
On the semantics of Strategy LogicI

Patricia Bouyer, Patrick Gardy, Nicolas Markey

LSV – CNRS, ENS Cachan, Univ. Paris-Saclay – France

Abstract

We define and study a slight variation on the semantics of Strategy Logic: while in
the classical semantics, all strategies are shifted during the evaluation of temporal
modalities, we propose to only shift the strategies that have been assigned to a
player, thus matching the intuition that we can assign the very same strategy to
the players at di↵erent points in time. We prove that surprisingly, this renders
the model-checking problem undecidable.

Keywords: Multi-agent systems; Strategic reasoning; Temporal logics.

1. Introduction

Model checking [CGP00, BK08] is a model-based technique for automatically
verifying properties of computerized systems. Model-checking algorithms exhaus-
tively explore the set of behaviours of the (model of the) system under study, and
compare this set against properties being checked. Temporal logics, and in par-
ticular the Linear-time Temporal Logic (LTL) [Pnu77] and the Computation-Tree

Logic (CTL) [QS82, CE82], provide a convenient formalism for expressing such
properties: they extend boolean logics in order to state properties of sequences
of boolean valuations. Using temporal modalities, they can constrain the order
in which various events occur along such sequences. It is then possible to express,
for instance, that any problem is eventually followed by an alarm.

During the last 15 years, temporal logics—and model checking—have been
extended to deal with multi-agent systems: there, the behaviour of the global
system depends on the actions of individual agents, and the new logic, Alternating-
time Temporal Logic (ATL) [AHK98, AHK02], can now express what some agent
can (or cannot) achieve, or what happens in the whole system when some agent
tries to achieve their goal. This extension is particularly relevant in the setting
of controller synthesis, as it provides a way of expressing the existence of a

I
This work was partly supported by ERC project EQualIS (FP7-308087) and FET project

Cassting (FP7-601148).

Email addresses: patricia.bouyer@lsv.fr (Patricia Bouyer), patrick.gardy@lsv.fr

(Patrick Gardy), nicolas.markey@lsv.fr (Nicolas Markey)

Preprint submitted to Information Processing Letters October 15, 2015

controller (often seen as a strategy in a game against the other agents) enforcing
a given property.

However, it has been noticed recently that ATL is not expressive enough to
express many interesting properties of multi-agent systems. In particular, ATL is
mainly usable for expressing properties of antagonistic agents, and cannot express
real interactions or collaborations between agents. It has thus been enriched
in order to allow for such collaborations: Strategy Logic (SL) [CHP07, CHP10,
MMV10, MMPV14], in particular, deals with strategies as first-class citizens,
with (first-order) quantification, and assignment to one or several agents.

Consider for instance a network of several clients, that may ask a central
server for accessing a shared resource. One (or several) users can turn the clients
on and o↵, and when turned on, each client then requests access to the resource.
The server then has two objectives: one is to enforce that no two clients access
the resource at the same time, whatever the clients do; the second property is
that the clients must have a strategy that each of them can apply when turned on,
and that ensures access to the resource (by collaborating with the server). This,
in SL (with adapted syntax to make the formula readable), would be written

9�
server

. if server applies �
server

then
h
(always mutual exclusion)^

(9�
client

. always (if client applies �
client

then eventually access))
i
.

SL model checking is decidable [CHP07, MMPV14]. In this paper, we prove
that this result heavily relies on a semantical choice that is silently made in
the previous papers about SL. We argue in this paper that this semantical
choice does not achieve the expected meaning for the sample formula above
(intuitively, because it gives to the subformula “client applies �

client

” a meaning
that depends on the history of the system, whereas when a client is turned on,
it should start applying its strategy with no prior knowledge about what has
happened previously). We propose an alternative semantics, which assumes that
strategies starts being applied with empty history, and prove that this minor
change makes the model-checking problem undecidable.

2. Definitions

2.1. Turn-based games

Logics for multi-agent systems are usually interpreted over structures involv-
ing multiple agents (hence the name...). In the context of this note, we only
focus on two-player turn-based games, since this is enough for proving our result.

Definition 1. A two-player turn-based game is a tuple G = hS , S , T i where
S and S are pairwise-disjoint finite sets of states, T ✓ S

2
(where S = S [S)

is the set of transitions. It is assumed that for all s 2 S, there exists s

0 2 S s.t.

(s, s0) 2 T .

