
Compositional Design of

Stochastic Timed Automata

?

Patricia Bouyer1, Thomas Brihaye2, Pierre Carlier1,2, and Quentin Menet2

1 LSV, CNRS, ENS Cachan, Université Paris-Saclay, France
2 Université de Mons, Belgium

Abstract. In this paper, we study the model of stochastic timed au-
tomata and we target the definition of adequate composition operators
that will allow a compositional approach to the design of stochastic
systems with hard real-time constraints. This paper achieves the first
step towards that goal. Firstly, we define a parallel composition operator
that (we prove) corresponds to the interleaving semantics for that model;
we give conditions over probability distributions, which ensure that the
operator is well-defined; and we exhibit problematic behaviours when this
condition is not satisfied. We furthermore identify a large and natural
subclass which is closed under parallel composition. Secondly, we define
a bisimulation notion which naturally extends that for continuous-time
Markov chains. Finally, we importantly show that the defined bisimula-
tion is a congruence w.r.t. the parallel composition, which is an expected
property for a proper modular approach to system design.

1 Introduction

Compositional design and compositional verification are two crucial aspects of
the development of computerised systems for which correctness needs to be
guaranteed or quantified. It is indeed convenient and natural to model separately
each component of a system and model their interaction, and it is easier and
probably less error-prone than to model at once the complete system.

In the last twenty years a huge e↵ort has been made to design expressive
models, with the aim to faithfully represent computerised systems. This is for
instance the case of systems with real-time constraints for which the model of
timed automata [1,2] is successfully used. Many applications like communication
protocols require models integrating both real-time constraints and randomised
aspects (see e.g. [25]), which requires the development of specific models. Recently,
a model of stochastic timed automata (STA) has been proposed as a natural
extension of timed automata with stochastic delays and stochastic edge choices
(see [8] for a survey of the results so far concerning this model). Advantages of
the STA model are twofold: (i) it is based on the well-understood and powerful

? The first and the third authors are supported by ERC project EQualIS. The second
author is partly supported by FP7-EU project Cassting. The fourth author was a
postdoctoral researcher at the Belgian National Fund for Scientific Research (FNRS).

model of timed automata, allowing to express hard real-time constraints like
deadlines (unlike for the widely used model of continuous-time Markov chains

(CTMCs in short)); (ii) it enjoys nice decidability properties (see [8,9]). On the
other hand, there is no obvious way of designing in a compositional manner a
complex system using this model.

In this paper we are inspired by the approach of [24], and we target the
definition of (parallel) composition operators allowing for a component-based
modelling framework for STA. This paper achieves the first steps towards that
goal:

1. We define a parallel composition operator that (we prove) corresponds to
the interleaving semantics for that model; we give conditions over families
of distributions over delays, which ensure that the operator is well-defined;
we exhibit problematic behaviours when this condition is not satisfied. We
furthermore identify a class of such well-behaving STA that is closed under
parallel composition. Note that this class of well-behaving systems encom-
passes the class of CTMCs.

2. We define a bisimulation notion which naturally extends that for CTMCs
[5,6,17], and we importantly show that the bisimulation is a congruence
w.r.t. parallel composition; this is an expected property for a proper modular
approach to system design.

The next step will be to extend the current composition operator with some
synchronisation between components. For CTMCs, this has required much e↵ort
over the years to come up with a satisfactory solution, yielding for instance the
model of interactive Markov chains (IMCs) [21,22]. We believe we will benefit a
lot from this solution and plan to follow a similar approach for STA; we leave
it as further work (the current work focuses on races between components and
establishes all useful properties at the level of STA).

Related works We do not list all works concerned with the verification of stochastic
real-time systems, but will focus on those interested in compositional design.
The first natural related work is that on interactive Markov chains (IMCs in
short) [21,22], which extend CTMCs with interaction, and for which compositional
verification methods have been investigated [13,23]. However in this model, only
soft real-time constraints can be evaluated (that is, they may not be always
satisfied by the system, but their likelihood is then quantified), and the model
cannot evolve di↵erently, depending on constraints over clocks. Our ultimate goal
is to extend the elegant approach of IMCs to a model based on timed automata.

Other related approaches are based on process algebras (note that originally
IMCs presented as a process algebra as well [21]). There have been several
proposals, among which the IGSMP calculus [12], whose semantics is given as
generalised semi-Markov processes (GSMPs); and the stochastic process algebra
� [15,16], whose semantics is given as �-stochastic timed automata (we write
�-STA). Our model very much compares to the latter, so we will briefly describe
it. In such a system, when a clock variable is activated, it is sampled according to a
predefined distribution, and then it acts as a countdown timer: when time elapses,

