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Definition 1 (Probabilitically Checkable Proofs (PCP)) A Turing machine with
direct access is a Turing machine with:

• a special state, called the reading state,

• a reading oracle,

• two special working tapes, called the direct access tape, and the address tape.

The machine never reads directly the content of the direct access tape (in the sense that
the normal transitions of the machine are independent of the content of the direct access
tape). This tape is only accessed via the reading oracle in the following way: when the
machine goes in the reading state, the content of the address tape is interpreted as the
binary representation of a position i of the direct access tape. The reading oracle then
provides in one step, the symbol in position i of the direct access tape. (You can assume
this symbol is stored in the control state, or in a special output tape of the reading oracle.)

A PCP(R(n), Q(n), T (n))-verifier is a probabilistic Turing machine with direct access
to a tape called the proof tape over alphabet {0, 1}. On input x of size n and proof tape
content π, the machine uses R(n) random bits and works in the following three phases:

1. It first computes Q(n) positions p1, . . . pQ(n) (in binary) in polynomial time in n,
and with no calls to the reading oracle (i.e. these positions are only a function of x
and the random tape content).

2. Then it makes Q(n) calls to the reading oracle, to retrieve the symbols of the proof
tape π in positions p1, . . . pQ(n).

3. Finally, it computes a boolean value (either accept or reject) in time T (n) and with
no calls to the reading oracle (i.e. the answer computed in this phase is only a
function of x, the random tape content, and the symbols π[p1], . . . π[pQ(n)]).

The class PCP(R(n), Q(n), T (n)) is the set of languages L such that there exists a
PCP(R(n), Q(n), T (n))-verifier V such that:

• if x ∈ L, there exists a proof π ∈ {0, 1}∗ such that Prr[V (x, π, r) rejects ] = 0;

• if x /∈ L, then for all π ∈ {0, 1}∗ Prr[V (x, π, r) accepts ] ≤ 1/2.

Where the probability is computed over all random tape contents r of size R(n).

Exercise 1 PCP witnessing
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Let PCP′(k · log n,Q(n), T (n)) be defined as PCP(k · log n,Q(n), T (n)) except that only
proofs π of size nk · Q(n) are considered, and addresses computed by the verifier have
log(nk ·Q(n)) bits. Prove that PCP(k · log n,Q(n), T (n)) = PCP′(k · log n,Q(n), T (n)).

Exercise 2 PCP and non-deterministic classes

Prove that, with R(n) = Ω(log n), we have PCP(R(n), Q(n), T (n)) ⊆ NTIME(2O(R(n)) ·
Q(n) · (T (n) + poly(n))).

Exercise 3 Known classes

Prove the following statements:

⋃
c∈N, T (n) a polynomial

PCP(0, c · log n, T (n)) = P

⋃
R(n), T (n) polynomials

PCP(R(n), 0, T (n)) = coRP

⋃
Q(n), T (n) polynomials

PCP(0, Q(n), T (n)) = NP

(In fact
⋃

T (n) a polynomial PCP(O(log n), O(1), T (n)) = NP (this is known as the PCP
theorem).)

Exercise 4 Graph non-ismorphism

Show that ISO ∈ PCP(p(n), 1, c) for some polynomial p and constant c.

Exercise 5 PCP, MIP and NEXPTIME

Recall the definition of MIP from the previous exercise sheet (where we can assume that
the probability of acceptance is equal to 1 when x ∈ L).

Prove that ⋃
R(n),Q(n),T (n) polynomials

PCP(R(n), Q(n), T (n)) ⊆MIP ⊆ NEXPTIME

(The last inclusion was proved in the previous exercise sheet. In fact, we have an
equality.)

Remark. Indeed MIP and this version of PCP coincide with NEXPTIME, but
you are not required to prove the opposite inclusions.

Exercise 6 Polynomial Identity Testing

This was already given in the previous exercise sheet.
An n-variable algebraic circuit is a directed acyclic graph having exactly one node with

out-degree zero, and exactly n nodes with in-degree zero. The latter are called sources,
and are labelled by variables x1, . . . xn; the former is called the output of the circuit.
Moreover each non-source node is labelled by an operator in the set {+,−,×}, and has
in-degree two.
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This can be seen with an array (s1, . . . , sn, g1, . . . , gm) (the number of nodes), with
first the n sources and then the m internal nodes (or gates) where an input of a gate gi
can either be a source sj or another gate gk with k < i.

An algebraic circuit defines a function from Zn to Z, associating to each integer assign-
ment of the sources the value of the output node, computed through the circuit. It is easy
to show that this function can be described by a polynomial in the variables x1, . . . xn.
Algebraic circuits are indeed a form of implicit representation of multivariate polynomials.
Nevertheless algebraic circuits are more compact than polynomials.

An algebraic circuit C is said to be identically zero if it evaluates to zero for all possible
integer assignments of the sources.

The Polynomial identity problem is as follows:

• Input: An algebraic circuit C

• Ouput: C is identically zero

1. Show that if the variables x may range from 0 to X ∈ N, then the maximum (abso-
lute) value of a cricuit with m internal gates is X2m and show that this maximum
value can achieved (this justifies the sentence “Algebraic circuits are more compact
than polynomials”).

2. Show that Polynomial identity is in coRP (note that it is not known whether Polyno-
mial identity is in P).

Hint: you may need the following statements

• Schwartz-Zippel lemma If p(x1, . . . xn) is a nonzero polynomial with coefficients
in Z and total degree at most d, and S ⊆ Z, then the number of roots of p belonging
to Sn is at most d · |S|n−1.

• Prime number theorem There exists a known integer X0 ≥ 0 such that, for all
integers X ≥ X0, the number of prime numbers in the set [1..2X ] is at least 2X

X .

Exercise 7 A general note on self-reducibility

Define a language L to be downward-self-reducible if there is a polynomial-time Turing
Machine R such that for any x of length n, RLn−1(x) = L(x), where Lk denotes an oracle
that decides L on input of size at most k. Prove that if L is such a language, then
L ∈ PSPACE.
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