2

A path in such a game is a (finite or infinite) sequence (s
i

)1i<L+1 (with
L 2 N [{+1}) of states such that, for every 1 i < L, it holds (s

i

, s

i+1) 2 T .
The length of a path (s

i

)1i<L+1 is the number L of elements of the sequence.
A strategy for Player is a mapping � : S⇤ ⇥ S ! S such that for all finite
path (s

i

)1in

with s

n

2 S , it holds (s
n

,� ((s
i

)1in

)) 2 T . In other terms,
a strategy for Player tells which transition to follow after any finite play
ending in a state controlled by that player. Strategies for Player are defined
symmetrically. We write Strat and Strat for the sets of strategies of Players
and , and Strat for the set of all strategies.

Given a strategy � for Player , a strategy � for Player , and a state s,
the outcome of � and � from s is the infinite path (s

i

)
i�1 s.t. s1 = s, and

s

n+1 = � ((s
i

)1in

) if s
n

2 S , and s

n+1 = � ((s
i

)1in

) if s
n

2 S .

2.2. Strategy Logic (SL)

2.2.1. Syntax and semantics of SL

We now present logics for expressing properties of the games defined above.
For this, we first fix a finite set AP of atomic propositions, and consider labelled
games, with a mapping ` : S ! 2AP.

Strategy Logic (SL for short) was introduced in [CHP07], and further extended
and studied in [MMV10, MMPV14], as a rich logical formalism for expressing
properties of games. Formulas in SL are built along the following grammar1:

SL 3 '

::= p | ¬' | '^' | X' | 'U' | 9x. ' | assign(a 7! x). '

where p ranges over AP, x ranges over a set Var of variables, and a ranges over
a finite set Agt of agents (in our setting, Agt = { , }). Thus, SL can be
seen as an extension of LTL [Pnu77] with strategy quantification (9x. ', which
selects a strategy and stores it in variable x, before evaluating ') and strategy
assignments (assign(a 7! x). ', which assigns the strategy stored in variable x

to Player a, and then evaluates ').

Formally, formulas of SL are evaluated at a state s of a game G, under a
valuation � mapping (part of the) agents and variables to strategies. We write
dom(�) for the subset of Agt [Var on which � is defined. The semantics of
atomic propositions and boolean combinators is the natural one.

In order to define the semantics of strategy quantifiers and assignments,
we need several intermediary notions. The set of free agents and variables of a
formula ', which we write free('), contains the agents and variables that have to
be associated with a strategy before ' can be evaluated. It is defined inductively

1
We mainly follow the syntax of SL from [MMPV14], but write 9x. ' instead of hhxii'

(to avoid confusions with the ATL strategy quantified hh - ii), and assign(a 7! x). ' instead of

(a, x)' (thus avoiding overloading parentheses).

3

as follows:

free(p) = ? for all p 2 AP free(X') = Agt [free(')

free(¬') = free(') free('U) = Agt [free(') [free()

free('_) = free(') [free() free(9x. ') = free(') \ {x}

free(assign(a 7! x). ') =

(
free(') if a /2 free(')

(free(') [{x}) \ {a} otherwise

Let s be a state of G, � be a valuation, x 2 Var, and ' 2 SL s.t. free(')\{x} ✓
dom(�). Then

G, s |=
�

9x.' , 9� 2 Strat. G, s |=
�[x 7!�] '.

If additionally a 2 Agt is such that (free(') \ {a}) [{x} ✓ dom(�), then

G, s |=
�

assign(a 7! x). ' , G, s |=
�[a 7!�(x)] '.

Notice that it could be the case that �(a) is already defined; then the previous
value of �(a) is discarded.

Remark 2. In many cases, strategies are assigned immediately after being

selected, and it will be convenient to have a shorthand for this: we write hh·a·ii'
for the formula 9x. assign(a 7! x). ', where x is a variable that does not occur

in '. The dual construct J·a·K' = ¬ hh·a·ii ¬' will also be useful: it states that

any strategy of Player a (added to the current context) has at least one outcome

where ' holds.

Notice that the logic obtained from SL by allowing only hh·a·ii' (in place

of strategy quantification 9x.' and strategy assignment assign(a 7! x). ') is

precisely the logic ATL

⇤
sc

of [DLM10, LM15].

