
Robust Weighted Timed Automata and Games

Patricia Bouyer, Nicolas Markey, Ocan Sankur

LSV, CNRS & ENS Cachan, France

Abstract. Weighted timed automata extend timed automata with cost
variables that can be used to model the evolution of various quantities.
Although cost-optimal reachability is decidable (in polynomial space) on
this model, it becomes undecidable on weighted timed games. This paper
studies cost-optimal reachability problems on weighted timed automata
and games under robust semantics. More precisely, we consider two
perturbation game semantics that introduce imprecisions in the standard
semantics, and bring robustness properties w.r.t. timing imprecisions to
controllers. We give a polynomial-space algorithm for weighted timed
automata, and prove the undecidability of cost-optimal reachability on
weighted timed games, showing that the problem is robustly undecidable.

1 Introduction

Weighted timed automata. Weighted timed automata are an extension of timed
automata [2], introduced in [4, 7], which allow to express and solve optimization
problems on timed systems. In this model, timed automata are enriched with
cost variables whose values grow with given constant derivatives in each location.
This allows one to describe systems with timing constraints while specifying the
evolution of some resources, such as energy. The cost-optimal reachability problem
was studied in [4, 7, 8], and the problem was shown to be PSPACE-complete [8].
The model naturally extends to timed games. Although some partial decidability
results for weighted timed games have been proposed in [1, 10], the problem is
undecidable in the general case [12, 9] even for a fixed number of clocks.

Robustness. Timed automata and their extensions are abstract formalisms to
describe models of real-time systems. Consequently, these formalisms make
idealistic assumptions, such as the perfect continuity of the clocks, their high
precision, and instantaneous reaction of the system. One side effect of such
idealistic semantics is that they allow easily encoding of undecidable problems. In
fact, the undecidability proofs on weighted timed games of [12, 9] rely on the ability
of timed automata to distinguish infinitely precise clock values, and modify these
values with high precision. It is believed that some of the undecidability results in
the literature can be overcome by introducing fuzziness in the semantics, making
it impossible to encode complex (undecidable) languages, see for instance [3, 5, 17].

In this paper, we investigate how adding imprecisions to the semantics affects
the (un)decidability of the cost-optimal reachability problem in weighted timed

This work was partly supported by ANR project ImpRo (ANR-10-BLAN-0317), by ERC
Starting grant EQualIS (308087) and by European project Cassting (FP7-ICT-601148).

automata and games. We consider two prominent perturbation semantics from [14,
11, 22], where perturbations are modeled as a game between a controller which
chooses delays and edges, and an environment which perturbs the chosen delay
by a (parametrized) bounded amount. The problem consists in deciding whether
the controller has a winning strategy ensuring a given objective for a sufficiently
small value of the parameter. Such a winning strategy is then robust, since it
can ensure winning even if the moves it suggests are perturbed by a bounded
amount. Two variants have been considered: in the excess-perturbation semantics,
the controller is only required to suggest delays and edges whose guards are
satisfied after the delay, while the guard can be violated after perturbations.
This semantics allows one to design systems with simple timing constraints (for
instance, using equalities), and synthesize robust strategies afterwards, taking
into account new behaviors due to imprecisions. The conservative perturbation
semantics requires the guards to be satisfied after any perturbation. This seman-
tics appears naturally for instance in applications where lower and upper bounds
on task execution times are given and need to be respected strictly.

For timed automata, robust reachability is EXPTIME-complete for the excess-
perturbation semantics [11], while robust reachability and safety are PSPACE-
complete for the conservative perturbation semantics [22]. Here, we apply both
semantics to weighted timed automata and games and study the problem of
deciding an upper bound on the limit-cost of a winning strategy for reachability
objectives for the controller. The limit-cost refers to the limit of the cost achieved
by a given strategy, when the bound δ on the perturbations goes to zero. In fact,
the cost of a given path can slightly increase (or decrease) due to perturbations on
the delays, but only by an amount proportional to δ. Thus, the limit-cost allows
us to concentrate on the bound that could be achieved if this effect is discarded.
On weighted timed automata, we prove that the problem is PSPACE-complete
in the conservative perturbation semantics, by adapting the corner-point abstrac-
tion [8]. In the excess-perturbation semantics, we show, perhaps surprisingly,
that the problem becomes undecidable on weighted timed automata. This goes
against the idea that introducing perturbations could render problems more
tractable. On weighted timed games, our results are negative: in both excess- and
conservative perturbation semantics, cost optimal reachability remains undecid-
able on weighted timed games, even when the number of clocks is fixed and the
constants are bounded. We also prove the undecidability of the problem for fixed
parameter δ on weighted timed games. Hence, similarly to “robust undecidability”
results of [19] on timed automata, we establish that cost-optimal reachability on
weighted timed games is robustly undecidable, for the considered semantics.

Related Work. The work [18] attempted to introduce fuzziness in the semantics
of timed automata, via a topological semantics, with the hope of extending the
decidability results. However timed language inclusion turned out to be still
undecidable [19]. Another related line of work is that of [20, 16, 15], which consists
in modeling imprecisions by enlarging all clock constraints of the automaton by
some parameter δ, that is, transforming each constraint of the form x ∈ [a, b]
into x ∈ [a − δ, b + δ]. One analyzes the resulting system with a worst case

approach. The game semantics we consider allow the system to observe and react
to perturbations. The dual notion of shrinking was considered in [21] in order
to study whether any significant behavior is lost when guards are shrunk.

2 Preliminaries

Game structures. A (two-player) game structure is a tuple T = (S, s0,M1,M2,
T1, T2, jt), where S is a set of states, s0 ∈ S is the initial state, Mi is the set
of moves of Player i, Ti ⊆ S ×Mi is the enabling condition for Player i, and
jt : S ×M1 ×M2 → S the joint transition function. We assume that each Mi

contains a distinguished element ⊥ called the empty move, and that jt(s,⊥,⊥) = s
for any s ∈ S. A run of T is a finite or infinite sequence q1e1q2e2 . . . of alternating
states qi ∈ S, and pairs of moves ei = (m1,m2) ∈ M1 ×M2, such that for all
i ≥ 1, we have (qi,mι) ∈ Tι for ι ∈ {1, 2}, and qi+1 = jt(qi, ei). For any finite
run ρ, let |ρ| denote its length, that is, the number of states it contains. For any
natural number 1 ≤ i ≤ |ρ|, let statei(ρ) the i-th state of ρ, and transi(ρ) its i-th
transition. We let first(ρ) = state1(ρ), and last(ρ) = state|ρ|(ρ). We also denote
by ρi...j the sub-run of ρ between states of indices i and j.

A strategy for Player i is a function f that maps each finite run h to a
move Mi, such that (last(h), f(h)) ∈ Ti. A run ρ is compatible with strategies f
and g of Players 1 and 2, if statei+1(ρ) = jt(ρ1...i, (f(ρ1...i), g(ρ1...i))) for all i ≥ 1.
Given strategies f and g for Players 1 and 2 resp., the outcome of the pair (f, g)
in T , denoted by OutcomeT (f, g) is the unique infinite run that is compatible
with both strategies. Let Si(T) denote the set of the strategies of Player i in T .

Weighted timed automata and games. Given a finite set of clocks C, we call
valuations the elements of RC≥0. For a subset R ⊆ C and a valuation ν, ν[R← 0] is
the valuation defined by ν[R← 0](x) = ν(x) for x ∈ C \R and ν[R← 0](x) = 0
for x ∈ R. Given d ∈ R≥0 and a valuation ν, the valuation ν + d is defined by
(ν+d)(x) = ν(x)+d for all x ∈ C. We extend these operations to sets of valuations
in the obvious way. We write 0 for the valuation that assigns 0 to every clock.

An atomic clock constraint is a formula of the form k � x �′ l or k � x−y �′ l
where x, y ∈ C, k, l ∈ Z∪{−∞,∞} and �,�′ ∈ {<,≤}. A guard is a conjunction
of atomic clock constraints. A valuation ν satisfies a guard g, denoted ν |= g, if
all constraints are satisfied when each x ∈ C is replaced with ν(x). We write ΦC
for the set of guards built on C.

Definition 1. A weighted timed game (WTG) A is a tuple (L, `0, C, I, E1, E2,S),
where L is a finite set of locations, C is a finite set of clocks, I : L → ΦC assigns
an invariant to every location, E1, E2 ⊆ L × ΦC × 2C × L are sets of edges,
`0 ∈ L is the initial location, and S : L → Z is the slope function1. For any
edge e = (`, g, R, `′), g is the guard of the edge, and R its reset set. An edge

e = (`, g, R, `′) is also written as `
g,R−−→ `′. A weighted timed automaton (WTA)

is a WTG of the form (L, `0, C, I, E1, ∅,S).