the clock variables decrease down to 0. Transitions can be fired once all clocks
specified on the transition have reached value 0. First notice that both STA and �-
STA allow to express hard real-time constraints, e.g. strict deadlines to be satisfied
by the system (which is not the case of CTMCs or IMCs). Then the �-STA
model is at the basis of several modelling languages like Modest [10] and comes
with several notions of bisimulations with nice congruence properties, and with a
complete equational theory. It is interesting to mention as well that �-STA allow
for infinitely many states and clock variables, whereas STA do not (they have been
defined on top of timed automata, with desirable decidability properties in mind).
Similarly to �-STA, STA extend (finite-state and finite-variable) GSMPs,1 but
for di↵erent reasons: �-STA allows for fixed-delay events and non-determinism,
whereas STA allows for more intricate timing constraints and branchings.2 Finally,
it is worth mentioning the modelling language Modest [10], whose semantics
is given as a very general notion of stochastic timed automata (we call them
Modest-STA), which comes with an interesting tool suite [19,20], and which
encompasses all the models we have mentioned. STA in general, and the subclass
that is closed under parallel composition while enjoying decidability properties,
can be viewed as a fragment of Modest-STA.

The full version of this work and detailed proofs are given in [11].

2 Stochastic Timed Automata

In this section, we recall the notion of timed automaton [2], and that of stochastic
timed automaton [8]. Let X = {x1, . . . , xn} be a finite set of real-valued variables
called clocks. A clock valuation over X is a mapping ⌫ : X ! R+ where R+ is
the set of nonnegative real numbers. We write RX

+ for the set of clock valuations
over X. If ⌫ 2 RX

+ , we write ⌫i for ⌫(xi) and we then denote ⌫ by (⌫1, . . . , ⌫n). If
⌧ 2 R+, we write ⌫ + ⌧ for the clock valuation defined by (⌫1 + ⌧, . . . , ⌫n + ⌧). If
Y 2 2X (the power set of X), [Y 0]⌫ is the valuation that assigns to x, 0 if
x 2 Y and ⌫(x) otherwise. A guard

3 over X is a finite conjunction of expressions
of the form xi ⇠ c where c 2 N and ⇠ 2 {<,>}. We denote by G(X) the set of
guards over X. We write ⌫ |= g if ⌫ satisfies g, which is defined in a natural way.

Definition 1. A timed automaton (TA in short) is a tuple A = (L,L0, X,E,AP,L)
where: (i) L is a finite set of locations, (ii) L0 ✓ L is a set of initial locations,

(iii) X is a finite set of clocks, (iv) E ✓ L ⇥ G(X) ⇥ 2X ⇥ L is a finite set of

edges, (v) AP is a set of atomic propositions and (vi) L : L! 2AP is a labelling

function.

The semantics of a TA is a labelled timed transition system TA = (Q,Q0,R+⇥
E,!,AP,L) where Q = L ⇥ RX

+ is the set of states, Q0 = L0 ⇥ 0X is the set

1 This can be seen using the residual-time semantics given in [18,14].
2 Somehow, the clock behaviour in GSMPs and in �-STA is that of countdown timers
(which can be seen as event-predicting clocks of [3]), which is not as rich as general
clocks in standard timed automata.

3 We restrict to open guards for technical reasons due to stochastic aspects.

of initial states (valuation 0X assigns 0 to each clock), L : Q ! 2AP labels
each state q = (l, ⌫) 2 Q by L(l) and ! ✓ Q⇥ (R+ ⇥ E)⇥Q is the transition
relation defined as follows: if e = (l, g, Y, l0) 2 E and ⌧ 2 R+, then we have

(l, ⌫)
⌧,e�! (l0, ⌫0) if (⌫ + ⌧) |= g and ⌫

0 = [Y 0](⌫ + ⌧). If q = (`, ⌫), for every
⌧ � 0, q + ⌧ denotes (`, ⌫ + ⌧). A finite (resp. infinite) run ⇢ is a finite (resp.

infinite) sequence ⇢ = q1
⌧1,e1��! q2

⌧2,e2��! Given q 2 Q, we write Runs(A, q)
for the set of infinite runs in A from q. Given q 2 Q and e 2 E we define
I(q, e) = {⌧ 2 R+ | 9q0 2 Q s.t. q

⌧,e�! q

0} and I(q) =
S

e2E I(q, e).
We now define the notion of stochastic timed automaton [8], by equipping

every state of a TA with probabity measures over both delays and edges.

Definition 2. A stochastic timed automaton (STA in short) is a tuple A =
(L,L0, X,E,AP,L, (µq, pq)q2L⇥RX

+
) where (L,L0, X,E,AP,L) is a timed au-

tomaton and for every q = (l, ⌫) 2 L⇥ RX
+ ,

(i) µq is a probability distribution over I(q) and pq is a probability distribution

over E such that for each e = (l, g, Y, l0) 2 E, pq(e) > 0 i↵ ⌫ |= g,

(ii) µq is equivalent to the restriction of the Lebesgue measure on I(q),4 and

(iii) for each edge e, the function pq+•(e) : R+ ! [0, 1] that assigns to each t � 0
the value pq+t(e), is measurable.

