic timed marking to an
atomic timed marking.

We prove in the following lemma that it is sound, i.e. that it really computes values accessible
through the given silent transition.

Lemma 11.1.3. Let f be an atomic timed set, q, q′ ∈ Q, u ∈ {id,0}, i ∈ [[1, nu,q,q′ ]] and

t = tu,q,q
′

i ∈ Σε.
For all d ∈ R≥0 and x ∈ R≥0,

x ∈ ε(f, t)(d) ⇐⇒ ∃d0 ∈ [0, d], ∃y ∈ f(d0), (q,pM(y))
t−→Tκε (l, u(pM(y))) and u(y)+d−d0 = x

Proof.

Let’s write f = (E; r̂). Let x, d ∈ R≥0. We make the proof by case disjunction.

I Suppose E = ∅, then f = (∅; →0).

ε(f, t) = (∅; →0) in all cases.

The property is trivially true.

I Suppose now E 6= ∅. We distinguish three cases for e,
I If r̂ ∩ t̂ = ∅.

ε(f, t)(d) = (∅; →0)(d) = ∅.
For all d0 ∈ [0, d], for all y ∈ f(d0) ⊆ r̂, y 6∈ t̂
So y 6∈ t̂ ∩ t̂ which means that (q,pM(y), u, l) 6∈ κ−1

ε (t)
And that (q,pM(y)) 6 t−→ (q′, u(pM(y))).
The property is then trivially true.

I r̂ ∩ t̂ 6= ∅ and u = id.
r̂ < ν+ and op = id. Let d ∈ R≥0.

x ∈ ε(f, e)(d) ⇐⇒ x ∈ (E ∩ t̂+ d) ∩max(r̂, t̂)
⇐⇒ x− d ∈ E ∩ t̂ and x ∈ max(r̂, ν−)

We prove that this last statement is equivalent to

∃d0 ∈ [0, d], ∃y ∈ (E + d0) ∩ r̂ ∩ t̂ ∩ t̂, y + d− d0 = x

I Suppose x− d ∈ E ∩ t̂ and x ∈ max(r̂, t̂).

We already know that max(r̂, t̂) ∩ t̂ 6= ∅.
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We know also have that x− d ∈ t̂ so 7→(x− d) ∩ t̂ 6= ∅ and

max(r̂, 7→(x− d), t̂) ∩ t̂ 6= ∅.
Moreover x ∈ max(r̂, 7→(x− d), t̂) which is equivalent as saying that

max(r̂, 7→(x− d), t̂) ∩

7→

x 6= ∅.
This implies that max(r̂, 7→(x− d), t̂) ∩

7→

x ∩ t̂ 6= ∅.
Let then y ∈ max(r̂, 7→(x− d), t̂) ∩

7→

x ∩ t̂.
Let d0 = y − x+ d.
y ∈

7→

x ∩ 7→(x− d), which means that x− d ≤ y ≤ x and that d0 ∈ [0, d].

x− d = y − d0 ∈ E by hypothesis, so y ∈ E + d0.

We can conclude that y ∈ (E + d0) ∩ r̂ ∩ t̂ ∩ t̂.
This proves one way of the equivalence.

I Suppose now ∃d0 ∈ [0, d], ∃y ∈ (E + d0) ∩ r̂ ∩ t̂ ∩ t̂, y + d− d0 = x.
Then x− d = y − d0 ∈ (E + d0) ∩ t̂− d0 ⊆ E ∩ t̂ and

y ∈ r̂ ∩ t̂ = max(r̂, t̂)

so, since d− d0 ≥ 0, x = y + d− d0 ∈ max(r̂, t̂)
which proves the other way of the equivalence.

So,

x ∈ ε(f, e)(d) ⇐⇒ ∃d0 ∈ [0, d], ∃y ∈ (E + d0) ∩ r̂ ∩ t̂ ∩ t̂, y + d− d0 = x
⇐⇒ ∃d0 ∈ [0, d], ∃y ∈ (E + d0) ∩ r̂, κε(q,pM(y), id, q′) = t

and y + d− d0 = x

The left-to-right way of the equivalence above is proved by definition of t̂ and t̂.
Finally,
x ∈ ε(f, e)(d) ⇐⇒ ∃d0 ∈ [0, d], ∃y ∈ f(d0), (q,pM(y))

t−→Tκε (l,pM(y))
and y + d− d0 = x

I r̂ ∩ t̂ 6= ∅ and u = 0.

x ∈ ε(f, t)(d) ⇐⇒ x ∈ (E ./ (t̂ ∩ r̂ ∩ t̂) + d) ∩ R≥0

⇐⇒ x− d ∈ E ./ (r̂ ∩ t̂ ∩ t̂) and x ∈ R≥0

⇐⇒ d− x ∈ R≥0, x ∈ R≥0 and (E + d− x) ∩ r̂ ∩ t̂ ∩ t̂ 6= ∅
According to lemma 11.1.2

⇐⇒ ∃d0 ∈ [0, d], d− d0 = x,∃y ∈ (E + d0) ∩ r̂ ∩ t̂ ∩ t̂
⇐⇒ ∃d0 ∈ [0, d], ∃y ∈ (E + d0) ∩ r̂, (q,pM(y))

t−→Tκε (l, 0) and d− d0 = x

The left-to-right way of the equivalence above is proved by definition of t̂ and t̂.
Finally,

⇐⇒ ∃d0 ∈ [0, d],∃y ∈ f(d0), (q,pM(y))
t−→Tκε (l, 0) and d− d0 = x

�

We extend first the closure operator on sequences of silent transitions, in the following way:
let f be an atomic timed set and t1, t2 . . . , tn ∈ Σε,

ε(f, t1 · t2 · · · · · tn) = ε(. . . ε(ε(f, t1), t2) . . . )

We extend lemma 11.1.3. We say that a sequence of transitions w = t1 · t2 · · · · · tn ∈ Σ∗ε , starts
in a state q if t1 = tu,q,li for some u ∈ {id,0}, l ∈ Q and i ∈ [[1, nu,q,l]]. Analogously we say that

it ends in a state q′ if tn = tu,l,q
′

i for some u ∈ {id,0}, l ∈ Q and i ∈ [[1, nu,l,q′ ]]. The empty

sequence ε start and ends in every state. We write for all q, q′ ∈ Q, Σq,q′
ε for the set of words in

Σ∗ε starting in q and ending in q′.
We also write for all words w′ in (Σε ∪ R≥0)∗, u(w′) for the projection of w′ on Σ∗ε (i.e. all
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letters w′ ∈ R≥0 are mapped to ε leaving only the sequence of transitions concatenated in the
same order).

Lemma 11.1.4. Let f = (E; r̂) be an atomic timed set with E ⊆ R≥0, q, q′ ∈ Q and w ∈ Σq,q′
ε

starting in q and ending in q′. For all d ∈ R≥0 and x ∈ R≥0,

x ∈ ε(f, w)(d) ⇐⇒ ∃d0 ∈ [0, d], ∃y ∈ f(d0),∃w′ ∈ u−1(w),

(q′,pM(x)) ∈ Reach(T κε , w′, (q,pM(y))) and δΣε(w
′) = d− d0

where δΣε(w) is the duration of w as defined in section 4.2.

Proof.

We prove the proposition by induction on w ∈ Σ∗ε .

I Suppose w = ε and let d ∈ R≥0 and x ∈ R≥0.
q = q′ and x ∈ f(d) ⇐⇒ ∃y ∈ E, y + d = x and y + d ∈ r̂

⇐⇒ ∃d0 ∈ [0; d],∃y ∈ E, y + d0 ∈ r̂ and (q,pM(y))
d−d0−−−→ q,pM(x)

⇐⇒ ∃y ∈ f(d0), (q,pM(x)) ∈ Reach(Tκε , d− d0, (q,pM(y)))
We can then easily conclude that the property is true at rank 0.

I Suppose we proved the property for all word w of size n.

Let w = wn · t of size n+ 1 with t = tu,l,q
′

i ,
starting in q and ending in q′.
Let d ∈ R≥0 and x ∈ R≥0.
x ∈ ε(f, wn · t)(d) ⇐⇒ x ∈ ε(ε(f, wn), t)(d)
According to lemma 11.1.3,
x ∈ ε(f, wn · t)(d) ⇐⇒ ∃d0 ∈ [0, d],∃y ∈ ε(f, wn)(d0),

(l,pM(y))
t−→Tκε (q′, u(pM(y))) and u(y) + d− d0 = x

⇐⇒ ∃d0 ∈ [0, d],∃y ∈ ε(f, wn)(d0), (l,pM(y))
t−→Tκε (q′, u(pM(y)))

and pM(u(y))⊕〈C1,↪→〉 (d− d0) = pM(x)

⇐⇒ ∃d0 ∈ [0, d], ∃y ∈ ε(f, wn)(d0),
(l,pM(y))

t−→Tκε (q′, u(pM(y)))
d−d0−−−→Tκε (q′,pM(x))

By induction hypothesis,
x ∈ ε(f, wn · t)(d) ⇐⇒ ∃d0 ∈ [0, d], ∃y ∈ R≥0, ∃d1 ∈ [0, d0],∃z ∈ f(d1),∃w′n ∈ u−1(wn),

(l,pM(y)) ∈ Reach(Tκε , w′n, (q,pM(z))), δΣε(w
′
n) = d0 − d1 and

(l,pM(y))
t−→Tκε (q′, u(pM(y)))

d−d0−−−→Tκε (q′,pM(x))
⇐⇒ ∃d0 ∈ [0, d], ∃d1 ∈ [0, d0], ∃z ∈ f(d1),∃w′n ∈ u−1(wn),

(q′,pM(x)) ∈ Reach(Tκε , w′n · t · (d− d0), (q,pM(z)))
and δΣε(w

′
n) = d0 − d1

⇐⇒ ∃d1 ∈ [0, d], ∃z ∈ f(d1), ∃w′ ∈ u−1(wn · t),
(q′,pM(x)) ∈ Reach(Tκε , w′, (q,pM(z))) and δΣε(w

′) = d− d1

Which concludes the proof of the induction case.
And concludes the proof by induction of the equivalence.

�

An important corollary of this result is exposed below:

Corollary 11.1.1. Let f = (E; r̂) be an atomic timed set with E ⊆ R≥0, d, d′ ∈ R≥0 and
w,w′ ∈ Σ∗ε such that w starts in q and ends in l, and w′ start in l and ends in q′:

ε(ε(f, w) + d,w′)(d′) = ε(f, w · w′)(d+ d′)
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Proof.

