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Abstract
In 2007, Abdulla et al. introduced the elegant concept of decisive Markov chain. Intuitively,
decisiveness allows one to lift the good properties of finite Markov chains to infinite Markov
chains. For instance, the approximate quantitative reachability problem can be solved for decis-
ive Markov chains (enjoying reasonable e�ectiveness assumptions) including probabilistic lossy
channel systems and probabilistic vector addition systems with states. In this paper, we extend
the concept of decisiveness to more general stochastic processes. This extension is non trivial
as we consider stochastic processes with a potentially continuous set of states and uncountable
branching (common features of real-time stochastic processes). This allows us to obtain de-
cidability results for both qualitative and quantitative verification problems on some classes of
real-time stochastic processes, including generalized semi-Markov processes and stochastic timed
automata.
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1 Introduction

Given its success for finite-state systems, the model checking approach to verification has
been extended to various models based on automata, and including features such as time,
probability and infinite data structures. Such models allow one to represent software systems
more faithfully, and at the same time, they o�er the possibility to consider quantitative
verification questions. Such problems become particularly hard to solve for infinite-state
systems, often requiring the development of dedicated techniques for each class of systems.

A decade ago, Abdulla et al. introduced the concept of decisiveness for denumerable
Markov chains [2]. A Markov chain is decisive w.r.t. a set of states F if runs almost-surely
reach F or a state from which F can no longer be reached. The concept of decisiveness rules
out some weird behaviours in denumerable Markov chains, and lifts most good properties
of finite Markov chains to infinite Markov chains. In particular, it enables the quantitative
model checking of (repeated) reachability properties, by providing an approximation scheme,
which is guaranteed to terminate for decisive Markov chains. Decisiveness also elegantly
subsumes other concepts such as the existence of finite attractors, or coarseness [2].

Dense time required for representing real-time systems, is a potential source of infinity.
However, stochastic real-time systems cannot be handled by the theory of decisive Markov
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chains, as both the state space and the branching are in general non-denumerable. The
general philosophy for models with dense time is to design an abstraction that preserves some
properties of the original model, and is amenable to e�cient model checking techniques. A
prominent example of such abstractions is the region graph for timed automata [4]. However,
abstractions often do not preserve quantitative properties, and they may be too coarse
already for the evaluation of the probability of properties as simple as reachability properties.

In this paper, we generalize the concept of decisiveness to arbitrary stochastic systems,
thus including the ones generated by real-time stochastic systems. While stochastic systems
are often viewed operational in the model checking community (that is, one considers exe-
cutions of a system), we take here a more abstract point-of-view, and consider the general
mathematical model of stochastic processes.

Our first contribution is to define a notion of decisiveness for stochastic processes, gen-
eralizing the concept introduced by Abdulla et al. for denumerable Markov chains. This
generalization is non trivial as we consider stochastic processes with a potentially continuous
state space and uncountable branching, both being common features for modelling real-time
stochastic processes. Moreover, in order to discriminate which verification techniques are
sound, we refine the notion of decisiveness in three variants.

Our second contribution concerns the qualitative model checking of reachability and
repeated reachability properties. We show that, under some decisiveness assumption, the
almost-sure model checking of (repeated) reachability properties reduces to a simpler prob-
lem, namely to a reachability problem with probability 0. We advocate that this reduction
simplifies the problem: in countable models, the 0-reachability amounts to the non existence
of a path, in the underlying non-probabilistic system; beyond countable models, checking
that a reachability property is satisfied with 0 probability amounts to exhibiting a somehow
regular set of executions with positive measure.

A third contribution concerns quantitative model checking, here again for (repeated)
reachability properties. Under some further decisiveness assumption, we prove that an
approximation scheme, inspired from the path enumeration algorithm [17], is guaranteed to
terminate. One can thus approximate, up to a desired precision, the probability of (repeated)
reachability properties.

We then realize that non-Zeno real-time stochastic processes have good decisiveness prop-
erties when focusing on time-bounded reachability properties, which enables the evaluation
of such properties within arbitrary precision.

Last, but not least, we introduce a generic notion of abstraction and explain how to
derive decisiveness of the concrete model, using similar properties on the abstraction. We
instantiate our framework with generalized semi-Markov processes (GSMP) and stochastic
timed automata (STA), two models combining dense-time and probabilities. While the
decidability of the qualitative model-checking was already known for STA [9], the current
approach yields general approximation results for the quantitative model-checking, which
were not known before.

2 Preliminaries

2.1 Stochastic processes

Let (�, �,P) be a probabilistic space, that is, � is a set called the universe, � is a ‡-algebra,
and P is a probability measure over (�, �). Let (S, �Õ) be a measurable space. A stochastic
process over (�, �,P) and (S, �Õ) is a sequence X = (Xi)iØ0

of random variables, where
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Xi : � æ S is a measurable function. Note that we do not assume stochastic processes are
homogeneous or discrete.

