
Quantitative verification
of weighted Kripke structures

Patricia Bouyer, Patrick Gardy, Nicolas Markey

LSV – CNRS & ENS Cachan – France

Abstract. Extending formal verification techniques to handle quantita-
tive aspects, both for the models and for the properties to be checked, has
become a central research topic over the last twenty years. Following sev-
eral recent works, we study model checking for (one-dimensional) weighted
Kripke structures with positive and negative weights, and temporal logics
constraining the total and/or average weight. We prove decidability when
only accumulated weight is constrained, while allowing average-weight
constraints alone already is undecidable.

1 Introduction

Quantitative verification. Model checking [CGP00] has been developed for
almost 40 years as a formal method for verifying correctness flushing out bugs of
computerized systems: this technique first consists in representing the system
under study as a mathematical model (a finite-state transition system, in the
most basic setting), expressing the correctness property in some logical formalism,
and running an algorithm that exhaustively explores the set of behaviours of
the model for proving or disproving the property. Model checking has been
successfully applied on various real-life case studies.

Though model checking has primarly concentrated on pure qualitative analysis
via the development of various temporal logics [Pnu77,CE82,QS82], rich models
and logics have also been developed in order to take into account quantitative
aspects of reactive systems and of their correctness properties.

In particular, there has been quite a lot of efforts invested in the study of
weighted discrete transition systems, like weighted Kripke structures [CC95] or
counter automata (or VASS) [EN94]. In these models, the weight gives some
quantitative information on the system, which might be timing information and
constraints, or energy consumption, or value of a discrete variable, etc. This
weight can either be some information that we observe on the system (like in
weighted Kripke structures) or its value can constrain the further behaviour of
the system (like in counter automata).

On such models, there are many interesting verification questions that can be
asked. First one can be interested in qualitative structural and logical properties
of the system, that can for instance be expressed using some logical formalism.

Partly supported by ERC Starting Grant EQualIS and EU FP7 project Cassting.

Then one can be more interested in quantitative properties of the system, like
(among others) mean-payoff constraints [ZP96] (the limit-average of the weight
along an execution satisfies some constraint), or energy constraints [BFL+08] (all
along the execution, the weight satisfies some constraint). More interestingly, one
might be interested in properties that might mix qualitative logical properties
and quantitative constraints. For instance, in a robot-planning system, one would
like to verify that an autonomous robot can always go back to its home base
without running out-of-energy.

In this setting, weights in weighted transition systems have been most often
restricted to range over the nonnegative integers (mostly for representing timing
information), and temporal logics have been augmented either with constrained
modalities [Koy90,EMSS92] or with explicit variables [AH94], and efficient al-
gorithms have been developed and implemented [BLN03,JLSØ13]. Models with
both positive and negative weights have also been studied, but mostly qualitative
behaviours alone have been analyzed (this is the case in counter automata—
see [HKOW09,GHOW10,Haa12] for recent references), or quantitative constraints
have been analyzed (in weighted Kripke structures or games [CDHR10,CRR12]).
Mixing qualitative logical properties and quantitative constraints has only poorly
been addressed so far, and many works only consider specifications given as a
conjunction of a qualitative logical property and a quantitative constraint: this is
for instance the case of optimal reachability, mean-payoff parity games [BMOU11],
energy parity games [CD12], mean-payoff LTL synthesis [BBFR13].

In that direction, the most relevant and advanced propositions are those
of [DG09] and of [BCHK11]. In [DG09], LTL is (roughly) extended with Presburger
constraints over weights and interpreted over one-counter automata (and an
extension thereof). The satisfiability and model checking problems are addressed,
and it is shown that only a restriction to a single weight leads to decidability.
In [BCHK11], CTL and LTL are extended with (prefix) accumulative values
over finitely many variables: these logics embed numerical assertions such as
Sum(x) ∼ c (e.g. to compare the accumulated amount of some resource x against
some value c) and Avg(x) ∼ c (e.g. to constrain the average consumption of some
resource x). In this context, the authors of [BCHK11] show undecidability of
the logics in general, and propose several fragments for which model checking
is decidable: (i) LTL with limit-average, where (roughly) a property can be
rewritten as a conjunction of a qualitative logical property and a quantitative
constraint; and (ii) CTL restricted to EF and EX modalities, with all kinds of
numerical assertions, but where the qualitative logical part of the formula is rather
poor. Notice that this decidability result is rather surprising, since reachability
in two-counter machines is undecidable. The difference is that here counters
can go negative, and taking the Parikh image of a path is enough for checking
properties expressed in the EF -fragment. Designing logical languages that can
express intricate properties mixing qualitative logical features and quantitative
constraints, and for which model checking remains decidable, seems therefore to
be a real challenge!

2

Our contribution. We investigate further the temporal logics with prefix
accumulation that has been proposed in [BCHK11], and we study the impact of
restricting the logic to a single weight. The logics we consider are therefore based
on CTL and LTL, and they extend the standard logics with two kinds of numerical
assertions: Sum ∼ c expresses that the accumulated weight satisfies the constraint
∼ c, and Avg ∼ c expresses that the current average of the weight satisfies the
constraint ∼ c. The extension of CTL is called WCTL and the extension of LTL is
called WLTL. Those two logics will be interpreted on weighted Kripke structures,
and we will be interested in the model checking problem.