1 We do not introduce discrete weights on transitions, but all our results would also
hold in that setting.

Weighted timed games define game structures similarly to timed games [6]:
the guards of the edges enable or disable the transitions, and the reset set
determines the update after the transition is taken by resetting the clocks
belonging to the set. Intuitively, the edges Ei are controlled by Player i. Moreover,
the state space contains the value of a cost variable, denoted cost, which grows
with derivative S(`) at any location `.

In this paper, we assume that all clocks are bounded above by a constant,
i.e., the invariant at each location imposes some upper bound on all clocks.

Formally, the exact semantics of a WTG A is a game structure JAK =
(S, s0,M1,M2, T1, T2, jt). The state space is S = {(`, ν, c) | ` ∈ L, ν ∈ RC≥0, c ∈
R, ν |= I(`)}. The initial state is s0 = (`0,0, 0). The moves are defined by
Mi = R × Ei ∪ {⊥} whose components are pairs of a delay and a Player-i
edge. A pair (d, e) ∈ R × Ei is said enabled at (`, ν) ∈ L × RC≥0 whenever,
writing e = (`1, g, R, `2), we have ` = `1, ν |= I(`1), ν + d |= I(`1), ν + d |= g,
and (ν + d)[R← 0] |= I(`2). The enabling condition Ti((`, ν, c), (d, e)) holds if,
and only if (d, e) is enabled at (`, ν). Note that Ti((`, ν, c),⊥) holds at any state
(`, ν, c). The joint transition function is defined as follows. Given di ≥ 0, and edges
ei = (`, gi, Ri, `i) ∈ Ei, we have jt((`, ν, c), (d1, e1), (d2, e2)) = (`i0 , (ν+di0)[Ri0 ←
0], c + di0S(`)), where i0 = 1 if d1 ≤ d2, and i0 = 2 otherwise. Moreover,
jt((`, ν, c), (d1, e1),⊥) = (`1, (ν + d1)[R1 ← 0], c+ d1S(`)), and symmetrically.

Example 1. Figure 1 displays an example of a weighted timed game. Plain (resp.
dashed) arrows are for Player 1 (resp. Player 2) edges. The slopes are indicated
above each state. A strategy for Player 1 is to suggest a delay of 1 and choose
the edge from `1 to `2. This prevents Player 2 from going down to location `5,
where the cost of accepting is 12− o(δ). From location `2, Player 1 can go to `4,
from where a target location is reached with cost 7.

Regions, Vertices. We assume familiarity with regions (see [2]). We recall that the
region automaton of a timed automaton A is a finite automaton, denoted R(A),
with states (`, r), where ` is a location, and r a region. Let us write loc((`, r)) = `.

There is a transition (`, r)
delay−−−→ (`, r′) iff some valuation in r′ can be reached

by a time delay from some valuation in r. We have (`, r)
e−→ (`′, r′), for an

edge e = (`, g, R, `′) iff all valuations of r satisfy g, and r′ = r[R ← 0]. A path
of R(A) is a sequence q1t1q2t2 . . . where for all i ≥ 1, qi = (`i, ri) for some
location `i and region ri, and ti is either an edge or delay. We say that a run ρ of A
follows a path π = q1t1 . . . of R(A) if for any i ≥ 1, if we write (`i, ri) = statei(π),

`1

0

`5

6 0

`2

0
`3

10

`4

7

0

0

x≥1

y:=0

x>1

x≥3

2≤x≤3∧y<1

2≤x≤3∧1≤y

x≥4

x≥4

Fig. 1. Example of a WTG

then statei(ρ) = (`i, νi) for some νi ∈ ri, and moreover, transi(π) = delay implies
that transi(ρ) ∈ R≥0, and transi(π) = transi(ρ) otherwise.

A valuation with integer coordinates is called a vertex. For any region r, let
us denote by V(r) the set of vertices that belong the topological closure of r.
A region is non-punctual if for some ν ∈ r, and ε > 0, ν+[−ε, ε] ⊆ r. It is punctual
otherwise. A non-punctual path of the region automaton is a path of R(A) where
all regions reached after a delay are non-punctual.

3 Robust Cost-Optimal Reachability

We now define two perturbed semantics for weighted timed games. These se-
mantics were first studied in [13, 11] for timed automata and games in order
to synthesize robust strategies. We adapt these here to WTG and formalize
cost-optimal reachability problems.

Perturbed semantics. We will call Player 1 Controller, and Player 2 Perturbator.
The idea behind the perturbed semantics is to give Perturbator the additional
power of perturbing the delays chosen by Controller by some bounded amount δ
(in that sense, the perturbed semantics becomes asymmetric). In this setting, a
winning strategy for Controller is then robust to perturbations in the time delays.
Informally, at any state (`, ν, c), both players suggest a delay and an edge. If
Perturbator suggests a shorter delay, then the suggested delay and edge is taken.
If Controller suggests the shorter delay d and edge e, then the system moves to an
intermediate state (`, ν, c, d, e), from which Perturbator chooses ε ∈ [−δ, δ], and
the edge e is taken after a delay of d+ ε; the cost then increases by (d+ ε) · S(`).
We require both players to only suggest delays no smaller than δ, to model the
fact that the system is not infinitely fast. We will formally define two perturbed
semantics based on the above ideas; they will differ on the satisfaction or not of
the guards after the delay has been perturbed by ε.

Formally, given δ > 0, the δ-excess perturbation semantics of a WTG A =
(L, `0, C, I, E1, E2,S) is a game structure Geδ (A) = (S′, s′0,M

′
1,M

′
2, T

′
1, T

′
2, jt
′),

where S′ = S ∪ S × R≥0 × E1, with S = {(`, ν, c) | ` ∈ L, ν ∈ RC≥0, c ∈ R,
ν |= I(`)}. The initial state is s′0 = (`0,0, 0). We have M ′1 = [δ,∞) × E1,
and M ′2 = [δ,∞) × E2 ∪ [−δ, δ]. The enabling conditions T ′i are as follows.
For any i ∈ {1, 2}, from any state (`, ν, c) ∈ S′, we have ((`, ν, c), d, e) ∈ T ′i
for any d ≥ δ and e ∈ Ei whenever (d, e) is enabled at (`, ν). We also have
(`, ν, c),⊥) ∈ T ′i . For states (`, ν, c, d, e) ∈ S′, we have ((`, ν, c, d, e),⊥) ∈ T ′1 and
((`, ν, c, d, e), ε) ∈ T ′2 for any ε ∈ [−δ, δ]. The joint transition function δ respects
the shorter delay:

jt′((`, ν, c), (d1, e1), (d2, e2)) =

{
(`, ν, c, d1, e1) if d1 ≤ d2,
(`2, (ν + d2)[R′ ← 0], c+ d2 · S(`)) if d1 > d2.

Moreover, in case one player plays ⊥, we let jt′((`, ν, c), (d, e1),⊥) = (`, ν, c, d, e1)
and jt′((`, ν, c),⊥, (d′, e2)) = (`2, (ν+ d′)[R′ ← 0], c+ d′ · S(`)), as expected. Last,
we let jt′((`, ν, c, d, e1),⊥, ε) = (`1, (ν + d+ ε)[R← 0], c+ (d+ ε) · S(`)).

Thus, the cost variable grows with derivative S(`) at location `, and the
sojourn time is either the delay suggested by Perturbator if it is shorter, or the
delay suggested by Controller and perturbed by Perturbator otherwise. Notice
that, in this semantics the guard of an edge that is taken need not be satisfied
after a perturbation (hence the term excess).

We also consider another natural semantics for perturbation, which we call
the δ-conservative perturbation semantics and denote Gcδ(A). This semantics is
defined similarly with the only difference that the enabling condition for Controller
from states (`, ν, c) are defined as follows. From any state (`, ν, c) ∈ S′, we have
((`, ν, c), d, e) ∈ T ′1 for any d ≥ δ and e ∈ E1 whenever (d+ε, e) is enabled at (`, ν)
for every ε ∈ [−δ, δ]. In other terms, Controller should only suggest delays and
edges whose guards are enabled under any perturbation of the delay. Consequently,
this semantics forbids equality constraints, since these are never enabled.

Example 2. Figure 2 explains the differences between our two perturbation
semantics: Controller has to suggest a delay such that the resulting valuation
does not end up in the grey area; Perturbator can then shift this delay by [−δ, δ].
In the conservative semantics, no new behaviors are added, because the final
delay chosen by Perturbator will satisfy the guard; in the excess semantics, new
behaviors may occur because neighboring regions can be reached.

