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Abstract10

Broadcast networks allow one to model networks of identical nodes communicating through message11

broadcasts. Their parameterized verification aims at proving a property holds for any number12

of nodes, under any communication topology, and on all possible executions. We focus on the13

coverability problem which dually asks whether there exists an execution that visits a configuration14

exhibiting some given state of the broadcast protocol. Coverability is known to be undecidable for15

static networks, i.e. when the number of nodes and communication topology is fixed along executions.16

In contrast, it is decidable in PTIME when the communication topology may change arbitrarily17

along executions, that is for reconfigurable networks. Surprisingly, no lower nor upper bounds on the18

minimal number of nodes, or the minimal length of covering execution in reconfigurable networks,19

appear in the literature.20

In this paper we show tight bounds for cutoff and length, which happen to be linear and quadratic,21

respectively, in the number of states of the protocol. We also introduce an intermediary model with22

static communication topology and non-deterministic message losses upon sending. We show that23

the same tight bounds apply to lossy networks, although, reconfigurable executions may be linearly24

more succinct than lossy executions. Finally, we show NP-completeness for the natural optimisation25

problem associated with the cutoff.26
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1 Introduction30

Parameterized verification. Systems formed of many identical agents arise in many concrete31

areas: distributed algorithms, populations, communication or cache-coherence protocols,32

chemical reactions etc. Models for such systems depend on the communication or interaction33

means between the agents. For example pairwise interactions are commonly used for34

populations of individuals, whereas selective broadcast communications are more relevant for35

communication protocols on ad-hoc networks. The capacity of the agents, and thus models36

that are used to represent their behaviour also vary.37

Verifying such systems amounts to checking that a property holds independently of the38

number of agents. Typically, a consensus algorithm should be correct for any number of39

participants. We refer to these systems as parameterized systems, and the parameter is40

the number of agents. The verification of parameterized systems started in the late 80’s41

and recently regained attention from the model-checking community [11, 8, 6, 1]. It can be42

seen as particular cases of infinite-state-system verification, and the fact that all agents are43

identical can sometimes lead to efficient algorithms [5].44
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28:2 Reconfiguration and message losses in parameterized broadcast networks

Broadcast networks. This paper targets the application to protocols over ad-hoc networks,45

and we thus focus on the model of broadcast networks [3]. A broadcast network is composed46

of several nodes that execute the same broadcast protocol. The latter is a finite automaton,47

where transitions are labeled with message sendings or message receptions. Configuration in48

broadcast networks is then comprised of a set of agents, their current local states, together49

with a communication topology (which represents which agents are within radio range). A50

transition represents the effect of one agent sending a message to its neighbours.51

Parameterized verification of broadcast networks amounts to checking a given property52

independently of the initial configuration, and in particular independently of the number53

of agents and communication topology. A natural property one can be interested in is54

coverability: a state of the broadcast protocol is coverable if some execution leads to a55

configuration in which one node is in that local state. When considering error states, a56

positive instance for the coverability problem thus corresponds to a network that can exhibit57

a bad behaviour.58

Coverability is undecidable for static broadcast networks [3], i.e. when the communication59

topology is fixed along executions. Decidability can be recovered by relaxing the semantics and60

allowing non-deterministic reconfigurations of the communication topology. In reconfigurable61

broadcast networks, coverability of a control state is decidable in PTIME [2]. A simple62

saturation algorithm allows to compute the set of all states of the broadcast protocol that63

can be covered.64

Cutoff and covering length. Two important characteristics of positive instances of the65

coverability problem are the cutoff and the covering length. First, the cutoff is the minimal66

number of agents for which a covering execution exists. The notion of cutoff is particularly67

relevant for reconfigurable broadcast networks since they enjoy a monotonicity property: if a68

state can be covered from a configuration, it can also be from any configuration with more69

nodes. Second, the covering length is the minimal number of steps for covering executions. It70

weighs how fast a network execution can go wrong. Both the cutoff and the covering length71

are somehow complexity measures for the coverability problem. Surprisingly, no upper nor72

lower bounds on these values appear in the literature for reconfigurable broadcast networks.73

Contributions. In this paper, we prove a tight linear bound for the cutoff, and a tight74

quadratic bound for the covering length in reconfigurable broadcast networks. Both are75

expressed in the number of states of the broadcast protocol. These are obtained by refining76

the saturation algorithm that computes the set of coverable states, and finely analysing it.77

Another contribution is to introduce lossy broadcast networks, in which the communication78

topology is fixed, however errors in message transmission may occur. In contrast with79

broadcast networks with losses that appear in the literature [4], in our model, message80

losses happen upon sending, rather than upon reception. This makes a crucial difference:81

reconfiguration of the communication topology can easily be encoded by losses upon reception,82

whereas it is not obvious for losses upon sending. Perhaps surprisingly, we prove that the set83

of states that can be covered in reconfigurable semantics agrees with the one in static lossy84

semantics. Using the same refined saturation algorithm, we prove that same tight bounds85

hold for lossy broadcast networks: the cutoff is linear, and the covering length is quadratic86

(in the number of states of the broadcast protocol). The two semantics thus appear quite87

similar, yet, we show that the reconfigurable semantics can be linearly more succinct (in88

terms of number of nodes) than the lossy semantics.89

Finally, we study a natural decision problem related to the cutoff: decide whether a90

state is coverable (in either semantics) with a fixed number of nodes. We prove it to be91

