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Abstract
Strategy Logic is a powerful specification language for expressing non-zero-sum properties of
multi-player games. SL conveniently extends the logic ATL with explicit quantification and
assignment of strategies. In this paper, we consider games over one-counter automata, and a
quantitative extension 1cSL of SL with assertions over the value of the counter. We prove two
results: we first show that, if decidable, model checking the so-called Boolean-goal fragment of
1cSL has non-elementary complexity; we actually prove the result for the Boolean-goal fragment
of SL over finite-state games, which was an open question in [32]. As a first step towards proving
decidability, we then show that the Boolean-goal fragment of 1cSL over one-counter games enjoys
a nice periodicity property.
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1 Introduction

Model checking. Model checking [19] has been developed for almost 40 years as a formal
method for verifying correctness of computerized systems: this technique first consists in
representing the system under study as a mathematical model (a finite-state transition
system (a.k.a. Kripke structure), in the most basic setting), expressing the correctness
property in some logical formalism (usually, using various temporal logics such as LTL [35]
or CTL [18, 36]), and running an algorithm that exhaustively explores the set of behaviours
of the model for proving or disproving the property.

Over the years, model checking has been extended in various directions, in order to take
into account richer models and more precise properties. Several families of quantitative
models (e.g. weighted Kripke structures [12], counter automata [25], timed automata [1]) and
temporal logics [29, 24, 2, 7, 9, among others] have been defined and studied. Those formalisms
conveniently extend the qualitative setting; they provide powerful ways of representing
quantities, while in several cases keeping reasonably e�cient model-checking algorithms.

Multi-agent systems (a.k.a. graph games [42, 4]) form another direction where model
checking has been extended for reasoning about the interactions between components of a
computerized system. Temporal logics have been extended accordingly [3, 16, 34, 20], in
order to express the existence of winning strategies in multi-player games. Among the most
popular approaches, the logic ATL [3] has limited expressive power but enjoys reasonably
e�cient model-checking algorithms, while the more expressive Strategy Logic (SL) [16, 34]
extends LTL with explicit manipulation of strategies, and can express very rich non-zero-sum
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properties of games, including equilibria; however, model checking SL is non-elementary.
Several fragments of SL have recently been introduced in order to mitigate the complexity of
the model-checking problem while retaining the interesting aspects of SL [33, 13].

Quantitative games, combining both extensions, have also been widely considered. This
includes games on weighted graphs [23, 14, 31, 8], games on counter systems or VASS [39, 11],
or timed games [5, 21]. A large part of these works have focused on “simple” objectives, such
as mean-payo� objectives [23], energy constraints [14, 8], or combinations thereof [15, 26].

Our contribution. In this paper, we consider a quantitative extension of SL over quantitative
games. While such extensions have already been proven decidable for ATL [31, 43], we focus
here on a quantitative extension of the richer logic SL, more specifically, its so-called Boolean-

goal fragment SL[BG] [32]. SL with Boolean goals restricts SL by preventing arbitrary nesting
of strategy quantifiers within temporal modalities. This and several other fragments of SL
have been introduced in [32] with the aim of getting more e�cient model-checking algorithms.
However, while several fragments have been shown to have 2 -EXPTIME model-checking
algorithms, the exact complexity of SL[BG] remained open.

We prove that model checking (the flat fragment of) SL[BG] is Tower-complete, thus
negatively answering the open question whether SL[BG] would enjoy more e�cient model-
checking algorithm than SL. This hardness result obviously extends to the quantitative
version 1cSL[BG] of SL[BG] over one-counter games. On the way to proving decidability of
the model-checking problem for this logic, we then show that 1cSL[BG] over one-counter
games enjoys a nice periodicity property: for any given formula, there is a threshold above
which truth value of the formula is periodic (w.r.t. the value of the counter).

Related works. Several works have focused on one-counter models: two-player games with
parity objectives have been proven PSPACE-complete [39]; this was recently extended to a
quantitative extension of ATL [43], which is thus closely related to our paper. Model checking
LTL and CTL over one-counter automata is also PSPACE-complete [28, 27]. Quantitative
extensions of those logics have been studied in [22, 7, 9]. In many cases, they lead to
undecidability of the model-checking problem. Games on VASS have also been considered,
but reachability is only decidable in restricted cases [11, 37].

Games over integer-weighted graphs have a di�erent flavour, as the behaviours do not
depend on the value of the accumulated weight. Those games have been extensively considered
with various quantitative objectives (e.g. mean-payo� [23, 44], energy [14, 8], and combinations
thereof [15, 17]), and with objectives expressed in temporal logics [31, 6].