Example 1 (Cont’d). We come back to the WTG of Fig. 1, to illustrate the
differences between the two perturbed semantics. Under the excess-perturbation
semantics, as in the exact case, Controller can suggest a delay of 1 and choose the
edge from `1 to `2. The location `5 can thus be avoided. Now, one can see that
the move of Perturbator determines the next location to be visited: if Perturbator
adds a positive perturbation (i.e. if the delay is in [1, 1+ δ]), then only location `3
is reachable. Conversely, a negative perturbation enables only location `4. To
maximize the cost, Perturbator will force the play to `3, so Controller can only
ensure a cost of 10 +Θ(δ).

We now focus on the conservative semantics. The above strategy is no more
valid since in this case, Controller can only suggest delays of at least 1 + δ. Then
Perturbator can force the play to `5. Here, the cost of winning is 12 +Θ(δ).

x=3

y=1

δ

δ
x=3

y=1

Fig. 2. The conservative- (left) and excess semantics (right) for a transition guarded with
x ≤ 3∧ y ≥ 1. The grey area corresponds to forbidden delays, the bullet corresponds to
the choice of Controller, and the segment indicates the possible choices for Perturbator.

Cost-optimal reachability. We define cost-optimal reachability problems that take
into account the perturbed semantics. We are interested in computing strategies
for reachability which minimize the cost when the parameter δ goes to 0.

First notice that S1(Geδ (A)) does not depend on δ, since Controller only has to
suggest moves that satisfy the guards (a winning strategy will depend on δ though).
In contrast, S1(Gcδ(A)) does depend on δ since Controller is required to satisfy the
guards even after perturbations. It is easy to see that S1(Gcδ(A)) ⊆ S1(Gcδ′(A))
for any δ′ < δ. We denote S1(Gc(A)) =

⋃
δ>0 S1(Gcδ(A)).

Let us write (`, ν, c)|cost = c, and (`, ν, c, d, e)|cost = c, the projection of a
state to the cost value. For any run ρ of the exact or perturbed semantics,
we define the cost of ρ w.r.t. a location ` as, cost`(ρ) = inf{statei(ρ)|cost |
1 ≤ i < |ρ|+ 1, loc(statei(ρ)) = `} (Note that the definition includes the case
where |ρ| =∞). Hence, if ` is never reached, then the cost is ∞. Otherwise it is
the infimum of the costs observed at location `. Given δ > 0, a pair of strategies
(σ, σ′) ∈ S1(Geδ (A)) × S2(Geδ (A)), and location `, we define cost`σ,σ′(Geδ (A)) =

cost`(OutcomeGeδ (A)(σ, σ
′)). We define similarly cost`σ,σ′(Gcδ(A)). Given a strat-

egy σ ∈ S1(Geδ (A), we define the limit-cost of σ as lim-costexsσ (A, `) =
limδ→0 supσ′∈S2(Geδ (A)) cost`σ,σ′(Geδ (A))). The limit is well defined since strategy

σ is valid for any δ > 0. Similarly, for σ ∈ Gcδ0(A), we let lim-costconsσ (A, `) =

lim δ→0
0<δ<δ0

supσ′∈S1(Gcδ(A)) cost`σ,σ′(Gcδ(A)). Here, we take the limit for 0 < δ < δ0,

such that σ ∈ S2(Gcδ0(A)) so that the strategy is valid for any considered δ. Thus,
the limit-cost of a Controller’s strategy σ is the cost it guarantees in the limit,
against any strategy of Perturbator, when δ goes to 0.

We are interested in deciding whether Controller has a strategy that guarantees
an upper bound on the limit-cost for a reachability objective.

Definition 2. The limit strategy (strict) upper-bound problem for the excess per-
turbation semantics asks, given a weighted timed game A, a location `, and a ratio-
nal λ, whether there exists a strategy σ ∈ S1(Geδ (A)) such that lim-costexsσ (A, `) ≤ λ
(resp. lim-costexsσ (A, `) < λ). Similarly, we define the limit strategy (strict) upper-
bound problem for the conservative perturbation semantics.

We define the limit-value as the infimum of the limit-cost that can be guar-
anteed by Controller: lim-valueexs(A, `) = infσ∈S1(Geδ (A)) lim-costexsσ (A, `), and
lim-valuecons(A, `) = infσ∈S1(Gc(A)) lim-costconsσ (A, `). We also consider deciding
upper bounds on values:

Definition 3. The limit value upper-bound problem for the excess (resp. con-
servative) perturbation semantics asks whether given a weighted timed automa-
ton A, a target location `, and a rational λ, it holds lim-valueexs(A, `) ≤ λ (resp.
lim-valuecons(A, `) ≤ λ)?

Notice that the strategy strict upper-bound problem is equivalent to deciding
whether the strict upper bound holds for the value, that is the infimum of the
limit cost over all possible strategies. We will consider the restriction of both
problems on WTA.

Example 1 (Cont’d). We come back to the WTG of Fig. 1. We have seen the
impact of the choice of the semantics on the possible behaviors of the system. In
particular, the limit-optimal cost in the conservative (resp. excess) semantics is
equal to 12 (resp. 10).

We now present our main results.

Theorem 1. The limit strategy upper-bound problem for WTA (and WTG) is
undecidable under the excess perturbation semantics, for a fixed number of clocks.

Theorem 1 is a rather surprising result. It reveals that adding perturbations
can render problems intractable, which is the opposite of a common belief [5,
17]. In this case, optimal reachability is PSPACE-complete for weighted timed
automata under the exact semantics, but becomes undecidable under the excess
perturbation semantics.

The conservative robust semantics is more restrictive than the excess per-
turbation semantics. In timed automata, reachability under the conservative
semantics is PSPACE-complete [22], in contrast with the EXPTIME-completeness
under the excess perturbation semantics [11]. For weighted timed automata, the
conservative semantics renders the problem tractable; the limit value upper-bound
problem is PSPACE-complete:

Theorem 2. The limit value upper-bound problem is PSPACE-complete on WTA
under the conservative perturbation semantics.

The algorithm is based on the corner-point abstraction [8], but requires eliminating
punctual regions, following the ideas in [22]. However the conservative semantics
does not allow the treatment of weighted timed games:

Theorem 3. The limit strategy strict upper-bound problem is undecidable for
WTG under the conservative perturbation semantics, for a fixed number of clocks.

The undecidability also holds in both semantics on WTGs when δ is fixed:

Theorem 4. The following problem is undecidable: For any fixed 0 ≤ δ ≤ 1
3 ,

given a WTG A, a target location `, and a rational λ, decide whether it holds
infσ∈S1(G) supσ′∈S2(G) cost

`
σ,σ′(G) < λ, where G denotes either Geδ (A) or Gcδ(A).

In Section 4, we present our results on WTA, that is, the algorithm of
Theorem 2 and the undecidability result of Theorem 1. The technical appendix
contains the detailed proofs of these results, and of Theorems 3 and 4.

4 Weighted Timed Automata

4.1 Algorithm in the Conservative Semantics

We present a polynomial-space algorithm for the limit value upper-bound problem,
based on a variant of the corner-point abstraction [8]. The idea behind our
algorithm is that Perturbator can always avoid punctual regions by adding an
infinitesimal perturbation. Thus, one needs to remove punctual delay transitions

from the corner-point abstraction. It turns out that the resulting construction
suffices to solve the limit-cost value for a given WTA.

A finite weighted automaton over (Z,+) is a tuple F = (S, s0, Σ, T,W),
where S is the set of states, s0 ∈ S the initial state, T ⊆ S ×Σ × S the set of
transitions, and W : E → Z is the weight function. A path (or run) of a finite
weighted automaton is a (finite or infinite) sequence q1t1q2t2 . . . alternating states
and transitions and such that for all i ≥ 1, ti = (qi, σi, qi+1) for some σi. We write
Runs(F) for the set of runs of F starting in the initial state s0. The length, first
and last states and sub-runs are defined in the same way as for runs of a game
structure. A finite weighted automaton then associates to any finite path the
sum of the weights of the edges it visits. Given any path π = q1t1q2 . . . qn, the
weight of π is defined as W (π) =

∑
1≤i<nW (ti).

