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Abstract. Symmetry reductions have been applied extensively for the
verification of finite-state concurrent systems and hardware designs us-
ing model-checking of temporal logics such as LTL,CTL and CTL∗, as
well as real-time and probabilistic-system model-checking. In this paper
we extend the technique to handle infinite-state games on graphs with
finite branching where the objectives of the players can be very general.
As particular applications, it is shown that the technique can be ap-
plied to reduce the state space in parity games as well as when doing
model-checking of the temporal logic ATL∗.

1 Introduction

Symmetry reduction techniques have been introduced in model-checking around
twenty years ago for combatting the state-space explosion in systems that posses
some amount of symmetry [6, 9, 11, 5]. The idea is to merge states of a system
that behave in the same way with respect to a given property ϕ. This provides
a smaller model of the system which exhibits the same behaviors as the origi-
nal model with respect to ϕ; therefore model-checking can be performed on the
smaller model, yielding a more efficient verification procedure since the origi-
nal model need not be constructed. While the technique does not guarantee a
great efficiency improvement in general, it has been applied to a large number of
practical cases with great success [11, 5, 6, 10, 13, 15]. These applications include
extensions from traditional model-checking of finite-state transition systems to
real-time systems [10] and probabilistic systems [13]. It seems that many natu-
rally occuring instances of model-checking of concurrent and hardware systems
contain symmetry and therefore the technique is very applicable.

In this paper, we extend symmetry reduction for transition systems to sym-
metry reduction of games. Games can be used to naturally model concurrent and
reactive systems and have applications in the synthesis of programs. We expect
that on practical instances, symmetry reduction in games should be as applicable
as it has been in model-checking of temporal logics. Our contribution is to ex-
tend the symmetry reduction technique introduced in [9, 6] to games. A central
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result in these papers is a correspondence lemma that describes a correspon-
dence between paths in an original model M and in a reduced model MG. This
correspondence is used to conclude that CTL∗ model-checking can be performed
in the reduced model instead of the original model. In our setting, the corre-
spondence lemma describes a correspondence between strategies in an original
gameM and in a reduced gameMG. This lemma can then be used to establish
a correspondence between winning strategies in the original game and in the re-
duced game for many different types of objectives. In particular, it follows from
this that ATL∗ model-checking can be performed in the reduced game, and that
parity games can be reduced while preserving existence of winning strategies.
However, the technique is applicable for a much more general set of objectives.
The proof that the reduction works for games is technically more involved than
for finite-state transition systems, due to the possible irregular behaviours of
an opponent player. This phenomenon leads us to apply König’s Lemma [12] in
order to prove the correspondence between the original game and the reduced
game. In addition, our approach does not restrict to finite-state games but also
works for games played on infinite graphs, provided that they have finite branch-
ing. This includes weighted games (e.g. with energy or mean-payoff objectives),
pushdown games, games played on VASS, etc.

2 Preliminaries

In this paper, we consider turn-based games played by two players I and II on a
graph with finite branching.

Definition 1. A 2-player turn-based game structure is a tuple M = (S,R,
SI, SII) where

– S is a set of states;
– R ⊆ S × S is a total transition relation such that for each state s ∈ S there

is only a finite number of states t ∈ S such that (s, t) ∈ R;
– SI and SII is a partition of S, i.e. SI ∪ SII = S and SI ∩ SII = ∅.

Whenever we write game structure (or simply game) in the following, we
mean 2-player turn-based game structure with finite branching, unless otherwise
stated. We say that a state s is owned by player P ∈ {I, II} if s ∈ SP . A game is
played by placing a token on an initial state s0. Then it proceeds for an infinite
number of rounds where in each round, the player owning the current state (the
state on which the token is currently placed) must choose to move the token to
a state t such that (s, t) ∈ R.

We denote by S∗, S+ and Sω the set of finite sequences of states, the set of
non-empty finite sequences of states and the set of infinite sequences of states
respectively. For a sequence ρ = s0s1 . . . of states we define ρi = si, ρ≤i = s0 . . . si
and ρ≥i = sisi+1 . . . When ρ is finite, i.e. ρ = s0 . . . s` we write last(ρ) = s` and
|ρ| = `. A play is a sequence s0s1 . . . ∈ Sω such that (si, si+1) ∈ R for all
i ≥ 0. The set of all plays is denoted PlayM. For s0 ∈ S, the set of plays with
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initial state s0 is denoted PlayM(s0). A history is a prefix of a play. The set of all
histories (resp. histories with initial state s0) is denoted HistM (resp. HistM(s0)).
A strategy for player P ∈ {I, II} is a partial mapping σP : HistM → S defined
for all histories h ∈ HistM such that last(h) ∈ SP , with the requirement that
(last(h), σP (h)) ∈ R. We say that a play (resp. history) ρ = s0s1 . . . (resp.
ρ = s0 . . . s`) is compatible with a strategy σP for player P ∈ {I, II} if σP (ρ≤i) =
ρi+1 for all i ≥ 0 (resp. 0 ≤ i < `) such that ρi ∈ SP . We write Play(s0, σP )
(resp. Hist(s0, σP )) for the set of plays (resp. histories) starting in s0 that are
compatible with σP . An objective is a set Ω ⊆ PlayM of plays. A play ρ satisfies
an objective Ω iff ρ ∈ Ω. We say that σP is a winning strategy for player
P ∈ {I, II} from state s0 with objective Ω if Play(s0, σP ) ⊆ Ω. If such a strategy
exists, we say that s0 is a winning state for player P with objective Ω. The set
of winning states for player P with objective Ω in gameM is denoted WP