2 Definitions

I Definition 1. Let AP be a set of atomic propositions, and Agt be a set of agents. A 1-counter

concurrent game structure (1cCGS for short) is a tuple G = ÈLoc, label, Act, Tab{0,1}, Wgt{0,1}Í
where

Loc is a finite set of locations;
label : Loc æ 2AP labels locations with atomic propositions;
Act is a finite set of actions;
Tab0 : Loc ◊ ActAgt æ Loc and Tab1 : Loc ◊ ActAgt æ Loc are two transition tables;
Wgt0 : Loc ◊ ActAgt æ {0, 1} and Wgt1 : Loc ◊ ActAgt æ {≠1, 0, 1} assign a weight to each
transition of the transition tables.
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A finite path in a 1cCGS G is a finite non-empty sequence of configurations fl =
“0“1“2 . . . “

k

, where for all 0 Æ i Æ k, the configuration “

i

is a pair (¸
i

, c

i

) with ¸

i

œ Loc and
c

i

œ N. For such a path, we denote by last(fl) its last element “

k

, and we let |fl| = k. number
of transitions An infinite path is an infinite sequence of configurations with the same property.
We denote by Path (resp. InfPath) the set of finite (resp. infinite) paths. The length of an
infinite path is +Œ. For 0 Æ i < |fl|, fl(i) represents the i + 1-th element “

i

of fl. For a
path fl and 0 Æ i < |fl|, we denote by flÆi

the prefix of fl until position i, i.e. the finite path
fl(0)fl(1) . . . fl(i).

A strategy for some agent a œ Agt is a function ‡

a

: Path æ Act. We write Strat for the
set of strategies. Given a finite path (or history) in the game, a strategy ‡

a

returns the action
that agent a will play next. A strategy ‡

A

for a coalition of agents A ™ Agt is a function
assigning a strategy ‡

A

(a) to each agent a œ A. Given a strategy ‡

A

for coalition A, we say
that a path fl respects ‡

A

after a finite prefix fi if, writing fl(i) = (¸
i

, c

i

) for all 0 Æ i Æ |fl|,
the following two conditions hold:

for all 0 Æ i < |fi|, we have fl(i) = fi(i)
for all |fi| Æ i < |fl| ≠ 1, we have that ¸

i+1 = Tab
s

(¸
i

, m) and c

i+1 = c

i

+ Wgt
s

(flÆi

, m),
where s = 0 if c

i

= 0 and s = 1 otherwise, and m is an action vector satisfying
m(a) = ‡

A

(a)(flÆi) for all a œ A.
Notice that the value of the counter always remains nonnegative as Wgt0 only returns
nonnegative values. Given a finite path fi, we denote by Out(fi, ‡

A

) the set of paths that
respect the strategy ‡

A

after prefix fi. Notice that if ‡

A

assigns a strategy to all the agents,
then Out(fi, ‡

A

) contains a single path, which we write out(fi, ‡

A

).

I Remark. Several semantics have been given to quantitative games, see [37]. The semantics
chosen here, with zero tests (using Tab0, Tab1), allows to easily express the three semantics
studied in [37]. Hence our algorithms apply in all these settings. It is worth noticing that
the hardness proof holds for the non-quantitative setting, hence also for all three semantics
mentioned above.

We now define our weighted extension of Strategy Logic [16, 34]:

I Definition 2. Let AP be a set of atomic propositions, Agt be a set of agents, and Var be a
finite set of strategy variables. Formulas in 1cSL are built from the following grammar:

1cSL – „

::= p | cnt œ S | ¬
„ | „ ‚ „ | X „ | „ U „ | ÷x. „ | bind(a ‘æ x). „

where p ranges over AP, S is a subset of N that can be described as S

1
fin

fi
!
S

2
fin

+ k ·N
"
, where

S

i

fin

are finite subsets of N and k œ N is a period1, x ranges over Var, and a ranges over Agt.
The logic SL is the fragment of 1cSL where no counter constraint cnt œ S or cnt œ S[k] is
used. The logic 1cLTL is the fragment of 1cSL where no strategy quantifiers ÷x. „ and no
strategy bindings bind(a ‘æ x). „ are used. Finally, LTL is the intersection of SL and 1cLTL.

The set of free agents and variables of a formula „ of 1cSL, which we write free(„),
contains the agents and variables that have to be associated with a strategy before „ can be

1 This allows to express standard counter constraints like cnt Ø 5 (using negation) or periodic constraint
like cnt = 4 mod 7. Notice that our periodicity result is not a consequence of the periodicity of the
quantitative assertions, and would also hold with assertions of the form cnt ≥ n.
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evaluated. It is defined inductively as follows:

free(p) = ? for p œ AP free(X „) = Agt fi free(„)
free(cnt œ S) = ? for n œ N free(„ U Â) = Agt fi free(„) fi free(Â)

free(¬ „) = free(„) free(„ ‚ Â) = free(„) fi free(Â)

free(÷x. „) = free(„) \ {x} free(bind(a ‘æ x). „) =
I

free(„) if a /œ free(„)
(free(„) fi {x}) \ {a} otherwise

A formula „ is closed if free(„) = ÿ.
We can now define the semantics of 1cSL. Let G be a 1cCGS, fi be a path, i be a position

along fi, and ‰ : Var fi Agt 99K Strat be a partial valuation (or context) with domain dom(‰).
Let „ œ SL such that free(„) ™ dom(‰). Whether „ holds true at position i along fi within
context ‰ is defined inductively as follows:

G, fi, i |=
‰

p i� p œ label(¸
i

) (writing fi(i) = (¸
i

, c

i

))
G, fi, i |=

‰

cnt œ S i� c

i

œ S (writing fi(i) = (¸
i

, c

i

))
G, fi, i |=

‰

¬
„1 i� G, fi, i ”|=

‰

„1

G, fi, i |=
‰

„1 ‚ „2 i� G, fi, i |=
‰

„1 or G, fi, i |=
‰

„2

G, fi, i |=
‰

X „1 i� G, fl, i + 1 |=
‰

„1 (writing fl = out(fiÆi

, ‰|Agt

))
G, fi, i |=

‰

„1 U „2 i� ÷k Ø i. G, fl, k |=
‰

„2 and
’i Æ j < k. G, fl, j |=

‰

„1 (writing fl = out(fiÆi

, ‰|Agt

))
G, fi, i |=

‰

÷x. „1 i� ÷‡ œ Strat. G, fi, i |=
‰[x‘æ‡] „1

G, fi, i |=‰ bind(a ‘æ x). „1 i� G, fi, i |=
‰[a‘æ‰(x)] „1

Notice that the constraint that free(„) ™ dom(‰) is preserved at each step.
I Remark. One may notice that the relation G, fi, i |=

‰

„ does not depend on the su�x
of fi after position i. Moreover, writing ‡

≠≠æ
fiÆi

for the strategy ‡

Õ such that ‡

Õ(fl) = ‡(fiÆi

· fl),
it is easily proved that G, fi, i |=

‰

„ if, and only if, G, fi

Õ
, 0 |=

‰

Õ
„, where ‰

Õ(x) = ‰(x)≠≠æ
fiÆi

for all x œ Var fi Agt (we will later write ‰

≠≠æ
fiÆi

for ‰

Õ). As the satisfaction relation does not
depend on the su�x of fi after position i, we may also write G, “ |=

‰

Õ
„, where “ = fi(i).

In the sequel, we may even omit to mention G when it is clear from the context, and simply
write “ |=

‰

„.
I Remark. We write È·a·Í „ as a shorthand for ÷‡

a

. bind(a ‘æ ‡

a

). „, when we do not need to
have hands on ‡

a

in the rest of the formula. Similarly, [·a·] „ stands for ¬ È·a·Í ¬
„. This con-

struct È·a·Í „ precisely corresponds to the strategy quantification used in the logic ATL
sc

[30],
but it should be noticed that it does not correspond to the strategy quantifier of ATL [3].

In the sequel, we also use other classical shorthands such as €, defined as p ‚ ¬
p for

some p (hence it is always true); F „ as a shorthand for € U „, meaning that „ holds at
a later position; and G „, defined as ¬ F ¬

„, meaning that „ holds true at every future
position.

Several fragments of SL have recently been defined and studied [32]. Those fragments
restrict the use of strategy bindings and quantifications. In the present paper, we are mainly
interested in the quantitative extension of the fragment SL[BG]. Before defining 1cSL[BG],
we first introduce its flat fragment 1cSL0[BG]:

1cSL0[BG] – „

::= ¬
„ | „ ‚ „ | ÷x. „ | bind(a ‘æ x). „ | Â

Â

::= p | cnt œ S | ¬
Â | Â ‚ Â | X Â | Â U Â
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s

a1

a2

p1

¬
p1

¬
p2

p2

Figure 1 The 3-player turn-based game for the reduction to SL model checking.

I Remark. Any closed formula Ï in 1cSL0[BG] can be written in prenex form as

˝(Var). f

1
(—

i

(Agt, Var). Â

i

)1ÆiÆn

2

where ˝(Var) is a series of strategy quantifiers involving all variables in Var, f is a Boolean
combination over n atoms, and for every 1 Æ i Æ n, —

i

assigns a strategy from Var to each
agent of Agt, and Â

i

is a 1cLTL formula.
1cSL[BG] then extends 1cSL0[BG] by allowing nesting closed formulas at the level of

atomic propositions. Formally, we defined the depth-i fragment as

1cSLi[BG] – „

::= ¬
„ | „ ‚ „ | ÷x. „ | bind(a ‘æ x). „ | Â

Â

::= p | „

i≠1 | cnt œ S | ¬
Â | Â ‚ Â | X Â | Â U Â

where „

i≠1 ranges over closed formulas of 1cSLi≠1[BG]. We let 1cSL[BG] be the union of
the fragments 1cSLi[BG] for all i œ N. It can be checked that if we drop the quantitative
constraints from 1cSL[BG], we precisely get the logic SL[BG] of [32].

3 Hardness of SL[BG] model checking

In this section, we prove that the model-checking problem for SL[BG] is Tower-hard (the com-
plexity class Tower is the union of all classes k-EXPTIME when k ranges over N [38]).
We actually prove the result for (the flat fragment of) SL[BG], closing a question left open
in [32].

I Theorem 3. Model checking SL[BG], and hence 1cSL[BG], is Tower-hard.

We give a sketch of the proof here, and develop the full proof in [10].