We fix A a STA, with the notations of the definition. We let Q = L ⇥ RX
+

be the set of states of A, and pick q 2 Q. We aim at defining a probability
distribution PA over Runs(A, q). Let e1, . . . , ek be edges of A, and C ✓ Rk

+ be
a Borel set. The (constrained) symbolic path starting from q and determined
by e1, . . . , ek and C is the following set of finite runs: ⇡C(q, e1, . . . , ek) = {⇢ =

q

⌧1,e1��! q1 · · ·
⌧k,ek��! qk | (⌧1, . . . , ⌧k) 2 C}. Given a symbolic path ⇡, we define the

cylinder generated by ⇡ as the subset Cyl(⇡) of Runs(A, q) containing all runs ⇢
with a prefix ⇢

0 in ⇡.
We inductively define a measure over the set of symbolic paths as follows:

PA(⇡C(q, e1, . . . , ek)) =

Z

t12I(q,e1)
pq+t1(e1)PA(⇡C[⌧1/t1]

(qt1 , e2, . . . , ek)) dµq(t1),

where for every t1 � 0, qt1 is such that q
t1,e1��! qt1 and C[⌧1/t1] replaces variable

⌧1 by t1 in C; we initialise with PA(⇡(q)) = 1. The formula for PA relies on the
fact that the probability of taking transition e1 at time t1 coincides with the
probability of waiting t1 time units and then choosing e1 among the enabled
transitions, i.e. pq+t1(e1) dµq(t1). Now, one can extend PA to the cylinders by
PA(Cyl(⇡)) = PA(⇡), where ⇡ is a symbolic path. Using some extension theorem
as Carathéodory’s theorem, we can extend PA in a unique way to the �-algebra
generated by the cylinders starting in q, which we denote ⌦

q
A.

Proposition 1 ([8]). Let A = (L,L0, X,E,AP,L, (µq, pq)q2L⇥RX
+
) be a STA.

For every state q 2 Q, PA is a probability measure over (Runs(A, q),⌦q
A).

4 Two measures µ and ⌫ on the same measurable space are equivalent whenever for
every measurable set A, µ(A) > 0 i↵ ⌫(A) > 0.

IP

Exp(µ)

Wait1

Exp(�)

Wait2

Exp(�)

Wait3

Exp(�)

OK

Error

x:=0 x>T

x:=0

x>T

x:=0

x>T

1�↵

x<T

x<T

x<T

x

>

T

,

↵

Fig. 1. The IPv4 Zeroconf STA.

l1

A1

B1

G1

x1>
2

x1<2

l2

A2

B2

Fig. 2. A1 /2 CSTA.

Remark 1. Among others, the set of Zeno runs is measurable in ⌦

q
A;

5 writing
CM,k for {(⌧1, . . . , ⌧k) 2 Rk

+ | ⌧1+ . . .+⌧k M} it is indeed expressible as follows:

[

M2N

\

k2N0

[

(e1,...,ek)2Ek

Cyl(⇡CM,k(q, e1, . . . , ek)).

Remark 2. A CTMC can be viewed as a STA with trivial guards on transitions
and exponential distributions over delays.

We now give an example of STA.

Example 1. We model the IPv4 Zeroconf protocol using STA as done in [8] (see
Figure 1). This protocol aims at configuring IP addresses in a local network of
appliances. When a new appliance is plugged, it selects an IP address at random,
and broadcasts several probe messages to the network to know whether this
address is already used or not. If it receives in a bounded delay an answer from
the network informing that the IP is already used, then a new IP address is
chosen. It may be the case that messages get lost, in which case there is an error.
In [7], a simple model for the IPv4 Zeroconf protocol is given as a discrete-time
Markov chain, which abstracts away timing constraints. In Figure 1, we model
the protocol as a STA with a single clock x, and exponential distributions (of
parameters µ and �) and this allows us to explicitly express the delay bound.

Discussion on the model. STA have been defined and studied in a series of papers
from 2007, with a complete journal version published as [8]. They can be used
for modelling systems with stochastic aspects and real-time constraints (they are
based on the standard model of timed automata [2] and extend the model of
CTMCs) and are amenable to automatic verification. The class of almost-surely

fair STA

6 is of particular interest. Indeed:

Theorem 1 ([8]). The almost-sure model-checking problem is decidable for the

class of almost-surely fair STA, with regards to !-regular properties or properties

given as deterministic timed automata.

5 We recall that a run ⇢ = q
⌧1,e1��! q1

⌧2,e2��! . . . is Zeno if
P

i�1 ⌧i < +1.
6 A STA is said almost-surely fair whenever PA(fair) = 1, where a run is fair if and
only if (roughly speaking) any edge enabled infinitely often is taken infinitely often.

There exists surprisingly simple examples of STA which are not almost-surely fair
(see for example [8, Figure 9]), but large classes of STA have been identified in [8],
that are almost-surely fair (they include single-clock STA and (weak-)reactive
STA). Deciding whether a STA is almost-surely fair is an open problem

The approach adopted so far for modelling and verifying is monolithic. We
target modular design of STA and describe a class of STA in which composition
can safely be applied.