By application of lemma 11.1.4, we can write the following sequence of equivalences. Let
x ∈ R≥0,

x ∈ε(ε(f, w) + d,w′)(d′)
⇐⇒ ∃d0 ∈ [0, d′],∃y ∈ (ε(f, w) + d)(d0), ∃w′1 ∈ u−1(w′),

(q′,pM(x)) ∈ Reach(T κε , w′1, (l,pM(y))) and δΣε(w
′
1) = d′ − d0

⇐⇒ ∃d0 ∈ [0, d′],∃y ∈ ε(f, w)(d+ d0), ∃w′1 ∈ u−1(w′),
(q′,pM(x)) ∈ Reach(T κε , w′1, (l,pM(y))) and δΣε(w

′
1) = d′ − d0

⇐⇒ ∃d0 ∈ [0, d′],∃y ∈ R≥0,∃w′1 ∈ u−1(w′), ∃d1 ∈ [0, d+ d0], ∃z ∈ f(d1),∃w1 ∈ u−1(w),
(q′,pM(x)) ∈ Reach(T κε , w′, (l,pM(y))) and δΣε(w

′) = d′ − d0 and
(l,pM(y)) ∈ Reach(T κε , w, (q,pM(z))) and δΣε(w

′) = d+ d0 − d1

⇐⇒ ∃d1 ∈ [0, d+ d′],∃w2 ∈ u−1(w · w′),∃z ∈ f(d1),
(q′,pM(x)) ∈ Reach(T κε , w′, (q,pM(z))) and δΣε(w

′) = d′ + d− d1

⇐⇒ x ∈ ε(f, w · w′)(d′ + d)

�

Then we can extend it on simple timed sets such that, for all w ∈ Σ∗ε and f = f1∪f2∪· · ·∪fn
where f1, f2, . . . , fn are atomic timed sets, we have:

ε(f, w) =
n⋃
i=1

ε(fi, w)

We prove below that this extension is well-defined. Indeed we already showed in example 10.1.6
that the decompositions of a simple timed set into a union of atomic timed sets is not unique.
We take then two different decompositions and prove that the computation of the closure from
either of the two decomposition leads to the same timed set.

Let w ∈ Σ∗ε and f = f1 ∪ f2 ∪ · · · ∪ fn = f ′1 ∪ f ′2 ∪ · · · ∪ f ′k with f1, f2, . . . , fn, f
′
1, f
′
2, . . . , f

′
n

atomic timed sets. Let d, x ∈ R≥0.

x ∈ ε(f1 ∪ f2 ∪ · · · ∪ fn, w)(d) ⇐⇒ ∃i ∈ [[1, n]], x ∈ ε(fi, w)(d)

Therefore by lemma 11.1.3, exists i ∈ [[1, n]], d0 ∈ [0, d], and y ∈ fi(d0) such that

(q,pM(y))
t−→Tκε (l, u(pM(y))) and u(y) + d− d0 = x

But because f1 ∪ f2 ∪ · · · ∪ fn = f ′1 ∪ f ′2 ∪ · · · ∪ f ′k, we know that there exists j ∈ [[1, k]] such that
y ∈ f ′j(d0). This means, still according to lemma 11.1.3, that x ∈ ε(f ′j , w)(d). In consequence
x ∈ ε(f ′1 ∪ f ′2 ∪ · · · ∪ f ′n, w)(d).

This ensures that ε is well defined on simple timed sets. Notice that if we would have
formalized a normal form for simple timed sets, we could have proved that this definition is
correct without going back to the timed automaton. Also ε maps any simple timed set to a
simple timed set.

We also extend ε to countable unions of simple timed sets. Let (fi)i∈N be such a family, and
let w ∈ Σ∗ε , we define

ε(
⋃
i∈N

fi, w) =
⋃
i∈N

ε(fi, w)

ε is well-defined on countable unions of simple timed sets. The proof of this statement can be
easily obtain by the same way we proved the well-definition of ε on simple timed sets.
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The next step is to extend inductively this closure operator on markings in such a way that
for all simple timed markings m, ε(m, ε) = m and for all sequence of silent transition w ∈ Σ∗ε
and all silent transition t = tu,q,q

′

i ∈ Σε with u ∈ {id,0}, q, q′ ∈ Q and i ∈ [[1, nu,q,q′ ]]:

ε(m, w · t) : Q→ TR≥0

p 7→ (∅; 7→0) if p 6= q′

q′ 7→ ε(ε(m, w)(q), t) otherwise

Notice that ε maps any simple timed marking to a simple timed marking. We say that a
sequence of silent transitions w is well-formed if for all decomposition w = w1 ·w′1 of w, w1 ends
on the state w′1 starts with. For the next proposition recall the definition of atomic markings
page 112.

Proposition 11.1.5. Let w ∈ Σ∗ε ,

• For all markings m1 and m2, ε(m1 ∪m2, w) = ε(m1, w) ∪ ε(m2, w)

• For all family of markings (mi)i∈N, ε(
⋃
i∈N mi, w) =

⋃
i∈N ε(mi, w).

• For all atomic timed set f , if w starts in a state q and ends in a state q′ and is well
formed,

ε(mq,f , w) = mq′,ε(f,w)

and for all state q0 6= q, ε(mq0,f , w) is the empty marking (mapping every state to (∅; 7→0)
and written ∅). Moreover is w is not well-formed, for all q ∈ Q,

ε(mq,f , w) = ∅

Proof.

I By definition of the union between timed markings and ε.
I By definition of ε on countable union of simple timed sets.
I By an induction on the size of w, simply using the definition of ε.

�

Example 11.1.1. On figure 11.3 we recover the one-clock timed automaton of example 10.3.1
and show how we progressively compute the closure of an initial marking, mI , which maps q0 to
([0, 0]; 7→0) and q1 to (∅; 7→0). We rename the silent transition t1 and t2 as it is explained before
defining ε and define w0 = ε, w1 = t1, w2 = t1 · t2, w3 = t1 · t2 · t1 . Each red arrow tells us
when the value is added (after which additional transition in the word). Indeed ε(mI , t1) is an
operation which adds ([0, 0]; 7→1) in q1, ε(mI , t1 ·t2) adds ([0, 0] ./ [2, 2]; 7→0) = ([−2,−2]; 7→0) to q0

and finally, ε(mI , t1 · t2 · t3) adds ([−2,−2]; 7→1) to q1. And we could go on like that, adding each
alternation of t1 and t2. All other words add nothing more, because two identical transitions
in a raw adds nothing to the marking by definition. In the ends to obtain the closure we had
in example 10.3.1. We must take the countable union of all closure by a word with alternating
transitions.

We say that a marking m is basic if for all q ∈ Q, m(q) is an atomic set which can be
represented as (Eq, 7→0) with Eq ⊆ R≥0. A basic marking is therefore a simple timed marking.
We write M0

Q for the set of basic markings.
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q0

q1

t1,
[1, 1],
{id}

t2,
[2, 2],
{0}

−3 −2 −1 0 1 2

⋃3
i=0 ε(mI , wi)(q1) :

t1t1 · t2 · t1 r = 1

−3 −2 −1 0 1 2

⋃3
i=0 ε(mI , wi)(q0) :

εt1 · t2

r = 0

Figure 11.3: Closure by a sequences of transition, w0 = ε, w1 = t1, w2 = t1 · t2, w3 = t1 · t2 · t1

We finally extend the closure operator on languages, such that for all L ⊆ Σ∗ε and all simple
timed markings m,

ε(m,L) =
⋃
w∈L

ε(m, w)

and then we can define the ε-closure of a timed marking as

ε(m) = ε(m,Σ∗ε )

Remark 11.1.1. Notice that, as a corollary of proposition 11.1.5, we have that for all atomic
marking mq,f , and for all w,w′ ∈ Σ∗ε such that w starts in q, ends in l and w′ starts in l′ 6= l
and ends in q′,

ε(mq,f , w · w′) = ε(ε(mq,f , w), w′) = ε(ml,ε(f,w), w
′) = ∅

According to proposition 10.3.2, this also holds for any timed marking. And the same reasoning
would prove that for all d, d′ ∈ R≥0,

ε(ε(mq,f , w) + d,w′) + d′ = ε(ml,ε(f,w)+d, w
′) + d′ = ∅

Hence this proposition:

Proposition 11.1.6. Let m be a simple timed marking, and let d, d′ ∈ R≥0,

ε(ε(m) + d) + d′ = ε(m) + d+ d′

Proof.

Notice that Σε =
⋃
q,q′∈Q Σq,q′

ε .
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Let q ∈ Q,

(ε(ε(m) + d) + d′)(q) = ε(ε(m) + d)(q) + d′

=
⋃
w∈Σ∗ε

ε(ε(m) + d,w)(q) + d′

=
⋃
w∈Σ∗ε

ε(
⋃

w′∈Σ∗ε

ε(m, w′) + d,w)) + d′

=
⋃
w∈Σ∗ε

⋃
w′∈Σ∗ε

ε(ε(m, w′) + d,w)) + d′

=
⋃

w,w′∈Σ∗ε

ε(ε(m, w′) + d,w)) + d′

According to the remark 11.1.1 we can eliminate all combinations of words such that the
second does not start in the same state the first ended. By definition of ε we can also
eliminate the second words which does not end in q.

(ε(ε(m) + d) + d′)(q) =
⋃
q0,l

⋃
w∈Σ

q0,l
ε

⋃
w′∈Σl,qε

ε(ε(m, w′) + d,w)) + d′

We can easily extend corollary 11.1.1 on atomic marking, since for all states l, l′, atomic

timed set f and well-formed word w1 ∈ Σl,l′
ε , ε(ml,f , w) + d = ml′,ε(f,w)+d. Thus we can

extend corollary 11.1.1 to simple timed markings with proposition 10.3.2, and again using
remark 11.1.1,

(ε(ε(m) + d) + d′)(q) =
⋃
q0,l

⋃
w∈Σ

q0,l
ε

⋃
w′∈Σl,qε

ε(m, w′ · w) + d+ d′

=
⋃

w,w′∈Σ∗ε

ε(m, w′ · w) + d+ d′

=
⋃
w∈Σ∗ε

ε(m, w) + d+ d′

= ε(m) + d+ d′

�

The fundamental theorem about ε-closure of timed markings is the following one:

Theorem 11.1.7. For all basic marking m, for all d ∈ R≥0,

pM(ε(m) + d) = Ud(pM(m))

Proof.