Sketch of proof. We prove this result by encoding the satisfiability problem for QLTL into
the model-checking problem for SL[BG]. QLTL is the extension of LTL with quantification
over atomic propositions [40]: formulas in QLTL are of the form � = ’p1÷p2 . . . ’p

n≠1÷p

n

. Ï

where „ is in LTL. Notice that we only consider strictly alternating formulas for the sake
of readability. The general case can be handled similarly. Formula ÷p. Ï holds true over a
word w : N æ 2AP if there exists a word w

Õ : N æ 2AP with w

Õ(i)fl(AP\{p}) = w(i)fl(AP\{p})
and w

Õ |= Ï for all i. Universal quantification is defined similarly. It is well-known that model
checking (and satisfiability) of QLTL is Tower-complete [41]. We reduce the satisfiability of
QLTL into a model-checking problem for a SL[BG] formula involving n + 4 players (where n is
the number of quantifiers in the QLTL formula), and three additional quantifier alternations.
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Ï, p1, p2

Ï, p1,

¬
p2

Ï,

¬
p1, p2

Ï,

¬
p1,

¬
p2 ¬

Ï, p1, p2¬
Ï, p1,

¬
p2

¬
Ï,

¬
p1, p2¬

Ï,

¬
p1,

¬
p2

p1, p2

p1,

¬
p2 ¬ p

1,
p

2

¬
p1,

¬
p2

p

1,
¬ p

2

p1, p2

¬
p1,

¬
p2

¬
p1, p2

p1, p2
p1,

¬
p2

¬ p

1,
p

2
¬

p1,

¬
p2

p

1,
¬ p

2
p1, p2

¬
p1,

¬
p2 ¬

p1, p2

¬
p1, p2

¬
p1,

¬
p2

p1, p2

p1,

¬
p2

Figure 2 Büchi automaton for G (p2 … X p1).

Before developing this technical encoding, we first present an example of a reduction to
plain SL, which already contains most of the intuitions of our reduction to SL[BG]. Consider
the QLTL formula

� = ’p1. ÷p2. G (p2 … X p1).

To solve the satisfiability problem of this formula via SL, we use the three-player turn-
based game depicted on Fig. 1. In that game, Player Blue controls the blue state s, while
Players Red and Green control the square states a1 and a2, respectively. Fix a strategy of
Player Red: this strategy will be evaluated only in red state a1, hence after histories of the
form s

n · a1. Hence a strategy of Player Red can be seen as associating with each integer n a
value for p1. In other words, a strategy for Player Red defines a labeling of the time line
with atomic proposition p1. Similarly for Player Green and proposition p2.

It remains to use this correspondence for encoding our QLTL formula. We have to express
that for any strategy ‡

Red

of Player Red, there is a strategy ‡

Green

of Player Green under
which, at each step along the path that stays in s forever, Player Blue can enforce X X p2 if,
and only if, he can enforce X X p1 one step later. In the end, the formula reads as follows:

[·Red·] È·Green·Í È·Blue·Í G
1

ss ·( È·Blue·Í X X p2p2 ) …(X È·Blue·Í X X p1p1 )
2

(1)

One may notice that the above property is not in SL[BG]: for instance, the subformula
È·Blue·Í X X p2p2 is not closed. We provide a di�erent construction, refining the ideas above,
in order to reduce QLTL satisfiability to SL[BG] model checking.

In order to do so, we take another approach for encoding the LTL formula, since our
technique of encoding p

i

with È·Blue·Í X X p

i

p

i

is not compatible with getting a formula
in SL[BG]. Instead, we will use a Büchi automaton encoding the formula; another player, say
Player Black, will be in charge of selecting states of the Büchi automaton at each step. Using
the same trick as above in the game structure on the left of Fig. 3, a strategy for Player Black
can be seen as a mapping from N to states of the Büchi automaton. Our formula will ensure
that this sequence of states is in accordance with the atomic propositions selected by the
square players in states a

i

, and that it forms an accepting run of the Büchi automaton.
For our example, an eight-state Büchi automaton associated with the (LTL part of the)

QLTL formula is depicted on Fig. 2. Notice that smaller automata exist for this property (for
instance, the four states on the right could be merged into a single one), but for technical
reasons in our construction, we require that each state of the Büchi automaton corresponds to
a single valuation of the atomic propositions, hence the number of states must be a multiple
of 2|AP|. Accordingly, we augment our game structure of Fig. 1 with eight extra states, as
depicted on the left of Fig. 3. Again, a strategy of Player Black (controlling state b) defines
a sequence of states of the Büchi automaton.
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s

a1

a2

p1

¬
p1

¬
p2

p2

b

Ï, p1, p2

Ï,

¬
p1, p2

Ï, p1,

¬
p2

Ï,

¬
p1,

¬
p2

¬
Ï, p1, p2

¬
Ï,

¬
p1, p2

¬
Ï, p1,

¬
p2

¬
Ï,

¬
p1,

¬
p2

–

—1 —2

“

”

Figure 3 The concurrent game for the reduction to SL[BG] model checking.

(s, –, “)k

÷‡

orange

Œ “

’‡

purple

–

—

l

÷(‡purple

i

)
i

–

—

i

÷‡

orange

= “

”

÷‡

purple

+ –

—

l

Õ

÷‡

orange

+ “

”

÷‡

purple

acc

–

—

l

ÕÕ

÷‡

blue

AP

s

a

l

÷‡

blue

Büchi

s

b

÷‡

blue

+ s

b

÷‡

blue

acc

s

b

Figure 4 Visualization of the strategies selected by �
aux

on history (s, –, “)k.