NP-complete.92



N. Bertrand, P. Bouyer and A. Majumdar 28:3

Outline. In Section 2, we define the broadcast networks, with static, reconfiurable and lossy93

semantics. In Section 3, we present our tight bounds for cutoff and covering length. In94

Section 4, we show our succinctness result. In Section 5, we give our NP-completeness result.95

2 Broadcast networks96

2.1 Static broadcast networks97

I Definition 1. A broadcast protocol is a tuple P = (Q, I,Σ,∆) where Q is a finite set98

of control states; I ⊆ Q is the set of initial control states; Σ is a finite alphabet; and99

∆ ⊆ (Q× {!a, ?a | a ∈ Σ} ×Q) is the transition relation.100

For ease of readability, we often write q
!a−→ q′ (resp. q ?a−→ q′) for (q, !a, q′) ∈ ∆101

(resp. (q, ?a, q′) ∈ ∆). We assume all broadcast networks to be complete for receptions: for102

every q ∈ Q and a ∈ Σ, there exists q′ such that q ?a−→ q′.103

A broadcast protocol is represented in Figure 1. In this example and in the whole paper,104

for concision purposes, we assume that if the reception of a message is unspecified from some105

state, it implicitly represents a self-loop. For example here, from q1, receiving a leads to q1106

again.

q0 q1 q2 q3 q4

r1

⊥!a

?a !b1 ?a !b2

?b1 ?b2

?bi

Figure 1 Example of a broadcast protocol.

107

Broadcast networks involve several copies, or nodes, of the same broadcast protocol P . A108

configuration is an undirected graph whose vertices are labelled with a state of Q. Transitions109

between configurations happen by broadcasts from a node to its neighbours.110

Formally, given a broadcast protocol P = (Q, I,Σ,∆), a configuration is an undirected111

graph γ = (N,E, L) where N is a finite set of nodes; E ⊆ N× N is a symmetric and irreflexive112

relation describing the set of edges; finally, L : N→ Q is the labelling function. We let Γ(P)113

denote the (infinite) set of Q-labelled graphs. Given a configuration γ ∈ Γ(P), we write114

n ∼ n′ whenever (n, n′) ∈ E and we let Neighγ(n) = {n′ ∈ N | n ∼ n′} be the neighbourhood115

of n, i.e. the set of nodes adjacent to n. Finally L(γ) denotes the set of labels appearing in116

nodes of γ. A configuration (N,E, L) is called initial if L(N) ⊆ I.117

The operational semantics of a static broadcast network for a given broadcast protocol P118

is an infinite-state transition system T (P). Intuitively, each node of a configuration runs119

protocol P, and may send/receive messages to/from its neighbours. From a configuration120

γ = (N,E, L), there is a step to γ′ = (N′,E′, L′) if N′ = N, E′ = E, and there exists n ∈ N121

and a ∈ Σ such that (L(n), !a, L′(n)) ∈ ∆, and for every n′ ∈ N, if n′ ∈ Neighγ(n), then122

(L(n′), ?a, L′(n′)) ∈ ∆, otherwise L′(n′) = L(n′): a step reflects how nodes evolve when one of123

them broadcasts a message to its neighbours. We write γ n,!a−−→s γ
′, or simply γ →s γ

′ (the s124

subscript emphasizes that the communication topology is static).125

An execution of the static broadcast network is a sequence ρ = (γi)0≤i≤r of configurations126

(N,E, Li) such that γ0 is an initial configuration, and for every 0 ≤ i < r, γi →s γi+1. We127
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28:4 Reconfiguration and message losses in parameterized broadcast networks

write #nodes(ρ) for the number of nodes in γ0, #steps(ρ) for the number r of steps along ρ,128

and for any node n ∈ N,#steps(ρ, n) for the number of broadcasts, called the active length, of129

node n along ρ. Note that, along an execution, the number of nodes and the communication130

topology are fixed. The set of all static executions is denoted Execs(P).131

Coverability problem.132

Given a broadcast protocol P and a subset of target states F ⊆ Q, we write COVERs(P, F )133

for the set of all covering executions, that is, executions that visit a configuration with a134

node labelled by a state in F :135

COVERs(P, F ) = {(γi)0≤i≤r ∈ Execs(P) | L(γr) ∩ F 6= ∅}.136

The coverability problem is a decision problem that takes a broadcast protocol P and a subset137

of target states F as inputs, and outputs whether COVERs(P, F ) is nonempty. For broadcast138

networks, the coverability problem is a parameterized verification problem, since the number139

of initial configurations is infinite. It is known that coverability is undecidable for static140

broadcast networks [3], since one can use the communication topology to build chains that141

may encode values of counters, and hence simulate Minsky machines [10].142

If the broadcast protocol P allows to cover the subset F , we define the cutoff as the143

minimal number of nodes required in an execution to cover F . Similarly, we define the144

covering length as the length of a shortest finite execution covering F . Those values are145

important to characterize the complexity of a broadcast protocol: assuming a safe set of146

states, coverability of the complement set represents bad behaviours, and cutoff and covering147

length measure the size of minimal witnesses for violation of the safety property.148