Let us consider a weighted timed automaton A = (L, `0, C, E1, ∅,S). Notice
that, following Def. 1, we write it as a weighted timed games with no edges
belonging to Player 2. The corner-point abstraction of A is a finite weighted
automaton, denoted Rcp(A). The states of Rcp(A) are triples (`, r, v), where ` is
a location, r a region, and v ∈ V(r) a vertex of r. Edges are defined as follows:

we have (`, r, v)
delay−−−→ (`, r′, v′) if (`, r)

delay−−−→ (`, r′) in the region automaton, and
v′ = v + k for some natural number k. In other terms, v′ is a time-successor of v,
and is a vertex of region r′. The weight associated to this transition is k × S(`).

Further, we have an edge (`, r, v)
e−→ (`′, r′, v′) if e = (`, g, σ,R, `′) is an edge of A

such that r |= g, and r′ = r[R← 0], v′ = v[R← 0]. Such an edge has weight 0.
Observe that Rcp(A) is finite since all clocks are assumed to be bounded. Notice
that a path in the corner-point abstraction corresponds to a path of the WTA
that runs arbitrarily close to vertices of the regions it visits.

Let the non-punctual corner-point abstraction, denoted Rnp
cp(A), be the finite

weighted automaton obtained from the corner-point abstraction by removing any

transition of the form (`, r, v)
delay−−−→ (`, r′, v′), where r′ is punctual. Thus, any

path in the non-punctual corner-point abstraction corresponds to a non-punctual
path in the region automaton.

For any path π of the region automaton R(A) of A, we denote by Runs(π),
the set of runs of JAK that follow π. If π is a path of the corner-point abstraction
Rcp(A), then we say that a run follows π if it follows the path projected to R(A)
(that is, obtained by removing vertices in each state). We extend the notation
Runs(π) to paths π of the corner-point abstraction. For any path π of R(A)
or Rcp(A), let us define π̄ obtained from π by replacing all regions by their
topological closures. We will consider Runs(π̄) which is the set of runs visiting
the topological closures of the regions of π. In other terms, this is the topological
closure of the set Runs(π).

We define value(F , s) for a finite weighted automaton F and state s as the cost
of the shortest path from the initial state to s. Formally, for any finite weighted
automaton F = (S, s0, Σ, T,W), and s ∈ S, we let value(F , s) = inf{W (π) | π ∈
Runs(F), last(π) = s}. For corner-point abstractions, we extend this notation to
locations: value(Rcp(A), `) = inf{W (π) | π ∈ Runs(Rcp(A)), loc(last(π)) = `}.

In the exact semantics, results of [8] show that the infimum of the cost of
the runs of a WTA following a given path π of the corner-point abstraction is
achieved by a run that follows π̄, and only visits vertices. Hence, to compute the
infimum cost, it suffices to compute the value of the corner-point abstraction.
In the conservative perturbed case, we prove that the same algorithm can be
applied, once we discard punctual paths.

Lemma 1. For any weighted timed automaton A and target location `, we have
lim-valuecons(A, `) = value(Rnp

cp(A), `).

Theorem 2 follows from the previous lemma. In fact, to compute the optimal
cost on A, it suffices to consider the finite weighted automaton Rnp

cp(A), and
find the shortest path to location `. To decide whether the limit value is less
than some given constant λ, one can guess a path in Rnp

cp(A) in polynomial-space
(such a path can be constructed on-the-fly in polynomial space, see e.g. [8]), and
check whether its weight is less than or equal to λ. Note that the problem is
PSPACE-hard since it already is in the unweighted case.

4.2 Undecidability Under Excess Perturbation

In this section, we present the proof of Theorem 1, showing the undecidability
of the limit strategy upper-bound problem for WTA with excess perturbation.
Our proof is based on a reduction from the halting problem of Minsky machines,
following the encoding of [9]. Compared to the reductions of earlier work [12, 9],
special care needs to be taken when dealing with perturbations, since the present
semantics disables precise moves.

We consider a Minsky machine with counters c1 and c2, and a list of instruc-
tions I1, . . . , In. Here, each instruction Ii, for 1 ≤ i ≤ n− 1, is an incrementation
for cb as, cb = cb + 1; goto Ij , for b = 1 or 2, or a decrementation with zero-
test for cb as, if (cb = 0) goto Ij else ci = ci − 1; goto Ij′. The instruc-
tion In is the ending instruction, that is, the final state. The halting problem asks
whether the instruction In is reachable, starting from the configuration c1 = 0,
c2 = 0, at instruction I1.

Our reduction uses 10 clocks x, x′, y, y′, u, u′, t, t′, z, z′. A counter of a Minsky
machine with value n will be encoded by a pair of clocks x, x′ with values kx+ 1

2n

and kx′ + 1
2n for some integers kx, kx′ . Here, kx is called the shift of x. If α

denotes the clock x′, we let α′ = x, and α′′ = x′, and similarly for other clocks.
A configuration of a Minsky machine with counter values n,m ≥ 0, is entirely
encoded by four clocks:

x = kx +
1

2n
x′ = kx′ +

1

2n
y = ky +

1

2m
y′ = ky′ +

1

2m
(1)

for some shifts kx, kx′ , ky, ky′ . The redundancy in this encoding is necessary
to cope with perturbations; this will be clear in the constructions. We denote
by k the vector of shifts, for all clocks, and by codek(n,m) the set of valuations
satisfying (1). We also define codeεk(n,m) the set of valuations ν such that
ν+η ∈ codek(n,m), where |η(α)| ≤ ε, η(α) = η(α′) for all clocks α, and moreover

`1 `2 ...

˙cost=−1

x=kx+2

x′:=0
x=kx+3
∧x′ 6=1

(a) An unperturbed edge.

`1 `2 ...
x=kx+2

x′:=0

(b) A simpler representation of that edge.

Fig. 3. Unperturbed edges. Perturbator has interest in not perturbing these transitions,
since otherwise Controller can go to the target location and win with cost −∞.

η(x) = η(x′) = 0 whenever n = 0, and η(y) = η(y′) = 0 whenever m = 0. In other
terms, codeεk(n,m) is the set of valuations that encode a configuration with an
error bounded by ε, except that the encoding of the counter value 0 is exact.
Given shifts k and a valuation ν ∈ codeεk(n,m), we denote fracp(ν) = ν−k. This
gives the fractional part of the clocks, except when n = 0, in which case the
components x and x′ are equal to 1, and similarly for y. We say that a valuation ν
encodes a configuration (n,m) of the machine if it satisfies (1) for some k.

We define modules for incrementation and decrementation with zero-test in-
structions, which will, once combined, yield the reduction. The modules will be de-
fined on a given list of clocks. For instance, if we describe a module M(x, y, z, u, t)
that uses the clocks x, y, z, u, and t in its definition, then M(z, y, x, t, u) is
obtained simply by exchanging x and z, and u and t.

Unperturbed edges. Let us first present a construction that prevents Perturbator
from perturbing the delays along an edge. The construction only applies to
deterministic transitions (with equality constraints) and requires resetting one of
the two clocks used in the encoding of a counter. Consider the timed automaton of
Fig. 3(a). At `2, Controller can go to the accepting state where the cost decreases
to −∞ if, and only if Perturbator has perturbed by a nonzero amount the
transition from `1 to `2. Thus, Perturbator does not have interest in perturbing
since its objective is to maximize the cost. If there has been no perturbation, the
clock values are only increased or decreased by some integers. More precisely, the
shifts of all clocks but x′ increase by 2, and the shift of x′ becomes 0. In the rest,
we will use this trick extensively to construct our modules. For better readability,
we will represent such unperturbed edges by dashed arrows; when clear from
context, we may omit the edges leading to accepting sink states (see Fig. 3(b)).

Ask-Perturbator module. In weighted timed automata, unlike in weighted timed
games, Perturbator cannot suggest moves since it controls no edges. However,
a special construction allows letting Perturbator decide the successor location.
We describe in Fig. 4(a) such a construction, which also ensures that the configu-
ration is preserved, up to shifts.

The first edge is deterministic, and Perturbator can add any perturbation.
Controller then distinguishes between positive and negative perturbations, and
only has one possible move accordingly. We disallow perturbations (using un-
perturbed edges) at the edges leading to `2 or `3, so that the configuration is
preserved up to shifts. More precisely, the shifts of all clocks x, x′, y, y′ increase

`1

`2

`3

t,u,u′:=0 t=1

t:=0

t=1∧u≤
2

t=1∧u>2

u=3

u′:=0

u=3

u′:=0

(a) Letting Perturbator decide.

`1
t,u,u′:=0

`2

`3

(b) A simpler representation of
the automaton opposite.

Fig. 4. Module that lets Perturbator decide a successor among `2 and `3.