Let X = (Xi)iØ0

be a stochastic process. Given B a measurable set of S (that is,
B œ �Õ), we will abuse notation and write B for the uniform sequence (Bi)iœN such that
Bi = B for every i Ø 0. Given B a measurable set of S, we will sometimes write Xi œ B for
the event X≠1

i (B), and when B is a singleton {q}, we might even write Xi = q.
We fix for the rest of the paper a universe (�, �,P), and a measurable space (S, �Õ).

I Example 1. Let us give an example of a discrete stochastic process representing a random
walk over the state space S = {qn | n œ {≠1} fi N}. The stochastic process X is defined by

P(X≠1

0

(q
0

)) = 1; ’i Ø 0 P(X≠1

i+1

(q≠1

) | X≠1

i (q≠1

)) = 1;
’i Ø 0, ’n œ N P(X≠1

i+1

(qn+1

) | X≠1

i (qn))) = 3

4

and P(X≠1

i+1

(qn≠1

) | X≠1

i (qn))) = 1

4

.
It should be noted that we do not mention the universe �. It is always possible to construct
a universe that has such a probability measure P, so that it is irrelevant to introduce it
(see [14]). This remark holds true in each example of the paper.

I Example 2. Another example, is the following non-Markovian stochastic process X over
the state space S = {q

0

, qÕ
0

, q
1

, qÕ
1

}:
P(X

0

= q
0

) = P(X
0

= qÕ
0

) = 1

2

; ’i Ø 1, P(Xi = qÕ
1

| X
0

= qÕ
0

) = 1;
P(X

1

= q
1

| X
0

= q
0

) = ⁄
1

and P(X
1

= qÕ
1

| X
0

= q
0

) = 1 ≠ ⁄
1

;
’i Ø 1, P(Xi+1

= q
1

| Xi = q
1

, X
0

= q
0

) = P(Xi+1

= q
1

| Xi = qÕ
1

, X
0

= q
0

) = ⁄i;
’i Ø 1, P(Xi+1

= qÕ
1

| Xi = q
1

, X
0

= q
0

) = P(Xi+1

= qÕ
1

| Xi = qÕ
1

, X
0

= q
0

) = 1 ≠ ⁄i;
where (⁄i)iœN is a sequence of reals in [0, 1]. Note that X could be made Markovian by
changing the state space, with one bit of memory to remember the initial state.

Real-time stochastic processes. A particular class of stochastic processes will be of interest
to us, namely real-time stochastic processes, in which the time evolution is important. We
define (St, �t) as the measurable space defined by St = S ◊ R

+

, and where �t is the ‡-
algebra generated by �Õ and the Borel sets of R

+

(denoted B(R
+

)). A real-time stochastic
process over (S, �) is a stochastic process Z = (Zi)iØ0

over (St, �t) such that:
for every i Ø 0, Zi = (Xi, ·i), where Xi : � æ S and ·i : � æ R

+

are random variables;
for each i Ø 0, P

�
{Ê œ � | ·i(Ê) < ·i+1

(Ê)}
�

= 1.
The process X = (Xi)iØ0

somehow represents the spatial behaviour of the system, while the
process · = (·i)iØ0

gives the time evolution of the system. The second condition ensures
that time almost-surely progresses. We will say that Z is almost-surely non-Zeno whenever
P
�
{Ê œ � | (·i(Ê))iØ0

is bounded}
�

= 0.
In Section 5.3, we will see two classes of models that naturally fit into the framework of

real-time stochastic processes. We can already mention here continuous-time Markov chains
(we can find many examples of applications in [15]), or queuing systems (see below).

I Example 3. We consider a G/G/1-queue (of infinite capacity). A state of such a queue
consists in the number of tasks waiting in the queue, the time delay since the last arrival
in the queue (ta) and the time delay since the last execution (te). Task arrivals follow a
probability measure Fa, and task services are performed according to probability measure
Fe. If at some point, the process is in state (n, ta, te), the next arrival time in the queue
is chosen according to Fa|ta

and the next execution time is chosen according to Fe|te
where

Fa|ta
(resp. Fe|te

) corresponds to the probability Fa (resp. Fe) given that at least ta (resp.
te) has elapsed. This induces a stochastic process X = (Xi)iœN where Xi is the state of the
queue after i steps. To turn it into a real-time stochastic process, one simply adds global
time · giving at step i the amount of time spent since the beginning.

ICALP 2016
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I Remark. Real-time stochastic processes as defined above are discrete-time stochastic pro-
cesses (if we follow standard vocabulary), since the random variables are indexed by N.
However they abstract real-time continuous behaviours by giving relevant snapshots of the
system (at all times given by the ·i’s). Such abstractions are used for instance in [18,
Theorem 1] for abstracting continuous-space pure jump Markov processes while keeping rel-
evant information on the process. We will see in Section 5.3 that these processes capture
behaviours of intrinsically time continuous systems.