3 Parallel Composition of Stochastic Timed Automata

Compositional design is desirable for building computerised systems. Inspired
by the approach of [24], we first define a parallel composition operator for
STA, which corresponds to an interleaving semantics. This operator involves
complex behaviours that are due to races between components. We therefore give
conditions under which STA can be safely composed.

Remark 3. As already mentioned earlier, we focus here on an interleaving parallel
composition operator between STA, and study the races between components.
Extension to a parallel composition operator with some synchronisation is part of
our future work, and we plan to adopt the idea of interactive Markov chains [21,22],
which extend CTMCs with interactive actions, for the purpose of synchronisation.

3.1 Definition of the parallel composition

We consider two STA Ai = (Li, L
(i)
0 , Xi, Ei,APi,Li, (µ

(i)
q , p

(i)
q)

q2Li⇥RXi
+
) for i =

1, 2 with X1 \ X2 = ;, and we first recall the standard (interleaving) parallel
composition for the underlying TA. It is the TA (L,L0, X,E,AP,L) where

L = L1 ⇥ L2, L0 = L

(1)
0 ⇥ L

(2)
0 , X = X1 [X2, AP = AP1 [AP2, L : L ! 2AP

is such that L((l1, l2)) = L1(l1) [L2(l2) and where E = E1,• [E•,2 with
E1,• = {((l1, l2), g, Y, (l01, l2)) | (l1, g, Y, l01) 2 E1, l2 2 L2}.

Back to the STA, the parallel composition A1 k A2 has as underlying TA the
one above; it remains to equip each state q = (q1, q2) 2 Q1 ⇥Q2 with probability
distributions over both delays and edges, with the following constraints:

– distributions over delays from state (q1, q2) should reflect a race between the
two components A1 and A2 from respectively states q1 and q2;

– distributions over edges should be state-based (or memoryless), that is, should
not depend on how long has been waited before taking that edge, or which
other actions have been done meanwhile by other components;

– globally, the product-automaton should correspond to the interleaving of
A1 and A2, which we express as follows: given a property '1 that only
concerns A1 and a property '2 that only concerns A2, PA1kA2

('1 ^ '2) =
PA1('1) · PA2('2).

Example 2 will illustrate the intricacy of getting these conditions satisfied.

Let A be a STA and let q = (l, ⌫) 2 Q be a state of A. We write fq for
the density function of µq w.r.t. the Lebesgue measure. We write Fq for the
cumulative function associated to fq.

We now define a first class of STA, called CSTA, which is suitable to define a
parallel composition. We say that a STA A is in CSTA if:

(A) for every state q of A, the density function associated with µq, denoted by
fq, is continuous everywhere on R+ except in a finite number of points, and

(B) the family of probability distributions (µq)q2Q is weakly-memoryless, i.e. for
every t, t

0 � 0, PA(Xq � t + t

0 | Xq � t) = PA(Xq+t � t

0), where Xq (resp.
Xq+t) is a random variable with density function fq (resp. fq+t).

This second condition is a consistency condition between states which belong
to the same ‘time-elapsing fiber’, that is, sets of the form F = {q + t | t 2
R and q + t 2 Q}. Indeed, Xq (resp. Xq+t) represents the delay after which we
leave state q (resp. q+t) via an edge. Hence if q0 is the minimal (for time-elapsing)
element of F , then for every q = q0 + t 2 F , the law of Xq has to be equal to
the law of Xq0 conditioned by the fact that t time units have already passed.
The distribution in q0 can be taken arbitrary (satisfying condition (A)), and
distributions for q 2 F can then be inferred.

Condition (B) can equivalently be written as: for every t, t

0 � 0,

fq(t+ t

0) = (1� Fq(t))fq+t(t
0) (1)

Remark 4. Let q0 be an initial element of a fiber, we can check that for instance,

– if I(q0) is a bounded subset of R+ and if µq0 is a uniform distribution over
I(q0), then for every t 2 R+, (B) imposes that µq0+t is also uniform over
I(q0 + t);

– similarly, if I(q0) = R+, and if µq0 is an exponential distribution with
parameter � (denoted Exp(�)), then for every t 2 R+, (B) imposes that µq0+t

is also an Exp(�)-distribution. This corresponds to the classical memoryless
property assumed in CTMCs.

We can now explain how to build the probability distributions associated with
a state q = (q1, q2) of A1 k A2. Since we leave state q = (q1, q2) as soon as we
leave q1 or q2, we naturally define the distribution over the delays from q as the
minimum of the distributions over delays from q1 and q2. Under hypothesis (A)
for the distributions from q1 and q2, one can show that the density function fq for
the minimum satisfies fq(t) = fq1(t)(1�Fq2(t))+ fq2(t)(1�Fq1(t)) almost-surely
for every t � 0 (w.r.t. the Lebesgue measure).