`1

˙cost=1

˙cost=−1

`2
u,u′:=0

x=kx+2

x:=0

u=3

u,t,t′:=0

(u=1∧u′ 6=4)

∨(x=3∧x′ 6=k
x′+5)

Fig. 5. Module Add1+x
k (x, u, t).

by 3. To simplify the presentation of more complex modules, we will represent
this module more compactly as in Fig. 4(b).

Reduction module. In the above modules, we have seen that configurations are
preserved up to shifts, but shifts could grow. We present a module that reduces
the shifts of all clocks. The module Reducek(x, y, u, t) is constructed for each
shift vector k (there will be a finite number of these), is deterministic, and
constructed using unperturbed edges. The definition of the module is omitted
(see Appendix B); the following lemma summarizes its properties.

Lemma 2. Let δ < 1
2 . Assume Reducek(x, y, u, t) is entered with valuation ν ∈

codeεk(n,m) for some ε < 1
2 . Controller has a strategy to either go to the target

location with cost −∞ or to reach location `2 with valuation ν′ satisfying ν′ =
fracp(ν) + k′ where k′ is defined as follows: k′x = 6, k′x′ = 2, k′y = 5, k′y′ = 1.

Test Module. In order to verify the incrementation and decrementation, we will
use the cost variable. We first show how one can add 1 + fracp(x) and 2− fracp(x)
to the cost variable, without changing the configuration. The construction is
similar to [9]; we adapt it using unperturbed edges.

The module Add1+x
k (x, u, t) depicted in Fig. 5 adds 1 + fracp(x) to the cost,

leaving the configuration unchanged (up to shifts).

Lemma 3. Let δ < 1
2 . Assume module Add1+xk (x, u, t) is entered with valuation

ν ∈ codeεk(n,m) for some ε < 1
2 . Controller has a strategy that ensures either

reaching a target location with cost −∞ or location `2 with valuation ν′ satisfying
ν′ = fracp(ν) + k′ where k′x = 1, and k′α = kα + 3 for all α ∈ {x′, y, y′, z, z′},
while the cost increases by 1 + fracp(x).

We define similarly a module Add2−x
k (x, u, t) that adds 2 − fracp(x) to the

cost variable. The module is similar to the one of Fig. 5, except that cost only
increases (with slope 1) at location `1.

Lemma 4. Let δ < 1
2 . Assume module Add2−xk (x, u, t) is entered with valuation

ν ∈ codeεk(n,m) for some ε < 1
2 . Controller has a strategy that ensures either

reaching a target location with cost −∞ or location `2 with valuation ν′ satisfying
ν′ = fracp(ν) + k′ where k′x = 1, and k′α = kα + 3 for all α ∈ {x′, y, y′, z, z′},
while the cost increases by 2− fracp(x).

Concatenating modules Add1+x
k (x, u, t), Add2−x

k′ (z, t, u) and Add2−x
k′′ (z, u, t),

we obtain the module Add5+x−2z
k (x, z, u, t), which adds 5 + fracp(x)− 2fracp(z)

to the cost and leads to a target location (we make the last location accepting).
Similarly, using concatenation, we define Add4+2z−x

k (x, z, u, t), which increases
the cost by 4 + 2fracp(z)− fracp(x). One can append at the end of module
Add4+2z−x

k (x, z, u, t) an edge that increments the cost by 1, which yields mod-
ule Add5+2z−x

k (x, z, u, t) (see Fig. 8). Finally, module Test2z=x(x, z, u, t) is de-
fined by letting Perturbator choose whether to go to Add5+2z−x

k′ (x, z, t, u) or to

Add5+x−2z
k′ (x, z, t, u) (here the new shift vector k′ is due to the shift added by

the ask-Perturbator module). Note that in both cases, the run ends in a target
location. The following property follows from Lemmas 3 and 4.

Lemma 5. Let δ < 1
2 . If module Test2z=x(x, z, u, t) is entered with valuation ν ∈

codeεk(n,m) for some ε < 1
2 , Controller has a strategy to ensure reaching a target

location with cost at most 5 + |2fracp(z)− fracp(x)|.

Incrementation Module Autk
c1,+. We define module Autk

c1,+, given in Fig. 6,
which simulates the incrementation of counter c1. We assume first that there are
no perturbation. When the module is entered with a valuation in codek(n,m),

we expect Controller to choose the delays so that z = 1 + fracp(x)
2 at location D.

From this point on, the clocks z and z′ will switch roles with x and x′. Thus,
this corresponds to incrementing the counter c1 by 1. At location D, Perturbator
can either decide to “test” the incrementation has been correctly performed
by going to the test module, or to continue the simulation by first passing
through the reduction module. Here, Instrjk′′ refers to a module among Autk

cb,+,
Autk

cb,− for b ∈ {1, 2} (to be defined next) according to the instruction Ij .
Now, in the presence of perturbations, Perturbator can perturb the value of z
chosen by Controller by δ. So at D, if Perturbator goes to the test module the
cost is 5 +O(δ), provided that Controller has played correctly. Otherwise, the

simulation carries on with
∣∣∣z − fracp(x)

2

∣∣∣ ≤ δ. The following lemma states this

formally.

A B C D

Test2z=x
k′ (x,z,u,t)

Reduce
k′ Instr

j

k′′
u,u′:=0

x=kx+2

x:=0

1≤x≤2

z,z′:=0

1≤z≤2∧u=4

u:=0

u
=
5

u=5

Fig. 6. Module Autk
c1,+(x, y, z, u, t). The module Reducek′ refers to Reducek′(z, y, u, t),

and the module Instrj
k′′ to Instrj

k′′(z, y, x, u, t).

Lemma 6. Let δ < 1
2 . Assume module Autk

c1,+ is entered with valuation ν ∈
codeεk(n,m) for some ε > 0 with δ + ε/2 < 1

2 , and cost 0. Then, Controller has

a strategy that ensures that either module Instrk
j is entered with a valuation

ν′ ∈ code
δ+ε/2

k′ (n+ 1,m) for some k′, or the target location is reached with cost
at most 5 + 2δ.

A decrementation module can be defined following the same ideas.

Lemma 7. Assume module Autk
c1,− is entered with valuation ν ∈ codeεk(n,m)

and cost 0. Then,

– If n = 0, Controller has a strategy to ensure reaching either Instrk
j with the

same configuration up to shifts and cost, or an accepting location with cost 0.
– If n ≥ 1, and ε < 1

2 , the play cannot reach Instrk
j.

– If n ≥ 1, Controller has a strategy that ensures that either module Instrk
j′ is

reached with a valuation ν′ ∈ codeδ+2ε
k′ (n− 1,m) for some k′, or the target

location is reached with cost at most 5 + ε + 2δ. Moreover, if n = 1, then
Controller can ensure that ν′(x) = k′x + 1.

Complete reduction. To construct the complete reduction, we define for each in-
struction Ij of the Minsky machine, a module Instrk

j as one of the incrementation
or decrementation modules according to the type of Ii. We mark the first location
of Instrk

1 as the initial location. The halting state Instrk
n of the machine is an

accepting location of the timed automaton. For any machine M , let AM denote
the weighted timed automaton constructed in this manner, and let ` denote the
target location obtained by merging all target locations presented in the above
construction. Theorem 1 follows from the following proposition.

Proposition 1. The Minsky machine M halts if, and only if, there is a strategy
σ ∈ SC(Gexs(AM)) such that lim-costexsσ (AM , `) ≤ 5.

Discussion. One can argue that the undecidability in the excess perturbation
game semantics is due to the ability of Controller to test clock values with
precision using equality constraints, and in particular in detecting perturbations.
This allows for instance letting Perturbator make a discrete choice, as in the above
reduction. Hence, this ability and the possibility of disallowing perturbations on
some edges make the semantics of weighted timed automata somehow close to
that of two-player weighted timed games in the exact semantics for which the
optimal-cost reachability is undecidable.

The conservative perturbation game semantics disallows both abilities since
Controller is required to suggest delays whose perturbations satisfy the guard
of the chosen edge. This excludes equality constraints from guards. Therefore,
one cannot encode unperturbed edges nor define the ask-Perturbator module as
previously. The decidability proof presented in Section 4 confirms these intuitions.

5 Conclusion

In this paper, we showed “robust undecidability” results for weighted timed
games: optimal reachability problems remain undecidable under perturbation

game semantics. Moreover, the problem even becomes undecidable for weighted
timed automata in the excess perturbation game semantics. The undecidability
in both cases is due to the ability of either of the players to play precisely,
and the other one to check previous delays with precision. We conclude that
game semantics does not introduce enough “fuzziness” in the semantics to avoid
encoding undecidable languages.