Events. A stochastic process X over (�, �,P) and (S, �Õ) allows one to define various events
expressed using LTL-like notations. Let LS,�Õ be the set of formulas defined by the grammar:
Ï ::= B UÛÙn BÕ | G F B | Ï

1

‚ Ï
2

| Ï
1

· Ï
2

| ¬Ï, where B = (Bi)iØ0

and BÕ = (BÕ
i)iØ0

are
sequences of measurable subsets of S, ÛÙ œ {Ø, Æ, =} is a comparison operator and n œ N is
an integer. The semantics of formulas in LS,�Õ in terms of events is defined inductively:

EvX(B U ÛÙnBÕ) =
[

iÛÙn

�
X≠1

i (BÕ
i) fl

\

0Æj<i

X≠1

j (Bj)
�

; EvX(G F B) =
\

iØ0

[

jØi

X≠1

j (Bj) ;

EvX(Ï
1

‚ Ï
2

) = EvX(Ï
1

) fi EvX(Ï
2

) ; EvX(Ï
1

· Ï
2

) = EvX(Ï
1

) fl EvX(Ï
2

) ;
EvX(¬Ï) = � \ EvX(Ï).

Note that all these events are measurable in �. Following the intuition behind the LTL
notations, event EvX(B U ÛÙnBÕ) means that the stochastic process X will eventually satisfy
BÕ (within step constraint ÛÙ n), and only visit B beforehand. Also, the intuition of G F B
is that B should be visited infinitely often. We use classical shorthands: € = (S)iØ0

;
‹ = (ÿ)iØ0

; B U BÕ = B U Ø0

BÕ; F B = € U B; F ÛÙnB = € U ÛÙnB; G B = ¬F (¬B),
where ¬B = (S \ Bi)iØ0

.

2.2 Decisiveness
Abdulla et al. originally defined a denumerable Markov chain to be decisive w.r.t. a set
of states F if its runs almost-surely reach F or a state from which F can no longer be
reached [2]. In order to extend the concept of decisiveness to general stochastic processes,
we first provide an analogue to the set of states from which F is not reachable.

I Definition 4. Let B, BÕ be sequences of measurable sets of S. BÕ is a B-avoidance sequence
for the stochastic process X if it satisfies

’n Ø 0, P
�
EvX(F

=n BÕ · FØn B)
�

= 0. (1)

Intuitively, BÕ corresponds to ‘states’ from which B is almost-surely avoided (due to non-
homogeneity of X, it needs to be defined as a sequence by slices).
I Remark. For every sequence B, (ÿ)iØ0

is a B-avoidance sequence for X. One can also
check that B-avoidance sequences are closed under denumerable unions and intersections.

I Example 5. Let us illustrate the notion of avoidance sequences on the stochastic processes
from Examples 1 and 2. In Example 1, we consider the uniform sequence B = {q

5

}. It
can be shown that the set of B-avoidance sequences corresponds to all sequences BÕ with
BÕ

i ™ {q≠1

}. In Example 2, the following sequence defines a B-avoidance set for B = {q
1

}:
BÕ

0

= {qÕ
0

} and for every n Ø 1, BÕ
n = ÿ.

For the rest of the section, we fix a stochastic process X = (Xi)iØ0

with Xi : � æ S.
Several notions of decisiveness were proposed for discrete-time and implicitly denumerable
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Markov chains [2]. In this paper, we define three notions of decisiveness, adapting and
refining the ones of [2] to general stochastic processes.
I Definition 6. Let B be a sequence of measurable sets in S and let BÕ be a B-avoidance
sequence for X. We say that the stochastic process X is

initially decisive (ID) w.r.t. B with witness BÕ if P(EvX(F B ‚ F BÕ)) = 1
initially strongly decisive (ISD) w.r.t. B with witness BÕ if P(EvX(G F B ‚ F BÕ)) = 1
persistently decisive (PD) w.r.t. B with witness BÕ if ’n Ø 0, P

�
EvX(FØn B‚FØn BÕ)

�
=

1.
We will then say that X is ID (resp. ISD, PD) w.r.t. B whenever there is some B-avoidance
sequence BÕ such that X is ID (resp. ISD, PD) w.r.t. B with witness BÕ.
I Remark. Note that X might be ID (resp. ISD, PD) w.r.t. B for some witness BÕ, but not
for some other B-avoidance sequence BÕÕ. However if BÕ ™ BÕÕ and X is ID (resp. ISD, PD)
w.r.t. B with witness BÕ, then it is also decisive w.r.t. B with witness BÕÕ: the larger (for
the inclusion) is the B-avoidance sequence, the better it is for decisiveness properties.