In order to define the probability distribution pq over the enabled edges in
q, one could consider that from state q, both systems A1 and A2 are in a race
to win the next edge, i.e. A1 wins the race if the first edge taken from q is in
E1. Hence, given t 2 I(q), and an edge e 2 E1 enabled in q + t, one would like
that pq+t(e) = w

1
q(t)pq1+t(e) where w

1
q(t) is the probability that, starting from

q, A1 wins the race knowing that it was won after a delay of t time units. This
can be formalized, and under hypothesis (A) for fq1 and fq2 , we can show that if

fq(t) 6= 0, then w

1
q(t) =

fq1 (t)(1�Fq2 (t))
fq(t)

almost-surely.

Definition 3. Let Ai = (Li, L
(i)
0 , Xi, Ei, APi,Li, (µ

(i)
q , p

(i)
q)

q2Li⇥RXi
+
) for i =

1, 2 be two STA. We say that A1 and A2 are composable if A1 and A2 are in

CSTA and X1 \X2 = ;.In that case, we define the parallel composition of A1

and A2 as the STA A1 k A2 = (L,L0, X,E,AP,L, (µq, pq)q2L⇥RX
+
), where for

any state q = (q1, q2) of A1 k A2,

(i) (L,L0, X,E,AP,L) is the composition of the underlying TA A1 and A2,

(ii) µq is defined by its density function fq = fq1(1� Fq2) + fq2(1� Fq1), and
(iii) for any t 2 I(q), pq+t is defined as follows:

pq+t(e) = 1E1(e)w
1
q(t)pq1+t(e) + 1E2(e)w

2
q(t)pq2+t(e)

for every e 2 E, where w

i
q =

fqi
fq

(1� Fq3�i) on I(q), for i = 1, 2.

3.2 Properties of the parallel composition

We are now ready to prove that this parallel composition operator satisfies all
the expected properties. We assume the notations of Definition 3. First:

Lemma 1. The distributions µq and pq are well-defined, and the STA A1 k A2

belongs to the class CSTA.

We now give an example of a family of probability measures that do not satisfy
hypothesis (B), which yields undesirable properties in the parallel composition.

Example 2 (Counter-example for condition (B)). We consider the single-clock
STA A1 depicted in Figure 2 (page 5). We assume µq1 is an exponential distribu-
tion of parameter �1 (resp. �0

1) if q1 = (l1, ⌫1) with ⌫1 < 1 (resp. ⌫1 � 1), and
with �1 6= �

0
1. Then for each ⌫1 2 [0, 1[, µq1 does not satisfy hypothesis (B). We

then compose A1 with the STA A2. Each state q2 = (l2, ⌫2) is equipped with an
exponential distribution of parameter �2 = �

0
1 over the delays. It can be shown

that the probability to reach B1 in A1 corresponds to the probability to reach
(B1, B2) in A1 k A2 i↵ ln(�1)� ln(�2) = �1 � �2, which is not true in general.

Example 3. In order to illustrate the notion of composition, we composed two
independent copies of the STA modelling the IPv4 Zeroconf protocol (see Exam-
ple 1). Part of the composed STA is depicted in Figure 3.

It remains to identify when the parallel composition really coincides with an
interleaving semantics. This is in general not true, as already shown in Example 2
(which does not satisfy Condition (B)), and witnessed further by Example 4
below (which satisfies both conditions (A) and (B)).

IP1,IP2

Exp(µ1+µ2)

W1,1,IP2

Exp(�1+µ2)

IP1,W1,2

Exp(µ1+�2)

...

W2,1,IP2

Exp(�1+µ2)

...

W1,1,W1,2

Exp(�1+�2)

...

x1:=0;
µ1

µ1+µ2

x2:=0;
µ2

µ1+µ2

x1<T ;
�1

�1+µ2

x1>T ;
�1

�1+µ2

x

2 :=0; µ
2�

1+µ
2

Fig. 3. The product of two STA modelling the IPv4 Zeroconf

l1

A1

l2

A2

e1,x1>2

e2,x2<1

Fig. 4. A2 is Zeno

Example 4. We consider the STA A1 and A2 of Figure 4, equipped resp. with
an Exp(�)-distribution and a uniform distribution. Let q = (q1, q2) be a state of

A1 k A2, with qi = (li, 0). One can easily check that PA1kA2
(q !⇤ e1�!) = 0 while

PA1(Cyl(⇡(q1, e1))) = 1 which contradicts the independence property we expect.
One can notice that A2 is Zeno with probability 1.

Hence we define a subclass CSTA⇤ of CSTA; A 2 CSTA will be in CSTA⇤ if:

(C) A is almost-surely non-Zeno.

Remark 5. Hypothesis (C) is not too restrictive since Zeno runs can be seen as
faulty behaviours (they perform infinitely many actions in a finite amount of
time, which is not realistic). We will see that hypothesis (C) is su�cient (together
with (A) and (B)) to show that the parallel composition really coincides with
an interleaving semantics. Note that condition (C) can be decided in various
subclasses of STA [8].