It then remains to “synchronize” the run of the Büchi automaton with the valuations
of the atomic propositions, selected by the players controlling the square states. This is
achieved by taking the product of the game we just built with two extra one-player structures,
as depicted on the right of Fig. 3. The product gives rise to a concurrent game, where
one transition is taken simultaneously in the main structure and in the Purple and Orange
structures. In this product, as long as Player Blue remains in s and Player Purple remains
in –, a strategy of Player Orange (controlling state “) either remains in “ forever, or it
can be characterized by a value n œ N. Similarly, as long as Player Blue remains in s and
Player Orange remains in “, a strategy of Player Purple (controlling state –) either loops
forever in –, or can be uniquely characterized by a pair (k, p

l

), where k is the number of
times the loop over – is taken before entering state —

l

corresponding to p

l

œ AP.
Our construction can then be divided in two steps:
First, with any strategy of Player Purple (characterized by (k, p

l

) for the interesting
cases), we associate auxiliary strategies of Players Blue, Purple and Orange satisfying
certain properties, that can be enforced by an SL[BG] formula �

aux

; Fig. 4 should help
visualizing the associated strategies; in particular, strategies ‡

orange

+ , ‡

blue

+ and ‡

purple

+
characterize position k + 1 (which will be useful for checking transitions of the Büchi
automaton), while ‡

blue

Büchi

and ‡

blue

AP

are Player-Blue strategies that either go to the Büchi
part or to the proposition part of the main part of the game.
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Then, using those strategies, we write another SL[BG] formula to enforce that the
transitions of the Büchi automaton are correctly applied, following the valuations of the
atomic propositions selected in the square states, and that an accepting state is visited
infinitely many times.

The construction of the game structure G� depicted on Fig. 3 is readily extended to any
number of atomic propositions, and to any Büchi automaton. We now explain how we build
our SL[BG] formula replacing Formula (1), and ensuring correctness of our reduction.

We do not detail the first step mentioned above and assume that a formula �
aux

has
been written, which properly generates auxiliary strategies, as depicted on Fig. 4 (see [10]).
Instead we focus on the Büchi automaton simulation. We look for a strategy of Player Black
that will mimic the run of the Büchi automaton, following the valuation of the atomic
propositions selected by the square players A1 to A

n

. We also require that the run of the
Büchi automaton be accepting.

The formula � enforcing these constraints is as follows2:

’‡

A1
. ÷‡

A2
. . . . ’‡

An≠1
. ÷‡

An
. ÷‡

black

. bind(‡A1
, ‡

A2
, . . . , ‡

An≠1
, ‡

An
, ‡

black

, ‡

orange

Œ ). �
aux

· fi

pi,pjœAP

fi

qœQ

(bind(‡blue

Büchi

, ‡

purple

i

)F q) …(bind(‡blue

Büchi

, ‡

purple

j

)F q) (Ï1)

· fi

piœAP

1!
bind(‡blue

AP

, ‡

purple). F p

i

"
∆

!
bind(‡blue

Büchi

, ‡

purple).
fl

qœQ|piœlabel(q)

F q

"2
(Ï2)

· fi

piœAP

1!
bind(‡blue

AP

, ‡

purple). F ¬
p

i

"
∆

!
bind(‡blue

Büchi

, ‡

purple).
fl

qœQ|pi /œlabel(q)

F q

"2
(Ï3)

· fi

qœQ

bind(‡blue

Büchi

, ‡

purple). F q ∆
fl

q

Õœsucc(q)

bind(‡blue

+ , ‡

purple

+ ). F q

Õ (Ï4)

·
bind(‡blue

acc

, ‡

purple

acc

).
fl

qœaccept(Q)

F q (Ï5)

We now analyze formula �:
Formula (Ï1) requires that strategy ‡

black returns the same move after any history of the
form (s, –, “)k(b, —

i

, “), whichever —

i

has been selected by ‡

purple;
Formulas (Ï2) and (Ï3) constrain the state of the Büchi automaton to correspond to the
valuation of the atomic propositions selected. Because of the universal quantification
over ‡

purple, this property will be enforced at all positions and for all atomic propositions;
Formula (Ï4) additionally requires that two consecutive states of the run of the Büchi
automaton indeed correspond to a transition;
finally, Formula (Ï5) states that for any position (selected by ‡

purple), there exists a later
position (given by ‡

purple

acc

) at which the run of the Büchi automaton visits an accepting
state.

The correctness of the construction is then stated in the next lemma, whose proof can be
found in [10].

2 We notice that � is not syntactically in SL[BG], as some bindings appear before quantifications in �
aux

.
However, quantifiers in �

aux

could be moved before the bindings of �.
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I Lemma 4. Formula � in QLTL is satisfiable if, and only if, Formula � in SL[BG] holds

true in state (s, –, “) of the game G�. J

I Remark. SL[BG] and several other fragments were defined in [32, 33] with the aim of getting
more tractable fragments of SL. In particular, the authors advocate for the restriction to
behavioural strategies: this forbids strategies that prescribe actions depending of what other
strategies would prescribe later on, or after di�erent histories. Non-behavioural strategies
are thus claimed to have limited interest in practice; moreover, they are suspected of being
responsible for the non-elementary complexity of SL model-checking. Our hardness result
strengthens the latter claim, as SL[BG] is known for not having behavioral strategies.

|= „

p1 p1 p1

p2 p2
I Remark. We had to rely on a Büchi auto-
maton instead of directly using the original
LTL formula directly in the SL[BG] formula.
This is because we need to evaluate the for-
mula not on a real path of our game struc-
ture, but on a sequence of “unions” of states.
The figure on the right represents this situation for the game structure of Fig. 1: the path on
which the LTL formula is given by the red and green circle states, which define the valuations
for p1 and p2.