It remains to define the semantics of temporal modalities X and U. For this,
we need to shift strategy: given a strategy � and a finite path ⇡ = (s

i

)1in

,
the shifted strategy ��!

⇡

is defined as

�

�!
⇡

(⇢) = �(⇡ · ⇢)

for all finite paths ⇢ that start in the last state of ⇡. For a valuation �,
we define ��!

⇡

as the valuation obtained from � by shifting all strategies in the
image of � by ⇡. If Agt ✓ dom(�), then from a given state s and a given integer n,
� induces a unique outcome of length n from s, which we write out

n

(s,�(Agt)).
We then define ��!

n

as the valuation obtained by shifting all strategies in the
image of � by out

n

(s,�(Agt)). Under the same conditions, we also define s

�

�!
n

as
the last state of out

n

(s,�(Agt)).
Now, if Agt [free(') [free() ✓ dom(�)

G, s |=
�

X' , G, s��!
1
|=

�

�!
1
'

G, s |=
�

 U' , 9k 2 N. G, s��!
k

|=
�

�!
k
' and

8j 2 N. [0 j < k) G, s��!
j

|=
�

�!
j
].

4

2.2.2. An alternative semantics for SL

The above definition corresponds to the semantics of [MMV10, MMPV14].
The seminal papers [CHP07, CHP10] about SL do not formally define the
semantics of the temporal modalities, simply saying that “[t]he semantics of

path formulas is the usual semantics of LTL”. Our modified definition below
precisely changes the definition of the LTL modalities, while still sticking to their
usual semantics.

One important thing to notice about the semantics above is that all strategies
are shifted during the evaluation of temporal modalities, independently of whether
they are currently being played by a player or not. A natural alternative would
be to only shift those strategies that the agents are playing, and to freeze the
strategies that are stored in variables. Indeed, a nice feature of SL is that a single
strategy can be assigned to the same or di↵erent2 players at di↵erent points in
time. This raises the semantic question about what is meant by a single strategy,
when considered after di↵erent histories: should the strategy start with empty
history, or should it take into account the di↵erent histories? To the best of our
knowledge, only the latter definition has been considered in the literature.

We believe that the former approach is relevant in some situations, and thus
propose a slight change in the definition of the semantics of SL: we write SL

alt

for the logic obtained from SL by only changing the way a valuation � (with
Agt ✓ dom(�)) are shifted, now using the following definition:

�

�!
n

: s 2 dom(�) \ Var 7! �(s)
a 2 Agt 7! �(a)�!

n

Under this definition, only the strategies of the players are e↵ectively shifted,
while the strategies stored in the variables are kept unchanged.

Example 3. The client-server example developed in the introduction is a case

where strategies should remain “idle” as long as they are not played: the intention

is indeed to always play the same sequence of actions when starting from the

same configuration, instead of having this sequence depend on the whole history

of the system.

Remark 4. Notice that both semantics coincide when considering only mem-

oryless strategies. This is also trivially the case when strategies are assigned

immediately after being quantified, as is the case in ATL

⇤
sc

[DLM10], and more

generally, when no temporal modality is allowed between strategy quantification

and strategy assignment, as in SL[bg] [MMPV14].

3. Undecidability proof

Our main result in this paper is the following theorem:

2
Notice that this is not relevant in our setting of turn-based games, as a Player- strategy

cannot be played by Player . But this could make sense under specific circumstances in

concurrent games.

5

a a

?

Fig. 1: Module counter(a)

Theorem 5. Model checking SL

alt

is undecidable (over two-player turn-based

games, hence also over richer models of games).

Remark 6. Before entering the technical proof, let us first comment on the

model-checking algorithm for SL, and why it fails for SL

alt

. First notice that

a strategy for some player(s) is nothing but a labelling of the computation tree

of the game with moves of the considered player(s). The properties that such

a labelling has to satisfy can then be expressed using CTL

⇤
over such a labelled

computation tree. This reduces the model-checking problem of SL to that of QCTL,

as explained in [DLM12].

With our modified semantics, such a translation fails: when selecting a strat-

egy, we would have to keep track of what that strategy would propose depending

on the point where it started being played, hence an unbounded labelling.

3.1. Testing equality

Consider the game depicted on Fig. 1. A circle-player strategy in this game
can be characterized by a single integer, which tells how many times the strategy
moves to a before going to ? . Similarly for Player .