2.2 Reconfigurable broadcast networks149

To circumvent the undecidability of coverability for static broadcast networks, one attempt is150

to introduce non-deterministic reconfiguration of the communication topology. This solution151

also allows one to model arbitrary mobility of the nodes, which is meaningful, e.g. for mobile152

ad-hoc networks [3].153

Under this semantics, configurations are the same as under the static semantics. Trans-154

itions between configurations however are enhanced by the ability to modify the communica-155

tion topology before performing a broadcast. Formally, from a configuration γ = (N,E, L),156

there is a step to γ′ = (N′,E′, L′) if N′ = N, and there exists n ∈ N and a ∈ Σ such that157

(L(n), !a, L′(n)) ∈ ∆, and for every n′ ∈ N, if n′ ∈ Neighγ′(n), then (L(n), ?a, L′(n′)) ∈ ∆,158

otherwise L′(n′) = L(n′): a step thus reflects that the communication topology may change159

from E to E′ followed by the broadcast of a message from a node to its neighbours in the160

new topology. We write γ n,!a−−→r γ
′, or simply γ →r γ

′.161

Similarly to the static case, we write Execr(P) and COVERr(P, F ) for, respectively the162

set of all reconfigurable executions in P, and the set of all reconfigurable executions in P163

that cover F . We will also use the same notations #nodes(ρ), #steps(ρ) and #steps(ρ, n) as164

in the static case.165

Figure 7 (with n = 2) gives an example of reconfigurable execution for the broadcast166

protocol of Figure 1 (which covers ). Note that the communication topology indeed evolves167

along the execution. Here the colored nodes broadcast a message in the step leading to the168

next configuration.169
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A noticeable property of reconfigurable broadcast networks is the following copycat170

property. Such a monotonicity property was originally shown in [7] for asynchronous shared-171

memory systems, and it also applies to our context.172

I Proposition 2 (Copycat for reconfigurable semantics). Given ρ : γ0 →r γ1 · · · →r γs an173

execution, with γs = (N,E, L), for every q ∈ L(γs), for every nq ∈ N such that L(nq) = q,174

there exists t ∈ N and an execution ρ′ : γ′0 →r γ
′
1 · · · →r γ

′
t with γ′t = (N′,E′, L′) such that175

|N′| = |N|+1, there is an injection ι : N→ N′ with for every n ∈ N, L′(ι(n)) = L(n), and for176

the extra node nfresh ∈ N′ \ ι(N), L′(nfresh) = q, and #steps(ρ′, nfresh) = #steps(ρ, nq).177

Intuitively, the new node nfresh will copy the moves of node nq: it performs the same broadcasts178

(but to nobody) and receives the same messages. More precisely, when nq broadcasts in ρ, it179

does so also in ρ′ and then we disconnect all the nodes and nfresh repeats the broadcast (no180

other node is affected because of the disconnection); when nq receives a message in ρ, we181

connect nfresh to the same neighbours as nq (i.e., ι(n) ∼′ nfresh if and only if n ∼ nq) so that182

nfresh also receives the same message in ρ′.183

Relying on the copycat property, when reconfigurations are allowed, the coverability184

problem becomes decidable and solvable in polynomial time.185

I Theorem 3 ([2]). Coverability is decidable in PTIME for reconfigurable broadcast networks.186

More precisely, a simple saturation algorithm allows one to compute in polynomial time,187

the set of all states that can be covered. Despite this complexity result, to the best of188

our knowledge, no bounds on the cutoff or length of witness executions are stated in the189

literature.190

2.3 Broadcast networks with messages losses191

Communication failures were studied for broadcast networks, assuming non-deterministic192

message losses could happen: when a message is broadcast, some of the neighbours of the193

sending node may not receive it [4]. As observed by the authors, the coverability problem194

for such networks easily reduces to the coverability problem in reconfigurable networks195

by considering a complete topology, and message losses are simulated by reconfigurations.196

Thus, message losses upon reception are equivalent to reconfiguration of the communication197

topology.198

We propose an alternative semantics here: when a message is broadcast, it either reaches199

all neighbours of the sending node, or none of them. This is relevant in contexts where200

broadcasts are performed in an atomic manner and may fail. In contrast to message losses201

upon reception, it is not obvious to simulate arbitrary reconfigurations of the communication202

topology with such message losses.203

Formally, from a configuration γ = (N,E, L), there is a step to γ′ = (N′,E′, L′) if N′ = N,204

E′ = E and there exists n ∈ N and a ∈ Σ such that (L(n), !a, L′(n)) ∈ ∆, and either (a) for205

every n′ 6= n, L′(n′) = L(n′) (no one has received the message, it has been lost), or (b) if206

n′ ∈ Neighγ′(n), then (L(n′), ?a, L′(n′)) ∈ ∆, otherwise L′(n′) = L(n′): a step thus reflects that207

the broadcast message may be lost when it is sent. We write γ n,!a−−→l γ
′ or simply γ →l γ

′.208

Similarly to the static and reconfigurable semantics, #steps(ρ, n) is the number of broadcasts209

(including lost ones) by node n along ρ; and we write #nonlost_steps(ρ, n) for the number of210

successful broadcasts by node n along ρ.211

For lossy executions also, we use the following notations: Execl(P) and COVERl(P, F ).212

Any lossy execution can be seen as a reconfigurable execution. Indeed, a lossy execution213
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28:6 Reconfiguration and message losses in parameterized broadcast networks

with communication topology E can be transformed into a reconfigurable one in which214

the communication topology of each configuration is either ∅ or E, depending on whether215

the next broadcast is lost or not. Therefore, with slight abuse of notation, we write216

Execl(P) ⊆ Execr(P).217

Figure 2 gives an example of a lossy execution for the broadcast protocol of Figure 1.218

Note that in the third transition, some node indeed performs a lossy broadcast, emphasized219

by the subscript “lost”. As before, the colored nodes broadcast a message in the step leading220

to the next configuration.221

q0

q0

q0

q0

q0 !a−→l
q1

q0

q0

q1

q0

!b1−→l
q2

r1

⊥

q1

q0

!b1−→llost

q2

r1

⊥

q2

q0

!a−→l
q2

⊥ q0

q3

r1

!b2−→l
q2

⊥ ⊥

q4

Figure 2 Example of a lossy execution on the protocol from Figure 1.