We give some more notations. Let A be a STA and let ' be a property for A.
Given a state q, we say that ' is measurable from q if the set of runs starting
from q satisfying ' is in ⌦

q
A; we write this set {q |= '}. Now let A1 and A2

be two composable STA. For i = 1, 2, we write ◆i for the natural projection of
Runs(A1 k A2, (q1, q2)) onto Runs(Ai, qi), and given a measurable property 'i

in Ai from qi, we write {(q1, q2) |= e'i} for the set ◆�1
i ({qi |= 'i}). The following

theorem states that the defined parallel composition is indeed interleaving.

Theorem 2. Let A1,A2 2 CSTA⇤
be composable. Then A1 k A2 2 CSTA⇤

.

Moreover, for every state q = (q1, q2) of A1 k A2, for every properties '1

measurable in A1 from q1 and '2 measurable in A2 from q2, we have

PA1kA2
({q |= e'1} \ {q |= e'2}) = PA1({q1 |= '1}) · PA2({q2 |= '2}). (2)

Proof (Sketch). Given A1 and A2 in CSTA⇤, thanks to Lemma 1, it su�ces to
prove that A1 k A2 is almost-surely non-Zeno. This will be ensured by (2) and
the fact that non-Zenoness is a measurable property.

The important first step to prove (2) consists in showing that, given an edge
e1 of A1, the probability in A1 k A2 that e1 is the first edge from A1 (with
possibly edges from A2 taken before) performed from q = (q1, q2) in a given
set of delays � corresponds to the probability in A1 that e1 is the first edge
performed from q1 in the same set of delays �. In order to do so, hypothesis (B)
is crucial. The rest of the proof is long and technical but does not contain major
di�culties. ut

Remark 6. Note that an almost-surely non-Zeno STA A equipped with uniform
or exponential distributions such that it satisfies conditions (A) and (B) (i.e.
as in Remark 4), it holds that A is in CSTA⇤. As said before, we have large
classes of STA that are almost-surely fair. For (weak-)reactive STA, it holds that
they are almost-surely non-Zeno. Equipping them with uniform or exponential
distributions as in Remark 4) make them also composable.

4 Bisimulation and Congruence

In this section, we define a notion of bisimulation for STA which naturally extends
that for CTMCs [4,6,17]. We importantly show that the defined bisimulation is
a congruence w.r.t. parallel composition: this means that, in a complex system,
a component can be replaced by an equivalent one without a↵ecting the global
behaviour of the system.

4.1 Bisimulation

To define a bisimulation relation between STA, we are inspired by the approach
of [17], which considers continuous-time Markov processes (CTMPs) – CTMPs
generalize CTMCs to general continuous state-spaces; this definition of bisimula-
tion that is given for CTMPs can be adapted to our context (note however that
STA cannot be seen as particular CTMPs).

We first define some notions. A subset P ✓ Rn is a polyhedral set if it is
defined by a (finite) boolean combination of constraints of the form A1x  b1

or A2x < b2, where x = (x1, . . . , xn) is a variable, A1 2 Rm1⇥n, b1 2 Rm1 ,
A2 2 Rm2⇥n and b2 2 Rm2 .

Let A be a STA, Q be its set of states, and P (Q) = {[l2L{l} ⇥ Cl | 8l 2
L, Cl polyhedral set of Rn

+} where n is the number of clocks of A. The set
P (Q) is a proper subset of the Borel �-algebra over L⇥ Rn

+, which is closed by
projection (contrary to the Borel �-algebra). We then define the closure of R
w.r.t. polyhedral sets, and we write pcl(R) as the following set pcl(R) = {A 2
P (Q) | (a 2 A ^ aRb)) b 2 A}. One can notice that pcl(R) corresponds to
the set of all polyhedral unions of equivalence classes. Given two equivalence
relations R and R0 over S we say that R0 is coarser than R or that R is finer
than R0 if R ✓ R0.

Definition 4. Let A = (L,L0, X,E,AP,L, (µq, pq)q2L⇥RX
+
) be a STA. An equiv-

alence relation R over Q = L ⇥ RX
+ is a bisimulation for A if for all q, q

0 2 Q

with qRq

0
: (i) L(q) = L(q0), and (ii) for every I 2 B(R+), for every C 2 pcl(R),

PA
�
{q |= I,E�! C}

�
= PA

�
{q0 |= I,E�! C}

�
,

where {q |= I,E�! C} stands for {⇢ 2 Runs(A, q) | 9⌧ 2 I, 9e 2 E, ⇢ = q

⌧,e�!
q1 ! · · · ^ q1 2 C}. States q and q

0
are bisimilar (written q ⇠ q

0
) if there is a

bisimulation that contains (q, q0).

l0

{a}

A

l1

{b}

l2

{b}

0<x

1<
1

0
<

x2<1

1

1

⌫

⌫

A⌫

[1,1[2

Fig. 5. A simple example for bisimulation.

l

0
0

B

{a}

l

0
1

{b}
0<x<1

Fig. 6. B is bisimilar to A.