Since m is basic, there exists for all state q ∈ Q, a set Eq ⊆ R≥0 such that

m =

n⋃
i=1

mq,(Eq ; 7→0)
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Let x ∈ CM , and q′ ∈ Q. We can then write by definition and distributivity of ε,

x ∈ pM(ε(m) + d) ⇐⇒ ∃q ∈ Q,∃w ∈ Σ∗ε , x ∈ pM(ε(mq,(Eq , 7→0), w) + d)(q′)

According to proposition 11.1.5, and because

pM(mq′,ε((Eq , 7→0),w) + d)(q′) = pM([ε((Eq, 7→0), w)) + d](0)) = pM(ε((Eq, 7→0), w))(d))

we can write

x ∈ pM(ε(m) + d)(q′) ⇐⇒ ∃q ∈ Q,∃w ∈ Σq,q′
ε , ∃x′ ∈ pM(ε(Eq, 7→0), w)(d)),pM(x′) = x

By application of lemma 11.1.4 we have,

x ∈ pM(ε(m) + d)(q′)
m

∃q ∈ Q,∃w ∈ Σq,q′
ε ,∃x′ ∈ R≥0, ∃d0 ∈ [0, d],∃y ∈ Eq + d0, ∃w′ ∈ u−1(w),

(q′,pM(x)′) ∈ Reach(T κε , w′, (q,pM(y))),pM(x′) = x and δΣε = d− d0

By definition of a timed control,

x ∈ pM(ε(m) + d)(q′) ⇐⇒ ∃q ∈ Q,∃d0 ∈ [0, d],∃y ∈ Eq + d0, (q,pM(y))
d−d0−−−→Tκε (q′, x)

⇐⇒ ∃q ∈ Q,∃y ∈ Eq,
(q,pM(y))

d0−→Tκε (q,pM(y + d0))
d−d0−−−→Tκε (q′, x)

⇐⇒ ∃q ∈ Q,∃y ∈ pM(Eq), (q, y)
d−→Tκε (q′, x)

Because m is a basic marking we know that pM(m)(q) = m(q)(0) = Eq ∩ 7→0 = Eq so we
can write by definition of Ud:

x ∈ pM(ε(m) + d)(q′) ⇐⇒ ∃q ∈ Q,∃y ∈ pM(m)(q), (q, y)
d−→Tκε (q′, x)

⇐⇒ x ∈ Ud(pM(m))(q′)

This stands for any x ∈ CM and any q′ ∈ Q, so it holds that

pM(ε(m) + d) = Ud(pM(m))

�

I We have enough results to define an adequate timed structure we will call the timed
marking structure and construct a pre-functional bisimulation from this structure to 〈A, κ〉.

The timed marking structure is then the timed structure MQ = 〈MQ, ↪→M, UM〉, where for
all d ∈ R≥0,

d
↪−→M {(m, ε(m) + d),m ∈ MQ} and UM = {UT

σ , σ ∈ Σ}. 〈M〉↪→M is well-defined
according to proposition 11.1.6. Notice that MQ is a deterministic timed structure.

We extend first supp and suppε on timed marking such that for all m ∈MQ,

supp(m) = {q ∈ Q | m(q)(0) 6= ∅}
suppε(m) = {q ∈ Q | m(q)(0) = ∅ and ∃d ∈ R≥0, ε(m)(q)(d) 6= ∅}

Remark 11.1.2. It is easy to compute supp(m) and suppε(m). For the first one we check for
all q if m(q) = ∅, if not we check if m(0) is empty by computing a sequence of intersection (for
each atomic timed set of a representation of m). For suppε we just check if m(q) = ∅, if not
we check if it is in supp(m).
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Moreover, we can compute for each q ∈ suppε(m) the exact moment when q will be reached.
In order to do so, we take a representation of m(q) = (E1, r̂

′
1 ∪ · · · ∪ (En; r̂n) and compute

min1≤i≤n(ri − supEi). We can also easily compute a boolean to know if the time to wait is
strict or not.

We implemented this last feature in DOTA so that the diagnoser not only points out that
a possible faulty state is reachable, but tells us also when exactly it will be reached.

We consider:

• ζ = idP(Q)2 ,

• for all ρ ∈ P(Q)2, dom(φρ) = M0
Q ∪ {ε(m) + d,m ∈M0

Q, d ∈ R≥0}, which is closed under
ε according to proposition 11.1.6. On this domain φρ = pM

• for all ρ ∈ P(Q)2, ξ1, ξ
′
1 ∈ P(Q), ψρ,[ξ1,ξ′1] : MQ×UM →MQU maps every couple (m,UT

σ )

with m ∈ dom(φρ), supp(UT
σ (m)) = ξ1, suppε(U

T
σ (m)) = ξ′1, and σ ∈ Σ to Uσ.

Lemma 11.1.8. The triple Φ = (ζ, (φρ)ρ∈P(Q)2 , (ψρ,ρ1)ρ,ρ′∈P(Q)2) is a Σ-deterministic pre-
functional bisimulation from P(Q)2,MQ to 〈A, κ〉.

Proof.

We prove that all hypotheses of proposition 3.2.2 are verified so we can apply it.

(A) idP(Q)2 is surjective

(B) Let ρ ∈ P(Q)2. We prove that φρ is a functional bisimulation from 〈MQ, ↪→M〉 and
〈MQV, ↪→M 〉. Recall that dom(φρ) = M0

Q ∪ {ε(m) + d,m ∈M0
Q, d ∈ R≥0}.

I Let m = ε(m0) + d0 ∈ dom(φρ), with m0 ∈M0
Q, m′ ∈MQ and d ∈ R≥0.

Suppose m
d
↪−→M m′.

m′ = ε(m) + d = ε(m0) + d+ d0 ∈ dom(φρ) by proposition 11.1.6.
According to proposition 11.1.7,
Ud(pM(m)) = Ud(pM(ε(m0) + d0)) = Ud+d0(pM(m0)))

= pM(ε(m0) + d+ d0)) = pM(m′)
So pM(m)

d
↪−→M pM(m′) This means that pM is a functional simulation.

I Let m = ε(m0) + d0 ∈ dom(φρ), with m0 ∈M0
Q and ν ∈

Suppose pM(m)
d
↪−→M ν.

ν = Ud(pM(m)) = Ud+d0(pM(m0)) by definition.
According to proposition 11.1.7,

m
d
↪−→M ε(m0) + d+ d0 = ε(m) + d ∈ p−1

M (Ud(pM(m))) = p−1
M (ν)

This means that pM is a functional bisimulation.

In conclusion for all ρ ∈ P(Q)2, φρ is a functional bisimulation. Let then mI a timed
marking defined for all q ∈ Q as mI(q) = (νI(q); 7→0) with νI the initial marking
defined in chapter 5 section 5.1. We have mI ∈M0

Q and pM(mI) = νI which allows
us to conclude this item.

(C) Let ρ ∈ P(Q)2, ξ1, ξ
′
1 ∈ P(Q), m ∈MQ and σ ∈ Σ.

126



(C.1) UT
σ (m) ∈M0

Q by definition. Moreover, for all q′ ∈ Q,

pM(UT
σ (m))(q′) = {pM(u(v)) | ∃q ∈ Q,∃v ∈m(q)(0), (pM(v), u) ∈ gκ(q, σ, q′)}

= {u(pM(v)) | ∃q ∈ Q,∃v ∈m(q)(0), (pM(v), u) ∈ gκ(q, σ, q′)}
= {u(v) | ∃q ∈ Q,∃v ∈ pM(m(q)(0)), (v, u) ∈ gκ(q, σ, q′)}
= Uσ(pM(m))

Which allows us to conclude this item.

(C.2) We know that ξ1 = supp(UT
σ (m)) and ξ′1 = suppε(U

T
σ (m)) by definition of

dom(ψρ,[ξ1,ξ′1). But we can easily see that

supp(Uσ(pM(m))) = supp(pM(UT
σ (m))) = ξ1

and
suppε(Uσ(pM(m))) = suppε(pM(UT

σ (m))) = ξ′1

Therefore (pM(m),Uσ) ∈ gA(ρ, [ξ1, ξ
′
1]). Which conclude this item.

(D) Let ρ ∈ P(Q)2, ξ1, ξ
′
1 ∈ P(Q), m ∈ dom(φρ) and σ ∈ Σ.

Suppose (pM(m),Uσ) ∈ gA(ρ, [ξ1, ξ
′
1]).

Then ξ1 = supp(Uσ(pM(m))) = supp(UT(m)) and ξ1 = suppε(Uσ(pM(m))) =
suppε(U

T(m)), so (m,UT
σ ) ∈ dom(ψρ,[ξ1,ξ′1]) and ψρ,[ξ1,ξ′1](m,UT

σ ) = Uσ. This
concludes this item.

Φ is, therefore, a pre-functional bisimulation.
Notice also that for all ρ, ρ′ ∈ P(Q)2, domε(ψρ,ρ′) = ∅ and for all σ ∈ Σ and m ∈MQ,

there exists at most one pair, (m,Uσ), in domσ(ψρ,ρ′) by definition. This implies that Φ
is a Σ-deterministic pre-functional bisimulation.

�

The direct conclusion of this lemma is that we can construct an automaton on MQ which
is Φ−1(Dκ)-deterministic and which simulates the powerset automaton of A.

Theorem 11.1.9. The powerset automaton of 〈A, κ〉 can be simulated by a deterministic con-
trolled automaton on MQ.

Proof.

Considering 〈Φ−1(DκA),Φ−1(Dκ)〉, the proof is a consequence of lemma 11.1.8, proposi-
tion 3.2.2 and proposition 4.3.5. �

We will write MκA = Φ−1(DκA) and Mκ = Φ−1(Dκ). MκA action transitions can be easily
computed with the techniques described in chapter 5 section 5.2, since UT

σ can be computed
exactly like Uσ. We also discussed in remark 11.1.2 how to compute the current state from
the current value. For now this is the only easy part to compute. Indeed to compute delay
transitions we need an efficient computation of ε. Moreover we are not even sure we can finitely
represent the configurations of MκA since we only know that they are simple timed sets (which
are not by essence representable).

We dedicate the next section to the proof, first that the reachable timed marking of MκA
are regular (and therefore finitely representable), and then that ε can be computed by a finite
number of unions between precomputed regular timed markings.
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11.2 Finite Representation of the closure

Fix again in all this section M ∈ N and Σ a finite alphabet. Fix 〈A, κ〉 ∈ ΣTA1
M a M -

bounded one-clock Σ-timed automaton. We write A = 〈Q, I, T, F 〉. We suppose moreover in
this section that I = {(q0, 0)} for some q0 ∈ Q.

One implication of proposition 11.1.6 is that if several delays are done sequentially, we do not
need to compute again the closure of the marking. Thus, throughout an execution, we need to
compute the closure only once after each action transition. This also means that we just have
to focus, for computation and representation, on the closure of a basic marking.

To prove that all reached values in MκA are regular timed markings we need to proceed by
induction. The initial case is easy since mI is a basic marking by hypothesis on I.