We did not study the value upper-bound problems for the excess perturbation
game semantics; we conjecture that it should be undecidable. We believe we
could also recover decidability by restricting to closed guards, since then players
would not be able to check the non-equality of the clock values.

References

1. R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability for weighted
timed games. In ICALP’04, LNCS, p. 122–133. Springer, 2004.

2. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

3. R. Alur, S. La Torre, and P. Madhusudan. Perturbed timed automata. In HSCC’05,
LNCS 3414, p. 70–85. Springer, 2005.

4. R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata.
In HSCC’01, LNCS 2034, p. 49–62. Springer, 2001.

5. E. Asarin and A. Bouajjani. Perturbed Turing machines and hybrid systems. In
LICS’01, p. 269–278. IEEE Comp. Soc. Press, 2001.

6. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed
automata. In SSC’98, p. 469–474. Elsevier Science, 1998.

7. G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J. Romijn, and
F. Vaandrager. Minimum-cost reachability for priced timed automata. In HSCC’01,
LNCS 2034, p. 147–161. Springer, 2001.

8. P. Bouyer, Th. Brihaye, V. Bruyère, and J.-F. Raskin. On the optimal reachability
problem of weighted timed automata. Formal Methods in System Design, 31(2):135–
175, 2007.

9. P. Bouyer, Th. Brihaye, and N. Markey. Improved undecidability results on weighted
timed automata. Information Processing Letters, 98(5):188–194, 2006.

10. P. Bouyer, F. Cassez, E. Fleury, and K. G. Larsen. Optimal strategies in priced
timed game automata. In FSTTCS’04, LNCS 3328, p. 148–160. Springer, 2004.

11. P. Bouyer, N. Markey, and O. Sankur. Robust reachability in timed automata:
a game-based approach. In ICALP’12, LNCS 7392, p. 128–140. Springer, 2012.

12. Th. Brihaye, V. Bruyère, and J.-F. Raskin. On optimal timed strategies. In
FORMATS’05, LNCS 3829, p. 49–64. Springer, 2005.

13. K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. Information and
Computation, 208(6):677–693, 2010.

14. K. Chatterjee, T. A. Henzinger, and V. S. Prabhu. Timed parity games: Complexity
and robustness. Logicical Methods in Computer Science, 7(4), 2011.

15. M. De Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robust safety of timed
automata. Formal Methods in System Design, 33(1-3):45–84, 2008.

16. M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics: From timed
models to timed implementations. Formal Aspects of Computing, 17(3):319–341,
2005.

17. M. Fränzle. Analysis of hybrid systems: an ounce of realism can save an infinity of
states. In CSL’99, LNCS 1862, p. 126–139. Springer, 1999.

18. V. Gupta, T. A. Henzinger, and R. Jagadeesan. Robust timed automata. In
HART’97, LNCS 1201, p. 331–345. Springer, 1997.

19. T. A. Henzinger and J.-F. Raskin. Robust indecidability of timed and hybrid
systems. In HSCC’00, LNCS 1790, p. 145–159. Springer, 2000.

20. A. Puri. Dynamical properties of timed systems. Discrete Event Dynamic Systems,
10(1-2):87–113, 2000.

21. O. Sankur, P. Bouyer, and N. Markey. Shrinking timed automata. In FSTTCS’11,
LIPIcs 13, p. 375–386. Leibniz-Zentrum für Informatik, 2011.

22. O. Sankur, P. Bouyer, N. Markey, and P.-A. Reynier. Robust controller synthesis
in timed automata. In submission, 2013.

A Details of Subsection 4.1

To prove Theorem 2, we first need to introduce some definitions.
A timed trace is a sequence (ti, ei)1≤i≤n where ti ≥ 0 and each ei is an edge.

The timed trace of a run ρ is the sequence ttrace(ρ) = (ti, ei)1≤i≤n, where the
ti ≥ 0 are the delay transitions of ρ, and ei are the edges it takes. Given a path π
of R(A), and state (`, ν) ∈ first(π), we say that a timed trace (ti, ei)1≤i≤n is
feasible for π and (`, ν) if there is a run starting at (`, ν), following π, whose
timed trace is (ti, ei)1≤i≤n. We write untime((ti, ei)1≤i≤n) = (ei)1≤i≤n.

We define a metric on timed traces as in [18]. Given two timed traces u =
(ti, ei)1≤i≤n and u′ = (t′i, e

′
i)1≤i≤n, we let

d(u, u′) =∞ if untime(u) 6= untime(u′),
d(u, u′) = max{|ti − t′i|, 1 ≤ i ≤ n} otherwise.

We define Balld(u, ε) as the open ball of radius ε around u in this metric. Note
that the original metric was defined using timestamps rather than delays, but
both metrics define the same topology [18].

For a path π, let ttrace(π) denote the set of timed traces that are feasible
for π and some state in first(π).

Proposition 2 ([18]). If π is a non-punctual path, then ttrace(π) is an open
set (for the topology induced by d).

The previous proposition follows from the fact that a non-punctual path can
be described by an open timed automaton, that is, a timed automaton whose
guards are strict.

We recall the following result on optimal cost reachability in the exact seman-
tics. Let us write V((`, r)) = {`} × V(r), for any location ` and region r.

Lemma 8 ([8]). Let A = (L, `0, C, I, E1, ∅,S) be a WTA , and π a path in R(A).
There exists a run ρ0 that follows π̄, such that for all 1 ≤ i ≤ |ρ|, statei(ρ) ∈
V(statei(π)), and

last(ρ0)|cost = inf
ρ∈Runs(π)

(last(ρ)|cost).

The previous lemma states that the infimum of the cost of the runs that
follow a path of the region automaton is reached, in the limit, by a run that only
visits the vertices of the regions. Observe that such a run corresponds to a path
of the corner-point abstraction.

The following simple lemma states that an infinitesimal perturbation suffices
to go from a punctual region to a non-punctual one.

Lemma 9. Given any δ > 0, and ν ∈ r in a punctual region r, there exists
ε ∈ [−δ, δ] such that reg(ν + ε) is non-punctual.

We now prove Lemma 1:

Lemma 1. For any weighted timed automaton A and target location `, we have
lim-valuecons(A, `) = value(Rnp

cp(A), `).

Proof. We prove the two inequalities. First, it is not difficult to show that
lim-valuecons(A, `) ≥ value(Rnp

cp(A), `). In fact, let σ ∈ S1(Gcδ(A)) be any strategy
for Controller. We consider some strategy σ′ for Perturbator, that perturbs so
as to render the run non-punctual. More precisely, if the delay suggested by
Controller is inside a non-punctual region, Perturbator plays 0, and otherwise
it plays some small non-zero amount, by Lemma 9. Then the projection of the
outcome of (σ, σ′) to regions is a non-punctual path π of R(A). But by Lemma 8,
the cost of this run cannot be smaller than all runs along π̄ visiting vertices, and
for any such run, there is a path in Rnp

cp(A) with the same cost.
To prove the other direction, we make use of the following lemma, which says

that the paths of the corner-point abstraction can be approximated by valid runs.

Lemma 10 ([8]). Let π be a path of Rcp(A). For any ε > 0, there exists a
run ρε that follows π such that last(ρε)|cost ≤W (π) + ε.

For any ε > 0, we construct a strategy for Controller in A that achieves
cost value(Rnp

cp(A), `) + O(ε + δ), so this will be equal to value(Rnp
cp(A), `) +

O(ε) in the limit, hence the infimum is value(Rnp
cp(A), `) as required. Assume

that value(Rnp
cp(A), `) is finite. Let π denote a non-punctual path of Rnp

cp(A) with
W (π) = value(Rnp

cp(A), `). By Lemma 10, there exists a run ρε in A that follows π,
with last(ρε)|cost ≤ W (π) + ε. If all delays in ρε are positive, then let ε0 > 0
smaller than any delay and such that all timed traces Balld(ttrace(ρε), ε0) induce
valid runs that follow π. Here, such an ε0 > 0 exists since ttrace(π) is an open
set (Proposition 2). Let δ ≤ ε0. Then, in Gcδ(A), if Controller suggests the
delays and actions of ttrace(π), any outcome ρ is a valid run that follows π.
Moreover, since each delay can be perturbed at most by δ, we have last(ρ)|cost ≤
last(ρε)|cost + δ|π|S ≤W (π) + ε+ δ|π|S, where S is the maximal slope of the cost
at locations visited by π. The lemma follows.