3 Tight bounds for reconfigurable and lossy broadcast networks222

In this section, we will show tight bounds for the cutoff and the minimal length of a witness223

execution for the coverability problem. These hold both for the reconfigurable and the lossy224

semantics.225

3.1 Upper bounds on cutoff and covering length for reconfigurable226

networks227

First, we will refine the polytime saturation algorithm of [2], which computes all states228

which can be covered in the reconfigurable semantics. We will then show that, based on229

the underlying computation, one can construct small witnesses for the two semantics (linear230

number of nodes and quadratic number of steps). While it would be enough to show the231

result for the lossy semantics (since, given a broadcast protocol P, Execl(P) ⊆ Execr(P)),232

for pedagogical reasons, we provide the two proofs, starting with the simplest one for233

reconfigurable semantics.234

Let us fix for the rest of this section, a protocol P = (Q, I,Σ,∆). We slightly modify the235

algorithm given in [2] as follows: we include at most one state to the set S in each iteration.236

Additionally, we associate a labelling function c : S → N with the set S in every iteration.237

More formally, we consider the modification of the previous saturation algorithm as shown238

in Algorithm 1.239
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Algorithm 1 Refined saturation algorithm for coverability
1: S := I; c(S) := |I|; S′ := ∅
2: while S 6= S′ do
3: S′ := S; c := c(S)
4: if ∃(q1, !a, q2) ∈ ∆ s.t. q1 ∈ S′ and q2 6∈ S′ then
5: S := S ∪ {q2}; c(S) := c+ 1
6: else if ∃(q1, !a, q2) ∈ ∆ and (q′1, ?a, q′2) ∈ ∆ s.t. q1, q2, q

′
1 ∈ S′ and q′2 6∈ S′ then

7: S := S ∪ {q′2}; c(S) := c+ 2
8: end if
9: end while

10: return S

In Algorithm 1, the variable c counts the number of nodes that are sufficient to cover the240

current set S, as we will prove later.241

I Lemma 4 ([2]). Algorithm 1 terminates and returns the set of coverable states. In242

particular, COVERr(P, F ) 6= ∅ iff F ∩ S 6= ∅.243

Let S0, S1, . . . , Sm be the sets after each iteration of the algorithm, with S0 = I and244

Sm = S. We fix an ordering on the states in S on the basis of insertion in S: for all 1 ≤ i ≤ m,245

qi is such that qi ∈ Si \ Si−1. In the following, we show the desired upper bounds, proving246

that there exists an execution of size O(n) and length O(n2) covering at the same time all247

states of Sm.248

I Theorem 5. Let P = (Q, I,Σ,∆) be a broadcast protocol, and F ⊆ Q. If COVERr(P, F ) 6=249

∅ (that is, if F ∩ S 6= ∅), then there exists ρ ∈ COVERr(P, F ) with #nodes(ρ) ≤ 2|Q| and250

#steps(ρ) ≤ 2|Q|2.251

Theorem 5 is a consequence of the following Lemma.252

I Lemma 6. For every step i of Algorithm 1, there exists an initial configuration γ0, a253

configuration γ and a reconfigurable execution ρ : γ0
∗−→r γ such that L(γ) = Si, #nodes(ρ) =254

c(Si), and maxn #steps(ρ, n) ≤ i.255

Proof. The lemma is proved by induction on i. The base case i = 0 is obvious: take the256

initial configuration γ0 with |I| nodes, and label each node with a different initial state; its257

size is |I|, and the length of the execution is 0, hence so is the maximum active length.258

To prove the induction step, we distinguish two cases: depending on whether qi+1 was259

added as the target state of a broadcast transition q !a−→ for some q ∈ Si; or whether qi+1 is260

the target state of a reception from some q ∈ Si with matching broadcast between two states261

already in Si.262

Case 1: There exists q ∈ Si with q
!a−→ qi+1. We apply the induction hypothesis to263

step i, and exhibit an execution ρ : γ0
∗−→r γ such that L(γ) = Si, #nodes(ρ) = c(Si) and264

maxn #steps(ρ, n) ≤ i. Applying the copycat property (see Proposition 2), we construct an265

execution ρ′ : γ′0
∗−→r γ

′ such that γ′0 has one node more than γ0, and, focusing on the nodes266

(since we are in a reconfigurable setting, edges in the configuration are not important), γ′267

coincides with γ, with an extra node n labelled by q. We then disconnect all nodes and268

extend with a transition γ′ n,!a−−→r γ
′′, which makes only progress node n from q to qi+1; the269

resulting execution is denoted ρ′′. Then:270

1. L(γ′′) = Si ∪ {qi+1} = Si+1,271
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28:8 Reconfiguration and message losses in parameterized broadcast networks