Remark 11.2.1. The hypothesis we fixed in the introduction is stronger than needed. I just has
to be regular enough so that for each state, the set of associated initial values form an interval.
Although we supposed we were in the case depicted in the introduction in the implementation
of DOTA.

In case we take an action transition, σ ∈ Σ, in MκA, it is easy to see that if m is a regular
timed marking, then UT

σ (m) is a regular union of intervals. By definition of UT
σ , because for

all q ∈ Q, m(q)(0) is a finite union of intervals.
The technical part is to prove the following theorem:

Theorem 11.2.1. For all basic marking m0, ε(m0) is a regular timed marking and can be
effectively computed.

This whole section is dedicated to the proof of this theorem. The proof itself describes a
efficient computation technique for ε using precomputed regular unions of interval. We will
discuss at the end of the section what exactly can be precomputed.

I Let m be a basic marking such that for all q, m(q) = (Eq; 7→0) with Eq ⊆ R≥0.
We can write m =

⋃
q∈Q mq,(Eq ; 7→0). Notice then that according to proposition 11.1.5, for all

q ∈ Q,

ε(m0) =
⋃
w∈Σ∗ε

⋃
q∈Q

ε(mq,(Eq ; 7→0), w) =
⋃
q∈Q

⋃
w∈Σ∗ε

ε(mq,(Eq ; 7→0), w) =
⋃
q∈Q

ε(mq,(Eq ; 7→0))

In consequence, it is sufficient to prove the theorem for all basic atomic marking mq,(E; 7→0),

to get the theorem for all basic markings. Notice that a regular atomic marking mq,(E; 7→0) is

necessarily such that E is a finite union of intervals (according to the definition of a basic
marking and of a regular timed marking).

I Recall that we defined in section 11.2, 〈Aε, κε〉 to be the component of A restricted to its
silent transitions, with Aε = 〈Q, I, Tε, F 〉.

We define for all q, q′ ∈ Q, Lε(q, q′) to be the projection on Σε of L(TA, q ×CM , {q′} ×CM )
(usually named the untimed language of Aε from q to q′). Notice that since delays are not taken
in account through the projection, it is similar to consider the projection of L(TA, q×CM , {q′}×
CM ) or of L(TA, (q, 0), {q′} × CM ). Formally:

Lε(q, q′) = u(L(TA, (q, 0), {q′} × CM )) = u(L(TA, q × CM , {q′} × CM ))

Let q ∈ Q and w ∈ Σ∗ε . Let mq,f be a non empty basic atomic marking. We already know
from proposition 11.1.5 that if w does not start on q or is not well formed, then ε(mq,f , w) = ∅.
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On the contrary if w starts on q and is well formed, let’s say w ends on q′, then ε(mq,f , w) =
mq′,ε(f,w). One consequence of lemma 11.1.4 is that actually ε(f, w) is not empty if and only if
w ∈ Lε(q, q′). In summary,

ε(mq,f , w) 6= ∅ ⇐⇒ ∃q′ ∈ Q,w ∈ Lε(q, q′)

This means that for all basic marking mq,f ,

ε(mq,f ) =
⋃
Σ∗ε

ε(mq,f , w)

=
⋃
q′∈Q

⋃
w∈Lε(q,q′)

ε(mq,f , w)

=
⋃
q′∈Q

⋃
w∈Lε(q,q′)

ε(mq,f , w)

=
⋃
q′∈Q

⋃
w∈Lε(q,q′)

mq′,ε(f,w)

according to proposition 11.1.5.
This means that for all q′ ∈ Q,

ε(mq,f )(q′) =
⋃

w∈Lε(q,q′)

ε(f, w)

As we said previously f have to be of the form (E; 7→0) with E a finite union of interval
included in R≥0. Then we reduced the proof of theorem 11.2.1 to the proof of the following
lemma.

Lemma 11.2.2. For all E ⊆ R≥0 a finite union of interval and q, q′ ∈ Q,⋃
w∈Lε(q,q′)

ε((E; 7→0), w) is a regular timed set.

I In order to prove lemma 11.2.2, we split the operator ε on words into two operators εd
and εs computing respectively the effect of ε on the dynamic part and the static part of an
atomic timed set. Those two operators can be independently defined by induction on Σ∗ε in the
following way. For all r̂ ∈ ĈM and t ∈ Σε, we write I(r̂, t) for the interval r̂ ∩ t̂ ∩ t̂. let w ∈ Σ∗ε
and t ∈ Σu

ε for u ∈ {id,0}, with w · t ∈ Lε, and (E; r̂) be an atomic timed set,

εd(E, r̂, ε) = E εs(r̂, ε) = r̂
εd(E, r̂, w · t) = ∅ εs(r̂, w · t) = ∅ if εs(r̂, w) ∩ t̂ = ∅
εd(E, r̂, w · t) = εd(E, r̂, w) ∩ t̂ εs(r̂, w · t) = εs(r̂, w) ∩ t̂ else if t ∈ Σid

ε

εd(E, r̂, w · t) = εd(E, r̂, w) ./ I(εs(r̂, w), t) εs(r̂, w · t) = 7→0 else if t ∈ Σ0
ε

Notice that because we suppose w · t ∈ Lε, it is impossible that εs(r̂, w) ∩ t̂ = ∅.
We can easily prove by induction that for all atomic marking (E; r̂), and all word w ∈ Lε,

ε((E; r̂), w) = (εd(E, r̂, w); εs(r̂, w)). We recover this way all good properties of ε : for all
atomic timed set (E; r̂) and w ∈ Lε,

• w = u · v =⇒ εs(r̂, w) = εs(εs(r̂, u), v)
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• w = u · v =⇒ εd(E, r̂, w) = εd(εd(E, r̂, u), εs(r̂, u), v).

• εs( 7→0, w) 6= ∅

• εd([0, 0], 7→0, w) 6= ∅

Some other properties can be easily obtained by induction on w using the trivial property that
for any two sets F and G, F ./ G ⊆ R≤0 so for all r̂′ ∈ ĈM and ŝ′ ∈ ĈM , F ./ G ∩ r̂′ = ∅ and
F ./ G ∩ ŝ′ = F ./ G.

• w = t1 · · · · · tn ∈ Σid
ε
∗

=⇒ εs(r̂, w) = r̂ ∩
⋂n
i=1 t̂

• w = t1 · · · · · tn ∈ Σid
ε
∗

=⇒ εd(E, r̂, w) = E ∩
⋂n
i=1 t̂i

• w ∈ Σ∗ε · Σ0
ε =⇒ εs(r̂, w) = 7→0

• w = τ · u ∈ Σ0
ε · Σid

ε
∗

=⇒ εd(E, r̂, w) = εd(E, r̂, τ)

Finally εd and εs inherits all distributive properties of ε on unions and countable unions of
atomic timed sets.

Below we prove one crucial property, which needs additional notation definitions. We define a

mapping Jr̂ : Σ∗ε → NĈM×Σ0
ε that counts the number of occurrences of certain timing constraints

at resetting transitions along a path: precisely, it is defined inductively as follows (where d
represents addition of an element to a multiset):

Jr̂(ε) = {0}ĈM×Σ0
ε

Jr̂(w · t) = Jr̂(w) d {(εs(r̂, w), t)} if t ∈ Σ0
ε

Jr̂(w · e) = Jr̂(w) if e ∈ Σid
ε .

Lemma 11.2.3. Let (E; r̂) be an atomic timed set with E ⊆ R≤0, and w ∈ Σ∗ε . Then

εd((E; r̂), w) = E −
∑

(ŝ,t)∈ĈM×Σ0
ε

Jr̂(w)(ŝ, t)× I(ŝ, t) ⊆ R≤0.

Proof.

The proof is done by induction on w.
I The result is straightforward for w = ε.
I Now, assume the result holds for some w ∈ Σ∗ε , and consider w′ = w · t.
I Suppose t ∈ Σid

ε .
Then εd((E; r̂), w · t) = εd((E; r̂), w) ∩ t̂ by definition.
Since εd((E; r̂), w) ⊆ R≤0 ⊆ t̂, we have εd((E; r̂), w · t) = εd((E; r̂), w).
Since Jr̂(w · t) = Jr̂(w) when t ∈ Σid

ε , our result follows.
I Suppose t ∈ Σ0

ε .
εd((E; r̂), w · t) = εd((E; r̂), w) ./ I(εs(r̂, w)), t).
Since εd((E; r̂), w) ⊆ R≤0 and r̂ ⊆ R≥0, lemma 11.1.2 entails
εd((E; r̂), w · t) = εd((E; r̂), w)− I(εs(r̂, w)), t).
This precisely corresponds to the effect of adding {(εs(r̂, w), t)} into Jr̂(w).

This concludes the proof by induction of this lemma.
�
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Now we split ε, let E ⊆ R≥0 a finite union of intervals and q, q′ ∈ Q, we can write:⋃
w∈Lε(q,q′)

ε((E; 7→0), w) =
⋃

w∈Lε(q,q′)

(εd(E, 7→0, w); εs( 7→0, w))

For all w ∈ Lε(q, q′), the function ιw : ĈM → P(R≥0) mapping εs( 7→0, w) to εd(E, 7→0, w) and all

other r̂ ∈ ĈM to ∅, is representations for (εd(E, 7→0); εs( 7→0, w)). Hence according to proposition
10.1.10,

⋃
w∈Lε(q,q′) ιw is a representation of

⋃
w∈Lε(q,q′) ε((E; 7→0), w).

Let us introduce for all ŝ, ŝ′ ∈ ĈM and for all language L ⊆ Lε,

Lŝ′ŝ = {w ∈ L, εs(ŝ, w) = ŝ′}

Notice that for all r̂ ∈ ĈM , we can then write by definition :

(
⋃

w∈Lε(q,q′)

ιw)(r̂) =
⋃

w∈Lε(q,q′)

ιw(r̂) =
⋃

w∈[Lε(q,q′)]r̂

7→0

εd(E, 7→0, w)

We write for all set E ⊆ R, for all r̂ ∈ ĈM and for all L ⊆ Σ∗ε , εd(E, r̂,L) =
⋃
w∈L εd(E, r̂, w).

The following lemma will entail Lemma 11.2.2:

Lemma 11.2.4. Let E ⊆ R≥0 a finite union of intervals, r̂, r̂′ ∈ ĈM and q, q′ ∈ Q,

−εd(E, r̂, [Lε(q, q′)]r̂
′

r̂ ) is a regular union of intervals.

Proof.

εd(E, r̂, [Lε(q, q′)]r̂
′

r̂ ), will be denoted η for the sake of readability.
We define Aε(q, q

′) = (Q, {(q, 0)}, Tε, {q′}) to be a version of Aε with one initial configu-
ration (q, 0) and only one final state q′. We have then Lε(q, q′) = u(L(Aε(q, q

′))) is the
untimed language of a one-clock timed automaton and is hence regular [4].