We can establish a relationship between the three decisiveness notions.
I Lemma 7. Let B be a sequence of measurable sets in S and let BÕ be a B-avoidance
sequence for X. X is PD w.r.t. B with witness BÕ implies that X is ISD w.r.t. B with
witness BÕ, which, in turns, implies that X is ID w.r.t. B with witness BÕ. Moreover, the
converse implications do not hold.
Example 1 shows that initial decisiveness and initial strong decisiveness are not equivalent
(take B = {q

5

}), and Example 2 shows the non-equivalence of initial strong decisiveness and
persistent decisiveness (take ⁄i = 1

2

for every i œ N, and B = {q
1

}).
In the sequel, we will write BÕ for an arbitrary B-avoidance sequence for X. However,

whenever X is ID (resp. ISD, PD) w.r.t. B with some witness BÕ, we will choose an arbitrary
witness and write it Av

dec

(B) (resp. Av
str

(B), Av(B)). When they exist, it is then possible
to recursively define BÕ- (resp. Av

dec

(B)-, Av
str

(B)- and Av(B)-)avoidance sequences for X:
those are then order-two avoidance sequences for B, which record states from which one
avoids states, from which states in B are avoided! The previous notations extend in the
same way for these order-two avoidance sequences.
I Example 8. Back to Example 2, for B = {q

1

}, we saw that BÕ defined by BÕ
0

= {qÕ
0

} and
BÕ

i = ÿ for each i Ø 1, is a B-avoidance sequence for X. Then, we can define a BÕ-avoidance
sequence for X as follows: BÕÕ

0

= {q
0

, q
1

, qÕ
1

} and for each i Ø 1, BÕÕ
i = {q

0

, q
1

, qÕ
0

, qÕ
1

}. In fact,
we can show that all BÕ-avoidance sequences are the sequences included in BÕÕ.

3 Analysis of decisive stochastic processes

In this section we show how decisiveness properties can help analysing stochastic processes.
In the first part, we focus on qualitative (that is, probability 0 or 1) reachability and re-
peated reachability properties, and we reduce all the corresponding model-checking questions
to checking that some reachability property has probability 0. While this could be reduced
to graph properties in [2], this is not the case here, since our models might have infinite non-
denumerable branching. When we will apply these results in Subsection 5.3, models will
have good properties allowing to solve the 0-probability properties of reachability properties.
In the two next parts, we will use decisiveness properties to draw general procedures for com-
puting (arbitrary) approximations of the probability of a (repeated) reachability property.
E�ectiveness of these procedures will of course rely on good e�ectiveness properties of the
models that we want to analyze.

ICALP 2016



XXX:6 Analysing decisive stochastic processes

3.1 Qualitative reachability and repeated reachability
We aim at describing a procedure for checking the almost-sure satisfiability of a reachability
(resp. a repeated reachability) property, that is, an event of the form F B (resp. G F B),
where B is a sequence of measurable sets. We fix BÕ a B-avoidance sequence, and we recall
the notations Av

dec

(B), Av
str

(B) and Av(B) for such sequences when X is ID, resp. ISD,
resp. PD w.r.t. B.

I Proposition 9. If P(EvX(F B)) = 1, then P(EvX(¬B U BÕ)) = 0.
If X is ID w.r.t. B and P(EvX(¬B U Av

dec

(B))) = 0, then P(EvX(F B)) = 1.

Under an initial decisiveness assumption, this reduces the almost-sure model-checking of
reachability properties to checking that some kind of (constrained) reachability property is
satisfied with probability 0. Note that, contrary to the case of discrete-time denumerable
Markov chains, we cannot reduce to graph properties, yet we advocate that for reachability
properties, checking whether the probability is 0, is simpler than checking whether it is 1.
We will see in Subsection 5.3 how this can be exploited on specific examples.

Turning to almost-sure repeated reachability, one can show the following proposition:

I Proposition 10. If P(EvX(G F B)) = 1, then P(EvX(F BÕ)) = 0;
If X is ISD w.r.t. B and P(EvX(F Av

str

(B))) = 0, then P(EvX(G F B)) = 1.

Under an initial strong decisiveness assumption, this reduces the almost-sure model-
checking of a repeated reachability property to the 0-model-checking of some reachability
property.

Concerning the positive model-checking of repeated reachability properties, one can show:

I Proposition 11. If X is PD w.r.t. B and ID w.r.t. Av(B), and if P
�
EvX(G F B)

�
> 0,

then P
�
EvX(F Av

dec

(Av(B)))
�

> 0;
If X is PD w.r.t B and P

�
EvX(F Av(B)Õ)

�
> 0, then P

�
EvX(G F B)

�
> 0.

Note that the existence of a witness BÕ such that X is PD w.r.t. B does not imply the
existence of a witness such that X is ID w.r.t. BÕ.

3.2 Quantitative reachability
We assume B is a sequence of measurable sets of S and BÕ is a B-avoidance sequence. We
define the two following sequences (n œ N):
®

pYes

n = P
�
EvX(FÆn B)

�

pNo

n = P
�
EvX(¬B UÆn BÕ)

�

The next proposition gives straightforward properties of these two sequences.

I Proposition 12. The sequences (pYes

n )nØ0

and (pNo

n )nØ0

are non-decreasing and converge
respectively to P(EvX(F B)) and P(EvX(¬B U BÕ)).

I Corollary 13. If X is ID w.r.t. B and BÕ = Av
dec

(B), then limnæŒ pYes

n + pNo

n = 1.