4 Periodicity of 1cSL[BG] model checking

In this section we prove our periodicity property for 1cSL[BG]. We inductively define the
function tower : N◊N æ N as tower (a, 0) = a and tower (a, b + 1) = 2tower(a,b). This encodes

towers of exponentials of the form 22...a

.

I Theorem 5. Let G be a 1cCGS, and Ï be a 1cSL[BG] formula. Then there exist a threshold

h Ø 0 and a period � Ø 0 for the truth value of Ï over G. That is, for every configuration

(q, c) of G with c Ø h, for every k œ N, G, (q, c) |= Ï if, and only if, G, (q, c + k · �) |= Ï.

Furthermore the order of magnitude for h + � is bounded by

tower
3

max
◊œSubf(Ï)

n

◊

, max
◊œSubf(Ï)

k

◊

+ 1
4|Q|·22|Ï|

where Subf(Ï) is the set of 1cSL[BG] formulas of Ï, k

◊

is the number of quantifier alternations

in ◊, and n

◊

is the number of di�erent bindings used in ◊.

The rest of this section is devoted to developing the proof of this result, though not with
full details. Detailed proofs of intermediate results are given in [10].

We first prove this property for the flat fragment 1cSL0[BG], and then extend it to the
full 1cSL[BG].

4.1 The flat fragment 1cSL0[BG]
We fix a 1cCGS G and a formula Ï = Q1x1 . . . Q

k

x

k

. f((—
i

„

i

)1ÆiÆn

) in 1cSL0[BG], where for
every 1 Æ j Æ k, we have Q

j

œ {÷, ’} (assuming quantifiers strictly alternate), f is a Boolean
formula over n atoms, and for every 1 Æ i Æ n, —

i

is a complete binding for the players’
strategies, and „

i

is a 1cLTL formula. We write M for the maximal constant appearing in
one of the finite sets describing a counter constraint S appearing in Ï.
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For every 1 Æ i Æ n, we let D
i

be a deterministic (counter) parity automaton that recog-
nizes formula „

i

(this is the standard LTL-to-(deterministic parity) automata construction in
which quantitative constraints are seen as atoms). A run of G is read in a standard way, with
the additional condition that quantitative constraints labelling a state should be satisfied by
the counter value when the state is traversed (a state can be labelled by a constraint cnt œ S,
with S arbitrarily complex—it does not impact the description of the automaton).

The proof proceeds by showing that, above some threshold, the truth value of Ï is periodic
w.r.t. counter values. To prove this, we define an equivalence relation over counter values
that generates identical strategic possibilities (in a sense that will be made clear later on).

4.1.1 Definition of an equivalence relation
Fix a configuration “ = (¸, c) in G, pick for every 1 Æ i Æ n a state d

i

in the automaton D
i

,
and define the tuple D = (d1, . . . , d

n

). For every context ‰

k

for variables {x1, . . . , x

k

},
we define the level-0 identifier Id

‰k (“, D) as:

Id
‰k (“, D) =

)
i

-- 1 Æ i Æ n and out(“, —

i

[‰
k

]) is accepted by D
i

from d

i

*

where —

i

[‰
k

] assigns a strategy from ‰

k

to each player in Agt following —

i

.
Assuming we have defined level-(k ≠ j + 1) identifiers Id

‰j+1(“, D) for every partial
context ‰

j+1 for variables {x1, . . . , x

j+1}, we define the level-(k ≠ j) identifier Id
‰j (“, D) for

every partial context ‰

j

for variables {x1, . . . , x

j

} as follows:

Id
‰j (“, D) =

)
Id

‰j+1(“, D)
--

‰

j+1 is a context for {x1, . . . , x

j+1} that extends ‰

j

*
.

There is a unique level-k identifier for every configuration “ = (¸, c) and every D, which
corresponds to the empty context. It somehow contains full information about what kinds of
strategies can be used in the game (this is a hierarchical information set, which contains all
level-j identifiers for j < k).

Let P be the least common multiple of all the periods appearing in periodic quantitative
assertions used in formula Ï. We define the following equivalence on counter values:

c ≥ c

Õ if, and only if, c = c

Õ mod P and ’D. ’¸. Idÿ((¸, c), D) = Idÿ((¸, c

Õ), D).

Combinatorics. Given a configuration (¸, c) and a tuple D, the number of possible values for
the level-0 identifier is tower (n, 1), and for the level-j identifier it is tower (n, j + 1). Hence,
the number ind≥ of equivalence classes of the relation ≥ satisfies

ind≥ Æ P · (tower (n, k + 1))
!

|Q|·
r

1ÆiÆn
22|„i|"

Æ P · (tower (n, k + 1))
!

|Q|·22|Ï|"

with |Q| the number of states in G. We let M = M + ind≥ + 1. By the pigeon-hole principle,
there must exist M < h < h

Õ Æ M such that h ≥ h

Õ.