I We want to construct a timed automaton whose untimed language will be [Lε(q, q′)]r̂
′

r̂ .

In order to do so, we decorate in Aε(q, q
′) all states with elements of ĈM to keep track of

value of εs along a run.

[Aε(q, q
′)]r̂
′

r̂ = (Q× ĈM , {(q, r̂, 0)}, T εs
ε , {(q′, r̂′)})

where transitions are adapted such that from a state (l, ŝ) we reach a state (l′, ŝ′) if and
only if l′ is reachable from l through a transition t in Aε and ŝ′ = εs(ŝ, t). Formally,

T εs
ε = {([l, ŝ], v, u, [l′, ŝ′]) ∈ Q× ĈM × CM × {id,0} ×Q× ĈM |

∃t ∈ Σε, (l, v, u, l
′) ∈ κ−1

ε (t) and ŝ′ = εs(ŝ, t)}

We equip [Aε(q, q
′)]r̂
′

r̂ with a (ĈM ×Σε× ĈM )-timed control κεsε without silent transitions,
defined for all t0 = ([l, ŝ], v, u, [l′, ŝ′]) ∈ T εs

ε (t) as

κεsε (t0) = (ŝ, κε(l, v, u, l
′), ŝ′)

Let pε be the projection on Σ∗ε of (ĈM × Σε × ĈM )∗. Formally pε is the free monöıd
extension of the projection pε : ĈM × Σε × ĈM → Σε mapping any (ŝ, t, ŝ′) to t.

131



By construction for all l ∈ Q, ŝ ∈ ĈM and for all word w′ ∈ (R≥0 ∪ (ĈM × Σε × ĈM ))∗,

w′ ∈ L(T κ
εs
ε , (q, r̂, 0), {(l′, ŝ)} × CM ) =⇒ εs(r̂,pε(u(w′))) = ŝ

Moreover for all l ∈ Q, ŝ ∈ ĈM and for all words w ∈ [Lε(q, l)]ŝr̂, exists a unique word

w1 ∈ (ĈM × Σε × ĈM ) such that

pε(w1) = w and w1 ∈ u(L(T κ
εs
ε , (q, r̂, 0), {(l′, ŝ)} × CM ))

Let’s write for all l, l′ ∈ Q and ŝ, ŝ′ ∈ ĈM , Lεsε (l, ŝ, l′, ŝ′) = u(L([Aε(l, l
′)]ŝ
′

ŝ )). We can

conclude that for all ŝ ∈ ĈM , pε is a bijection from Lεsε (q, r̂, q′, ŝ) to [Lε(q, q′)]ŝr̂.

I We now decompose η, in two parts: the first one computing the closure by all paths
which never resets the clock, and the second considering at least one reset. In order to do
that let us define for all ŝ ∈ ĈM and ŝ′ ∈ ĈM ,

W id
ŝ,̂s′ = {w = (r̂1, t1, r̂

′
1) · (r̂2, t2, r̂

′
2) · · · (r̂n, tn, r̂′n) | r̂′n = ŝ and min

1≤i≤n
t̂i = ŝ′}.

We decompose Lεsε (q, r̂, q′, r̂′) as the union of all runs that do not contain resetting tran-
sitions : ⋃

ŝ′∈ĈM

Lεsε (q, r̂, q′, r̂′) ∩W id
r̂′ ,̂s′

and all paths containing at least one resetting transition labeled (ŝ, t, 7→0) (on the the
right-hand side of the intersection) :⋃

ŝ′∈ĈM

⋃
(ŝ,t)∈ĈM×Σ0

ε

Lεsε (q, r̂, q′, r̂′) ∩
[
W id
ŝ,̂s′ × {(ŝ, t, 7→0)} × (ĈM × Σε × ĈM )∗

]
Using this decomposition, we get

η =
⋃

ŝ′∈ĈM

⋃
w∈Lεsε (q,r̂,q′,r̂′)∩W id

r̂′,ŝ′

εd((E, r̂),pε(w)) ∪

⋃
ŝ′∈ĈM

⋃
(ŝ,t)∈ĈM×Σ0

ε

⋃
w∈Lεsε (q,r̂,q′,r̂′)∩W id

r̂′,ŝ′×{(ŝ,t, 7→0)}×(ĈM×Σε×ĈM )∗

εd((E, r̂),pε(w))

I In the first part, pε(w) contains only non-resetting transitions, by definition of
W id
r̂′ ,̂s′ , so that for all ŝ′ ∈ ĈM , we have εd(E, r̂,pε(w)) = E∩ ŝ′. This part is then

a finite union of regular intervals, which we will write µ :

µ =
⋃

ŝ′∈ĈM

⋃
Lεsε (q,r̂,q′,r̂′)∩W id

r̂′,ŝ′ 6=∅

E ∩ ŝ′
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I As for the second part, decomposing w ∈W id
r̂′ ,̂s′×{(ŝ, t, 7→0)}×(ĈM×Σε×ĈM )∗

as u · (ŝ, t, 7→0) · v, we have

εd(E, r̂,pε(w)) = εd[εd(εd[E, r̂,pε(u)], ŝ, t), 7→0,pε(v)].

Since pε(u) contains non-resetting transitions, by definition of W id
r̂′ ,̂s′ , we have like

before εd(E, r̂,pε(u)) = E ∩ ŝ′, and since t is a resetting transition, we get

εd(E, r̂,pε(w)) = εd([E ∩ ŝ′] ./ I(ŝ, t), 7→0,pε(v)).

Let’s write then for all ŝ ∈ ĈM , ŝ′ ∈ ĈM and t ∈ Σ0
ε ,

L(ŝ, ŝ, t) = (W id
ŝ,̂s′ × {(ŝ, t, 7→0)})\Lεsε (q, r̂, q′, r̂′)

to be the left-quotient of Lεsε (q, r̂, q′, r̂′) by W id
ŝ,̂s′ × {(ŝ, t, 7→0)}, i.e.

L(ŝ, ŝ, t) = {v ∈ (ĈM×Σε×ĈM )∗ | ∃u ∈W id
ŝ,̂s′×{(ŝ, t, 7→0)}, u·v ∈ Lεsε (q, r̂, q′, r̂′)}

Notice that L(ŝ, ŝ, t) is a regular language since it is the left quotient of a language
by a regular language. The second part of ν can be written

ξ =
⋃

ŝ′∈ĈM

⋃
(ŝ,t)∈ĈM×Σ0

ε

εd
(
(E ∩ ŝ′) ./ I(ŝ, t), 7→0,pε(L(ŝ, ŝ, t))

)
so that we can write η = µ∪ ξ, and it is left to prove that ξ is a regular union of
interval.

I Let’s write for all ŝ ∈ ĈM , ŝ′ ∈ ĈM and t ∈ Σ0
ε ,

ξ(ŝ, ŝ′, t) = εd
(
(E ∩ ŝ′) ./ I(ŝ, t), 7→0,pε(L(ŝ, ŝ, t))

)
We prove that for all ŝ ∈ ĈM , ŝ′ ∈ ĈM and t ∈ Σ0

ε , −ξ(ŝ, ŝ′, t) is a regular union of
interval, we will then be able to conclude using proposition 10.2.3.
For all ŝ ∈ ĈM , ŝ′ ∈ ĈM and t ∈ Σ0

ε , we write Et,ŝ,̂s′ = (E ∩ ŝ′) ./ I(ŝ, t) ⊆ R≤0.
From Lemma 11.2.3, we derive for all w ∈ L(ŝ, ŝ′, t),

εd((Et,ŝ,̂s′ , 7→0),pε(w)) = Et,ŝ,̂s′ −
∑

(ŝ′′,t′)∈ĈM×Σ0
ε

J 7→0(pε(w))(ŝ′′, t′)× I(ŝ′′, t′).
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I We introduce the notation Par : (ĈM × ΣεĈM )∗ → ((ĈM × ΣεĈM )→ N) for
the Parikh image of a word in (ĈM ×ΣεĈM )∗ (a function which associate to each
word a function counting the number of occurence of each letters).
Let w ∈ L(ŝ, ŝ′, t). By definition of J 7→0, for all ŝ′′ and t′ ∈ Σ0

ε , J 7→0(pε(w))(ŝ′′, t′)

correspond to the number of prefixes pε(w
′)·t′ of pε(w) such that εs( 7→0,pε(w′)) =

ŝ′′. Let w′ ·t0 be the unique inverse image of pε(w
′) ·t′ by pε(). By construction of

[Aε(q, q
′)]r̂
′

r̂ , w′ · t0 is in the untimed language of [Aε(q, q
′)]r̂
′

r̂ , εs( 7→0,pε(w′)) = ŝ′′

if and only if t0 = (ŝ′′, t′, 7→0). This means that J 7→0(pε(w))(ŝ′′, t′) is actually equal

to the number of occurrence of (ŝ′′, t′, 7→0) is w. Formally speaking, for all word
w ∈ L(ŝ, ŝ′, t),

J 7→0(pε(w))(ŝ′′, t′) = Par(w)(ŝ′′, t′, 7→0)

I By Parikh’s theorem [46], we know that Par(L(ŝ, ŝ′, t)) is a semi-linear set
and can be written

Par(L(ŝ, ŝ′, t)) =
c⋃
i=1

(Pari0 +

di∑
j=1

Parij × N)

where Parij ∈ NĈM×Σε×ĈM for all 1 ≤ i ≤ c and 0 ≤ j ≤ di.
Hence for all word w ∈ L(ŝ, ŝ′, t), exists i ∈ [[1, c]] and ni1, . . . , n

i
di
∈ N such that

Par(w) = Pari0 +
∑di

j=1 n
i
jParij , and we can then write,

εd((Et,ŝ,̂s′ , 7→0),pε(w)) = Et,ŝ,̂s′−
∑

(ŝ′′,t′)∈ĈM×Σ0
ε

(Pari0+

di∑
j=1

nijParij)(ŝ
′′, t′, 7→0)×I(ŝ′′, t′).

and conversely any 1 ≤ i ≤ c and ni1, . . . , n
i
di
∈ N can be related to a word.