We prove in this paper that when using only Sum constraints, model checking
for both CTL and LTL extensions is decidable. On the contrary, allowing Avg
constraints leads to undecidability for both branching and linear time. This
undecidability result for our logic WLTLAvg is to be compared with the decidability
of LTL with limit-average modalities of [BCHK11]: limit-average constraints can
be made disjoint from the logical property expressed by the formula of LTL,
whereas average modalities are really mixed with the logical property. Finally,
we define a flat fragment of WLTL allowing both Sum and Avg constraints, but
restricting the way they can be nested in the formula; we prove that this fragment
has decidable model checking.

2 Definitions

2.1 Weighted Kripke structures

Definition 1. Let AP be a finite set of atomic propositions. A weighted Kripke
structure over AP is a tuple K = 〈S,R, `〉 where S is a finite set of states,
R ⊆ S ×W × S (where W ⊆ Z is the set of weights1 of K, which we assume are
given in binary notation) is a weighted transition relation (which we assume total,
meaning that for all s ∈ S, there exists w ∈ Z and s′ ∈ S s.t. (s, w, s′) ∈ R), and
` : S → 2AP is a function labelling the states with atomic propositions.

A weighted Kripke structure with zero-tests is a weighted Kripke structure
with extra zero-test transitions, that is, R ⊆ S × (W ∪ {= 0})× S.

A weighted Kripke structure (with zero-tests) is unitary if its set of weights W
is included in {−1, 0,+1}.

Let K = 〈S,R, `〉 be a weighted Kripke structure, s0 ∈ S be a state of K, and
w0 ∈ Z. A run in K from (s0, w0) is a (finite or infinite) sequence π = (qi, wi)i∈I
such that q0 = s0, I is an interval of N containing 0, and for all i ∈ I \ {0},
(qi−1, wi − wi−1, qi) ∈ R. When I is finite, we write |π| for the length of π (the
cardinal of I), and we write last(π) (resp. lastq(π), lastw(π)) for the configuration
(qmax(I), wmax(I)) (resp. the state qmax(I), the weight wmax(I)). Given a path
π = (qi, wi)i∈I and k ∈ I, the prefix of π up to k is the path π≤k = (qi, wi)i∈[0,k];
the suffix of π from k is the path π≥k = (qk+i, wk+i)i∈N∩(I−k). When K has

1 Rational weights would easily be handled, after scaling the values by the least common
multiple of their denominators.

3

zero-tests, a run in K is a sequence π = (qi, wi)i∈I where for all i ∈ I \ {0}, either
(qi−1, wi − wi−1, qi) ∈ R, or wi = wi−1 = 0 and (q,= 0, q′) ∈ R.

Weighted Kripke structures (with or without zero-tests) are related to counter
automata [Min61]. A one-counter automaton2 is a weighted Kripke structure
with zero-tests in which runs are restricted to only visit configurations with
nonnegative weight: the state space is S ×N, and it is not possible to take a
transition that would make the counter (or weight) negative. It is also usual
to have branching zero-tests in one-counter automata, instead of our simple
“guarded transitions” (zero-tests transitions). However, branching tests in one-
counter automata can easily be implemented in weighted Kripke structures with
zero-tests (for instance, to test whether the value of the counter is positive, we
put in sequence a decrementation of −1 followed by an incrementation of +1).

The execution tree of a weighted Kripke structure K from some configura-
tion (s0, w0) is the (S ×Z)-tree

T = {π ∈ (S ×Z)∗ | π is a run from (s0, w0) in K}

For convenience, we label each node π of T with last(π), which then relates each
node of T with its corresponding state of K. A branch of T is an infinite run π
from (s0, w0) in K: every prefix π≤i (i ∈ N) is then an element of T . We write
B(T) for the set of branches of T .

2.2 Weighted temporal logics

We extend both branching-time temporal logic CTL [CE82,QS82] and linear-time
temporal logic LTL [Pnu77] with numerical constraints on weights:

Definition 2. A numerical assertion is built on the following grammar:

α ::= Sum ∼ c | Avg ∼ c

where ∼ ranges over {<,≤,=,≥, >} and c ranges over Q.
Fix a set AP of atomic propositions. The syntax of WCTL over AP is given as

φ ::= p | α | ¬φ | φ∧φ | EXφ | AXφ | EφUφ | AφUφ | w · φ

where p ranges over AP and α ranges over numerical assertions.
The syntax of WLTL over AP is given as

φ ::= p | α | ¬φ | φ∧φ | Xφ | φUφ | w · φ

where p ranges over AP and α ranges over numerical assertions.
The operation w · φ in both logics is called the reset operation.

2 Counter automata are often required to have set of weights included in {−1, 0,+1},
which we call unitary counter automata in the sequel. The counter automata we
consider here correspond to succinct counter automata of [HKOW09,GHOW10].

4

In the sequel, we write WCTLSum (resp. WCTLAvg) for the fragments of WCTL

using only Sum (resp. Avg) in numerical assertions. We also write WCTLrf ,
WCTLrfSum and WCTLrfAvg for the respective fragments with no reset operations.
Also, we write WLTLSum (resp. WLTLAvg) for the fragments of WLTL using only

Sum (resp. Avg) in numerical assertions. We also write WLTLrf , WLTLrfSum and
WLTLrfAvg for the respective fragments with no reset operations.