Given q 2 Q, I 2 B(R+) and C 2 pcl(R) the value PA
�
{q |= I,E�! C}

�
can be

expressed:

PA
�
{q |= I,E�! C}

�
=

Z

t2I
Pq+t(C)fq(t) dt

where the value Pq+t(C) corresponds to the probability to reach instantaneously
C from state q+ t. Formally: Pq+t(C) =

P
l02L

P
e2El0

pq+t(e)1Cl0 (e,⌫)(t) for each

t � 0 and each C 2 pcl(R), where, given l

0 2 L, El0 is the set of edges with
target l0, and given e = (l, g, Y, l0), Cl0(e, ⌫) = {t 2 R+ | [Y 0](⌫ + t) 2 Cl0}. It
can be shown that for every t � 0, Pq+t is a probability measure over Q.

Also, given a STA A, one can show that ⇠ is the coarsest bisimulation for A.

The above natural definition enjoys the following very nice characteriza-
tion, which shows that our definition is conservative w.r.t. bisimulation over
CTMCs [4,6].

Proposition 2. Let A be a STA and let R be a bisimulation for A. Then for

all q, q

0 2 Q, qRq

0
if and only if (i) L(q) = L(q0), (ii) µq = µq0 , and (iii) for

every C 2 pcl(R), Pq+t(C) = Pq0+t(C) almost-surely for every t � 0.

Proof (Sketch). Point (i) is obvious, and points (ii) and (iii) come from the fact
that qRq

0 if for each C 2 pcl(R) and for each I 2 B(R+),
Z

t2I
Pq+t(C)fq(t) dt =

Z

t2I
Pq0+t(C)fq0(t) dt.

With C = L⇥ B(Rn
+), where n is the number of clocks, we get that Pq+t(C) = 1

and thus fq = fq0 almost-surely, i.e. µq = µ

0
q. It can then be easily shown that

point (iii) holds. ut

We now illustrate the notion of bisimulation on a simple example.

Example 5. Let us consider the simple STA A with two clocks on Figure 5.
We assume exponential distributions with parameter � for every state at l1

or l2, and from a state of the form q = (l0, (⌫1, ⌫2)) with ⌫1 < 1 or ⌫2 < 1,
I(q) = [0, 1�min(⌫1, ⌫2)[and so we can equip q with a uniform distribution on
the interval I(q) for the delays.

The coarsest bisimulation ⇠ can easily be computed and is shown on the
right part of Figure 5: at location l0, it is described by the following equivalence
classes, for each ⌫ 2 [0, 1[: A⌫ = {l0}⇥

�
{(⌫1, ⌫) | ⌫1 � ⌫} [{(⌫, ⌫2) | ⌫2 � ⌫}

�
.

We extend the previous notion of bisimulation to two STA in a standard way
(see [7]), by considering the union of the two STA, and a bisimulation relation
between the initial states. If A1 and A2 are two STA, we write A1 ⇠ A2 when
the two STA are bisimilar.

Example 6. Let us consider the one-clock STA B (Figure 6). Assuming that we
have the same probability distributions as STA A of Figure 5, it can be easily
established that B ⇠ A by noticing that for each ⌫ 2 [0, 1[, (l00, ⌫) is bisimilar to
each state of A⌫ .

4.2 Congruence

One of the main objectives of defining behavioural equivalences is to aim at
modular design and proof of correctness. This is only possible if bisimulation
is a congruence w.r.t. parallel composition, that is, if A1 ⇠ A2, then for every
B, A1 k B ⇠ A2 k B. We first prove the following natural lemma which is a key
point for proving the congruence of the bisimulation w.r.t. parallel composition.
Though very intuitive, the result is surprisingly quite technical to prove.

Lemma 2. Let A,B 2 CSTA⇤
with sets of states resp. QA and QB. If R is a

bisimulation for A then the equivalence relation R0
over QA ⇥ QB defined by

R0 = {((q1, q), (q2, q)) | q1Rq2 and q 2 QB}, is a bisimulation for A k B.

We can now state the main result of this section:

Theorem 3. Bisimulation is a congruence w.r.t. parallel composition. That is:

if A1, A2 and B are three STA in CSTA⇤
, if A1 ⇠ A2 then A1 k B ⇠ A2 k B.

5 Conclusion

In this paper we have described a formal framework for compositional design
of stochastic timed automata. We have established properties that should be
satisfied by distributions over delays for well-defined parallel composition between
components. We have proposed a natural notion of bisimulation and proven that
it is a congruence w.r.t. parallel composition. We have also identified a subclass
of STA which is closed under parallel composition.

We plan to extend our current work to so-called interactive STA (follow-
ing [21,22]): the idea will be to add non-guarded interactive synchronizing events
which take priority over delays when they are enabled. We hope that a parallel
composition with synchronisation can be nicely defined in that setting, and that
the model will enjoy nice properties as is the case in this paper.

There are many other plans for the future:

– Following the approach of [17,5], we would like to give a logical characteriza-
tion of the bisimulation using (a subset of) CSL;

– We would like to be able, given a STA, to compute a small quotient automaton
that would allow reduce the size of the system;

– All algorithms that have been developed so far for analyzing STA require a
unique STA describing the system under analysis; we target the development
of compositional verification (or approximation) methods, as it is done for
instance for interactive Markov chains [13,23]. We would then like to see how
this performs in practice.