I Consequences of the discussions above is that we can write

ξ(ŝ, ŝ′, t) = εd
(
(E ∩ ŝ′) ./ I(ŝ, t), 7→0,pε(L(ŝ, ŝ, t))

)
=

⋃
w∈L(ŝ,̂s,t)

εd
(
(E ∩ ŝ′) ./ I(ŝ, t), 7→0,pε(w)

)
=

c⋃
i=1

⋃
n1,...,ndi∈N

Et,ŝ,̂s′ −
∑

(ŝ′′,t′)∈ĈM×Σ0
ε

(Pari0 +

di∑
j=1

nijParij)(ŝ
′′, t′)× I(ŝ′′, t′)

= Et,ŝ,̂s′ −
c⋃
i=1

( ∑
(ŝ′′,t′)∈ĈM×Σ0

ε

Pari0(ŝ′′, t′, 7→0)× I(ŝ′′, t′) +

⋃
n1,...,ndi∈N

di∑
j=1

∑
(ŝ′′,t′)∈ĈM×Σ0

ε

nj ·Parij(ŝ
′′, t′, 7→0)× I(ŝ′′, t′)

)
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We write Γt′,ŝ,̂s′ for the second term, so that ξ(ŝ, ŝ′, t) = Et,ŝ,̂s′ − Γt,ŝ,̂s′ . For 1 ≤ i ≤ c and
0 ≤ j ≤ di, we let

Ki
j =

∑
(ŝ′′,t′)∈ĈM×Σ0

ε

Parij(ŝ
′′, t′, 7→0)× I(ŝ′′, t′).

I First assume that for some i0 and j0, it holds Ki0
j0

has strictly positive length,

λ. Let Ln = Ki0
0 + n · Ki0

j0
for any n ∈ N. Then clearly Ln ⊆ Γt,ŝ,̂s′ for all n.

We write λn for the length of Ln. We prove that exists α ∈ R≥0 such that
(α,+∞) ⊆

⋃
n∈N Ln ⊆ Γ

t,ĈMs,̂s
.

Notice that for all n ∈ N,

inf Ln+1 − supLn = inf Ln + inf Ki0
j0
− supLn = inf Ki0

j0
− λn = inf Ki0

j0
− λn

Therefore, since λn = λ0 + nλ and λ > 0, if N = b
inf K

i0
j0
−λ0

λ c+ 1, for all n ≥ N ,
L−n+1 < L+

n . This means that for all n ≥ N , Ln and Ln+1 overlap, thus that⋃
n≥N

Ln = (inf LN ,+∞)

Hence, fixing α = inf LN we get (α,+∞) ⊆ Γt,ŝ,̂s′ As consequences we prove
below that Γt,ŝ,̂s′ is a finite union of intervals.

Let 1 ≤ i ≤ c. We write Γt,ŝ,̂s′(i) = Ki
0 +

⋃
n1,...,ndi∈N

∑di
j=1 nj ×Ki

j .

Let 1 ≤ j ≤ di,

I If Ki
j = [0, 0] we define mi

j = 0. For all n ≥ mi
j , nK

i
j ∪ (α,+∞) is

constant, equal to [0, 0] ∪ (α,+∞), and is an interval.
I Else if Ki

j = [0, b] or [0, b) with b > 0, then let mi
j = bαb c + 1. We

then have supmi ×Ki
j = mi× b > α and for all n ≥ mi

j , nK
i
j ∪ (α,+∞)

is constant, equal to [0,+∞), and is an interval.
I Finally if inf Ki

j = a > 0, then let mi
j = bαa c + 1. We then have

inf mi ×Ki
j = mi×a > α and for all n ≥ mi

j , nK
i
j∪(α,+∞) is constant,

equal to (α,+∞), and is an interval.

In conclusion, if ≤× stands for the product order on Ndi , for all 1 ≤ i ≤ c, for
all (n1, . . . , ndi) ≥× (mi

1, . . . ,m
i
di

),
∑di

j=1 nj ×Ki
j is constant and is an interval.

This means that
⋃
n1,...,ndi≥(mi1,...,m

i
di

) nj ×Ki
j is an interval and that,

Γt,ŝ,̂s′(i) = Ki
0+
( ⋃
n1,...,ndi<×(mi1,...,m

i
di

)

di∑
j=1

nj ×Ki
j

)
∪

( ⋃
n1,...,ndi≥×(mi1,...,m

i
di

)

di∑
j=1

nj ×Ki
j

)

is a finite union of intervals, with as direct consequence that Γt,ŝ,̂s′ is a finite
union of intervals.
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I We now assume that for all i and j, exists aij . Such that Ki
j = [aij , a

i
j ]. Notice

that by definition of ĈM , ĈM and I, aij ∈ N.
We write again,

Γt,ŝ,̂s′(i) = Ki
0 +

⋃
n1,...,ndi∈N

di∑
j=1

nj ×Ki
j

= Ki
0 +

⋃
n1,...,ndi∈N

di∑
j=1

nj × [aij , a
i
j ] =

⋃
n1,...,ndi∈N

Ki
0 +

di∑
j=1

nj × [aij , a
i
j ]

According to proposition 10.2.6, Γt,ŝ,̂s′(i) is then a regular union of intervals, and
according to proposition 10.2.3 Γt,ŝ,̂s′ is a regular union of intervals.

This proves that for all ŝ ∈ ĈM , ŝ′ ∈ ĈM and t ∈ Σ0
ε , Γŝ,̂s′,t′ is a regular union of

intervals. And according finally to proposition 10.2.5 Γŝ,̂s′,t′ − Et,ŝ,̂s′ = −ξ(ŝ, ŝ′, t′) is a
regular union of intervals. Which allows us to conclude that −η = −µ ∪ −ξ is a regular
interval.

�

Remark 11.2.2. Lemma 11.2.4 could be easily generalized to any regular language L ⊆ Lε but
for clarity sake we considered only the special case we are interested in.

In conclusion since −εd(E, r̂, [Lε(q, q′)]r̂
′

r̂ ) is a regular union of interval, we can conclude that
ε((E; 7→0),Lε(q, q′) is a regular timed set and ε(m0) is a regular timed marking.

Efficiency: Moreover the proof as it is done in this section describes a computation method for
ε(m0).

I m0 can be effectively decomposed as a union of atomic markings mq,(E; 7→0)

I For all q′ ∈ Q, ε(mq,(E; 7→0))(q
′) can be computed by using its representation ιq,q′,E .

I For all r̂, ιq,q′,E(r̂) is equal to εd(E, 7→0, [Lε(q, q′)]r̂ 7→0).

I Using the notation of lemma 11.2.4, εd(E, 7→0, [Lε(q, q′)]r̂ 7→0) can be computed by computing

two sets µ and ξ:

I µ =
⋃
ŝ∈ĈM

⋃
Lεsε (q, 7→0,q′,r̂)∩W id

r̂,ŝ
6=∅E∩ŝ can be effectively computed because the empti-

ness of the intersection of two regular languages is decidable.

Remark 11.2.3. Notice that it is possible to precompute for all q, q′ ∈ Q and all
r̂ ∈ ĈM the list of all ŝ ∈ ĈM such that Lεsε (q, 7→0, q′, r̂) ∩W id

r̂,̂s 6= ∅
I ξ can be computed as a (negation of) union of regular interval ξ(ŝ, ŝ′, t), for any

ŝ ∈ ĈM , ŝ′ ∈ ĈM and t ∈ Σ0
ε . Each of those regular union intervals can be computed

by using E ∩ ŝ′ ./ I(ŝ, t), and subtracting to it a regular union of interval Γt,ŝ,̂s′ .
This last regular union of intervals is obtained by computing the Parikh image of
the regular language Lεsε (q, 7→0, q′, r̂) (which can be done by adapting the method of
McNaughton and Yamada to compute the regular language of a finite automaton,
to work on the region automaton of the timed automaton [Aε(q, q

′)]r̂

7→0
and compute

the Parikh image instead). From the Parikh image we either compute a bound after
which we do not need to add intervals (the set of all mi

j) and just compute a finite
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union of intervals and add an unbounded interval (α,+∞); or we use proposition
10.2.6 to compute a regular union of intervals. In each case the method can be
effectively implemented.

Remark 11.2.4. Moreover, in each case we can make the computation independently
of the value of E and hence precompute Γt,ŝ,̂s′ for all q, q′ ∈ Q, r̂, ŝ ∈ ĈM , ŝ′ ∈ ĈM
and t ∈ Σ0

ε .

We implemented a prototype DOTAusing the diagnoser on MQ we defined in section 11.2
and this computation method proved in this section and summarized just above. In chapter 12
we discuss our implementation techniques and compare the efficiency of DOTAwith regards to
an implementation of the diagnoser defined by Tripakis in [53].
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Chapter 12

DOTA : Diagnozer for One-clock
Timed Automata

Comparing Two Diagnosis Methods

We implemented both the diagnoser we constructed in the last chapters and the diagnoser
proposed in [53] since we couldn’t find an implementation of it. It also had the advantage
of making a comparison of their efficiency easier. Our approach has only been developed on
one-clock timed automata so we could only compare the one-clock timed automata version of
the diagnoser of [53] which could, however, be constructed in the case of timed automata with
multiple clocks and state invariants.

We focused on comparing the computation time of action and delay transition performed
by each diagnoser, with the idea that, thanks to precalculus, our diagnoser would perform
better. We didn’t manage yet to confirm this idea, nor with a formal study of the complexity
of action computation in our diagnoser, nor with experimentation. However, we propose some
ideas and conjecture for the formal complexity of our diagnoser and still present some concrete
comparison of efficiency between our implementation of both our diagnoser and the diagnoser
of [53]. The only thing we can conclude for sure regarding all tests we have done is that our
diagnoser performs better with regard to delay transitions.

The chapter is organized as follow :

Section 12.1 : In this section we put side by side our construction of a diagnoser
and the construction proposed in [53]. We point out the
similarities and differences in our constructions, discuss the limitations of
both constructions and try to theoretically evaluate their performance.

Section 12.2 : We describe in this section our implementations of the diagnosers.
We propose both the general scheme of the organization of the program and
details on implementation and complexity of the different bricks used to
compute and execute the diagnoser.

Section 12.3 : Finally we discuss the performance of both diagnosers and provide some
partial results on action transition, delay transition and pre-computational time cost.

The source code of our implementations of both diagnosers is made in Python3 and can be
accessed at http://www.lsv.fr/~jaziri/DOTA.zip. More instructions can be found in the
README file.
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12.1 Comparison of the approaches

We outline the main differences between the diagnoser proposed by Tripakis [53] and the
diagnoser constructed in chapter 11.

In the approach of [53], the set of possible current configurations is stored as a clock mark-
ing. If an action σ occurs after some delay d, the diagnoser computes the set of all possible
configurations reached after a delay d (possibly following silent transitions) and applies from
the resulting markings the set of all available transitions labeled σ. This amounts to computing
the functions Ud and Uσ at each observation. There is also a timeout, which makes the diag-
noser update the marking (with Ud) regularly if no action is observed. The computation of Ud

is heavily used and has to be performed very efficiently so that the diagnoser can be used at
runtime. Both Uσ and Ud are computed by computing the set of all reachable configurations
of the timed automaton with the help of DBMs.