The semantics of numerical assertions is defined on finite runs π of a weighted
Kripke structure K as follows (boolean combinations omitted):

π |= Sum ∼ c iff lastw(π) ∼ c
π |= Avg ∼ c iff lastw(π) ∼ c · |π|

Such constraints can for instance be used to express the so-called energy
constraints [BFL+08,CDHR10], requiring that Sum ≥ 0 all along a run. We can
also reinforce this condition by additionally requiring that, at the end of the run,
the average energy level (over the prefix) has remained within a given range.

Semantics of WCTL. The semantics of WCTL is defined inductively, on the
execution tree of a weighted Kripke structure. Let K be a weighted Kripke
structure and (s0, w0) be an initial configuration. Let T be the execution tree of
K from (s0, w0); fix a branch π of T , a position i ∈ N along π (with the intended
meaning that i corresponds to the node π≤i of T ; in particular, the node at
position 0 corresponds to (s0, w0)). The semantics of WCTL is defined as follows
(atomic propositions and boolean operators omitted):

T , π, i |= α iff π≤i |= α

T , π, i |= EXφ iff ∃π′ ∈ B(T). (π≤i = π′≤i and T , π′, i+ 1 |= φ)

T , π, i |= AXφ iff ∀π′ ∈ B(T). (π≤i = π′≤i ⇒ T , π′, i+ 1 |= φ)

T , π, i |= Eφ1 Uφ2 iff ∃π′ ∈ B(T).∃j ≥ i. (π≤i = π′≤i and

T , π′, j |= φ2 and ∀i ≤ k < j. T , π′, k |= φ1)

T , π, i |= Aφ1 Uφ2 iff ∀π′ ∈ B(T).∃j ≥ i. (π≤i = π′≤i ⇒
T , π′, j |= φ2 and ∀i ≤ k < j. T , π′, k |= φ1)

T , π, i |= w · φ iff T ′, π′, 0 |= φ where T ′ is the execution tree of K
from (lastq(π≤i), 0) and π′ ∈ B(T ′)

Notice that the value of T ′, π′, 0 |= φ in the semantics of w · φ does not depend
on the choice of the branch π′, so the semantics is well-defined. We can generalize
that remark:

Lemma 3. Pick π, π′ ∈ B(T).

– If π≤i = π′≤i for some position i ∈ N, then for every formula φ ∈WCTL,

T , π, i |= φ iff T , π′, i |= φ.

5

– If last(π≤i) = last(π′≤j) for some i, j ∈ N, then for all φ ∈WCTLSum,

T , π, i |= φ iff T , π′, j |= φ.

The value of T , π, 0 |= φ does not depend on the choice of the branch π ∈ B(T);
we then define the truth value of K, (s0, w0) |= φ as that of T , π, 0 |= φ, where T
is the execution tree of K from (s0, w0) and π is any branch of T .

Definition 4 (WCTL model-checking problem). Let φ be a WCTL formula,
let K be a weighted Kripke structure and s0 be an initial state. The model-checking
problem with fixed initial credit asks, for a given w0 ∈ Z, whether K, (s0, w0) |= φ.
The model-checking problem with unknown initial credit asks whether there exists
w0 ∈ Z such that K, (s0, w0) |= φ.

Semantics of WLTL. The semantics of WLTL is defined inductively over infinite
runs of a weighted Kripke structure. Let K be a weighted Kripke structure, π be
an infinite run in K from some configuration (s0, w0), and i ∈ N be a position
along π. The semantics of WLTL is defined as follows (simple cases omitted):

π, i |= α iff π≤i |= α

π, i |= Xφ iff π, i+ 1 |= φ

π, i |= φ1 Uφ2 iff ∃j ≥ i. (π, j |= φ2 and ∀i ≤ k < j. π, k |= φ1)

π, i |= w · φ iff π′, 0 |= φ where π′ is the run of K from (lastq(π≤i), 0)

that follows the same transitions as π≥i.

As for WCTL, the reset operator imposes that further numerical assertions will
count from the current position only, this is why the position is reset to 0.

We write K, (s0, w0) |= φ whenever there exists an infinite run π from (s0, w0)
in K such that π, 0 |= φ. Note that the choice of an existential semantics is
arbitrary and harmless, given that the logic is closed under negation.

Definition 5 (WLTL model-checking problem). Let φ be a WLTL formula,
let K be a weighted Kripke structure and s0 be an initial state. The model-checking
problem with fixed initial credit asks, for a given w0 ∈ Z, whether K, (s0, w0) |= φ.
The model-checking problem with unknown initial credit asks whether there exists
w0 ∈ Z such that K, (s0, w0) |= φ.

Remark 6. Note that the reset operator which is used in both logics is a powerful
operator, which can be used to express multiple numerical constraints on various
portions of a run. This is a rather standard operator in temporal logics, which is for
instance in the core of linear-time timed temporal logic TPTL [AH94]. Note never-
theless that the logics WCTL and WLTL above only allow for one weight variable
in a given formula. We will see that the reset operator does not impact much on
the model checking of WCTL, but has a strong impact on WLTL model checking.

6

q1

q2

z

−1

−1

0

= 0

= 0

−p1

−p2

Fig. 1. From WCTLrf
Sum to CTL (there is one transition from each state in the dotted

box (which is the original weighted Kripke structure) to each state qi).