Corollary 13 can be used to derive an approximation scheme to evaluate the probability
of reachability properties in ID stochastic processes. Indeed, given a fixed error bound Á > 0,
in order to compute P(EvX(F B)) up to Á, one only needs to iteratively compute the values
pYes

n and pNo

n until 1 ≠ pYes

n ≠ pNo

n Æ Á to deduce that P(EvX(F B)) ≠ pYes

n Æ Á. In case pYes

n

and pNo

n cannot be computed exactly, but can only be approximated up to any desired error
bound, this scheme can be refined to obtain a 2Á-approximation for P(EvX(F B)).
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I Remark. Note that the quality of the above approximation scheme depends on the choice
of the sequence Av

dec

(B): the larger Av
dec

(B), the faster convergence. Intuitively, Av
dec

(B)
permits to stop the exploration when the reachability goal can no longer be satisfied, hence
the sooner the better.

3.3 Quantitative repeated reachability
We assume B is a sequence of measurable sets of S, BÕ is a B-avoidance sequence, and BÕÕ

is a BÕ-avoidance sequence. We define the two following sequences (n œ N):
®

qYes

n = P
�
EvX(¬BÕ

UÆn BÕÕ)
�

qNo

n = P
�
EvX(¬BÕÕ

UÆn BÕ)
�

I Proposition 14. The sequences (qYes

n )nØ0

and (qNo

n )nØ0

are non-decreasing and converge
respectively to P

�
EvX(¬BÕ

U BÕÕ)
�

and P
�
EvX(¬BÕÕ

U BÕ)
�
.

I Proposition 15. If X is PD w.r.t. B (with witness BÕ = Av(B)) and ID w.r.t. Av(B)
(with witness BÕÕ = Av

dec

(Av(B))), then the two sequences (qYes

n )nØ0

and (1 ≠ qNo

n )nØ0

are
adjacent and converge to P(EvX(G F B)).

Here again, the convergence of the two adjacent sequences can be used to derive an
approximation scheme for P(EvX(G F B)) in PD stochastic processes.

Note that the persistent decisiveness property is required for the approximation scheme
to be correct: consider again Example 2 and assume the sequence (⁄i)iœN satisfies QiœN(1 ≠
⁄i) > 0. Under that hypothesis, one can show that P(EvX(G F B)) < 1

2

. On the other
hand, whatever the choice of the avoidance sequences, we never get that the two sequences
(qYes

n )nØ0

and (1 ≠ qNo

n )nØ0

converge to that value.

4 Time-bounded reachability in real-time stochastic processes

In this section, we explain how to use decisiveness towards the quantitative analysis of
time-bounded reachability (or safety) properties for real-time stochastic processes.

We fix (St, �t) the measurable space for real-time stochastic processes we will consider.
For � œ R

+

a time bound and B a sequence of measurable sets of St, we define the sequence
B fl (t Æ �) by: (B fl (t Æ �))i = {(s, ·) œ Bi | · Æ �}. B fl (t Æ �) is thus the restriction
of B in which the time component is bounded by �.

First, decisiveness w.r.t. a sequence B propagates to its time-bounded restriction:

I Proposition 16. Let Z = (Xi, ·i)iØ0

be a real-time stochastic process, B be a sequence of
measurable sets of St, and � be a time bound. If Z is ID, resp. ISD, resp. PD w.r.t. B,
then Z is ID, resp. ISD, resp. PD w.r.t. B fl (t Æ �).

More importantly, non-Zeno real-time stochastic processes are PD w.r.t. time-bounded
sequences:

I Theorem 17. Let Z = (Xi, ·i)iØ0

be a real-time stochastic process, let B be a sequence of
measurable sets, and let � œ R

+

be a time bound. If Z is almost-surely non-Zeno, then Z
is PD w.r.t. any time-bounded sequence B fl (t Æ �).

The main argument to establish this theorem is that, assuming almost-sure non-Zenoness,
the sequence defined by t > � is a (B fl (t Æ �))-avoidance sequence for every B.

ICALP 2016
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The almost-sure non-Zenoness hypothesis is standard and a desirable property of a sys-
tem, and it expresses that the system should not have infinitely many discrete changes in a
bounded amount of time. This assumption is satisfied by continuous-time Markov chains [6],
and is easily enforced in many other models, such as continuous-time Markov processes with
bounded transition rates [12], or continuous-space pure jump Markov processes (cPJMPs)
assuming a non-explosive property [18].

This result then implies that for all these systems, if B is simple enough (like a uniform
sequence of sets), provided one can compute (or approximate) the probability in n steps to
reach some set of states, one can approximate the probability of satisfying a time-bounded
reachability or safety property. This allows us to partly recover the result for cPJMPs [18,
Theorem 3] which was established in a more analytical way.

In its generality, our approximation scheme does not provide any convergence rate, but for
stochastic processes for which we can have an upper bound on the probability of completing
at least n discrete changes within � time units, we will be able to compute a convergence
rate for the various schemes. For instance for continuous-time (denumerable) Markov chains
whose transition rates are upper-bounded by �, that probability can be bounded using a
Poisson process of rate �.