M(Ω).

3 Symmetry Reduction

In the following we fix a game M = (S,R, SI, SII).

Definition 2. A permutation π of S is a symmetry for M if for all s, s′ ∈ S

1. (s, s′) ∈ R⇔ (π(s), π(s′)) ∈ R
2. s ∈ SI ⇔ π(s) ∈ SI

Let SymM be the set of all symmetries inM. We call a set G of symmetries a
symmetry group if (G, ◦) is a group, where ◦ is the composition operator defined
by (f ◦ g)(x) = f(g(x)). We consider G to be a fixed symmetry group in the rest
of this section.

Definition 3. The orbit θ(s) of a state s induced by G is given by

θ(s) = {s′ ∈ S | ∃π ∈ G. π(s) = s′}.

Notice that when s′ ∈ θ(s), then also s ∈ θ(s′). The orbits induce an equiva-
lence relation ∼G defined by s ∼G s′ if, and only if, s ∈ θ(s′). The reason for ∼G
being an equivalence relation is that G is a group. The orbit θ(s) can be thought
of as a set of states that have the same behavior as s with respect to the symmetry
defined by G. For a sequence ρ = s0s1 . . . of states we define θ(ρ) = θ(s0)θ(s1) . . .
From each orbit θ(s), we choose a unique state rep(θ(s)) ∈ θ(s) as a represen-
tative of the orbit. For a strategy σ of player P ∈ {I, II}, an initial state s0
and a sequence t0 . . . t` of orbits, we choose a unique representative history
reps0,σ(t0 . . . t`) = s0 . . . s` that is compatible with σ and such that si ∈ ti for all
0 ≤ i ≤ `, provided that such a history exists; notice that the sequence t0 . . . t`
is arbitrary, so that it could be the case that no such representative exists. In
the later case, we let reps0,σ(t0 . . . t`) = ⊥.
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Fig. 1. Schematic representation of symmetry reduction, with three states s1, s2 and s3
being in the same orbit in M, and identified as the same state θ(s1) in MG, with s2
as its representative.
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Notice that representative histories can not al-
ways “respect” prefixes (in the sense that the k-
th prefix of the representative of a history is the
representative of k-th prefix of that history): con-
sider the game opposite, and the strategy σ that
in s2 goes to s3 if s1 was visited and to s′3 oth-
erwise. There is a symmetry exchanging states s1
and s′1 (and leaving the other states unchanged).
Now, consider the sequence h = θ(s0)θ(s1)θ(s2),
and fix some representative for it (either s0s1s2
or s0s

′
1s2). Then the extensions of h with θ(s3)

and θ(s′3) both have σ-compatible representatives,
but one of them will not respect prefixes.

We are now ready to define the notion of a quotient game.

Definition 4. Given a game M = (S,R, SI, SII) and a symmetry group G,
we define the quotient game MG = (SG, RG, SGI , S

G
II ) by

– SG = {θ(s) | s ∈ S}
– RG = {(θ(s), θ(s′)) | (s, s′) ∈ R}
– SGP = {θ(s) | s ∈ SP } for P ∈ {I, II}

Notice thatMG is indeed a game structure: symmetries respect the partition
of S into SI and SII, and therefore SGI and SGII also constitute a partition of SG.
Also, RG is total and has finite branching.

Example 1. Consider the gameM = (S,R, SI, SII) to the left in Fig. 2 and define

G =

π ∈ SymM

∣∣∣∣∣∣∣∣
π(s0, s1, s2, s3, s4, s5) = (s0, s1, s2, s3, s4, s5)
π(s0, s1, s2, s3, s4, s5) = (s0, s4, s2, s3, s1, s5)
π(s0, s1, s2, s3, s4, s5) = (s0, s1, s3, s2, s4, s5)
π(s0, s1, s2, s3, s4, s5) = (s0, s4, s3, s2, s1, s5)


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Fig. 2. A game M to the left that has symmetric properties and the quotient game
MG induced by G on the right

It is easy to see that G is a symmetry group. G now induces the orbits
{s0}, {s5}, {s2, s3}, {s1, s4}. This gives rise to the quotient game MG to the
right in Fig. 2. Note how the construction gives us a smaller game that still has
many of the structural properties of the original game.