3 Algorithm for model checking WCTLSum

In this section we prove the decidability of the model-checking of WCTLSum over
weighted Kripke structures by reducing it to the model-checking of CTL over
one-counter automata. We proceed by first removing numerical assertions from
the formulas (which requires to modify also the Kripke structure), and then by
building a one-counter automaton and a CTL formula. We then apply the results
of [Haa12,Ser06], and carefully analyze the complexity of the algorithm.

We first focus on logic WCTLrfSum, and will explain at the end of the section
how we can extend the result to WCTLSum.

3.1 Moving quantitative constraints into the model

We prove that model checking WCTLrfSum is logspace-reducible to model checking
CTL on structures allowing zero-tests. This is achieved by adding “tests mod-
ules” in the model, and replacing Sum constraints with a CTL condition in the
corresponding test modules.

Let K = 〈S,R, `〉 be a weighted Kripke structure, and φ be a WCTLrfSum
formula involving integer constants P = {p1, ..., pk}. We define a new weighted
Kripke structure with zero tests K′P = 〈S′, R′, `′〉 as follows:

– S′ = S ∪ {qi | 1 ≤ i ≤ k} ∪ {z},
– R′ = R ∪ {(s,−pi, qi), (qi,−1, qi), (qi,= 0, z), (z, 0, z) | s ∈ S, 1 ≤ i ≤ k},

– `′ :

s ∈ S 7→ `(s)

s = qi 7→ ai

s = z 7→ zero

The ai are fresh atomic propositions. The construction is depicted on Fig. 1
for two constants p1 and p2. The intuition is as follows: whenever the formula
requires comparing the current weight with pi in a state s of K, the new formula
will query the existence of a transition to qi, and check that the value of the
weight when reaching qi is nonnegative (by testing whether state z is reachable).

Now, after an easy transformation of φ into φ̂ in order not to evaluate
subformulas in newly-added states, we get:

7

+1

0

−1−1
+1

0

−1−1

(c=+1)

−1

0

+1+1

(c=−1)

= 0

+1= 0

+1

= 0+1

Fig. 2. From weighted Kripke structures to one-counter automata.

Proposition 7. Let K = 〈S,R, `〉 be a weighted Kripke structure. Let φ be a
WCTLrfSum formula with integer constants in P, and s0 ∈ S and v ∈ Z. Let K′P
be the weighted Kripke structure with zero test as defined above, and φ̂ be the
formula obtained from φ by the transformation above. Then

K, (s0, v) |= φ iff K′P , (s0, v) |= φ̂.

Note that the size of K′P is polynomial in K and φ, and so is φ̂.

3.2 From weighted Kripke structures to one-counter automata

We now reduce the model checking problem for CTL on weighted Kripke structures
with zero tests to the same problem on unitary one-counter automata, in order to
invoke the algorithms for CTL model-checking of [Haa12,Ser06]. The one-counter
automaton will be made of two copies of the weighted Kripke structure: one to be
used when the accumulated weight is nonnegative, and one when it is nonpositive.
We will have zero-tests between both copies. Prior to this transformation, we
first make the Kripke structure unitary, so that no transition will jump from
positive to negative weights, or vice-versa, without hitting zero.

We now come to the transformation of this unitary weighted Kripke structure
into a unitary one-counter automaton C. The natural idea is to consider two
copies of each state: one is used when the accumulated weight is nonnegative, and
one when the total weight is nonpositive. By considering the opposite value of
the weight in the second copy, we end up with a unitary one-counter automaton.
Fig. 2 illustrates this construction on a simple example.

Again rewriting the formula as Ûφ to “hide” newly added states, we get:

Proposition 8. Let K = 〈S,R, `〉 be a weighted Kripke structure with zero-tests,
φ be a CTL formula, s0 ∈ S and w0 ∈ Z. Let C be the one-counter automaton

obtained above, and Ûφ be the formula obtained from φ. Then

K, (s0, w0) |= φ iff C, ((s0, sign(w0)), |w0|) |= Ûφ
where sign(0) can be taken as either +1 or −1.

8

3.3 WCTLrf
Sum model checking over weighted Kripke structures

We now come to the main result of this section:

Theorem 9. Model checking WCTLrfSum over weighted Kripke structures with
fixed initial credit is EXPSPACE-complete. It is PSPACE-complete when starting
from a unitary weighted Kripke structure.

Proof. The algorithms are obtained by applying the previous transformations
from WCTLrfSum model checking over weighted Kripke structures to CTL model
checking over unitary one-counter automata, and then relying on the PSPACE
algorithm of [Haa12,Ser06] for model checking unitary one-counter automata.

Hardness is easily proved by reducing the model-checking problem of CTL over
one-counter automata to that for WCTLrfSum over weighted Kripke structures. The
former problem was proved EXPSPACE-complete in [GHOW10], and PSPACE-
complete over unitary one-counter automata in [GL10]. The reduction is rather
straightforward, by reinforcing the CTL formula in order to enforce nonnegative
value of the accumulated weight all along the paths. �

We can now extend the above algorithm to handle the reset operator: when a
formula φ contains w · ψ as a subformula, we first evaluate ψ in all the states of
the Kripke structure, assuming initial weight zero, and apply a classical labelling
algorithm. In the end:

Theorem 10. Model checking WCTLSum over weighted Kripke structures with
fixed initial credit is EXPSPACE-complete; it is PSPACE-complete when starting
from a unitary weighted Kripke structure.