If not all delays of ρε are positive, then we choose another run ρ′ε with this
property, such that d(ttrace(ρε), ttrace(ρ′ε)) ≤ ε. This is possible since ttrace(π)
is open. In this case, the above proof yields a run ρ with last(ρ)|cost ≤ W (π) +
2ε+ δ|π|S.

If value(Rnp
cp(A), `) = ∞, then ` is not reachable by any run, so

lim-valuecons(A, `) = ∞. If value(Rnp
cp(A), `) = −∞, then one can construct

the above strategy for any M < 0, considering a path π with W (π) < M , which
yields lim-valuecons(A, `) = −∞.

Now, the polynomial-space algorithm consists in guessing a path in Rnp
cp(A)

on-the-fly, that reaches a given target location with cost less than a given bound.
Such an exploration can be done in polynomial space, since the states of the
corner-point abstraction can be stored, and their successors can be computed in
polynomial space. See also [8].

B Details of Subsection 4.2

This section contains some modules and their properties that were omitted in
the core of the paper.

Figure 7 defines one half of the module Reducek(x, y, u, t), named
PReducek(x, y, u, t). Any run from `1 to `2 leaves the encoded configuration
unchanged, but only modifies the shifts. This automaton reduces the shift of the
clocks x, y (to 3 and 2, respectively) but the shifts of x′, y′ increase by 5. The
whole module Reducek(x, y, u, t) is defined by concatenating PReducek(x, y, u, t)
and PReducek(x′, y′, t, u), by merging the location `2 of the former with the loca-
tion `1 of the latter. Note that u and t switch roles at the end of each PReducek(·);
in fact, u, u′ are still needed at location `2 to verify that there has been no per-
turbation, so they cannot both be reset. Module PReducek satisfies the following
property, which implies Lemma 2.

Lemma 11. Let δ < 1
2 . Assume PReducek(x, y, u, t) is entered with valua-

tion ν ∈ codeεk(n,m) for some ε < 1
2 . Controller has a strategy to either go

to the target location with cost −∞ or to reach location `2 with valuation ν′ satis-
fying ν′ = fracp(ν) +k′ where k′ is defined as follows: k′x = 2, k′x′ = kx′ + 2, k′y =
1, k′y = ky′ + 5.

In the above lemma, the bound on δ and ε ensure that valuations in codeεk(n,m),
when perturbed by δ differ by less than an integer from the exact valuation
codek(n,m).

`1

˙cost=−1

`2
u,u′:=0

x=kx+2

x:=0

y=ky+3

y:=0

u=4

u,t,t′:=0

x=1∧x′ 6=kx′+3

y=
1∧y
′ 6=ky′

+4

u=1∧u
′ 6=5

Fig. 7. Module PReducek(x, y, u, t), reducing the shifts of x and y.

`1

Add4−x+2z

k′ (x,z,u,t)

Add5+x−2z

k′ (x,z,u,t)

˙cost=1

u,u′:=0

u=1

Fig. 8. Module Test2z=x(x, z, u, t) obtained by letting Perturbator choose between
Add5+x−2z

k′ (x, z, u, t) and Add5+2z−x

k′ (x, z, u, t). The latter module is defined by append-
ing one unperturbed transition with forcing the game to spend exactly one time unit at
the last location of Add4+2z−x

k′ (x, z, u, t).

Proof (of Lemma 6). We let Controller go to the target location after unper-
turbed edges, whenever there has been a nonzero perturbation. So, to describe

Controller’s strategy, it suffices to define its delay in location B since the other

edges are deterministic. We let Controller delay 2− fracp(ν(x))
2 in B. This delay

can be perturbed by δ. Then, the delay at location C must be 1 + fracp((ν(x))
2 ± δ.

Upon arrival to D, Perturbator either chooses to go to the module Reducek′ and
the play continues at Instrj

k′′ , or it chooses to the test module. By Lemma 5, the
outcome is then at most 5 + 2δ .

Now, if the game proceeds to Instrk
j , then the encoding for counter m has

not changed thanks to the unperturbed edges. For counter n, we have initially
fracp(x) = 1

2n + η with η ∈ [−ε, ε]. We get that upon arrival to D, we must have

fracp(z) = 1
2n+1 + η/2± δ. Hence ν′ ∈ code

δ+ε/2

k′ (n+ 1,m), where ν′ denotes the
valuation upon arrival to D.

Decrementation Module Autk
c1,−. We now define a module that simulates the

decrementation with zero-test instruction. We explain the expected behavior of
the module. The zero-test is done at the first location A: the counter c1 equals 0
if exactly one time unit after the arrival at A, we have x = kx + 2. Recall that
the encoding is exact for counters having the value 0. Otherwise, the run moves
to either B or C ′. In the former, Controller is to wait for 1− 2fracp(x) time units,
so that z = 1 + 2fracp(x) upon arrival to D. This simulates a decrementation
of c1, up to an error of δ, since the edge from B to C can be perturbed. If the
decremented value of the counter c1 is 0, then the new value for z can be chosen
as exactly 2 by Controller along the path through C ′.

A Instr
j
k+1

(x,y,z,t,u)

B C

C′

D

Testx=2z
k′ (x,z,u,t)

Reduce
k′ Instr

j′

k′ (z,y,x,u,t)
u,u′:=0

x=kx+2∧u=1
t,t′:=0

u=2
x 6=kx+3

u=1∧x 6=kx+2
z,z′:=0

1≤u≤2

z,z′:=0 u=4, u:=0

u=4, u:=0

Fig. 9. Module Autk
ci,−(x, y, z, u, t) with zero test. The module Reducek′ refers to

Reducek′(z, y, u, t).

Proof (of Lemma 7). If n = 0, then ν(x) = kx + 1. In this case, Controller can
choose to move, after a delay of 1, to Instrk

j . Controller wins by moving to a
target location if Perturbator perturbs, otherwise the play continues in Instrk

j .

If n ≥ 1 and ε < 1
2 , then x ∈ kx + 1

2n ±
1
2 , which means x < kx + 1.

Therefore the guards of the edge leading to Autk
j is never enabled. Controller

can go to B, where it delays 1 + 2fracp(ν(x)). Due to perturbations, it will delay
1 + 2fracp(ν(x))± δ at C. Thus, upon arrival to location D, the valuation satisfies
fracp(z) ∈ 1

2n−1 ± 2ε ± δ. By Lemma 5, the cost increases by at most 5 + 2δ
from here if the play goes into the test module. If n = 1, then Controller can

go through C ′ and end in D with fracp(z) = 2. Here, the the test module can
increase the cost by at most 5 + ε+ 2δ.

Proof (of Proposition 1). Assume that M halts, say after N steps. Since we
are interested in the limit, fix any ε > 0 and assume that 0 < 3Nδ < ε. We
let Controller play respecting the encoding: In modules Autk

ci,+, it applies the
strategy of Lemma 6 to increment the counter ci. In modules Autk

ci,−, it applies
the strategy of Lemma 7 to decrement the counter ci. Note that this strategy does
not depend on δ. At most N modules Autk

ci,· are visited since the target location
is reached afterwards. Thus, by Lemma 12, along this play the configuration

always belongs to codeε
′

k (n,m) for some k with ε′ ≤ ε. By these lemmas, either
the play simulates the whole path of M and ends in a target location, or it
reaches a target sink location (with ˙cost = −1) earlier. This can be due either
to a perturbation by Perturbator along unperturbed edges, or to Perturbator’s
choice to go to a test module. In both cases the cost is at most 5 + ε+ 5δ ≤ 5 + 2ε,
hence the limit is 5.

Assume now that M does not halt. Fix any strategy σ of Controller. If σ

respects the encoding, i.e. always chooses z as fracp(x)
2 or 2fracp(x) in Autkci,+

or Autkci,− respectively, then the cost is∞ if Perturbator never perturbs. Suppose
now that σ “cheats” during the simulation at least once. We describe a strategy
for Perturbator that leads to a limit cost greater than 5. Perturbator does not
perturb the run, and waits until the first instant where Controller does not respect
the encoding. This happens inside Autk

ci,+ or Autk
ci,− along a perturbed edge

since all other edges are deterministic. Assume for instance the run under strategy

σ arrives to location D of Autkci,+ with z = 1 + fracp(x)
2 + η for some η depending

on σ. Then, Perturbator chooses to go to the test module, which accepts with
cost at least 5 + η, by Lemma 5. Here, η only depends on the strategy σ, so the
limit lim-costexsσ (AM) is at least 5 + η > 5.

The following is used in the above proof, to bound the accumulation of the
error in the encoding.