2. #nodes(ρ′′) = c(Si) + 1 = c(Si+1),272

3. maxn #steps(ρ′′, n) ≤ maxn #steps(ρ, n) + 1 ≤ i + 1; Indeed, the active length of the273

copycat node along ρ′ coincides with the active length of some existing node along ρ, and274

it is increased only by 1 in ρ′′.275

This proves the induction step in the first case.276

Case 2: There exists q, q′, q′′ ∈ Si with q
?a−→ qi+1 and q′ !a−→ q′′. The idea is similar to277

the previous case, but one should apply the copycat property twice, to both q and q′. We278

formalize this.279

We apply the induction hypothesis to step i, and exhibit an execution ρ : γ0
∗−→r γ280

such that L(γ) = Si, #nodes(ρ) = c(Si) and maxn #steps(ρ, n) ≤ i. Applying the copycat281

property (see Proposition 2) twice, to both q and q′, we construct an execution ρ′ : γ′0
∗−→r γ

′
282

such that γ′0 has two nodes more than γ0, and, focusing on the nodes, γ′ coincides with γ,283

with one extra node n labelled by q and one extra node n′ labelled by q′. We then connect284

nodes n and n′ and disconnect all other nodes, and extend with a transition γ′ n′,!a−−−→r γ
′′;285

this makes node n progress from q to qi+1 and node n′ progress from q′ to q′′; all other nodes286

are unchanged; the resulting execution is denoted ρ′′. Then:287

1. L(γ′′) = Si ∪ {q′′, qi+1} = Si+1 since q′′ ∈ Si,288

2. #nodes(ρ′′) = c(Si) + 2 = c(Si+1),289

3. maxn #steps(ρ′′, n) ≤ maxn #steps(ρ, n) + 1 ≤ i + 1; Indeed the active length of any of290

the copycat node along ρ′ coincides with the active length of some existing node along ρ,291

and it is increased by at most 1 in ρ′′.292

This proves the induction step in the second case, which allows to conclude the proof of the293

lemma. J294

To conclude the proof of Theorem 5, we recall that Algorithm 1 is sound and complete:295

Sm is the set of states that can be covered. Hence, from Lemma 6, we deduce that if296

COVERr(P, F ) 6= ∅, then there is ρ ∈ COVERr(P, F ) such that:297

1. L(γ) = Sm;298

2. #nodes(ρ) = c(Sm) ≤ |I|+ 2m ≤ |I|+ 2(|Q| − |I|) = 2|Q| − |I|;299

3. maxn #steps(ρ, n) ≤ m ≤ |Q| − |I|.300

Therefore #steps(ρ) ≤
(
#nodes(ρ)

)
·
(

maxn #steps(ρ, n)
)
≤ 2|Q|2, so that we established301

the desired bounds for Theorem 5.302

3.2 Upper bounds on cutoff and covering length for lossy networks303

Perhaps surprisingly, Algorithm 1 also computes the set of states that can be covered by304

lossy executions. Concerning coverable states, the reconfigurable and lossy semantics thus305

agree. In Section 4, we will show that reconfigurable covering executions can be linearly306

more succinct than lossy covering executions.307

I Lemma 7. Algorithm 1 returns the set of coverable states for lossy broadcast networks. In308

particular, COVERl(P, F ) 6= ∅ iff F ∩ S 6= ∅.309

Indeed, we have Execl(P) ⊆ Execr(P). Therefore COVERl(P, F ) 6= ∅ implies COVERr(P, F ) 6=310

∅ and by Lemma 4, we conclude F ∩S 6= ∅. The other direction of Lemma 7 is a consequence311

of the following theorem.312

I Theorem 8. Let P = (Q, I,Σ,∆) be a broadcast protocol, and F ⊆ Q. If S ∩ F 6= ∅, then313

there exists ρ ∈ COVERl(P, F ) with #nodes(ρ) ≤ 2|Q| and #steps(ρ) ≤ 2|Q|2.314
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Before going to the proof of Theorem 8, we show a copycat property for the lossy315

broadcast networks, as a counterpart of Proposition 2 for the lossy semantics. Since the316

communication topology is static in lossy networks, the following proposition explicitly relates317

the communication topologies in the initial execution and its copycat extension.318

I Proposition 9 (Copycat for lossy semantics). Given ρ : γ0 →l γ1 · · · →l γr an execution,319

with γr = (N,E, L), for every q ∈ L(γr), for every nq ∈ N such that L(nq) = q, there320

exists s ∈ N and an execution ρ′ : γ′0 →l γ′1 · · · →l γ′s with γ′s = (N′,E′, L′) such that321

|N′| = |N|+1, there is an injection ι : N → N′ with for every n ∈ N, L′(ι(n)) = L(n), and322

for the extra node nfresh ∈ N′ \ ι(N), L′(nfresh) = q, for every n ∈ N, nfresh ∼′ ι(n) iff nq ∼ n,323

#steps(ρ′, nfresh) = #steps(ρ, nq), and #nonlost_steps(ρ′, nfresh) = 0.324

Proof. First notice that, from our definition of lossy semantics, the topology should be the325

same in γ0 and in γr, hence we can write γ0 = (N,E, L0), and more generally, for every326

i, γi = (N,E, Li). Define N′ as a finite set such that |N′| = |N| + 1, and fix an injection327