5 E�ectivity through abstraction

Proving decisiveness of general stochastic processes can be a hard task, in particular when
their state-space is continuous. Decidability results in this context are often obtained
through discrete abstractions. Therefore, in order to analyze the decisiveness of such
stochastic processes, we propose to rely on an abstraction. More precisely, we give in
this section su�cient conditions on an abstraction to ensure decisiveness of the original
stochastic process. The qualitative verification algorithms and quantitative approximation
schemes can then be applied to the concrete model. Note that, in general, the abstractions
we propose only preserve qualitative properties, so that approximation schemes should be
applied to the concrete model, not to the abstraction.

We then explain how this methodology can be applied to two classes of real-time stochastic
processes, namely the ones generated by generalized semi-Markov processes and by stochastic
timed automata. These models can be abstracted into discrete-time Markov chains while pre-
serving the almost-sure satisfaction of reachability properties; this allows us to derive good
decisiveness properties of the original models, and thus to infer approximation schemes.

5.1 Decisiveness for homogeneous denumerable Markov chains
Let us recall some basics of Markov chains. A denumerable Markov chain (MC, for short)
is a stochastic process Y = (Yi)iØ0

with a denumerable state space T and which has the
Markov property: for every n Ø 0, for all t, t

0

, t
1

, . . . , tn œ T , as soon as P(Vn
i=0

Yi = ti) > 0,
then P(Yn+1

= t |
Vn

i=0

Yi = ti) = P(Yn+1

= t | Yn = tn). The MC is homogeneous if
for every n and for all t, tÕ œ T , P(Yn+1

= tÕ | Yn = t) = P(Yn = tÕ | Yn≠1

= t). In that
case, the Markov chain is generated by a transition matrix pY : T ◊ T æ [0, 1] such that
for every t œ T , PtÕœT pY (t, tÕ) = 1 and for every n Ø 0, pY (t, tÕ) = P(Yn+1

= tÕ | Yn = t).
Under the condition that Y is homogeneous, one can simply define runs generated by Y .
Precisely, a sequence t

0

, t
1

, · · · , tn is a run, denoted t
0

æ t
1

· · · æ tn if pY (ti, ti+1

) > 0 for
every 0 Æ i < n; n is then the length of the run, and we write t æú S as soon as there exists
a state tÕ œ S ™ T and a run t = t

0

æ t
1

· · · æ tk = tÕ.
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Let us first explain how to characterize our various notions of decisiveness in the case
of homogeneous MCs, and how they compare to the decisiveness of [2]. For every subset of
states C ™ T , borrowing notations from [2], we let ‹C = {t œ T | t ”æú C}. State t

0

œ T is
an initial state of Y if PY (Y

0

= t
0

) > 0, and Y is said initialized at t
0

whenever t
0

is the
unique initial state, that is PY (Y

0

= t
0

) = 1. If Y is a homogeneous MC, we write Y [t] for
the MC initialized at t, with transition matrix pY .

I Lemma 18. Let Y be a homogeneous MC. For every C, ‹C is a C-avoidance uniform
sequence for Y . Moreover, it is maximal for the inclusion.

The maximality property stated above allows to check decisiveness properties only with the
witness ‹C: if Y is decisive with witness BÕ, since BÕ ™ ‹C, it will also be decisive with witness
‹C. Recovering partly the original definitions of [2], we obtain the following characterization
of our three notions of decisiveness:

I Corollary 19. Let Y be a homogeneous MC, and C a set of states. Then:

1. Y is ID w.r.t. C i� PY

�
EvY (F C ‚ F

‹C)
�

= 1;
2. Y is ISD w.r.t. C i� PY

�
EvY (G F C ‚ F

‹C)
�

= 1;
3. Y is PD w.r.t. C i� for every p Ø 0, PY

�
EvY (FØp C ‚ FØp

‹C)
�

= 1 i� for every state t
reachable from an initial state, Y [t] is ID w.r.t. C.

The third characterization implies that the decisiveness notion of [2] corresponds to our
persistent decisiveness notion, in the case of homogeneous MCs.

Contrary to the case of general stochastic processes, initial strong decisiveness and per-
sistent decisiveness coincide for homogeneous MCs (we recover here [2, Lemma 3.2]).

I Lemma 20. Let Y be a homogeneous MC, and C a set of states. Then, Y ISD w.r.t. C
i� Y is PD w.r.t. C.

Note though that, even in this restricted context, initial decisiveness is not equivalent to
initial strong decisiveness (recall Example 5). Finally, as already noticed in [2]:

I Lemma 21. Let Y be a finite homogeneous MC, and C a set of states. Then, Y is PD
w.r.t. C.

5.2 Sound abstraction for decisiveness
Let us define a suitable notion of abstraction relating an arbitrary stochastic process X and
a homogeneous MC Y such that decisiveness of Y implies decisiveness for X.