References

1. R. Alur and D. Dill. Automata for modeling real-time systems. In Proc. 17th Int.
Coll. Automata, Languages and Programming (ICALP’90), volume 443 of LNCS,
pages 322–335. Springer, 1990.

2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

3. R. Alur, L. Fix, and T.A. Henzinger. A determinizable class of timed automata.
In Proc. 6th International Conference on Computer Aided Verification (CAV’94),
volume 818 of LNCS, pages 1–13. Springer, 1994.

4. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Software Engineering, 29(7):524–
541, 2003.

5. C. Baier, H. Hermanns, J.-P. Katoen, and V. Wolf. Comparative branching-time
semantics for Markov chains. Information and Computation, 200:149–214, 2005.

6. C. Baier, H. Hermanns, J.-P. Katoen, and V. Wolf. Bisimulation and simulation
relations for Markov chains. In Proc. Workshop Essays on Algebraic Process Calculi,
volume 162 of ENTCS, pages 73–78, 2006.

7. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
8. N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, Ch. Baier, M. Größer, and M. Ju-

rdziński. Stochastic timed automata. Logical Methods in Computer Science,
10(4):1–73, 2014.

9. N. Bertrand, P. Bouyer, Th. Brihaye, and N. Markey. Quantitative model-checking
of one-clock timed automata under probabilistic semantics. In Proc. 5th Int. Conf.
Quantitative Evaluation of Systems (QEST’08). IEEE Comp. Soc. Press, 2008.

10. H. Bohnenkamp, P D’Argenio, H. Hermanns, and J.-P. Katoen. MODEST: A
compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Software Engineering, 32(10):812–830, 2006.

11. P. Bouyer, T. Brihaye, P. Carlier, and Q. Menet. Compositional design of stochas-
tic timed automata. Research Report LSV-15-06, Laboratoire Spécification et
Vérification, ENS Cachan, France, December 2015. 51 pages.

12. M. Bravetti and R. Gorrieri. The theory of interactive generalized semi-Markov
processes. Theoretical Computer Science, 282(1):5–32, 2002.

13. T. Brázdil, H. Hermanns, J. Krcál, J. Kret́ınský, and V. Rehák. Verification of
open interactive Markov chains. In Proc. 31sth Conf. Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’12), volume 18 of LIPIcs,
pages 474–485. Springer, 2012.

14. T. Brázdil, J. Krčál, J. Křet́ınský, and V. Řehák. Fixed-delay events in generalized
semi-Markov processes revisited. In Proc. 22nd Int. Conf. Concurrency Theory
(CONCUR’11), volume 6901 of LNCS, pages 140–155. Springer, 2011.

15. P. D’Argenio and J.-P. Katoen. A theory of stochastic systems Part I: Stochastic
automata. Information and Computation, 203(1):1–38, 2005.

16. P. D’Argenio and J.-P. Katoen. A theory of stochastic systems Part II: Process
algebra. Information and Computation, 203(1):39–74, 2005.

17. J. Desharnais and P. Panangaden. Continuous stochastic logic characterizes bisim-
ulation of continuous-time Markov processes. Journal of Logic and Algebraic
Programming, 56:99–115, 2003.

18. P.W. Glynn. A GSMP formalism for discrete event systems. Proc. of the IEEE,
77(1):14–23, 1989.

19. A. Hartmanns. Modest – A unified language for quantitative models. In Proc. 2012
Forum on Specification and Design Languages (FDL’12), pages 44–51. IEEE Comp.
Soc. Press, 2012.

20. A. Hartmanns and H. Hermanns. The Modest toolset: An integrated environment
for quantitative modelling and verification. In Proc. 20th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, volume
8413 of LNCS, pages 593–598. Springer, 2014.

21. H. Hermanns. Interactive Markov Chains: The Quest for Quantified Quality, volume
2428 of LNCS. Springer, 2002.

22. H. Hermanns and J.-P. Katoen. The how and why of interactive Markov chains.
In Proc. 8th Int. Symp. Formal Methods for Components and Objects (FMCO’09),
volume 6286 of LNCS, pages 311–337. Springer, 2009.

23. H. Hermanns and J. Krcál, J. anf Kret́ınský. Compositional verification and
optimization of interactive markov chains. In Proc. 24th Int. Conf. Concurrency
Theory (CONCUR’13), volume 8052 of LNCS, pages 364–379. Springer, 2013.

24. H. Hermanns and L. Zhang. From concurrency models to numbers – Performance
and dependability. In Software and Systems Safety – Specification and Verification,
volume 30 of NATO Science for Peace and Security Series, pages 182–210. IOS
Press, 2011.

25. M. Stoelinga. Fun with FireWire: A comparative study of formal verification
methods applied to the IEEE 1394 root contention protocol. Formal Aspects of
Computing, 14(3):328–337, 2003.

	Compositional Design of Stochastic Timed Automata