ι : N→ N′. Write nfresh for the unique element of N′ \ ι(N). Set L′0(ι(n)) = L0(n) for every328

n ∈ N, and L′0(nfresh) = L0(nq). Define the edge relation E′ by its induced edge relation ∼′329

such that ι(n) ∼′ ι(n′) iff n ∼ n′, and nfresh ∼′ ι(n′) iff nq ∼ n′.330

The idea will then be to make nfresh follow what nq is doing. Roughly, if nq is receiving a331

message to progress, then we will connect nfresh to a relevant node to also receive the message;332

if nq is broadcasting a message, then we will make nfresh broadcast a message and lose, so333

that no other node is impacted.334

Formally, we will show by induction on i that for every 0 ≤ i ≤ r, there is an execution335

ρ′i : γ′0 →l γ
′
1 · · · →l γ

′
f(i) for some f(i), such that L′i(ι(n)) = Li(n) for every n ∈ N and336

L′i(nfresh) = Li(nq). The initial case i = 0 is obvious. We then assume that we have constructed337

a relevant ρ′i for some i < r, and we will extend it to ρ′i+1 as follows. We make a case338

distinction depending on the nature of the step γi →l γi+1:339

Assume γi
n,!a−−→l γi+1 is a broadcast message with nq 6= n, then ρ′i+1 is obtained by340

extending ρ′i with the broadcast γ′f(i)
ι(n),!a−−−−→ γ′f(i)+1, with the condition that it should341

be lost if and only if it was lost in the original execution. For checking correctness, we342

distinguish two cases:343

the broadcast message was not lost, and nq ∼ n. Then, it is the case that nfresh ∼′ ι(n),344

hence nfresh also receives the message. By resolving properly the nondeterminism, we345

can make the label of nfresh become the same as the label of nq in γ′f(i)+1. Note also346

that all nodes in ι(N) can progress to the same states as those of N in γi+1;347

the broadcast message was lost, or nq 6∼ n, then it is the case that the label of nq has348

not been changed in γi
n,!a−−→l γi+1, and so will the label of the fresh node in γ′f(i).349

Assume γi
nq,!a−−−→l γi+1 is a broadcast message, then we extend ρ′i with the two steps350

γ′f(i)
ι(nq),!a−−−−−→ γ′f(i)+1

nfresh,!a−−−−→ γ′f(i)+2 (resolving nondeterminism in a similar way as in351

γi
nq,!a−−−→l γi+1), and we make the last broadcast lossy whereas the broadcast from ι(nq)352

is lossy if and only if it was lossy in γi →l γi+1.353

This concludes the induction. Notice that in the constructed execution, node nfresh does not354

make any real sending. J355

For any configuration γ = (N,E, L) and a node n, we write L(n) = × if n is not important356

anymore in the execution, in other words all the required conditions in γ′ such that γ ∗−→l γ
′

357

are still satisfied whatever L(n) is.358
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Recall the saturation algorithm and the ordering of the sets and the states: S0 =359

I, S1, . . . , Sm = S are the sets after each iteration and qi is the state such that qi ∈ Si \ Si−1360

for all 1 ≤ i ≤ m. We will refine the construction from the proof of Lemma 6 (in the context361

of reconfigurable broadcast networks), and build inductively a lossy execution covering all362

states in Si. Since the topology is static, some nodes which have “finished their jobs” will363

remain connected to other nodes, and may therefore continue to change states (contrary to364

Lemma 6 where they could be fully disconnected). Hence, in every such execution, every365

state q ∈ Si (which is then covered by the execution) will have a main corresponding node,366

whose label will remain q. All nodes which are not the main node of a state will be assigned367

×, since their labels will become meaningless.368

We formalize this idea in the lemma below. However, for better understanding, we369

also illustrate this inductive construction of a witness execution in Figure 4 on the simple370

broadcast protocol from Figure 3. Configurations are represented vertically: they involve 10371

nodes, and the communication topology is given for the first configuration only, for the sake372

of readability. To save space, several broadcasts (of the same message type, from different373

nodes) may happen in a macrostep that merges several steps. This is for instance the case in374

the first macrostep, where a is being broadcast from the node in set S1, as well as from the375

first node in set S2. Dashed arrows are used to represent that a node is not involved in some376

macrostep and thus stays in the same state. In the execution, the nodes that are performing377

a real broadcast are colored yellow, the ones which receive a message are colored gray, and378

blue nodes indicate the main nodes for the coverable states.379

I Lemma 10. For every step i of the refined saturation algorithm, there exists a configuration380

γ = (N,E, L) and an execution ρ : γ0
∗−→l γ such that:381

L(γ) \ {×} = Si and #nodes(ρ) = c(Si),382

maxn #steps(ρ, n) ≤ i and maxn #nonlost_steps(ρ, n) ≤ 1,383

for every q ∈ Si, there exists nmain
q ∈ N such that384

L(nmain
q ) = q and #nonlost_steps(ρ, nmain

q ) = 0,385

nmain
q ∼ n implies L(n) = ×, and if n /∈ {nmain

q | q ∈ Si}, then L(n) = ×.386

Proof. We do the proof by induction on i. The case i = 0 is obvious, by picking one387

main node per initial state in I, and by disconnecting all nodes; hence forming an initial388

configuration satisfying all the requirements.389

To prove the induction step, we distinguish two cases: depending on whether qi+1 was390

added as the target state of a broadcast action !a from some q ∈ Si; or whether qi+1 is the391

target state of a reception from some q ∈ Si with matching broadcast between two states392

already in Si.393

Case 1: There exists q ∈ Si with q
!a−→ qi+1. We apply the induction hypothesis to step394

i, and exhibit the various elements of the statement. Applying the copycat property for395

lossy broadcast systems (that is, Proposition 9) with node nmain
q , we build an execution396