3.4 Model checking WCTLSum with unknown initial credit

The model checking of WCTLSum with unknown initial credit can be reduced to
the fixed initial credit case by adding an initial module which allows to set the
weight to any value. We can state the following result:

Theorem 11. Model checking WCTLSum over weighted Kripke structures with
unknown initial credit is EXPSPACE-complete; it is PSPACE-complete when start-
ing from a unitary weighted Kripke structure.

This result has to be compared with the lower-bound problems in weighted
timed automata which is PSPACE-complete with unknown initial credit, but
becomes undecidable with fixed initial credit [BLM14].

4 Model checking WCTLAvg is undecidable

In this section, we prove that constraining the average of the weight value leads
to undecidability:

Theorem 12. Model checking WCTLrfAvg (and therefore WCTLAvg) over weighted
Kripke structures is undecidable.

9

Proof. We encode the halting problem for (deterministic) two-counter machines
into our model-checking problem with fixed initial value. The values c1 and c2
of the counters at a given position along an execution is encoded by the length
of the path being of the form 2c1 · 3c2 · 5a, where a is a nonnegative integer.
Decrementing counter c1 will then amount to multiplying the length of the path
by 5/2, which will be achieved by taking a self-loop on a state until the total
average value of the weight reaches a given value.

We illustrate the construction on an example. Figure 3 depicts a module
from (q, Ak) to (q′, Ak′). This module will be used to modify (increment or
decrement) the counters. The WCTLrfAvg formula will enforce that the average
weight value of a path ending in a state labelled Ak be exactly k, for all 0 ≤ k ≤ 2.
Consider such a path, of length n, ending in state (q, Ak) of Figure 3 (so that the
accumulated weight is k ·n). With j taking values 2, 3, 5/2 or 5/3 will implement
all four instructions modifying the counters. Now, we extend this path following
the depicted module, until reaching (q′, Ak′). Write x − 2 for the number of
times we take the self-loop on state (r, k, k′). Then the length of the path when

reaching (q′, Ak′) is n+ x, and its total accumulated weight is k · n+ (jk′−k)·x
j−1 .

The requirement that the average be k′ in (q′, Ak′) entails

k · n+
(jk′ − k) · x

j − 1
= k′ · (n+ x).

One easily checks that, provided k 6= k′, this implies x = (j − 1) · n, so that the
length of the whole path when reaching (q′, Ak′) is j · n (assuming j > 1), and
the average is indeed k′.

(q,Ak)

(r, k, k′)

(q′, Ak′)

jk′−k
j−1

jk′−k
j−1

jk′−k
j−1

Fig. 3. Updating counters

(q,Ak)

(r, k, 0, ok) (r, k, 0, nok) (r, k, 0, nok′)

(r, A0, ok) (r, A0, nok) (r,A0, nok
′)

(r, 0, 1, ok) (r, 0, 1, nok) (r, 0, 1, nok′)

(q′, A1) (q′′, A1)

15
11

15
11

15
11

15
11

15
11

15
11

15
11

15
11
· 5
3

15
11
· 4
3

−3k

−k −2k

−3k −3k −3k

−3k −3k −3k

Fig. 4. Testing counters (here c2)

10

Similarly, Figure 4 is a module testing whether counter c2 equals zero. Starting
in state (q, Ak) with a path of length n, and total accumulated weight k · n,
it is rather clear that we can reach state (r,A0, ok) if, and only if, n is an
integer multiple of 3 (which means that c2 > 0). State (r,A0, ok) is then reached
by a path of total length 4n/3, and accumulated weight zero. Then the path
goes to (r, 0, 1, ok), and takes the loop x − 2 times, and reaches (q′, A1). The
accumulated weight then is 15x/11, and the length of the path is 4n/3 + x. The
average is 1 exactly when x = 11n/3, for which the total length of the path is 5n;
this way, the counters are back to their original value when reaching (q′, A1).

If we follow the middle branch of the module, we reach (r,A0, nok) with
average zero if, and only if, n − 1 is an integer multiple of 3, which implies
that n is not, so that c2 = 0. The length of the path when reaching (r,A0, nok) is
n+1+(n−1)/3. We then reach (q”, A1) after looping x−2 times on (r, 0, 1, nok);
then the length of the path is (4n+2)/3+x, and the total weight is (x+2/3)·15/11.
Since we require the average weight to equal 1, we get x = (11n− 2)/3, which
yields a total final length of 5n, as expected. A similar computation can be
conducted for the rightmost branch. �

Remark 13. Notice that this can be made to work with only nonnegative and/or
integer weights, by shifting and/or multiplying all weights and average constraints
by some constant.

5 Algorithms for model checking fragments of WLTL

5.1 Decidability of WLTLrf
Sum model checking

It follows from the proof of Theorem 12 that model checking WLTLrfAvg is unde-
cidable: the formula we built contains a single “until” modality, and can thus
be interpreted as a WLTLrfAvg formula. We believe this result is quite surprising
since it was proven in [BCHK11] that the model checking of LTL extending with
limit-average constraints (that is, constraints speaking on the long-run value of
the average) is decidable, even for several weights.