In our approach, we use timed markings to store sets of possible configurations. Given a
timed marking, when an action σ is observed after some delay d, we can easily compute the set of
configurations reachable after delay d, and have to apply UT

σ and recompute the silent closure, ε.
Following section 11.1, UT

σ can be computed like Uσ, i.e. as a series of set operations on intervals
as we described it in section 5.2. The silent closure, ε, can be computed as a series of unions
of subtractions between an interval and regular unions of intervals (see section 11.2). Those
regular unions can be precomputed as we observed in remark 11.2.4; while this may require
exponential time and space to compute and store, this makes the simulation of delay transitions
very efficient. To be exact, in our prototype DOTAthe delays are not even computed. They
are only stored and considered only before any application on UT

σ following the discussion we
had in remark 10.2.3.

We haven’t made a thorough study of the complexity of our operator UT
σ and ε. Although

we believe our formalization of Uσ and its description as a series of set operations allows
(considering theoretical complexity) a faster computation in our approach than in the approach
of [53], though in [53] the approach is more general, since it considers an arbitrary number
of clock and state invariants. Because we moved in precomputation the computation of the
Parikh image and the language emptiness check (hence all exploration of the region automaton
of the timed automaton is done before the simulation), we also conjecture that ε can be (again
considering theoretical complexity) computed in polynomial time with regards to the size of the
(silent part of the) timed automaton. We believe this would depend on the size of the regular
timed interval generated in the precomputation.

However, we also believe that the precomputation time we require in our approach, and the
complex regular timed interval generated can be a heavy burden in cases the exploration of the
timed automaton is not too costly.

Finally, our implementation allows recovering easily at any point of the computation the set
of reachable states in the future and the exact time remaining before it will be reached.

In our implementation of the diagnoser of [53], we wanted to compare the efficiency only of
the transition computations (Uσ and Ud), and not any efficiency difference which would come
from the representation of the configurations. That’s the reason why we chose to represent the
configuration with basic timed markings and not with lists of pairs of states and zones like it
is done in [53]. The computation of Uσ is done by exploring all possible transitions labeled σ
and store the effect of each transition in the resulting marking. The computation of Ud is done
by exploring all possible silent paths of length less than d and add its effect in the resulting
marking.
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In the next section we give some explanation of how the code of DOTAis organized.

12.2 Implementation

Our implementation is written in Python3.
As we discussed in section 12.1, both diagnosers are implemented as automata over timed

domains, where the timed domain is the set of timed markings. The only difference lies in the
functions computing the action and the delay transitions

As a consequence, both implementations benefit from the data structure we chose for rep-
resenting timed intervals, which allows us to compute basic operations in linear time. Also,
both structures use the same reachability graphs for either computing the sets of reachable
configurations or the Parikh images.

TILib The library TILib contains all objects and functions which are related to timed set
and marking algebra. It is separated into three layers represented by three classes (and hence
three files).

• MILib The class MILib implements finite unions of intervals and basic set operations
on them. A finite union of intervals is represented by a list of elements of ĈM such that two
consecutive elements r̂ and r̂′ defined the interval r̂∩ ŝ with ŝ being the complementary of r̂′ in
R. Intersection of two finite union of intervals, I and J is computed in O(|J | log |I|+(|J |−1)|I|).
If J is an interval, which is the main use of intersection, we compute then I ∩ J in O(log |I|).
Same way addition of I + J is computed in O(|J ||I|+ (|J | − 1)|I|) and in O(|I|) in case J is an
interval which is again the main case. Union is computed in O(|I|+ |J |).

• RUILib The class RUILib implements regular union of intervals and basic set operation
on them. All implementations of set operations are based on the results of section 10.2 (c.f.
remark 10.2.3) The intersection of a regular interval E = (I, J, p,m) and an interval K is made
with complexityO(|I|+d inf K+m

p e|J |). Adapting a repeating interval to get a well formed regular

interval (c.f. remark 10.2.4) is made in O(|I| + 2d sup J−inf J
p e|J |). Addition between E and K

is in O(2|I| + 2(d sup J−inf J
p e + 1)|J |. Union between two regular intervals E1 = (I1, J1,m1, p1)

and E1 = (I2, J2,m2, p2) is computed in O(|I1|+ |I2|+ |J1|+ |J2|).

• TIMLib The file TIMLib contains two classes, one for finite unions of regular timed
intervals and one for regular timed marking.
I The class FUTInterval implements finite unions of timed interval as their representation.
The information stored is then an array mapping any ĈM to a regular union of interval. Let’s
consider the size of such timed set f as |f | being bounded by M times the largest regular union
of timed interval in its representation. The computation time of its intersection with a guard
f∩ r̂∩ r̂′ can be bounded by O(M log |f |). The size of the union of f and f ′ can be overestimated
to O(|f |+ |f ′|).
I The class TIMarking implements regular timed markings as array mapping each state to a
FUTInterval. We implemented a function that returns the set of reached and reachable states
and which provide the exact time remaining before the reachable (but not reached) states will
be reached.
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ATDLib The library ATDLib collects all objects and functions related to the simulation of au-
tomata on timed domains and the computation of diagnosers. The general idea of the simulation
is described in figure 12.1.

CANAL

ATD RUNNER

current marking :

m→ Uγ(m)

INSTANCE ATD

state list

transition matrix

INPUT

OUTPUT

action γ

return information

sends γ

Figure 12.1: General functioning of an automaton simulation

• Canal The file Canal contains canal object, which, in several ways, have a function to get
an action as input and send it to an instance of an ATDRunner. The input can be given through
several forms. We can ask a user to enter a transition label or a delay (STDINCanal), we can ask
only the transitions label and automatically input a delay at a regular pace (AutoDelayCanal)
or we can let another part of the program enter the input (STRCanal).

• ATDRunner The class ATDRunner is an interface that simulates an automaton on a
timed domain while listening to a canal. It is provided initially with a atd object, being an
instance of any class of automata on timed domain. Then it initializes an initial marking based
on the ATD object. It owns then two methods to simulate an action transition or a delay
transition by calling the corresponding method of the initial automaton.

• OTaumata We can find in this library three classes of automata on timed domains.
The class OTAutomata implements one clock timed automata. It owns a method that computes
the accessibility graph of its silent part and a method __call__ which computes the effect of
any transition of this automaton on any regular timed marking. We also provide a function to
load an OTAutomata from a file.

• DiagAutomata The class DiagOTA implements our diagnoser. It has to be initialized
with two tables of precomputed information necessary to the computation of the closure as
described in remark 11.2.3 and 11.2.4. It owns like OTAutomata a __call__ method which
computes the effect of any transition of the diagnoser on any timed marking. We recall that
delays are not really computed but only stored as future padding to be applied while computing
the next action transition. We additionally find two functions that compute from any object
OTAutomata the two tables mentioned above. Finally, we can find a function which creates from
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an object OTAutomata an object DiagOTA, its diagnoser. This function first precomputes the
tables needed by the DiagOTA object and then initialize and return it.

• TripakisDiagAutomata The class TripakisDOTA implements the diagnoser of [53]. It
does not require anything more than the transition function of the one-clock timed automaton
it is meant to diagnose. It has as all ATD objects a method __call__ which computes the
effect of any transition of the diagnoser of any timed marking. Its implementation differs from
the one in the class DiagOTA in ways discussed in section 12.1.

To diagnose a one-clock timed automaton by, say, our diagnoser, we combine then the modules
in the way described in figure 12.2. The two ATDRunners for the timed automata and its
diagnoser communicate through a communication canal implemented by a STRCanal. In the
end, the diagnoser returns the set of reached states and the set of reachable states along with
the delay before they will be reached.

STDIN CANAL

ATD RUNNER

OTAutomata

USER INPUT

STR CANAL

ATD RUNNER

DiagOTA

OUTPUT

action γ

send γ if not ε

sends γ

sends γ

reachable states

Figure 12.2: Implementation of One-Clock Timed Automata Diganosis

Other files have been implemented for test generation and execution. The interested reader
can find more information on how to use them in the README file provided with the source code.

12.3 Results

Table 12.3 reports on the performances of both implementations on a small set of (randomly
generated) examples. Those examples are given in Appendix A and are distributed with our
prototype.

In Table 12.3, we give the important characteristics of each automaton (number of states
and silent transitions), the amount of precomputation time used by our approach, and the
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Example2 Example3 Example4 Example6 Example8

#State/#Silent Trans 3/6 4/6 4/7 7/10 7/5
Precomputation Time 173.25s 0.38s 791.06s 11.01s 4.96s

Actions DiagOTA 0.014s 0.019s 0.029s 0.17s 0.15s
Actions TripakisDOTA 0.020s 0.078s 0.049s 0.26s 0.042

Ratio (actions) 0.73 0.25 0.59 0.64 3.71

Delays DiagOTA 0.000012s 0.0000011s 0.000011s 0.000011s 0.000012s
Delays TripakisDOTA 0.032s 0.057s 0.049s 0.30s 0.033s

Ratio (delays) 0.0004 0.0002 0.0002 0.00003 0.0004

Figure 12.3: Bench for 5 examples over 400 runs with 10 to 20 actions

average time (over 400 random runs) used in the two approaches to simulate action- and delay
transitions.

As could be expected, our approach outperforms the approach of [53] on delay transitions by
several orders of magnitude in all cases. The performances of both approaches are comparable
when simulating action transitions.

The precomputation phase of our approach is intrinsically very expensive. In our examples,
it takes from less than a second to more than 13 minutes, and it remains to be understood which
factors make this precomputation phase more or less difficult. We may also refine our imple-
mentation of the computation of Parikh images, both on the algorithmic and encoding aspects,
which is heavily used in the precomputation phase. We could then make better experiments by
increasing the number of states and silent transitions.

We may also enhance our algorithm to generate more interesting samples of timed automata.
We implemented a generator which can forbid automaton with cycles or allow only cycles where
all guards are punctual. We did not, for now, get conclusive results, and we think it will be
hard to before solving the two issues we spoke about above, about Parikh image computation
and timed automata random generation.
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Conclusion

In this thesis, we introduced an original framework to model quantitative and in particular
timed systems. This framework, automata on timed structures, proved itself useful to discuss
the representation and computability of formal models. With controls we could introduce and
study classical language theoretic questions as well as diagnosis and control questions. Using
automata on timed structures we proved that it is always possible, for any system without silent
transition, to construct a language equivalent deterministic system, easily representable and
computable using elements of the initial systems (i.e. not simply by modeling the system into a
Turing machine and determinizing it). We applied this method on timed automata to construct
a deterministic powerset automaton which can be easily computed from the timed automaton.
We also recovered several determinization results about timed automata and highlighted some
similarities between them but also fundamental differences which tell us more about the nature
of each result. We finally used this powerset automaton to construct a diagnoser for one-
clock timed automata. We implemented this diagnoser and a second diagnoser based on the
construction of [53]. The comparison between the two implementations have not given conclusive
results yet, even if we can already see that delay transitions are computed significantly faster
in our approach.