We begin with two simple lemmas, which are not particular to our game
setting and actually correspond to Lemma 3.1 of [9]. We reprove them here for
the sake of completeness.

The first lemma shows a correspondence between transitions in the reduced
game and transitions in the original game:

Lemma 1. Let (t, t′) ∈ RG be a transition in MG, and s ∈ t. Then there is a
state s′ of M such that s′ ∈ t′ and (s, s′) ∈ R.

Proof. By definition of RG, from the transition (t, t′) in RG, we get the existence
of a transition (u, u′) in R, with u ∈ t and u′ ∈ t′. Now, since s and u are in t,
there is a symmetry π such that s = π(u). By definition of a symmetry, we then
have (π(u), π(u′)) ∈ R and π(u′) ∈ t′ (because u′ ∈ t′), so that letting s′ = π(u′)
proves the lemma.

We can extend the above correspondence to plays:

Lemma 2. LetM = (S,R, SI, SII) be a game and G be a symmetry group. Then

1. For each play ρ ∈ PlayM, there exists a play ρ′ ∈ PlayMG such that ρi ∈ ρ′i
for all i ≥ 0;

2. For each play ρ′ ∈ PlayMG , and for each s ∈ ρ′0, there exists a play ρ ∈
PlayM(s) such that ρi ∈ ρ′i for all i ≥ 0.
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Proof. (1) Suppose ρ ∈ PlayM. Then for every i ≥ 0 we have (ρi, ρi+1) ∈ R.
This implies that (θ(ρi), θ(ρi+1)) ∈ RG. Thus, θ(ρ) ∈ PlayMG . Since ρi ∈ θ(ρi)
the result follows.

(2) Pick ρ′ ∈ PlayMG , and s ∈ ρ′0. We construct a play ρ as follows. First,
we let ρ0 = s. Next, suppose that the history ρ≤i has been constructed for some
i ≥ 0 such that ρj ∈ ρ′j for all 0 ≤ j ≤ i. We have that (ρ′i, ρ

′
i+1) ∈ RG, and

ρi ∈ ρ′i; applying Lemma 1, there must exist a state s′ such that s′ ∈ ρ′i+1 and
(ρi, s

′) ∈ R. Letting ρi+1 = s′, we have extended our prefix ρ≤i by one transition.
This entails our result. ut

We now show a correspondence lemma between strategies in the original
game M and the quotient game MG.

Lemma 3. Let M = (S,R, SI, SII) be a game, G be a symmetry group, s0 ∈ S
be an initial state, t0 = θ(s0) and P ∈ {I, II}. Then

1. For any strategy σ of player P in M, there exists a strategy σ′ of player P
in MG such that, for all t0t1 . . . ∈ PlayMG(t0, σ

′), there exists s0s1 . . . ∈
PlayM(s0, σ) where si ∈ ti for all i ≥ 0;

2. For any strategy σ′ of player P in MG, there exists a strategy σ of player P
in M such that, for all s0s1 . . . ∈ PlayM(s0, σ), there exists a play t0t1 . . . ∈
PlayMG(t0, σ

′) where si ∈ ti for all i ≥ 0.

Proof. (1) Let σ be a strategy for player P ∈ {I, II} in the original game M.
From this we construct a strategy σ′ for player P in the quotient game MG by

σ′(h) = θ(σ(reps0,σ(h)))

for all h ∈ HistMG such that reps0,σ(h) 6= ⊥ and arbitrarily when reps0,σ(h) = ⊥.
This strategy is well-defined, i.e., it is coherent with the transition relation.
Indeed, when reps0,σ(h) 6= ⊥, we have

(last(reps0,σ(h)), σ(reps0,σ(h))) ∈ R
⇒ (θ(last(reps0,σ(h))), θ(σ(reps0,σ(h)))) ∈ RG

⇒ (last(h), σ′(h)) ∈ RG.

This means that there is a legal transition to the successor state prescribed by
the strategy σ′.

Now, let ρ = t0t1 . . . ∈ PlayMG(t0, σ
′) be an arbitrary play compatible

with σ′ inMG from t0. We construct a directed tree T where the root is labelled
by u0 = s0 and where the labelling of the infinite paths in T are exactly the
plays compatible with σ in M from s0. From this tree we obtain a new tree Tρ
by cutting away from T part of the branches labelled u0u1 . . . on which there
exists i ≥ 0 such that ui 6∈ ti. If j is the smallest number such that uj 6∈ tj then
the nodes labelled ujuj+1 . . . are removed. The situation is illustrated in Fig. 3.

We assume for a contradiction that Tρ has finite height `. This means that
there must be a branch in the tree labelled by the history reps0,σ(t0, . . . , t`) =
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s0

s1 s2

s3

s0

s1, s2

s3

s0

s2

s3

s3

s3

s2

s0

s0 s3

...
...