We thus focus on WLTL with only Sum constraints, and begin with proving
the decidability of the case without reset operator:

Theorem 14. Model checking WLTLrfSum over weighted Kripke structures both
with fixed and unknown initial credit is PSPACE-complete.

Our proof closely follows the ideas of [GHOW10] and [DG09]: we apply the
same transformation as for WCTL, reducing our weighted Kripke structure into a
unitary one-counter automaton. We then plug at each state a module (as displayed
on Fig. 5, where M is the maximal absolute value of the constants involved in
the formula) to encode numerical assertions into plain LTL. The LTL formula is
then checked using Büchi automata.

Notice that in [DG09], the model-checking problem is proven decidable for
an extension of LTL with Presburger-defined constraints (but without atomic
propositions) over one-dimensional weighted Kripke structures with zero tests.

11

q

q′
q′′

+1
−1

r0 r1 · · · rM rM+1
−1 −1 −1 −1

r′0 r′1 · · · r′M r′M+1

+1 +1+1 +1

= 0 = 0 = 0

−1

+1

Fig. 5. From WLTLrf
Sum to LTL (notice that q′ and q′′ also have their corresponding test

modules, which we omitted to draw for the sake of readability).

How to handle atomic propositions for that problem is not addressed in [DG09].
The extension to unknown initial credit is similar to the case of WCTLSum.

5.2 WLTLSum model checking is undecidable

In this section, we prove that contrary to the case of WCTLSum, the reset op-
erator makes model checking undecidable. This is not so surprising, and is
actually a corollary of a similar result for LTL with one register over one-counter
automata [DLS10, Thm. 17].

LTL with registers extends LTL with a way of storing the current value of a
counter (or other data, depending on the underlying model), and compare the
stored value later on during the execution. For instance, ↓ φ stores the current
value of the counter before evaluating φ. Then ↑ evaluates to true at positions
where the value of the counter equals the value stored in the register. For instance,
↓ ¬X F ↑, means that it must never be the case that the value of the counter
equals its initial value.

The translation of LTL with one register into WLTLSum is then straightforward:
↓ corresponds to setting the weight to zero, and ↑ simply means Sum = 0. In order
to encode the behaviours of a one-counter automaton as a weighted Kripke
structure, we have to additionally require that the accumulated weight remains
nonnegative, by adding G (Sum ≥ 0) as a global conjunct. The following theorem
directly follows:

Theorem 15. Model checking WLTLSum over weighted Kripke structures is un-
decidable.

5.3 Model checking a flat fragment of WLTL

We conclude this part with a fragment of WLTL which forbids numerical assertions
on the left-hand-side of an “until” formula. As we prove below, model checking
our fragment is decidable, so that it offers an alternative to the fragments EFΣ

and LTLlim of [BCHK11], with a lower complexity. Also, our fragment allows us
to use multiple variables, as well as average assertions. The syntactic restriction

12

is the price to pay for this, but we believe that the fragment remains interesting
in practice when dealing with average values, as it is rarely the case that some
average value has to be constrained all along an execution. We call this fragment
flat. Notice that this adjective was already used in similar contexts, but for
different restrictions [CC00].

In this section, we consider multi-dimensional weighted Kripke structures, as
our algorithm will be able to handle them; they extend the 1-dimensional Kripke
structures in the obvious way. FlatWLTL is defined by the following syntax:

FlatWLTL 3 φ ::= p | ¬ p | α | φ∨φ | φ∧φ | Xφ | Gψ | ψUφ | w · φ

where α ranges over numerical assertions, ψ ranges over LTL and, and w ranges
over the set of variables. The semantics follows that of WLTL.

Notice that our fragment allows both Sum and Avg constraints, as well as
the reset operator. Also notice that our logic includes a restricted version of the
release modality, namely φRψ, which can be expressed as Gψ ∨ψU (φ∧ψ).

Additionally, using the techniques in [BCHK11], this allows us to transform
Avg-assertions into Sum-assertions (if we have to check Avg(x) ≤ c, we introduce
a new variable xc whose updates are shifted by −c compared to the updates of x,
and then check Sum(xc) ≤ 0). Hence we can assume that our formula does not
contain Avg assertions.

We first prove that a path satisfying a formula in FlatWLTL can be decomposed
into finitely many segments, delimited with positions where some numerical
assertions have to be checked.

Pick φ ∈ FlatWLTL, and a path π in a weighted Kripke structure K such
that π, 0 |= φ. We inductively build a finite set of positions along π at which
we may have to evaluate numerical assertions; at all other positions, only pure-
LTL formulas will need to be evaluated. For this, we consider the tree of φ,
and we proceed inductively. We first decorate the root of the tree of φ with 0
(to indicate that φ holds true at position 0). If φ is pure LTL, then we end the
labelling. Then, from a node representing subformula ψ that has been decorated
with integer i, we distinguish between the different types of nodes:

– if the node corresponds to an atomic proposition, the negation thereof, or a
numerical assertion, we are done;

– if the node corresponds a reset operator (that is, ψ = w · ψ′), we label its
successor node, which corresponds to subformula ψ′, with i;

– if the node is a conjunction of subformulas (that is, ψ = ψ1 ∧ψ2), we mark
all successors of this node with i. Notice that indeed all subformulas have to
hold true at position i of π;

– if the node is a disjunction of subformulas, then one of the disjunct has to
hold true at position i of π. We label this successor with i;

– if the node is a X-modality, we label its successor node with i+ 1;
– if the node if a G-modality, we decorate its successor node with the inter-

val [i,+∞) (hence the inductive labelling ends here for this branch, since the
formula is flat);

13

– if the node is an U-modality, then there must be a position j ≥ i along π at
which the right-hand-side subformula of this U-formula holds true. We deco-
rate the right-hand-side successor node of the present node with j, and the
left-hand-side node with [i, j − 1]. The inductive labelling ends here for the
left-hand-side branch since the formula is flat.