4.1.2 Periodicity property
We define � = h

Õ ≠ h, and now prove that it is a period for Ï for counter values larger
than or equal to h. Assume that “ = (¸, c) is a configuration such that c Ø h, and define
“

Õ = (¸, c + �) (note that c + � Ø h

Õ). We show that G, “ |= Ï if, and only if, G, “

Õ |= Ï.
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h

Õ

h

�

•
“

•
“

Õ = Shift�(“)

�

•

•
identical (but shifted) strategies

equivalent strategies (h ≥ h

Õ)

Figure 5 Construction in Lemma 6 (case (ii)).

I Notations. For the rest of this proof, we fix the following notations:
1. if fl is a run starting with counter value a > c, then either the counter always remains

above c along fl (in which case we say that fl is fully above c), or it eventually hits value c,
and we define fl%c

for the smallest prefix of fl such that last(fl%c

) has counter value c;
2. let fl be a run that is fully above M , and let c be the least counter value appearing in fl.

For every ‹ Ø M ≠ c, we write Shift
‹

(fl) for the run fl

Õ obtained from fl by shifting the
counter value by ‹. It is a real run since the counter values along fl

Õ are also all above M .
3. if D is a tuple of states of the deterministic automata D

i

, and if fl is a finite run of G
that is fully above M , then we write D+fl

for the image of D after reading fl.

Let 0 Æ j Æ k. We assume that ‰

j

and ‰

Õ
j

are two contexts for {x1, . . . , x

j

}, and D is a
tuple of states of the D

i

’s. We write RD,j

(“,“

Õ)(‰j

, ‰

Õ
j

) if the following property holds for any
run fl from “:
(i) if fl is fully above h (or equivalently, if fl

Õ = Shift+�(fl), which starts from “

Õ, is fully
above h

Õ), then for every 1 Æ g Æ j, ‰

j

(x
g

)(fl) = ‰

Õ
j

(x
g

)(flÕ);
(ii) if fl is not fully above h (equivalently, if fl

Õ = Shift+�(fl) is not fully above h

Õ), then we
decompose fl (resp. fl

Õ) w.r.t. h (resp. h

Õ) and write fl = fl%h

· fl and fl

Õ = fl

Õ
%h

Õ · fl

Õ. Then:

Id
‰j ≠≠æfl%h

(last(fl%h

), Â
D) = Id

‰

Õ
j

≠≠≠æ
flÕ

%hÕ
(last(flÕ

%h

Õ), Â
D)

with Â
D = D+fl%h = D+fl

Õ
%hÕ

. Recall that ‰

j

≠≠æ
fl%h

shifts all strategies in context ‰

j

after
the prefix fl%h

(that is, ‰

j

is the strategy such that ‰

j

≠≠æ
fl%h

(fi) = ‰

j

(fl%h

· fi) for every fi).
We then have:

I Lemma 6. Fix 0 Æ j < k, and assume that RD,j

(“,“

Õ)(‰j

, ‰

Õ
j

) holds true. Then:

1. for every strategy v for x

j+1 from “, one can build a strategy T (v) for x

j+1 from “

Õ
such

that RD,j+1
(“,“

Õ) (‰
j

fi {v}, ‰

Õ
j

fi {T (v)}) holds true;

2. for every strategy v

Õ
for x

j+1 from “

Õ
, one can build a strategy T ≠1(vÕ) for x

j+1 from “

such that RD,j+1
(“,“

Õ) (‰
j

fi {T ≠1(vÕ)}, ‰

Õ
j

fi {v

Õ}) holds true.

Sketch of proof. The idea is the following: either we are in case (1), in which case identical
(but shifted) strategies can be applied; or we are in case (2), in which case identical (but shifted)
strategies can be applied until counter value h (resp. h

Õ) is hit, in which case equality of
identifiers allows to apply equivalent strategies. The construction is illustrated in Fig. 5. J

We use this lemma to transfer a proof that “ |=ÿ Ï to a proof that “

Õ |=ÿ Ï. We decompose
the proof of this equivalence into two lemmas:
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I Lemma 7. Fix D

0
for the tuple of initial states of the D

i

’s. Assume that RD

0
,k

(“,“

Õ)(‰, ‰

Õ)
holds (for full contexts ‰ and ‰

Õ
). Let 1 Æ i Æ n, and write fl = Out(“, —

i

[‰]) and fl

Õ =
Out(“Õ

, —

i

[‰Õ]). Then fl |= „

i

if and only if fl

Õ |= „

i

. In particular, “ |=
‰

f((—
i

„

i

)1ÆiÆn

) if

and only if “

Õ |=
‰

Õ
f((—

i

„

i

)1ÆiÆn

).

Sketch of proof. As long as runs are above h (resp. h

Õ) they visit states that satisfy exactly
the same atomic properties (atomic propositions and counter constraints), hence they progress
in each D

i

along the same run. When value h (resp. h

Õ) is hit, they are generated by strategies
that have the same level-0 id, which precisely means they are equivalently accepted by each D

i

.
Hence both outcomes satisfy the same formulas „

i

under binding —

i

[‰] (resp. —

i

[‰Õ]). J

We finally show the following lemma, by induction on the context, and by noticing that
h ≥ h

Õ precisely implies the induction property at level 0.

I Lemma 8. “ |=ÿ Ï if and only if “

Õ |=ÿ Ï.

This allows to conclude with the following corollary:

I Corollary 9. � is a period for the satisfiability of Ï for configurations with counter values

larger than or equal to h.