...

M MG T, Tρ

Fig. 3. From left to right is drawn the original game M, the quotient arena MG and
the trees T, Tρ where G = {(s0, s1, s2, s3), (s0, s2, s1, s3)}, σ(h) = s2 for all histories h
ending in s0, and ρ = θ(s0)θ(s1)θ(s3)ω. T and Tρ are drawn together: T is the whole
tree, while Tρ only consists of the solid black nodes.

u0 . . . u`, because if we had reps0,σ(t0, . . . , t`) = ⊥ then Tρ would have had height
smaller than `. There are now two cases to consider:

– Suppose u` ∈ SP . Then due to the definition of σ′ we get

σ(u0 . . . u`) = σ(reps0,σ(t0 . . . t`)) ∈ σ′(t0 . . . t`) = t`+1.

Since u0 . . . u`σ(s0 . . . s`) is compatible with σ and ui ∈ ti for 0 ≤ i ≤ ` then
u0 . . . u`σ(s0 . . . s`) is the labelling of a path in Tρ, which gives a contradiction
since it has length `+ 1.

– Suppose u` 6∈ SP . Applying Lemma 1 for (t`, t`+1) ∈ RG and ul, we get
a state v ∈ t`+1 such that (u`, v) ∈ R. Since u` is not in SP , we get that
u0 . . . u`v is compatible with σ, so that it is the labelling of a path in Tρ of
length `+ 1. This gives a contradiction as well.

This means that the height of Tρ is unbounded. Still, it could be the case
that all branches are finite, in case the tree has infinite branching. Assuming Tρ
is finitely branching, it must have an infinite path according to König’s Lemma.
Let the labelling of such a path be s0s1 . . . Since s0s1 . . . is the labelling of an
infinite path in Tρ, it is a play compatible with σ, since all infinite paths in Tρ
are infinite paths in T . Moreover, since it is an infinite path in Tρ, it satisfies
si ∈ ti for all i ≥ 0, because otherwise it would not be present in Tρ. This proves
the first part since t0t1 . . . was an arbitrary play compatible with σ′.

(2) Let σ′ be a strategy for player P in MG. Define σ from this in such a way
that

σ(s0 . . . s`) ∈ σ′(θ(s0) . . . θ(s`))

for all histories s0 . . . s` in M with s` ∈ SI. Note that when s0 . . . s` is a history
inM then θ(s0) . . . θ(s`) is a history inMG. Further, we need to check that there
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exists a state s ∈ σ′(θ(s0) . . . θ(s`)) such that (s`, s) ∈ R in order for the defini-
tion to make sense. This can be seen as follows. Since (θ(s`), σ

′(θ(s0) . . . θ(s`))) ∈
RG there exists (u, v) ∈ R such that u ∈ θ(s`) and v ∈ σ′(θ(s0) . . . θ(s`)). This
means that there exists π ∈ G with π(u) = s`. Now, (u, v) ∈ R⇒ (π(u), π(v)) ∈
R ⇒ (s`, π(v)) ∈ R. Since π(v) ∈ θ(v) = σ′(θ(s0) . . . θ(s`)) the state s = π(v)
satisfies the property.

Now, suppose that s0s1 . . . ∈ PlayM(σ). We prove that θ(s0)θ(s1) . . . ∈
PlayMG(σ′), which entails (2) since si ∈ θ(si) for all i ≥ 0. For any prefix
θ(s0) . . . θ(s`) we have that

– If θ(s`) 6∈ SGP then (s`, s`+1) ∈ R implies that (θ(s`), θ(s`+1)) ∈ RG.
– If θ(s`) ∈ SGP then s`+1 = σ(s0 . . . s`) ∈ σ′(θ(s0) . . . θ(s`)) ⇒ θ(s`+1) =
σ′(θ(s0) . . . θ(s`))

This means that θ(s0)θ(s1) . . . is indeed compatible with σ′. ut

This lemma leads to desirable properties of the quotient game when certain
types of objectives are considered.

Definition 5. A symmetry group G preserves the objective Ω if for any two
plays s0s1 . . . and s′0s

′
1 . . . in PlayM, if s0s1 . . . ∈ Ω and si ∼G s′i for all i ≥ 0,

then also s′0s
′
1 . . . ∈ Ω.

If Ω is an objective and G is a symmetry group that preserves it, then
we denote by ΩG the objective in the quotient game MG defined as ΩG =
{θ(s0)θ(s1) . . . | s0s1 . . . ∈ Ω}. Lemma 3 gives us the following.

Theorem 1. Let M be a game, G be a symmetry group that preserves the ob-
jective Ω, P ∈ {I, II} and s0 ∈ S. Then

s0 ∈WP
M(Ω) if, and only if, θ(s0) ∈WP

MG(ΩG).