I Definition 22. Let X = (Xi)iØ0

be a stochastic process, Y = (Yi)iØ0

be a homogeneous
MC with denumerable state-space T equipped with the discrete ‡-algebra � = 2T , and
– : (S, �Õ) æ (T, �) be a mapping such that – and –≠1 are measurable. The MC Y is an
–-abstraction of X if for every sequence A = (An)nØ0

of sets in � and for every n Ø 0

PY

�
Y ≠1

n (An) |
\

i<n

Y ≠1

i (Ai)
�

> 0 ≈∆ P
�
X≠1

n (–≠1(An)) |
\

i<n

X≠1

i (–≠1(Ai))
�

> 0 .

Intuitively, Y is an –-abstraction of X if through the mapping – it preserves the events that
may happen with positive probability.

In order to lift avoidance sequence from the abstraction to the concrete stochastic process,
we rely on –-closed sets. A set B œ �Õ is –-closed if b œ B and –(b) = –(bÕ) implies bÕ œ B.
Given B œ �Õ, by Lemma 18, fl–(B) is an –(B)-avoidance sequence for Y . Assuming B is
–-closed, we obtain a B-avoidance sequence for X.
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I Lemma 23. Let Y be an –-abstraction of X and B œ �Õ be an –-closed set. Then
(–≠1(fl–(B))) is a B-avoidance sequence for X.

However, –-abstractions do not necessarily preserve decisiveness properties, yet these can
be ensured thanks to the following soundness notions.

I Definition 24. Let Y be an –-abstraction of X.
Y is sound if for every –-closed set B, PY (EvY (F –(B))) = 1 implies P(EvX(F B)) = 1.

Y is persistently sound if for every –-closed set B and every p Ø 0, PY (EvY (FØp –(B))) =
1 implies P(EvX(FØp B)) = 1.

Roughly said, sound abstractions preserve almost-sure satisfaction of reachability properties.
Moreover, they allow to transfer decisiveness properties to the original stochastic process.

I Proposition 25. Let Y be an –-abstraction of X and B an –-closed set.
If Y is sound and ID w.r.t. –(B), then X is ID w.r.t. B with witness (–≠1(fl–(B))).
If Y is persistently sound and PD w.r.t. –(B), then X is PD w.r.t. B with witness
(–≠1(fl–(B))).

I Example 26. Back to the queue of Example 3, we assume it is M/M/1, that is, Fa and Fe

are exponential distributions of parameters ⁄ and µ, respectively. Assuming ⁄ < µ, we can
exhibit a persistently sound abstraction. Indeed, consider the random walk over N defined
by p(0, 1) = 1, and if i Ø 1, p(i, i + 1) = ⁄

⁄+µ and p(i, i ≠ 1) = µ
⁄+µ . Since ⁄ < µ, this MC is

PD w.r.t. each set of states and thus, the queue is PD w.r.t. each set of states that is closed
under the abstraction.

5.3 Applications
We apply the previous study to two classes of systems.

5.3.1 Generalized semi-Markov processes
A generalized semi-Markov process [10, 13] is a stochastic process built on a finite set of
events. Each event is equipped with a random variable representing its duration: either a
variable-delay defined by a density function or a fixed-delay modelled by a Dirac distribution.
A transition is characterized by a set of events which expire, and schedules a set of new
events. This model is known to generalize continuous-time Markov chains.

The semantics of a GSMP M is given as a general state-space Markov chain (GSSMC),
defined by a set of configurations and a transition kernel. Configurations of a GSMP are
pairs consisting of a state and a valuation assigning a time value to each scheduled event.
Such a value represents the time elapsed since the event was scheduled. Transitions between
configurations combine a time-elapse and the occurrence of some scheduled events and/or
the scheduling of new events. The set of configurations can be equipped with a natural
‡-algebra G, and the transition system induced by M is equipped with a transition kernel:
for a configuration “ and a set A œ G, PM(“, A) is the probability to move in one step from
configuration “ to some configuration in A. This probability expresses a race between all
enabled events, taking into account their residual density functions. The set of runs, i.e.
infinite sequences of configurations, can then be equipped with a probability measure PM.
The GSSMC associated with a GSMP M can thus naturally be viewed as a (real-time)
stochastic process XM.
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Decisiveness. In general, GSMPs do not enjoy any decisiveness property. Indeed, [10,
Section 3] presents an example that is not ID w.r.t. any region-closed set. Still, Brázdil et
al. identified a su�cient condition, that ensures some kind of fairness: GSMP should be
single-ticking (GSMP with some restriction on fixed-delay events, see [10] for the definition
of this condition). Under that condition and using results of [10], one can show that the
standard region abstraction for GSMPs is a persistently sound abstraction. More precisely,
we consider as an abstraction the (finite-state) Markov chain Y M, whose states are regions,
and such that there is a transition between region r and region rÕ as soon as there is a
configuration “ œ r from which the probability to reach rÕ in one step in XM is positive.
Probabilities are assumed to be uniform in Y M.

I Theorem 27. Let M be a single-ticking GSMP with stochastic process XM. Then the
region Markov chain Y M is an persistently sound abstraction of XM.

Proposition 25 then su�ces to derive the decisiveness of the original stochastic process XM:

I Corollary 28. Let M be a single-ticking GSMP with stochastic process XM. Then for
every region-closed set B, the stochastic process XM is PD w.r.t. B.