ρ′ : γ′0
∗−→l γ

′ such that γ′ = (N,E, L′) with |N′| = |N| + 1, and an appropriate injection ι.397

The fresh node nfresh is connected to nodes to which nmain
q was connected before; hence, by398

induction hypothesis, it is only connected to nodes labelled with ×. Then we extend ρ′ with399

γ′
nfresh,!a−−−−→ γ′′ and lose the message (this is for condition #nonlost_steps(ρ, nmain

q ) = 0 to be400

satisfied). We declare nmain
qi+1

= nfresh. All requirements for γ′′ are easily checked to be satisfied401

(when a node is labelled with × in γ′, then it remains labelled by × in γ′′).402

Case 2: There exist q, q′, q′′ ∈ Si such that q ?a−→ qi+1 and q′
!a−→ q′′. We apply the403

induction hypothesis to step i, and exhibit the various elements of the statement. Applying404

twice the copycat property (that is, Proposition 9), once with node nmain
q and once with405



N. Bertrand, P. Bouyer and A. Majumdar 28:11

q0 q1q2q3 q4 q5q6
!a?a!b ?b !c?c

Figure 3 Illustrating example for the saturation algorithm.
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Figure 4 Applying saturation algorithm on protocol in Figure 3 in lossy semantics. Configurations
are represented vertically; for readability, macrosteps merge several broadcasts.

node nmain
q′ , we build an execution ρ′ : γ′0

∗−→l γ
′ such that γ′ = (N,E, L′) with |N′| = |N|+ 2,406

and an appropriate injection ι. The two fresh nodes nfresh and n′fresh are only connected407

to ×-nodes in γ′ (by induction hypothesis on nmain
q and nmain

q′ respectively). We transform408

γ′0 into γ′′0 by connecting the two nodes nfresh and n′fresh. By Proposition 9, we know that409

those two nodes don’t perform any real sending (i.e., #nonlost_steps(ρ′, nfresh) = 0 and410

#nonlost_steps(ρ′, n′fresh) = 0), hence this new connection will not affect the labels of the411

nodes, and we can safely apply the same transitions as in ρ′ from γ′′0 to get an execution412
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q0 q1 q2 q3 q4 · · ·
!a1 ?b1 !a2 ?b2 !an ?bn

!b1 !b2 !bn

Figure 5 Broadcast protocol with linear cutoff and quadratic covering length.

ρ′′ : γ′′0
∗−→l γ

′′, where γ′′ coincides with γ′, with an extra connection between nodes nfresh413

and n′fresh. Then, we extend ρ′′ with γ′′ n′
fresh,!a−−−−→ γ′′′. We assume it is a real sending, hence:414

node nfresh can progress from state q to qi+1, and node n′fresh can progress from q′ to q′′. All415

other nodes which are connected to n′fresh are labelled by × in γ′′, hence cannot be really416

affected by that sending. We relabel n′fresh to ×, and declare nmain
qi+1

= nfresh. The expected417

conditions of the statement are easily checked to be satisfied by this new execution. J418

Bounds are then obtained similarly to the reconfigurable case, see page 8.419

3.3 Matching lower bounds for reconfigurable and lossy networks420

In this section, we show that the linear bound on the cutoff and the quadratic bound on the421

length of witness executions are tight, both for the reconfigurable and the lossy broadcast422

networks.423

I Theorem 11. There exists a family of broadcast protocols (Pn)n with Pn = (Qn, In,Σn,∆n),424

and target states Fn ⊆ Qn with |Qn| ∈ O(n), such that for every n, COVERr(Pn, Fn) 6= ∅,425

COVERl(Pn, Fn) 6= ∅, and any witness reconfigurable or lossy execution has size O(n) and426

length O(n2).427

Proof. Consider Pn, as depicted in Figure 5 with 2n+1 states and Fn = { }. Any covering428

reconfigurable execution involves at least n+1 nodes, and has at least n2+5n
2 steps. Indeed,429

intuitively, the process responsible for broadcasting bi is blocked in q2i−1, so that n such430

processes are needed, plus one process in ; moreover, n+2−i broadcasts of ai and one431

broadcast of each bi happen. J432

4 Succinctness of reconfigurations compared to losses433

In this section, we show that reconfigurable executions can be linearly more succinct than434

lossy executions, in terms of number of nodes. Given the tight linear bound on cutoff, this is435

somehow optimal.436

I Theorem 12. There exists a family of broadcast protocols (Pn)n with Pn = (Qn, In,Σn,∆n)437

and target states Fn ⊆ Qn such that for every n:438

there exists a reconfigurable covering execution in Pnwith 3 nodes; and439

any lossy covering execution in Pn requires O(n) nodes.440

Proof. Pn is depicted in Figure 6. It has 3n+2 states and we let Fn = { }. A covering441

reconfigurable execution of size 3 is given in Figure 7. Colored nodes broadcast a message442

in the step leading to the next configuration. Along that execution, the top node always443

remains at q0 and alternatively broadcasts a to the middle node and disconnects; the middle444

node follows the chain of qi states and alternatively broadcasts bi’s to the bottom node which445

gradually progresses along the chain of states ri and reaches .446
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q0 q1 q2 q3 q4 · · · q2n

r1

⊥

r2 · · ·

!a

?a !b1 ?a !b2 ?a !bn

?b1 ?b2 ?bn

?bi

Figure 6 Example where reconfigurable semantics needs less nodes than lossy semantics.