Proof. (⇒) Suppose player P has a winning strategy σ inM with objective Ω
from state s0. Then PlayM(s0, σ) ⊆ Ω. According to Lemma 3 there is a strat-
egy σ′ for player P inMG such that for a given play t0t1 . . . ∈ PlayMG(θ(s0), σ′)
there exists a play s0s1 . . . ∈ PlayM(s0, σ) with si ∈ ti for all i ≥ 0. Since G pre-
serves Ω and PlayM(s, σ) ⊆ Ω this means that t0t1 . . . ∈ ΩG. Since t0t1 . . . is an
arbitrary play compatible with σ′ from θ(s0) we have PlayMG(θ(s0), σ′) ⊆ ΩG

and thus θ(s0) ∈WP
MG(θ(s0), σ′).

(⇐) Suppose player P has a winning strategy σ′ in MG with objective ΩG

from state θ(s0). Then PlayMG(θ(s0), σ′) ⊆ ΩG. According to Lemma 3 there is
a strategy σ for player P inM such that for a given play s0s1 . . . ∈ PlayM(s0, σ)
there exists a play t0t1 . . . ∈ PlayMG(θ(s0), σ′) with si ∈ ti for all i ≥ 0. Since
G preserves Ω and PlayMG(θ(s0), σ′) ⊆ ΩG this means that s0s1 . . . ∈ Ω. Since
s0s1 . . . is an arbitrary play compatible with σ from s0 we have PlayM(s0, σ) ⊆ Ω
and thus s0 ∈WP

M(s0, σ). ut
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Corollary 1. Let M be a game, G be a symmetry group that preserves the
objective Ω, P ∈ {I, II} and s, s′ ∈ S be such that s ∼G s′. Then

s ∈WP
M(Ω) if, and only if, s′ ∈WP

M(Ω).

We have now shown the main result of this paper, namely that a winning
strategy exists in the original game if, and only if, it exists in the quotient game.
This also implies that there is a winning strategy from a state s in the original
game if, and only if, there is a winning strategy from another state s′ that belongs
to the same orbit. For transition systems the correspondence between existence
of paths in the original system and the quotient system as shown in Lemma 2 was
enough to show that model-checking of a CTL∗ formula in the original system
can be reduced to model-checking the same formula in the quotient system if
the symmetry group preserves the labelling [9, 6]. However, due to the possible
behaviors of an opponent player we have had to generalize this result in Lemma 3
which directly leads to Theorem 1. It will be used in Section 4 to show that we can
extend the symmetry reduction approach to ATL∗, even for infinite-state games.
Since we apply König’s Lemma in the proof, we have assumed that the games
are finitely branching. We leave it as an open problem whether the technique
can be generalized to infinitely branching games as well.

4 Applications

In this section we illustrate some examples of applications of Theorem 1. We look
at symmetry reductions for parity games and games with properties defined
in temporal logics. We also consider an example of an infinite game with a
corresponding quotient game that is finite. This makes it possible for us to decide
existence of winning strategies in the original game by using standard techniques
on the quotient game. Notice that this could be applied to infinite-state games
such as games on counter- or pushdown systems, etc. (provided that we have a
suitable symmetry group at hand).

4.1 Parity games

Let M = (S,R, SI, SII) be a game and let c : S → {0, . . . , k} be a coloring
function that assigns a color to each state of the game. From this, the corre-
sponding parity objective is given by Ωc = {s0s1 . . . ∈ PlayM | min Inf{c(si) |
i ∈ N} is odd}, where Inf takes as input an infinite sequence and returns the set
of items that appear infinitely many times in this sequence. A parity game is a
game with a parity objective [8]. We say that a symmetry group G preserves c if
for all s, s′ ∈ S we have s ∼G s′ ⇒ c(s) = c(s′). When G preserves c, we define
a coloring function cG on the set of orbits by cG(t) = c(rep(t)) for all orbits t.
Using Theorem 1 we now get the following result for parity games when we have
a symmetry group preserving the coloring function.

9



Proposition 1. Let M = (S,R, SI, SII) be a game, c : S → {0, . . . , k} be a
coloring function, G be a symmetry group that preserves c, s ∈ S, and P ∈ {I, II}.
Then

1. G preserves the objective Ωc,
2. ΩGc = {θ(s0)θ(s1) . . . ∈ PlayMG | min Inf{cG(θ(si) | i ∈ N} is odd},
3. s ∈WP

M(Ωc) if, and only if, θ(s) ∈WP
MG(ΩGc ).

Proof. (1) Suppose s0s1 . . . ∈ Ω and s′0s
′
1 . . . ∈ PlayM satisfy si ∼G s′i for all

i ≥ 0. Then min Inf{c(s′i) | i ∈ N} = min Inf{c(si) | i ∈ N} is odd since G
preserves c. Thus, s′0s

′
1 . . . ∈ Ωc and G preserves Ωc.