Furthermore, h + � is bounded by M + P · (tower (n, k + 1))|Q|·
r

1ÆiÆ
22|Ï|

+ 1.

I Remark. Note that the above proof of existence of a period, though e�ective (a period
can be computed by computing the truth of identifier predicates), does not allow for an
algorithm to decide the model-checking problem. One possible idea to lift that periodicity
result to an e�ective algorithm would be to bound the counter values; however things are not
so easy: in Fig. 5, equivalent strategies from h and h

Õ might generate runs with (later on)
counter values larger than h or h

Õ. The decidability status of 1cSL1[BG] (and of 1cSL[BG])
model checking remains open.

4.2 Extension to 1cSL[BG]
We explain how we can extend the previous periodicity analysis to the full logic 1cSL[BG].
We fix a formula of 1cSLk+1[BG]

Ï = Q1x1 . . . Q

k

x

k

· f((—
i

„

i

)1ÆiÆn

)

with the same notations than the ones at the beginning of the previous subsection, but „

i

can use closed formulas of 1cSLk[BG] as subformulas.
Let �

Ï

be the set of closed subformulas of 1cSLk[BG] that appear directly under the
scope of some „

i

. We will replace subformulas of �
Ï

by other formulas involving only (new)
atomic propositions and counter constraints. Pick Â œ �

Ï

. Let h

Â

and �
Â

be the threshold
and the period mentioned in Corollary 9. For every location ¸ of the game, the set of counter
values c such that (¸, c) |= Â can be written as S

Â

¸

(we use a non-periodic set for the values
smaller than h

Â

and a periodic set of period �
Â

for the values above h

Â

)—note that we know
such a set exists, even though there is (for now) no e�ective procedure to express it. The size
of formula S

Â

¸

is 1 (we do not take into account the complexity of writing the precise sets
used in the constraint). Expand the set of atomic propositions AP with an extra atomic
proposition for each location, say p

¸

for location ¸, which holds only at location ¸. For every
Â œ �

Ï

, replace that occurrence of Â in Ï by formula
w

¸œL

p

¸

æ (cnt œ S

Â

¸

). This defines
formula Ï

Õ, which is now a 1cSL0[BG] formula, and holds equivalently (w.r.t. Ï) from every
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configuration of G. The size of Ï

Õ is that of Ï. We apply the result of the previous subsection
and get a proof of periodicity of the satisfaction relation for Ï

Õ, hence for Ï.
It remains to compute bounds on the overall period �

Ï

and threshold h

Ï

. The modulo
constraints in Ï

Õ involve periods �
Â

(Â œ �
Ï

), and the constants used are bounded by h

Â

.
So the bound M

Ï

Õ is bounded by max(max
Âœ�(h

Â

), M

Ï

) where M

Ï

is the maximal constant
used in Ï, and the value P

Ï

Õ is the l.c.m. of the periods used in Ï (call it P

Ï

) and of the
�

Â

’s (for Â œ �
Ï

): hence P

Ï

Õ Æ P

Ï

· max
Âœ�Ï(�

Â

)|Ï| Hence for formula Ï

Õ, we get

h

Ï

Õ + �
Ï

Õ Æ M

Ï

Õ + P

Ï

Õ · tower (n
Ï

, k

Ï

+ 1)|Q|·22|ÏÕ|

+ 1

We infer the following order of magnitude for h

Ï

+ �
Ï

, where Ê�Ï = max
Âœ�Ï Ê

Â

:

Ê

Ï

¥ Ê�Ï + M

|Ï|
Ï

· (max �
Â

)|Ï| · tower (n
Ï

, k

Ï

+ 1)|Q|·22|Ï|

¥ M

|Ï|
Ï

· Ê

|Ï|
�Ï

· tower (n
Ï

, k

Ï

+ 1)|Q|·22|Ï|

Using notations of Theorem 5, the order of magnitude can therefore be bounded by

tower
3

max
◊œSubf(Ï)

n

◊

, max
◊œSubf(Ï)

k

◊

+ 1
4|Q|·22|Ï|

.

I Remark. Note that this proof is non-constructive, even for the period and the threshold,
since it relies on the model-checking of subformulas, which we don’t know how to do. We can
nevertheless e�ectively compute a threshold and a period by taking the l.c.m. of all the
integers up to the bound over the period and threshold given in this proof.

5 Conclusion

In this paper, we investigated a quantitative extension of Strategy Logic (and more precisely,
of its Boolean-Goal fragment) over games played on one-counter games. We proved that the
corresponding model-checking problem enjoys a nice periodicity property, which we see as a
first step towards proving decidability of the problem. We proved however that, if decidable,
the problem is hard; this is proved by showing that model checking the fragment SL[BG] over
finite-state games is Tower-hard, hence answering an open question from [32].

We are now trying to see how our periodicity property can be used to prove decidability
of the model-checking problem. While such a periodicity property helps getting e�ective
algorithms for model checking CTL over one-counter machines [28], the game setting used
here makes things much harder. Other further works also include the more general logic 1cSL,
whose decidability status (and complexity) is also open. Finally, we did not manage to
extend our hardness proof to turn-based games. It would be nice to understand whether the
restriction to turn-based games would make 1cSL[BG] (and SL[BG]) model checking easier.
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