Now, given two strategies � and � , we write an SL

alt formula to test
whether those two strategies correspond to the same integer. The formula reads

assign(7! � , 7! �). '=

where '= is the formula

G (a)X a)^F

⇥
(a ^X ?)^ J· ·KXX ?

⇤
(1)

Indeed, assuming that � plays k times to a and then to ? , then for
Formula (1) to hold, it must be the case that Player always returns to a

during the first k cycles in the loop; then if instead of going to ? , Player
would go back to a , the formula enforces that �k would play to ? , as required.

Using similar ideas, we can characterize the situations where � = � + 1
(identifying strategies with their associated integer). It su�ces to replace '=

with the following formula '+1:

G (a)X a)^F

h
(a ^X ?)^

⇥
(hh· ·iiXX a)^(J· ·KXXXX ?)

⇤i

(2)

6

s s

s

0
s

0

s

00
s

00
main

states

aa

?

counter(a)

b b

?

counter(b)

Fig. 2: Schematics representation of the global reduction (for a decrementing state s)

3.2. Proof of Theorem 5

A (deterministic) two-counter machine is a tuple M = hS, s0, sh, �i where
S is a finite set of states, s0 2 S is the initial state, s

h

2 S is the halting state,
and � : S ! {c1, c2}⇥ (S [S ⇥ S) is the transition relation; transitions of the
form �(s) = (c, s0) increment counter c and go to s

0, while transitions of the
form �(s) = (c, s0, s00) either go to s

0 if counter c is zero, or decrement c and go
to s

00 if c > 0. A configuration of M is a triple (s, c1, c2) 2 S ⇥N⇥N, with the
initial configuration being (s0, 0, 0). It is well-known that the reachability of the
halting state from the initial configuration is undecidable [Min67].

We encode this problem into a model-checking problem for SLalt. We begin
with describing a two-player turn-based game G that will be used in this reduction:
its states are (S ⇥ { , }) [{ a , b , a , b , ? }; in the sequel, we write s

and s to represent states (s,) and (s,), respectively (and require that
none of the symbols a, b and ? belongs to S, to avoid confusion). Those states
in S ⇥ { , } are called the main states , while those in { a , b , a , b , ? } are
the counter states. The initial state is s0 .

Figure 2 depicts the construction: the square-player main states s have three
outgoing transitions, going to s , a and b . The circle-player main states s

have one or two outgoing transitions, depending on the transition from s in M:

• if �(s) = (c, s0), then s has a single transition, to s

0 ;

• if �(s) = (c, s0, s00), then s has two transitions, to s

0 and s

00 .

In state a , the game is as depicted on Fig. 1. A similar module is used from b

(with states b and b in place of a and a).
We now explain the intuition behind our construction. The main idea is that,

with each strategy of Player , we can associate a sequence of configurations of
the two-counter machine M. An SL

alt formula will then express the existence of
a circle-player strategy corresponding to a valid execution of M reaching the
halting state.

We define the correspondence between strategies of Player and sequences
of configurations of M as follows. Fix a strategy � of Player , and consider

7

the infinite outcomes of this strategy from s0 . One of these outcomes visits
only main states: it is made of a sequence of pairs of states of the form s

i · s

i .
Hence it defines an (infinite) sequence (si)

i2N of states of M.
At each square state along that infinite outcome (after some finite history h),

two additional branches emerge: one going to module counter(a) via a , and
one going to module counter(b) via b . Following the discussion of Section 3.1,
the strategy �h , defined as �h (⇢) = � (h · ⇢) for any path ⇢ in a counter module,

corresponds to an integer (or +1). We write c

i

1 for the integer associated
with �h when ⇢ is a path in counter(a), and c

i

2 when ⇢ is a path in counter(b).

This way, we have associated with � a sequence (si, ci1, c
i

2) of configurations
of M. The rest of the proof consists in building a SL

alt formula that precisely
characterizes the strategy � that corresponds to the (unique) valid run of M
from its initial configuration, and requiring that the main outcome reaches s

h

.
Our formula thus looks as follows:

assign(7! �)
⇥
'

correct

^ J· ·KF
�
s

h

_ ?
�⇤

. (3)

This enforces that the outcome of � that remains in the main states has to visit
the target state s

h

, and that the other outcomes have to end up in ? , which
rules out “infinite counters”.