(2) This can be seen as follows

ΩGc = {θ(s0)θ(s1) . . . ∈ PlayMG | s0s1 . . . ∈ Ωc}
= {θ(s0)θ(s1) . . . ∈ PlayMG | min Inf{c(si) | i ∈ N} is odd}
= {θ(s0)θ(s1) . . . ∈ PlayMG | min Inf{c(rep(θ(si))) | i ∈ N} is odd}
= {θ(s0)θ(s1) . . . ∈ PlayMG | min Inf{cG(θ(si)) | i ∈ N} is odd}

(3) From (1), we have that G preserves Ωc and thus, we get the result by
applying Theorem 1. ut

This means that if we have a symmetry group that preserves the coloring
function we can decide existence of winning strategies in a parity game by de-
ciding existence of winning strategies in the quotient game. Furthermore, the
quotient game is also a parity game and it has the same number of colors as the
original game.

Example 2. Consider again the game M from Example 1. Let a coloring func-
tion c be defined by c(s0) = c(s1) = c(s5) = 0 and c(s2) = c(s3) = c(s4) = 1.
Then the symmetry group G defined in the example does not preserve c since
s1 ∼G s4 but c(s1) 6= c(s4). However, we can define a (smaller) symmetry
group G′ that preserves c by

G′ =

{
π ∈ SymM

∣∣∣∣π(s0, s1, s2, s3, s4, s5) = (s0, s1, s2, s3, s4, s5)
π(s0, s1, s2, s3, s4, s5) = (s0, s1, s3, s2, s4, s5)

}
This does not give as great a reduction as G, but on the other hand it preserves
the existence of winning strategies for parity conditions defined by c.

4.2 Alternating-time temporal logic

We will show that the symmetry reduction technique can be applied for model-
checking of the alternating-time temporal logic ATL∗ [1, 2] as well. In this section
let Agt = {I, II} be a fixed set of players and let AP be a finite set of proposition
symbols. Then ATL∗ state formulas are defined by the grammar

ϕ ::= p | ¬ϕ1 | ϕ1 ∨ ϕ2 | 〈〈A〉〉ψ1
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where p ∈ AP is a proposition symbol, A ⊆ Agt is a set of players, ϕ1, ϕ2 are
ATL∗ state formulas and ψ1 is an ATL∗ path formula. ATL∗ path formulae are
defined by the grammar

ψ ::= ϕ1 | ¬ψ1 | ψ1 ∨ ψ2 | Xψ1 | ψ1Uψ2

where ϕ1 is an ATL∗ state formula and ψ1 and ψ2 are ATL∗ path formulas.
State formulas are interpreted over states of a game whereas path formulas are
interpreted over plays of a game. For all games M = (S,R, SI, SII), labelling
functions L : S → 2AP, all states s ∈ S, all plays ρ ∈ PlayM, all propositions
p ∈ AP, all state formulas ϕ1, ϕ2 and all path formulas ψ1, ψ2 and all coalitions
A ∈ Agt define the satisfaction relation |= by

M, s |= p if p ∈ L(s)

M, s |= ¬ϕ1 if M, s 6|= ϕ1

M, s |= ϕ1 ∨ ϕ2 if M, s |= ϕ1 or M, s |= ϕ2

M, s |= 〈〈A〉〉ψ1 if there exist strategies (σi)i∈A so that

for all ρ ∈ PlayM(s, (σi)i∈A), we have M, ρ |= ψ1

M, ρ |= ϕ1 if M, ρ |= ϕ1

M, ρ |= ¬ψ1 if M, ρ 6|= ψ1

M, ρ |= ψ1 ∨ ψ2 if M, ρ |= ψ1 or M, ρ |= ψ2

M, ρ |= Xψ1 if M, ρ≥1 |= ψ1

M, ρ |= ψ1Uψ2 if ∃i ≥ 0.M, ρ≥i |= ψ2 and ∀0 ≤ j < i.ρ≥j |= ψ1

As usual, we define the abbrevations ψ1 ∧ψ2 = ¬(¬ψ1 ∨¬ψ2), Fψ1 = >Uψ1

and Gψ1 = ¬F¬ψ1 where > is a special proposition that is true in all states.
We say that a symmetry group G preserves the labelling function L if, for all
s, s′ ∈ S, we have s ∼G s′ ⇒ L(s) = L(s′). When G preserves L we define a
labelling function LG on the set of orbits by LG(t) = L(rep(t)) for all orbits t.
By applying Theorem 1 we can now show that the symmetry reduction works
for ATL∗.

In order to prove this result, we rely on a characterization of ATL∗ equivalence
in terms of alternating bisimulation [3].