q0

q0

q0

!a−→r
q1

q0

q0

!b1−→r
q2

r1

q0

!a−→r
q3

r1

q0

!b2−→r
· · · !bn−→r

q2n

q0

Figure 7 Covering reconfigurable execution with 3 nodes on the protocol from Figure 6.

Let us argue that in the lossy semantics, O(n) nodes are needed to cover . Obviously,447

one node, say n , is needed to reach the target state, after having received sequentially all448

the bi’s (which should then correspond to real broadcasts). Towards a contradiction, assume449

there is a node n which makes n progress twice, that is, n is connected to n and performs450

at least two real broadcasts, say !bi and !bj with i < j. Node n needs to receive j − i > 0451

times the message a after the real !bi has occurred, hence there must be at least one node452

in state q0 connected to n after the real !bi by n. This is not possible, since this node has453

received the real !bi while being in q0, leading to ⊥ if i > 1, otherwise ⊥ or r1. Hence, each454

broadcast !bi needs to be sent by a different node. This requires at least n+1 nodes, say455

{ni | 1 ≤ i ≤ n} ∪ {n }: node ni is responsible for broadcasting (with no loss) bi and n456

progresses towards . Notice that n might be the node responsible for broadcasting all the457

a’s. We conclude that n+1 is a lower bound on the number of nodes needed to cover in458

the lossy semantics.459

To complete this example, observe that n+1 nodes do actually suffice in lossy semantics460

to cover . Let N = {ni | 1 ≤ i ≤ n} ∪ {n } and consider the static communication topology461

defined by ni ∼ n for every i. In the covering lossy execution, node n initially broadcasts462

a’s, so that all its neighbours, the ni’s can move to q2i−1, using lost sendings. Then the each463

node ni broadcasts its message bito n , starting with n1 until nn, so that n reaches . J464

5 Complexity of deciding the size of minimal witnesses465

We now consider the following decision problem of determining the minimal size of coverability466

witnesses for both the reconfigurable and lossy semantics.467

468

Minimum number of nodes for coverability (MinCover)
Input: A broadcast protocol P, a set of states F ⊆ Q, and k ∈ N.
Question: Does there exist a reconfigurable/lossy execution ρ covering some state in F ,
and with #nodes(ρ) = k?

469
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s1 s2 . . . sm

q1 q2 q3 · · · qn

!a11, !a12, · · · !a21, !a22, · · · !am1, !am2, · · ·

?a1 ?a2 ?a3 ?an

Figure 8 Illustration of the reduction to prove NP-hardness of MinCover.

By the copycat properties (for both semantics), if there is a covering execution of size less470

than k, then there is one of size exactly k.471

I Theorem 13. MinCover is NP-complete for both reconfigurable and lossy broadcast472

networks.473

The NP-hardness of MinCover is proved by reduction from SetCover, which is known474

to be NP-complete [9]. Recall that SetCover takes as input a finite set of elements U , a475

collection S of subsets of U and an integer k, and returns yes iff there exists a subcollection476

of S of size at most k that covers U .477

Given an instance of the SetCover problem (U ,S, k) with U = {a1, a2, . . . , an} and478

S = {S1, S2, . . . , Sm}, we build a protocol P = (Q, I,Σ,∆) as depicted in Figure 8, where479

we assume Si = {ai1, ai2, . . . } for every i.480

We can then show that U has a cover using S of size k if and only if there exists a481

reconfigurable/lossy execution for P covering F and with k+1 nodes.482

For the NP-membership, it suffices to observe that the length of a minimal covering483

execution is polynomially bounded, thanks to Theorem 5 and 8. Moreover, configurations484

and updates of configurations by given transitions can be represented in and computed in485

a compact way. It is thus possible to implement a guess-and-check NP-algorithm for the486

MinCover problem, that non deterministically guesses an execution with k nodes of maximal487

length that is polynomially bounded in the size of the broadcast protocol.488

6 Conclusion489

In this paper, we have given a tight linear bound on the cutoff and a tight quadratic bound490

on the covering length for reconfigurable broadcast networks. We have also proposed a new491

semantics for broadcast networks with a static topology, where messages can be lost at492

sending. Similar tight bounds can be proven for that new semantics. Proofs are based on a493

refinement of the saturation algorithm of [2], and on fine analysis of copycat lemmas. As a494

side result of these constructions, we get that the set of states which can be covered by the495

two semantics is actually the same, but that the reconfigurable semantics can be linearly496

more succinct (in terms of number of nodes). We also prove the NP-completeness for the497

existence of a witness execution with the minimal number of nodes.498

As future work, we want to pursue the study of the model with stochastic losses, and499

design analysis algorithms for various quantitative questions. Also, in this work we have500

not studied the tradeoff between number of nodes and length of covering computation. The501

precise interplay between number of nodes and length of covering execution is a possible502

direction for future work.503
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