As a consequence, we can apply all results of Section 3 to single-ticking GSMPs. We
remark here that checking whether a reachability property has probability 0 can easily
be done using the region graph abstraction: it amounts to checking in the (finite) region
abstraction that there is no path from the initial state to the target [10]. Hence all qualitative
questions related to region-based (repeated) reachability properties can be solved. For what
concerns quantitative verification, assuming the distributions equipping the GSMPs can
be handled numerically, this allows one to approximate the probability of reachability or
repeated reachability properties, as well as all time-bounded reachability properties. We
believe our approach gives new hints into the approximate model-checking problem for
GSMPs, for which, up to our knowledge, only few results are known. For instance in [3, 7],
the authors approximate the probability of until formulas of the form “the system reaches a
target before time T within k discrete events, while staying within a set of safe states” (resp.
“the system reaches a target while staying within a set of safe states”) for GSMPs (resp.
a restricted class of GSMPs which can be proved to be PD), and study numerical aspects.
Our result permits to do the same with any reachability (resp. time-bounded reachability)
property on the whole class of single-ticking GSMPs (resp. which are a.s. non-Zeno). The
numerical aspects in our computations can be dealt with as in [3, 7].

5.3.2 Stochastic timed automata
Stochastic timed automata [9] are stochastic processes derived from timed automata [4] by
randomizing both the delays and the edge choices. One can naturally associate a (real-time)
stochastic process XA with an STA A.

Decisiveness. Similarly to GSMP, STA are not decisive in general. Adapting an example
from [9], one can indeed exhibit an STA which is not ID w.r.t. a given region-closed set. Still,
under some fairness property, one can build an abstraction of the STA, that is sound for the
almost-sure model checking of LTL properties and the-like [9]. It turns out that this fairness
assumption ensures that the same abstraction is also sound for decisiveness. As for GSMPs,
we consider the natural region abstraction, and we define a finite-state Markov chain Y A, in
which the states are regions, and there is a transition from one region r to another rÕ as soon
as there exists a configuration “ in r from which the probability to reach rÕ in one step in XA
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is positive. As mentioned earlier, as such, the abstraction Y A is not sound in general. Yet,
it preserves almost-sure satisfaction of LTL properties when the stochastic timed automaton
is almost-surely fair [9]. Here fairness refers as the following property, which depends on
Y A: every edge of Y A which is enabled infinitely often along a run should be taken infinitely
often. Denoting fair this property, the assumption P(EvXA(fair)) = 1 su�ces to prove that
Y A is a sound abstraction for the almost-sure model checking for LTL properties [9].

I Theorem 29. Let A be an STA with associated stochastic process XA, and let Y A be its
region abstraction. If P(EvXA(fair)) = 1 then Y A is a persistently sound abstraction for XA.

As a consequence of Proposition 25 and Theorem 29, we derive the decisiveness of the
original stochastic process XA:

I Corollary 30. Let A be an STA with stochastic process XA and Y A its region abstraction.
If P(EvXA(fair)) = 1 then for every region-closed set B, XA is PD w.r.t. B.

As a consequence, we can apply all results of Section 3 to almost-surely fair stochastic
timed automata. While the decidability of qualitative model-checking questions that we can
infer from Section 3.1 were already known [9] and can be solved on the region abstraction,
the approximation schemes that we can derive from Sections 3.2 and 3.3 are new. Obtaining
decidability results even for the qualitative model-checking of large classes of STA required
quite some e�ort (now combined in [9]). Here, we show that our earlier approach importantly
implied decisiveness properties for STA. Moreover, the approximation schemes of Sections 3.2
and 3.3 can now be e�ectively applied to STA, as soon as distributions in the model have
good numerical properties. Notice that a first decidability result was obtained in [8] for
the quantitative model-checking of a restricted class of single-clock STA: while the current
approximation schemes apply to all single-clock STA, the closed-form expression obtained
in [8], although more precise requires a condition on the cycles of the automaton.

6 Conclusion and future work

In this paper, we introduced and studied decisiveness for general stochastic processes, setting
su�cient conditions for the decidability of qualitative model-checking of (repeated) reachab-
ility properties, and more importantly for the approximability of the quantitative evaluation
of such properties. We then showed that non-Zeno real-time stochastic processes have good
decisiveness properties, allowing one to approximate the probability of all time-bounded
properties. Finally we described a framework to obtain decisiveness properties through
abstractions, and demonstrated its applicability to generalized semi-Markov processes and
stochastic timed automata, thus yielding new approximability results for the quantitative
model-checking of stochastic timed automata.

As further work, we would like to extend the applicability of our approach to other classes
of stochastic timed systems, like probabilistic extensions of timed lossy channel systems [1]
or communicating timed systems [11]. Also, the approximation scheme for reachability
properties can be adapted to evaluate an expected accumulated reward, provided the re-
ward evolves linearly in the model, as in Markov reward models [5, 16]. Finally, extending
the approximation schemes to Muller conditions would enable the quantitative analysis of
properties given as LTL formulas.
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