Lemma 12. Consider the two functions f : x 7→ 2x + 1 and g : x 7→ x/2 + 1.
For any n ≥ 1, x > 0, and any f1, . . . , fn ∈ {f, g}, f1 ◦ f2 ◦ . . . ◦ fn(x) ≤ 3nx.

C Undecidability on Weighted Timed Games

We prove Theorems 3 and 4 using a reduction similar to the one in Section 4.2.
In this section, strategies and outcomes refer to the conservative perturbation
game semantics.

Test Module. We define the new module Add′
1+x
k (x, u, t) depicted in Fig. 10. We

do not have any guards on the edges; Controller checks at the last step whether all
delays were chosen as expected. Recall that the dotted edges are uncontrollable
edges, so they are taken by Perturbator. Here, there is no upper bound on the
delays that can be suggested by Perturbator, so the cost can increase arbitrarily.
However, the target sink state has a negative slope on variable cost, so the cost
is −∞ whenever Perturbator “cheats”.

`1

˙cost=1

˙cost=−1

`2
u,u′:=0 x:=0 u,t,t′:=0

u′−u 6=3)

∨(x′−x 6=k
x′+2)

Fig. 10. Module Add′
1+x
k (x, u, t).

We define similarly modules Add′
2−x
k (x, u, t). As previously, these modules

can be combined to define Add′
5+x−2z
k (x, z, u, t). Since it is now Perturbator’s

duty to respect the encoding, Controller will test the chosen values using the

Test′
x=2z
k (x, z, u, t) module, in Fig. 11.

`1

`2

`′2

`3

`′3

˙cost=−1

Add′2z−x+5
k

(x,z,u,t)

Add′x−2z+5
k

(x,z,u,t)

t,u,u′:=0

t<
1

t<
1

t:=0

t:=0

u−
t 6=

2

u−
t6=

2

Fig. 11. Module Test′
x=2z
k (x, z, u, t).

Lemma 13. Assume that module Test′
x=2z
k (x, z, u, t) is entered at `1 with valu-

ation ν ∈ codeεk for some 0 < ε < 1
2 . Then, Controller has a strategy to reach a

target location with cost at most 5− |fracp(ν(x))− 2fracp(ν(z))|.

Incrementation Module Aut′k
ci,+. Now, the module Aut′k

c1,+(x, y, z, u, t) that in-
crements counter c1, given in Fig. 6, is defined similarly to the excess-perturbation
case, by exchanging the roles of the players. Along this module, if Perturbator does
not get the right value for z (which is z = 1 + fracp(x)/2), then Controller can go
to the test module and reach the target location with cost 5−|2fracp(z)−fracp(x)|;
it can also continue to Instr′

j
k. We omit the definition of Reducek′ but it can

be adapted from Reducek without difficulty, similarly to Add′k modules: Per-
turbator determines the run, and Controller checks it afterwards. The module

Aut′k
c2,+(x, y, z, u, t) is defined similarly by exchanging the roles of x and y.

We state the properties of module Aut′k
c1,+(x, y, z, u, t) more generally since

we would like Controller to tolerate a bounded error in Perturbator’s move:

Lemma 14. Assume that module Aut′k
c1,+(x, y, z, u, t) is entered at A with val-

uation v ∈ codeεk(n,m) with ε < 1
4 . For any η > 0, Controller has a strategy

A B C D

˙cost=−1 Test′2z=x
k′ (x,z,t,u)

Reduce′k Instr′j
k′′

u,u′:=0 x:=0 1<x<2

z,z′:=0 u,t,t′:=0

t<
1

t<
1

x′−x 6=kx′+2∨u′−u6=4

Fig. 12. Module Aut′k
c1,+(x, y, z, u, t). Here Reducek′ refers to Reducek′(z, y, u, t) and

Instr′
j

k′′ to Instr′
j

k′′(z, y, x, u, t).

to either reach a target location with cost at most 5− η, or reach Instr′
j
k with a

valuation ν′ ∈ code
ε/2+η

k′ (n+ 1,m).

Proof. Fix η > 0. The strategy is the following. If upon arrival to D, the
valuation ν′ satisfies |2fracp(ν′(z))− fracp(ν(x))| > η, then Controller goes to the

test module. Otherwise, it proceeds to Instr′
j
k after going through the Reduce′k.

A

A1

⊥

Instr′j
k

B1 B2

C1 C2 C3

D

Test′x=2z
k′

Reduce′
k′ Instr′j

′

k′′

u,u′:=0

u<1
u:=0

x−u6=kx+1

∧u<
1

x−u
<kx+

1

u<1∧x−u>kx+
3
8

∧x−u<kx+1

1≤u≤2

z,z′:=0 u:=0

1<u<2

z,z′:=0

u:=0

z−u6=1

u′−u6=3

Fig. 13. Module Aut′k
c1,−(x, y, z, u, t): decrementation with zero test.

Decrementation Module Aut′k
c1,−. The module Aut′k

c1,−(x, y, z, u, t), given in

Fig. 13, is also an adaptation of Aut′k
c1,−(x, y, z, u, t) of the excess-perturbation

case.

Lemma 15. Assume module Aut′k
c1,− is entered with valuation ν ∈ codeεk(n,m)

and cost 0, with ε < 1
4 . Then,

– If n = 0, then Controller has a strategy to ensure reaching either Instr′
j
k with

the same configuration and cost, or an accepting location with cost −∞. In

this case, Controller cannot reach Instr′
j′

k′′ .

– If n ≥ 1, then Controller cannot reach Instr′
j
k.

– If n ≥ 1, for any η > 0, Controller has a strategy that ensures that either

Instr′
j′

k′′ is reached with valuation ν′ ∈ code2ε+η
k′ (n− 1,m) for some k′, or the

target location is reached with cost at most 5− η.

Proof. Recall that, by definition, for any ν ∈ codeεk(0,m), ν(x) = kx. The module

Instr′
j
k is reachable if, and only if n = 0 since Perturbator can lead to the non-

accepting sink state (⊥) whenever Controller moves to A1 while ν(x) 6= kx;

otherwise Instr′
j
k is reached. The guard of the other edges from A are not satisfied

since x− u = kx + 1.
If n = 1, Controller can go to C1. In fact, since ε < 1

4 , the guard x−u > kx+ 3
8

is satisfied. Then, the path from C1 to D forces Perturbator to ensure z − u = 1.

If Controller goes to Instr′
j′

k′′ , this condition yields a valuation in codeεk′′(0,m).
If n 6= 1, then the guard of the edge from A to C1 is not satisfied by the
assumption on ε.

When n ≥ 1, Controller goes to B1, from where Perturbator is expected to
lead to D with some valuation ν′ satisfying ν′(z) = 2fracp(ν(x))± α, for some
α. Now, if |α| ≥ η, we let Controller go to the test module, therefore, end in an
accepting location with cost at most 5−η (by Lemma 13). Otherwise, it proceeds

to Instr′
j′

k′′ .

Complete Reduction. Let A′M denote the weighted timed game constructed in
this manner for a machine M . Let ` denote the target location obtained by
merging all target location of the above modules. Theorems 3 and 4 follow from
the following proposition.

Proposition 3. Minsky machine M halts if, and only if

inf
σ∈SC(Gcδ(A))

lim-costconsσ (A′M , `) < 5,

if, and only if for all δ ∈ [0, 13],

inf
σ∈SC(Gcδ(A))

sup
σ′∈SP (Gcδ(A))

cost`σ,σ′(A′M) < 5,

if, and only if for all δ ∈ [0, 13],

inf
σ∈SC(Geδ (A))

sup
σ′∈SP (Geδ (A))

cost`σ,σ′(A′M) < 5,

Proof. Assume that the machine halts, say in N steps. For any 0 < ε < 1
4 , we fix

0 < η < ε×3−N , and assume that 0 ≤ δ ≤ η. Controller follows the strategy given

by Lemmas 14 and 15, respectively, in modules Aut′k
ci,+ and Aut′k

ci,−. Thus,
Controller goes to the test module if and only if the error in the incrementation
or decrementation is more than η, otherwise it continues the simulation. Then by
Lemma 12, along any play, upon arrival to these modules the valuation belongs
to codeεk(n,m) for some n,m. Thus, Controller reaches the target location with

cost at most 5− η. Note that δ has no effect here as long as it is less than 1
2 . In

fact, the only edges that belong to Controller either yield to target locations, or
the amounts of delays are irrelevant since exact timing is ensured by Perturbator
in subsequent transitions.

Assume now that the machine does not halt. In this case, for any strategy
of Controller, we let Perturbator respect the encoding exactly. The play is then
either never reaches a target location, or it goes inside a test module and ends in
a target location with cost 5.

