
Complexité avancée - TD 11

Benjamin Bordais

January 6, 2021

Definition 1 (Probabilitically Checkable Proofs (PCP)) A Turing machine with
direct access is a Turing machine with:

• a special state, called the reading state,

• a reading oracle,

• two special working tapes, called the direct access tape, and the address tape.

The machine never reads directly the content of the direct access tape (in the sense that
the normal transitions of the machine are independent of the content of the direct access
tape). This tape is only accessed via the reading oracle in the following way: when the
machine goes in the reading state, the content of the address tape is interpreted as the
binary representation of a position i of the direct access tape. The reading oracle then
provides in one step, the symbol in position i of the direct access tape. (You can assume
this symbol is stored in the control state, or in a special output tape of the reading oracle.)

A PCP(R(n), Q(n), T (n))-verifier is a probabilistic Turing machine with direct access
to a tape called the proof tape over alphabet {0, 1}. On input x of size n and proof tape
content π, the machine uses R(n) random bits and works in the following three phases:

1. It first computes Q(n) positions p1, . . . pQ(n) (in binary) in polynomial time in n,
and with no calls to the reading oracle (i.e. these positions are only a function of x
and the random tape content).

2. Then it makes Q(n) calls to the reading oracle, to retrieve the symbols of the proof
tape π in positions p1, . . . pQ(n).

3. Finally, it computes a boolean value (either accept or reject) in time T (n) and with
no calls to the reading oracle (i.e. the answer computed in this phase is only a
function of x, the random tape content, and the symbols π[p1], . . . π[pQ(n)]).

The class PCP(R(n), Q(n), T (n)) is the set of languages L such that there exists a
PCP(R(n), Q(n), T (n))-verifier V such that:

• if x ∈ L, there exists a proof π ∈ {0, 1}∗ such that Prr[V (x, π, r) rejects] = 0;

• if x /∈ L, then for all π ∈ {0, 1}∗ Prr[V (x, π, r) accepts] ≤ 1/2.

Where the probability is computed over all random tape contents r of size R(n).

Exercise 1 PCP witnessing

Let PCP′(k · log n,Q(n), T (n)) be defined as PCP(k · log n,Q(n), T (n)) except that only
proofs π of size nk · Q(n) are considered, and addresses computed by the verifier have
log(nk ·Q(n)) bits. Prove that PCP(k · log n,Q(n), T (n)) = PCP′(k · log n,Q(n), T (n)).

1

Solution:
Straightforwardly, we have PCP(k · log n,Q(n), T (n)) ⊇ PCP′(k · log n,Q(n), T (n)).

Consider now a PCP(k · log n,Q(n), T (n))-verifier V . On an input x of size n, for any ran-
dom tape content of size k · log n, at most Q(n) different positions are queried. If we con-
sider the set Pos(x) = {i | ∃r ∈ {0, 1}k·log n, ∃k ≤ Q(n), pk = i on random tape content r on input x}
of all positions of the proof tape used by the verifier V on input x, we have |Pos(x)| ≤ nk ·
Q(n). Hence, one can construct an injective function fx : Pos(x) 7→ {0, . . . , nk ·Q(n)−1}
in polynomial time (Q(n) is polynomial since we have to able to compute Q(n) positions
in polynomial time) and a PCP′(k · log n,Q(n), T (n))-verifier V ′ that simulates V and
instead of querying and using tape content of position i ∈ Pos(x) on input x, it queries
and uses position fx(i) ∈ {0, . . . , nk ·Q(n)− 1}. The languages accepted by V and V ′ are
the same since the function fx is injective. The proof tape content for V ′ only needs to
have log(nk ·Q(n)) bits.

Exercise 2 PCP and non-deterministic classes

Prove that, with R(n) = Ω(log n), we have PCP(R(n), Q(n), T (n)) ⊆ NTIME(2O(R(n)) ·
Q(n) · (T (n) + poly(n))).