The following trivially holds: for every node that has been labelled by an integer i,
if that node corresponds to subformula ψ, then π, i |= ψ. Conversely, if for some
run π we can label consistently the tree representation of φ with integers (or
intervals on pure LTL formulas) such that the root is labelled with 0, then π, 0 |= φ.

This way, we have identified sufficiently many witnessing positions where
some numerical assertions may have to be checked. Let P = {i0 = 0, i1, ..., ik} be
the set of integers (named breakpoints hereafter) labelling the tree of φ, assuming
il < im whenever l < m. By construction, we have that k ≤ |φ|. Between any
two such consecutive positions, the decorated tree gives us (conjunctions of) LTL
subformulas to be checked at every intermediary position (the above labelling
tells us that all positions between two checkpoints have to satisfy the same LTL
subformulas of φ). The tree also indicates those breakpoints where we reset some
of the weight variables. Note that given two labellings of the formula tree yielding
the same order on breakpoints and making the same choices in the disjunctions,
the very same formulas have to be verified between two breakpoints.

As a first step of our (non-deterministic) algorithm, we pick a number k + 1
of (at most |φ|) breakpoints, and guess a labelling of the formula tree with
the indices of the breakpoints (or intervals) that respects the rules defined
earlier. Then we uniquely associate with each h ∈ [0, k] an LTL “right-hand-side”
subformula ξh and a numerical assertion αh to be checked at breakpoint ih, and
an LTL formula ζh that has to be checked at intermediary positions before the
next breakpoint (with ζk being enforced at all positions after the last breakpoint).
As noted above, those formulas are uniquely fixed by the order of breakpoints
and the labelling of the formula tree; moreover ξh and ζh are conjunctions of
pure LTL subformulas of φ whereas αh are conjunctions of numerical assertions
appearing as subformulas of φ or negations of such subformulas. See Fig. 6 for
an example of a formula tree labelled with breakpoints.

With each formula ξh selected above, we associate a Büchi automaton Aξ′
h

where ξ′h is the formula G (bh⇒ ξh) and bh is a fresh atomic proposition that only
holds true at breakpoint ih (note that the value of ih is not known). Similarly, with
formulas ζh, we associate an automaton Aζ′

h
enforcing formula ζ ′h = G (ch⇒ ζh),

where atomic proposition ch only holds true between ih and ih+1.

Our algorithm will check the existence of segments between two breakpoints
that satisfy the required properties. Each segment corresponds to a finite path
in the product L of the weighted Kripke structure K and all the Büchi automata
built above. When working with the j-th segment, proposition bj is set to true at
the first step, and cj holds true all along this segment. This way, the automata Aξ′

j

and Aζ′
j

play their roles of checking ξj at the beginning of the segment, and ζj at

every position in the segment. The automata that have already been “activated”

14

i0

ξ0 = >
α0 = >

i1

ξ1 = >
α1 = >

i2

ξ2 = >
α2 = (Avg = 5)

i3

ξ3 = p

α3 = >
ζ0 = ψ ζ1 = > ζ3 = >

guessed configurations
Presburger-arithmetic formulas
encoding existence of segment

Fig. 7. Schematics representation of our algorithm

(at previous breakpoints) keep on running, finishing their computations, while
the automata corresponding to later breakpoints remain “idle”.

U

i0

ψ

[i0, i1 − 1]

∨

i1

F

Sum = 3

F

i1

∧

i2

X

i2

p

i3 = i2 + 1

Avg = 5

i2

Fig. 6. Labelling of the tree of formula
ψU

[
F (Sum = 3)∨F (X (p)∧Avg = 5)

]
(assuming ψ ∈ LTL) with breakpoints.

One configuration of L (i.e. a state
of K and a state per Büchi automaton
constructed above) can be stored using
polynomial space. However, we do not
have a bound on the length of the seg-
ments, which prevents us from guessing
the path on-the-fly. Instead, we guess the
configurations of L at each breakpoint
(there are at most |φ| breakpoints). It re-
mains to decide the existence of a path
in L from the configuration in one break-
point to the configuration in the next
one, and checking that the numerical as-
sertions at each breakpoint are satisfied.
Following the ideas of [BCHK11], we can
encode the existence of each segment by
assigning one variable with each transi-
tion of L: each variable represents the
number of times this transition will be
taken along the segment, and one can eas-
ily write a Presburger-arithmetic formula
expressing that a valuation for those vari-
ables corresponds to a path and that the
numerical assertions are fulfilled. Notice
that we can easily handle reset opera-
tors in those equations. In the end, our
formula is in the existential fragment of Presburger arithmetic, and has size
exponential, so that our procedure runs in NEXPTIME.