Definition 6. Let AP be a finite set of atomic propositions. Let M = (S,R,
SI, SII) be a game, with a labelling function L : S → 2AP. Two states s and s′

of S are alternating bisimilar if there exists a binary relation B over S such that

– (s, s′) ∈ B;
– for every (t, t′) ∈ B, it holds that L(t) = L(t′);
– for every (t, t′) ∈ B, if it holds that t ∈ SI if and only if t′ ∈ SI then

• for every u s.t. (t, u) ∈ R, there exists u′ such that (t′, u′) ∈ R and
(u, u′) ∈ B;
• for every u′ s.t. (t′, u′) ∈ R, there exists u such that (t, u) ∈ R and

(u, u′) ∈ B;
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– for every (t, t′) ∈ B, if it holds that t ∈ SI if and only if t′ ∈ SII then
• for every u, u′ s.t. (t, u) ∈ R and (t′, u′) ∈ R it holds that (u, u′) ∈ B;

Proposition 2. Let AP be a finite set of atomic propositions. Let M = (S,R,
SI, SII) be a game, with labelling function L : S → 2AP. Let G be a symmetry
group that preserves L, and LG be the quotient labelling function for SG. Then
for any s ∈ S, s and θ(s) are alternating bisimilar.

Proof. Consider the disjoint union ofM andMG, and the relation B defined by

(s, s′) ∈ B if, and only if, s′ = θ(s).

Then the first two conditions in the definition of alternating bisimilarity are
fulfilled.

Now, pick (t, t′) ∈ B, assuming that t (hence also t′ = θ(t)) belongs to
Player I. First, pick a successor u of t, i.e. (t, u) ∈ R. Then (θ(t), θ(u)) ∈ RG
and since (u, θ(u)) ∈ B the first condition is satisfied. Second, pick a successor
u′ of t′, i.e. (t′, u′) ∈ RG. Then there exists v, w ∈ S such that (v, w) ∈ R,
v ∈ t′ and w ∈ u′. Then there exists π ∈ G such that π(v) = t. This means that
(π(v), π(w)) = (t, π(w)) ∈ R. Since π(w) ∈ u′ we also have (π(w), u′) ∈ B which
means the second condition is satisfied. The proof is the same if t belongs to
Player II. ut

Proposition 3. Let M = (S,R, SI, SII) be a game, L : S → 2AP be a labelling
function and G be a symmetry group that preserves L. Then for every s ∈ S,
every ρ ∈ PlayM, every ATL∗ state formula ϕ and every ATL∗ path formula ψ
over AP we have

– M, s |= ϕ if, and only if, MG, θ(s) |= ϕ
– M, ρ |= ψ if, and only if, MG, θ(ρ) |= ψ

where the satisfaction relation |= in MG is defined with respect to the labelling
function LG.

Proof. This is a consequence of the results of [3] for the case of finite state games
since s and θ(s) are alternating bisimilar acccording to Prop. 2. This can also
be proven directly by induction on the structure of the formula, using Lemma 3
for infinite games with finite branching.

The most interesting case is ψ = 〈〈{P}〉〉ψ1 with P ∈ {I, II}; define the
objective Ωψ1

= {ρ ∈ PlayM | M, ρ |= ψ1} as the set of plays inM satisfying ψ1.
We will first show that G preserves Ωψ1

. Suppose ρ ∈ Ωψ1
and ρ′ ∈ PlayM is a

play such that ρ ∼G ρ′. According to the induction hypothesis,M, ρ |= ψ1 if and
only if MG, θ(ρ) |= ψ1 but also that M, ρ′ |= ψ1 if and only if MG, θ(ρ′) |= ψ1.
Since θ(ρ) = θ(ρ′) we have that ρ′ satisfies ψ1 since ρ does. Thus, ρ′ ∈ Ωψ1

which
means that G preserves Ωψ1

. Then by the induction hypothesis we have

ΩGψ1
= {θ(ρ) ∈ PlayMG | ρ ∈ Ωψ1}
= {θ(ρ) ∈ PlayMG | M, ρ |= ψ1}
= {θ(ρ) ∈ PlayMG | MG, θ(ρ) |= ψ1}
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Using this and Theorem 1 we have for all s ∈ S

M, s |= 〈〈{P}〉〉ψ1 iff s ∈WP
M(Ωψ1

)

iff θ(s) ∈WP
MG(ΩGψ1

)

iff MG, θ(s) |= 〈〈{P}〉〉ψ1 ut

Remark 1. Even though the result for ATL∗ was only proved in two-player games
above, this can easily be extended to handle n-player games for n ≥ 3 as well.
This is the case since formulas of the form 〈〈A〉〉ψ can be evaluated at a state
by letting one player control the players in coalition A and let another player
control the players in coalition Agt \A.