Our implementation only works on one-clock timed automata contrarily to the diagnoser
proposed in [53] which can handle timed automata with several clocks and with state invariants.
Extending our construction to diagnose timed automata with several clocks is the next topic
we are going to work on. We believe it can be done be founding an adequate multi-dimensional
extension of regular timed intervals, probably by considering zones instead of intervals (which
are one-dimensional zones) and defining regular timed zones. The implementation could then
be efficiently done using difference bound matrix [2]. The extension of the diagnoser to handle
state invariants could then be an additional question of interest.

We believe automata on timed domains could also be useful to get more insight on other
topics like bisimulation equivalence or logic characterization. We could integrate those notions
in our framework, making them dependent on the control equipped to the automaton. We could
then study how they fit in and what this new point of view can bring to the understanding of
those results.

We could also hope that the framework of automata on timed domain could give new insight
about the characterization of determinizable timed automata, even if we have no certainty it
would bring anything new and we know that this characterization would not be a decidable
property since determinization of timed automata is not decidable [4].

We hope that this new framework would be helpful for others for applications and in domains
we haven’t considered yet.
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[48] Amélie Stainer. Contribution to the Verification of Timed Automata: Determinization,
Quantitative Verification and Reachability in Networks of Automata. Theses, Université
Rennes 1, 2013.

[49] P. Vijay Suman, Paritosh K. Pandya, Shankara Narayanan Krishna, Lakshmi Manasa,
Shankara Narayanan Krishna, P. Vijay Suman, Paritosh K. Pandya, Shankara Narayanan
Krishna, and Lakshmi Manasa. Timed Automata with Integer Resets: Language Inclusion
and Expressiveness. In FORMATS – Formal Modeling and Analysis of Timed Systems,
volume 5215 LNCS, pages 78–92, Berlin, Heidelberg, jan 2008. Springer Berlin Heidelberg.

[50] Claus Thrane, Uli Fahrenberg, and Kim G Larsen. Quantitative analysis of weighted
transition systems. The Journal of Logic and Algebraic Programming, 79(7):689–703, 2010.

[51] Jan Tretmans. Conformance testing with labeled transition systems: Implementation re-
lations and test generation. Computer networks and ISDN systems, 29(1):49–79, 1996.

[52] Stavros Tripakis. Description and schedulability analysis of the software architecture of
an automated vehicle control system. In International Workshop on Embedded Software,
pages 123–137. Springer, 2002.

[53] Stavros Tripakis. Fault Diagnosis for Timed Automata. In FTRTFT – Formal Techniques
in Real-Time and Fault-Tolerant Systems, pages 205–221. Springer, Berlin, Heidelberg,
2002.

[54] Stavros Tripakis. Folk theorems on the determinization and minimization of timed au-
tomata. Information Processing Letters, 99(6):222–226, sep 2006.

[55] Farn Wang. Redlib for the formal verification of embedded systems. In Leveraging Appli-
cations of Formal Methods, Verification and Validation, 2006. ISoLA 2006. Second Inter-
national Symposium on, pages 341–346. IEEE, 2006.

148



Appendices

149



Appendix A

Examples definition

A.1 Example2

# States. Size : 3

q0;q1;q2

# Transitions

q0;[0,2];0;q0;a

q0;[1,1];0;q1;a

q1;[1,2];0;q1;a

q1;[2,2];0;q2;a

q2;[0,inf[;0;q0;a

q0;]0,2];0;q0;b

q0;[0,inf[;0;q1;b

q1;]1,2];0;q0;b

q1;[0,2[;0;q1;b

q2;[0,0];0;q1;b

q2;]0,1];0;q2;b

q0;]2,inf[;0;q0;e

q0;[1,2[;0;q1;e

q0;[0,2[;1;q2;e

q1;]0,2];0;q0;e

q1;]2,inf[;0;q1;e

q2;[1,1];0;q0;e

A.2 Example3

# States. Size : 4

q0;q1;q2;q3

# Transitions

q0;]1,2];0;q1;a

q0;[2,2];1;q3;a

q1;[0,1];0;q1;a

q2;]1,2[;1;q1;a

q2;]0,2];0;q2;a

q2;[1,2];0;q3;a

q3;[1,1];1;q2;a

q0;[2,inf[;0;q0;b
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q0;[2,2];1;q2;b

q2;[0,0];0;q3;b

q3;]1,2];1;q0;b

q3;]0,inf[;1;q1;b

q3;[0,0];1;q3;b

q0;[0,inf[;1;q0;e

q0;[2,inf[;1;q1;e

q0;[0,1[;1;q3;e

q1;]0,2];1;q1;e

q1;]0,inf[;1;q2;e

q2;[1,inf[;1;q0;e

A.3 Example4

# States. Size : 4

q0;q1;q2;q3

# Transitions

q0;[0,2[;0;q0;a

q0;]0,2[;1;q1;a

q0;]1,inf[;1;q2;a

q0;]1,2[;0;q3;a

q1;]1,2];0;q0;a

q1;[0,1];1;q1;a

q1;[0,2[;0;q2;a

q1;]0,1[;0;q3;a

q2;[1,inf[;1;q0;a

q2;[1,2[;0;q3;a

q3;[2,inf[;0;q0;a

q3;[1,2];0;q2;a

q0;]1,2];1;q1;b

q1;[0,1[;1;q2;b

q1;[0,2];0;q3;b

q2;[0,0];1;q0;b

q2;[0,0];0;q2;b

q3;[0,2[;1;q0;b

q3;]1,2];1;q2;b

q3;[0,2];1;q3;b

q0;]0,inf[;1;q0;e

q0;]0,2];1;q1;e

q0;[1,1];0;q2;e

q0;]2,inf[;0;q3;e

q1;[0,inf[;1;q0;e

q1;[0,2[;0;q1;e

q2;[0,inf[;0;q0;e

A.4 Example6

# States. Size : 7

q0;q1;q2;q3;q4;q5;q6
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# Transitions

q0;]0,1[;1;q0;a

q0;]0,2];1;q4;a

q0;[2,2];1;q6;a

q1;[0,0];1;q0;a

q1;[1,2];0;q4;a

q1;[0,0];0;q5;a

q2;[1,2];1;q1;a

q2;[0,3[;0;q2;a

q2;]0,2[;0;q5;a

q3;[0,inf[;1;q0;a

q3;]0,3];1;q4;a

q4;[3,3];1;q1;a

q4;]1,2];0;q3;a

q4;[0,2[;0;q4;a

q4;[2,3];0;q6;a

q5;]0,2[;0;q0;a

q5;]1,3[;0;q3;a

q5;[0,3[;1;q6;a

q6;]1,2[;1;q0;a

q6;[3,inf[;0;q1;a

q6;[1,2];1;q2;a

q6;]0,3[;0;q3;a

q6;[3,3];1;q5;a

q0;]2,inf[;1;q3;b

q0;]0,2[;0;q4;b

q0;[0,2];1;q5;b

q1;[1,3];0;q0;b

q1;[3,inf[;0;q2;b

q1;[0,1];1;q6;b

q2;[0,1[;0;q0;b

q2;[2,3[;0;q1;b

q3;[0,2];0;q3;b

q3;]0,2[;1;q4;b

q3;]2,3[;1;q6;b

q4;[3,inf[;1;q2;b

q4;[0,3];1;q6;b

q5;[0,0];0;q0;b

q5;[1,1];1;q2;b

q5;]1,3[;1;q4;b

q5;[3,3];1;q6;b

q6;[1,3];1;q1;b

q6;]1,2];1;q3;b

q0;[1,inf[;1;q0;e

q0;[0,0];1;q2;e

q0;[1,2];0;q4;e

q1;]0,3];1;q0;e

q1;]2,3[;0;q1;e
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A.5 Example8

# States. Size : 7

q0;q1;q2;q3;q4;q5;q6

# Transitions

q0;[2,2];0;q0;a

q0;[0,3[;1;q1;a

q0;[2,2];1;q3;a

q0;[1,3];1;q5;a

q1;]0,3];1;q0;a

q1;]0,2[;0;q5;a

q1;]2,3];1;q6;a

q2;]3,inf[;1;q1;a

q2;[2,2];1;q2;a

q2;]0,3[;1;q4;a

q2;]1,3[;1;q5;a

q3;]1,3[;0;q1;a

q3;]1,2[;0;q3;a

q4;[1,3];0;q0;a

q4;[0,3];0;q2;a

q4;[0,3[;1;q3;a

q4;]2,3];0;q4;a

q4;[0,3[;0;q5;a

q4;[2,inf[;0;q6;a

q5;[2,inf[;1;q0;a

q5;[0,0];1;q1;a

q5;]1,2[;1;q2;a

q5;]0,1];1;q5;a

q6;]1,2[;1;q1;a

q6;]1,2[;1;q3;a

q6;[0,1];0;q5;a

q6;]2,3[;0;q6;a

q0;[3,3];1;q2;b

q0;]2,3[;0;q4;b

q0;]2,3[;0;q5;b

q0;]2,3];1;q6;b

q1;]1,inf[;1;q4;b

q1;]0,2];0;q6;b

q2;[1,inf[;1;q0;b

q2;]3,inf[;0;q1;b

q2;[1,3[;1;q4;b

q2;[0,3[;0;q5;b

q3;[1,3[;1;q0;b

q3;]3,inf[;1;q2;b

q3;[2,inf[;1;q4;b

q4;]0,2[;1;q1;b

q4;]0,inf[;1;q2;b

q4;]0,2[;1;q3;b

q4;[1,3[;1;q4;b

153



q4;]3,inf[;0;q5;b

q5;[0,2];1;q1;b

q6;]1,3];1;q3;b

q6;[1,2[;1;q4;b

q6;]1,2];0;q5;b

q6;[0,1];1;q6;b

q0;[0,3[;1;q1;e

q0;]1,3];1;q3;e

q0;]0,3[;0;q5;e

q0;]3,inf[;1;q6;e

q1;]1,2[;0;q0;e

q1;]2,3];0;q2;e

q1;[1,2[;1;q3;e

q1;[0,1[;0;q5;e

q1;]0,3];1;q6;e

q2;[1,inf[;1;q0;e
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