Theorem 16. Model checking FlatWLTL over weighted Kripke structures is
decidable in NEXPTIME.

15

References

[AH94] R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM,
41(1):181–203, 1994.

[BBFR13] A. Bohy, V. Bruyère, E. Filiot, and J.-F. Raskin. Synthesis from ltl
specifications with mean-payoff objectives. In TACAS’13, p. 169–184, 2013.

[BCHK11] U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman. Temporal
specifications with accumulative values. In LICS’11, p. 43–52. IEEE Comp.
Soc. Press, 2011.

[BFL+08] P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and J. Srba. Infinite
runs in weighted timed automata with energy constraints. In FORMATS’08,
LNCS 5215, p. 33–47. Springer, 2008.

[BLM14] P. Bouyer, K. G. Larsen, and N. Markey. Lower-bound constrained runs in
weighted timed automata. Performance Evaluation, 73:91–109, 2014.

[BLN03] D. Beyer, C. Lewerentz, and A. Noack. Rabbit: A tool for BDD-based
verification of real-time systems. In CAV’03, LNCS 2725, p. 122–125.
Springer, 2003.

[BMOU11] P. Bouyer, N. Markey, J. Olschewski, and M. Ummels. Measuring permis-
siveness in parity games: Mean-payoff parity games revisited. In ATVA’11,
LNCS 6996, p. 135–149, Taipei, Taiwan, 2011. Springer.

[CC95] S. V. A. Campos and E. M. Clarke. Real-time symbolic model checking
for discrete time models. In Real-time symbolic model checking for discrete
time models, AMAST Series in Computing 2, p. 129–145. World Scientific,
1995.

[CC00] H. Comon and V. Cortier. Flatness is not weakness. In CSL’00, LNCS
1862, p. 262–276. Springer, 2000.

[CD12] K. Chatterjee and L. Doyen. Energy parity games. Theoretical Computer
Science, 458:49–60, 2012.

[CDHR10] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Generalized
mean-payoff and energy games. In FSTTCS’10, Leibniz International
Proceedings in Informatics 8. Leibniz-Zentrum für Informatik, 2010.

[CE82] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In LOP’81, LNCS 131, p.
52–71. Springer, 1982.

[CGP00] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press,
2000.

[CRR12] K. Chatterjee, M. Randour, and J.-F. Raskin. Strategy synthesis for
multi-dimensional quantitative objectives. In CONCUR’12, LNCS 7454, p.
115–131, 2012.

[DG09] S. Demri and R. Gascon. The effects of bounding syntactic resources on
Presburger LTL. Journal of Logic and Computation, 19(6):1541–1575, 2009.

[DLS10] S. Demri, R. Lazić, and A. Sangnier. Model checking memoryful linear-
time logics over one-counter automata. Theoretical Computer Science,
411(22-24):2298–2316, 2010.

[EMSS92] E. A. Emerson, A. K.-L. Mok, A. P. Sistla, and J. Srinivasan. Quantitative
temporal reasoning. Real-Time Systems, 4:331–352, 1992.

[EN94] J. Esparza and M. Nielsen. Decidability issues for petri nets - a survey.
Bulletin of the EATCS, 52:244–262, 1994.

[GHOW10] S. Göller, C. Haase, J. Ouaknine, and J. Worrell. Model checking succinct
and parametric one-counter automata. In ICALP’10, LNCS 6199, p. 575–
586. Springer, 2010.

16

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BMOU-atva11.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BMOU-atva11.pdf

[GL10] S. Göller and M. Lohrey. Branching-time model checking of one-counter pro-
cesses. In STACS’10, Leibniz International Proceedings in Informatics 20,
p. 405–416. Leibniz-Zentrum für Informatik, 2010.

[Haa12] C. Haase. On the Complexity of Model Checking Counter Automata. PhD
thesis, University of Oxford, UK, 2012.

[HKOW09] C. Haase, S. Kreutzer, J. Ouaknine, and J. Worrell. Reachability in succinct
and parametric one-counter automata. In CONCUR’09, LNCS 5710, p.
369–383. Springer, 2009.

[JLSØ13] K. Jensen, K. G. Larsen, J. Srba, and L. K. Østergaard. Local model
checking of weighted CTL with upper-bound constraints. In SPIN’13,
LNCS 7976. Springer, 2013.

[Koy90] R. Koymans. Specifying real-time properties with metric temporal logic.
Real-Time Systems, 2(4):255–299, 1990.

[Min61] M. L. Minsky. Recursive unsolvability of Post’s problem of ”tag” and other
topics in theory of Turing machines. Annals of Mathematics, 74(3):437–455,
1961.

[Pnu77] A. Pnueli. The temporal logic of programs. In FOCS’77, p. 46–57. IEEE
Comp. Soc. Press, 1977.

[QS82] J.-P. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In SOP’82, LNCS 137, p. 337–351. Springer, 1982.

[Ser06] O. Serre. Parity games played on transition graphs of one-counter processes.
In FoSSaCS’06, LNCS 3921, p. 337–351. Springer, 2006.

[ZP96] U. Zwick and M. Paterson. The complexity of mean payoff games on graphs.
Theoretical Computer Science, 158(1-2):343–359, 1996.

17

	Quantitative verification of weighted Kripke structures