Formula '
correct

then has three things to check:

1. that the initial configuration is encoded properly in � ;
2. that the zero-test transitions are taken according to the current values of

the counters;
3. that the counters are incremented or decremented correctly.

Property (1) is enforced by requiring that

J· ·K [(X a _X b))XX ?] .

Indeed, this expresses that if Player leaves the main states at the first step,
then Player will directly go to ? , thus encoding value zero for both counters.

Property (2) requires checking that Player chooses the correct branch in
zero-test states, according to the current value of the counters. We can express
this as follows:

J· ·KG
"

^

s s.t.
�(s)=(c,s0,s00)

s)
⇣⇥

hh· ·ii (X c)XX ?)
⇤
,

�
hh· ·iiXX s

0 �
⌘#

where c is an abuse of notation, meaning a if c = c1 and b if c = c2. This
formula states that when visiting a state s , Player can go to c and then
directly to ? (which means that counter c is zero) if, and only if, staying in the
main states would take the game to state s

0 (notice that by construction of G,
the only other option is to go to s

00).
Property (3) is the most complicated part, and is actually the only point

where we will make use of the specific semantics of SLalt. We reuse here the idea

8

presented in Section 3.1. For instance, in the case of an incrementing state, we
first select a strategy �k that matches the exact number of visits to a (or b)
if Player decides to leave the main states in the present position; such a
strategy can be characterized using a formula similar to Formula (1). We then
require that, if Player decides to leave the main states at the next step, then
playing the same strategy �k (with empty history) would play towards a (or b)
once more than what strategy � proposes. Formally, for the case of a state s

with �(s) = (c, s0), we would write

J· ·KG
h
s)9�count

. hh· ·iiX (c ^ assign(7! �

count). '=)^

hh· ·iiXX (s0 ^X (c ^ assign(7! �

count). '+1))
i

Similar formulas can be written for decrementing states (provided the counter is
non-zero).

In the end, if there exists a strategy � that makes Formula (3) true in s0 ,
then this strategy corresponds to a halting computation of M. Conversely,
a halting computation of M gives rise to a strategy making Formula (3) hold
in s0 , which concludes the proof.

References

[AHK98] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal
logic. In COMPOS’97, LNCS 1536, p. 23–60. Springer, 1998.

[AHK02] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal
logic. Journal of the ACM, 49(5):672–713, 2002.

[BK08] Ch. Baier and J.-P. Katoen. Principles of Model-Checking. MIT Press,
2008.

[CE82] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In LOP’81, LNCS 131, p.
52–71. Springer, 1982.

[CGP00] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press,
2000.

[CHP07] K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. In
CONCUR’07, LNCS 4703, p. 59–73. Springer, 2007.

[CHP10] K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. Infor-
mation and Computation, 208(6):677–693, 2010.

[DLM10] A. Da Costa, F. Laroussinie, and N. Markey. ATL with strategy contexts:
Expressiveness and model checking. In FSTTCS’10, Leibniz International
Proceedings in Informatics 8, p. 120–132. Leibniz-Zentrum für Informatik,
2010.

[DLM12] A. Da Costa, F. Laroussinie, and N. Markey. Quantified CTL: Expres-
siveness and model checking. In CONCUR’12, LNCS 7454, p. 177–192.
Springer, 2012.

9

[LM15] F. Laroussinie and N. Markey. Augmenting ATL with strategy contexts.
Information and Computation, 2015. To appear.

[Min67] M. L. Minsky. Computation: Finite and Infinite Machines. Prentice Hall,
Inc., 1967.

[MMPV14] F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. Reasoning about
strategies: On the model-checking problem. ACM Transactions on Com-

putational Logic, 15(4):34:1–34:47, 2014.

[MMV10] F. Mogavero, A. Murano, and M. Y. Vardi. Reasoning about strategies.
In FSTTCS’10, Leibniz International Proceedings in Informatics 8, p.
133–144. Leibniz-Zentrum für Informatik, 2010.

[Pnu77] A. Pnueli. The temporal logic of programs. In FOCS’77, p. 46–57. IEEE
Comp. Soc. Press, 1977.

[QS82] J.-P. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In SOP’82, LNCS 137, p. 337–351. Springer, 1982.

10

	Introduction
	Definitions
	Turn-based games
	Strategy Logic (SL)
	Syntax and semantics of SL
	An alternative semantics for SL

	Undecidability proof
	Testing equality
	Proof of Theorem 5