Solution:
Consider a PCP(R(n), Q(n), T (n))-verifier V . With the same idea than for the previous

question, we assume without loss of generality that every position pi queried by the verifier
V is at most 2R(n) · Q(n) (in time 2R(n) · Q(n), we can construct a table to associate
with each initial position the corresponding position lower than 2R(n) · Q(n)). Consider
now the non-deterministic algorithm that, on an input x of size n guesses 2R(n) · Q(n)
bits (and stores them). Then, it enumerates all possible random tape content of size
R(n) and simulates the execution of V with the bits guessed as the content of the proof
tape needed while maintaining a counter c that corresponds to the number of accepting
random tapes. The algorithm accepts if and only if c > 1/2R(n)−1. This runs in time
2O(R(n)) ·Q(n) · (T (n) + poly(n)) (the final poly(n) comes from the polynomial time taken
in the first step, to compute the Q(n) position) and accepts if and only if there is a proof
tape content leading to acceptance.

Exercise 3 Known classes

Prove the following statements:

⋃
c∈N, T (n) a polynomial

PCP(0, c · log n, T (n)) = P

⋃
R(n), T (n) polynomials

PCP(R(n), 0, T (n)) = coRP

⋃
Q(n), T (n) polynomials

PCP(0, Q(n), T (n)) = NP

(In fact
⋃

T (n) a polynomial PCP(O(log n), O(1), T (n)) = NP (this is known as the PCP
theorem).)

2

Solution:

• The direct inclusion comes from the fact that a polynomial time algorithm can sim-
ulate all the different possible calls to the proof content tape (there are polynomially
many as an exponential of a logarithm) and check that there exists one that leads
to acceptance (note that the calls do not depend on any random bit). The reverse
inclusion is straightforward: one can simulate a polynomial time algorithm by just
ignoring the randomness and the calls to the proof tape.

• This is by definition.

• The direct inclusion is straightforward. As for the reverse inclusion, the number
of non deterministic calls of a non deterministic Turing machine may depend on
the result of the queries considered, however in any case there are polynomially
many. Hence, it suffice to consider as many non deterministic bits as the worst
case execution time of the Turing machine and simulate the execution of the non-
deterministic Turing machine.

Exercise 4 Graph non-ismorphism

Show that ISO ∈ PCP(p(n), 1, c) for some polynomial p and constant c.

Solution:
Consider a pair of graph (G0, G1) with n vertices. In the proof tape, the verifier V

expects, for each graph H with n vertices, that π[H] = b ∈ {0, 1} where H is isomorphic
to Gb (if H are isomorphic to neither or both G0 and G1, the value of π[H] is not specified)
(that is, to an exponential number (in n) of natural indexes corresponds an adjacency
matrix of an n vertices graph). Then, a verifier V randomly picks b ∈ {0, 1} and a
permutation ν of the vertices, computes H = ν(Gb) accordingly, queries π[H] and checks
that b = π[H].

Then, if G0 and G1 are not isomorphic, an honest proof tape will always lead to
acceptance whereas, if they are isomorphic, the content of π[H] is not specified and there
is at most probability 1/2 of acceptance.

Exercise 5 PCP, MIP and NEXPTIME

Recall the definition of MIP from the previous exercise sheet (where we can assume that
the probability of acceptance is equal to 1 when x ∈ L).

Prove that ⋃
R(n),Q(n),T (n) polynomials

PCP(R(n), Q(n), T (n)) ⊆MIP ⊆ NEXPTIME

(The last inclusion was proved in the previous exercise sheet. In fact, we have an
equality.)

Remark. Indeed MIP and this version of PCP coincide with NEXPTIME, but
you are not required to prove the opposite inclusions.

3

Solution:
With the definition of MIP with oracle, this is straightforward: every call to the proof

content tape can be simulated by calls to an oracle which are (as in this case) independent
from one another (which is different from calls to a prover from an interactive protocol).

Exercise 6 Polynomial Identity Testing

This was already given in the previous exercise sheet.
An n-variable algebraic circuit is a directed acyclic graph having exactly one node with

out-degree zero, and exactly n nodes with in-degree zero. The latter are called sources,
and are labelled by variables x1, . . . xn; the former is called the output of the circuit.
Moreover each non-source node is labelled by an operator in the set {+,−,×}, and has
in-degree two.

This can be seen with an array (s1, . . . , sn, g1, . . . , gm) (the number of nodes), with
first the n sources and then the m internal nodes (or gates) where an input of a gate gi
can either be a source sj or another gate gk with k < i.

An algebraic circuit defines a function from Zn to Z, associating to each integer assign-
ment of the sources the value of the output node, computed through the circuit. It is easy
to show that this function can be described by a polynomial in the variables x1, . . . xn.
Algebraic circuits are indeed a form of implicit representation of multivariate polynomials.
Nevertheless algebraic circuits are more compact than polynomials.