Remark 2. Notice that the result of Prop. 3 does not extend to Strategy Logic [4,
14] or ATL with strategy contexts [7]. Considering the game depicted on Fig. 2,
assume that s2 and s3 are labelled with p and s5 is labelled with q. One can
notice that there is a strategy of the circle player (namely, playing from s2 to s3
and from s3 to s5) under which the following two propositions hold in s0:

– there is a strategy for the square player to end up in a p-state after two steps
(namely, playing to s2),

– there is a strategy for the square player to end up in a q-state after two steps
(namely, playing to s3).

This obviously fails in the reduced game.

Example 3. Consider the infinite game illustrated in Fig. 4 which is played on an
infinite grid. Player I controls the circle states and player II controls the square
states. The games starts in (0, 0) and in each state the player controlling the state
can move up, down, left or right. The proposition p is true exactly when the first
coordinate is odd. Formally, the game is defined by M = (S,R, SI, SII) where

– S = Z2

– R = {((x1, y1), (x2, y2)) ∈ S × S | |x1 − x2|+ |y1 − y2| = 1}
– SI = {(x, y) ∈ S | y is even}
– SII = {(x, y) ∈ S | y is odd}

The labelling is defined by L((x, y)) = {p} if x is odd and L((x, y)) = ∅ if x is
even. Suppose we want to check if some ATL∗ formula ϕ over the set AP = {p}
is true in (0, 0). This is not necessarily easy to do in an automatic way sinceM
is infinite. However, we can use symmetry reduction to obtain a finite quotient
game as follows. Let us define

G = {π ∈ SymM | ∃a, b ∈ Z. ∀(x, y) ∈ S. π(x, y) = (x′ + 2 · a, y′ + 2 · b)}.

It is simple to show that G is a group and also that it preserves the labelling L.
Further, G induces four orbits θ((0, 0)), θ((0, 1)), θ((1, 0)) and θ((1, 1)). The cor-
responding quotient game can be seen in Fig. 5.

According to Prop. 3 we can just do model-checking in the quotient game
sinceM, (0, 0) |= ϕ if and only ifMG, θ((0, 0)) |= ϕ. This shows how the original
game can be infinite but still have a finite quotient game.
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•
(0, 0)

p

(1, 0) (2, 0)

p

(−1, 0)(−2, 0)

(0, 1)

p

(1, 1) (2, 1)

p

(−1, 1)(−2, 1)

(0, 2)

p

(1, 2) (2, 2)

p

(−1, 2)(−2, 2)

(0,−1)

p

(1,−1) (2,−1)

p

(−1,−1)(−2,−1)

(0,−2)
p

(1,−2) (2,−2)
p

(−1,−2)(−2,−2)

. . .

. . .

. . . . . .

Fig. 4. Game on an infinite grid

•
θ((0, 0))

p

θ((1, 0))

θ((0, 1))

p

θ((1, 1))

Fig. 5. Finite quotient game

5 Where do the symmetry groups come from?

Until now we have just assumed that a symmetry group G was known, but
we have not mentioned how to obtain it. The short answer is that it is not
tractable to find the symmetry group that gives the largest reduction in general.
Indeed, even for the special case of finite-state transition systems, this problem is
computationally hard. For a detailed discussion of this, see Section 6 in [6]. There
it is shown that the orbit problem is as hard as the Graph Isomorphism problem
when the transition system is finite: the orbit problem is to decide, for a given
group G generated by a set {π1, . . . , πn} of permutations, whether two states
s and s′ belong to the same orbit. According to the knowledge of the authors,
there is still no known polynomial time algorithm for the graph isomorphism
problem. Unless the aim is to apply algorithms having high complexity in the
size of the model, computing symmetries this way might not be so interesting.

While this may look quite negative, the approach has given very large speed-
ups on practical verification instances. Here, it is typically the responsibility of
the engineer designing the system to provide the symmetry groups as well as the
orbits to the program. The main reason why this is possible is that many natural
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request

access

request

access

request

access

request

access

Fig. 6. A simple game M modeling a situation with a server and three clients is shown
to the left. The smallest quotient game MG such that G preserves the labelling of the
propositions {request, access} is shown to the right.

instances of embedded, concurrent and distributed systems have a number of
identical components or processes. A simple example of this can be seen in Fig. 6.

This gives rise to symmetry in the model which is quite easy to detect for
a human with some amount of experience. Another approach is to design mod-
eling languages and data structures where certain forms of symmetry can be
detected automatically. For discussions of this in different contexts, see [11, 10,
13]. We have no reason to believe that the symmetry reduction technique will
be less applicable for model-checking properties of games.

6 Concluding Remarks

We have proved that the symmetry reduction technique can be generalized to
infinite-state turn-based games with finite branching and provided particular ap-
plications of this result in the areas of parity games and model-checking of ATL∗.
The technique has not yet been implemented and tested on practical examples,
but we expect that it should be as applicable as it has been in the context
of model-checking of temporal logics, model-checking of real-time systems and
probabilistic systems. It is still open whether the technique can be generalized to
games with infinite branching since our application of König’s Lemma requires
that the games have finite branching.
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