An algebraic circuit C is said to be identically zero if it evaluates to zero for all possible
integer assignments of the sources.

The Polynomial identity problem is as follows:

• Input: An algebraic circuit C

• Ouput: C is identically zero

1. Show that if the variables x may range from 0 to X ∈ N, then the maximum (abso-
lute) value of a cricuit with m internal gates is X2m and show that this maximum
value can achieved (this justifies the sentence “Algebraic circuits are more compact
than polynomials”).

2. Show that Polynomial identity is in coRP (note that it is not known whether Polyno-
mial identity is in P).

Hint: you may need the following statements

• Schwartz-Zippel lemma If p(x1, . . . xn) is a nonzero polynomial with coefficients
in Z and total degree at most d, and S ⊆ Z, then the number of roots of p belonging
to Sn is at most d · |S|n−1.

• Prime number theorem There exists a known integer X0 ≥ 0 such that, for all
integers X ≥ X0, the number of prime numbers in the set [1..2X] is at least 2X

X .

Solution:

1. We can prove this result by induction on the internal gates.

4

2. First, note that for all polynomial q, we have coRP = coRP(1− 1
q(n)) (the error can

be exponentially small or polynomially large).

Consider now a circuit with n sources and m internal gates. The straightforward
idea would be to use the Schwartz-Zippel lemma: We pick n numbers (x1, . . . , xn)
at random between 1 and 10 · 2m, compute the output y and accept iff y = 0. In
this case, we obtain:

• If p(x1, . . . , xn) is identically 0, then Pr[y = 0] = 1;

• If p(x1, . . . , xn) is not, then by using the Schwartz-Zippel lemma for S =
{1, . . . , 10 · 2m} and the polynom p of degree at most 2m, we get:

Pr[y = 0] ≤ 2m · |S|m−1

|S|m
=

2m

|S|
=

1

10

However, this does not work since y may be equal to (10 · 2m)2
m

which cannot be
represented in polynomial time. Hence, we will do the computation modulo a given
k chosen at random between 1 and 22m. Now, all along the computation, y mod k
is at most 22m which can be represented an used in computations in polynomial
time. Now, we have:

• If p(x1, . . . , xn) is identically 0, then Prx,k[y = 0[k]] ≤ P [y = 0] = 1;

• If p(x1, . . . , xn) is not, we have:

Pr[y = 0[k]] = Pr[y = 0[k] | y = 0] ·Pr[y = 0]+Pr[y = 0[k] | y 6= 0] ·Pr[y 6= 0]

We have already proven that Pr[y = 0] ≤ 1
10 . Hence, we have:

Pr[y = 0[k]] ≤ 1

10
+ Pr[y = 0[k] | y 6= 0] · 9

10

Let us now bound the probability Pr[y = 0[k] | y 6= 0]. Let us denote by Ky the
set of prime numbers that do not divide y. Note that if k ∈ Ky, then assuming
y 6= 0 we have y 6= 0[k]. By the prime number theorem, for m large enough,

there is at least 22m

2m prime numbers lower than 22m. Furthermore, y has at

most log y = 2m(log 10+m) ≤ 22m

4m prime divisors (since 4m ·(log 10+m) ≤ 2m,

for m large enough). Hence, |Ky| ≥ 22m

4m . Therefore:

Pr[y 6= 0[k] | y 6= 0] ≥ Pr[k ∈ Ky] =
|Ky|
22m

≥ 1

4m

It follows that:

Pr[y = 0[k]] ≤ 1

10
+ (1− 1

4m
) · 9

10
= 1− 1

40m/9

That is, Polynomialidentity ∈ coRP

Exercise 7 A general note on self-reducibility

Define a language L to be downward-self-reducible if there is a polynomial-time Turing
Machine R such that for any x of length n, RLn−1(x) = L(x), where Lk denotes an oracle
that decides L on input of size at most k. Prove that if L is such a language, then
L ∈ PSPACE.

5

Solution:
Consider such a language L and the corresponding Turing machine R. On an input

x, we can build a polynomial space algorithm that runs R and, each time a query to
the oracle is made, the algorithm solves recursively the problem for instance of smaller
length. If we denote by p the execution time of R, we can prove by induction that the
space taken is bounded by

∑n
i=1 p(i) by using a separate working tape for computing the

calls to the oracle.

6

