
Complexité avancée - TD 10

Benjamin Bordais

December 16, 2020

Exercise 1 A little come back to P and RP

We define a random language A by setting that each word x ∈ {0, 1}∗ is in A with
probability 1/2. Show that almost surely (on the probabilistic choice on the language A)
we have PA = RPA.

Hint: Fix an ε > 0 and an enumeration (Mi)i∈N of probabilistic Turing machine
running in polynomial time with an oracle. Exhibit deterministic polynomial time Turing
machines (Ni)i∈N such that the probability (over the random language considered) that
there is one i such that Mi and Ni do not coincide is lower than C · ε for a constant C.
You may use the language A as a random bit generator.

Exercise 2 Multi-Prover Protocol

Definition 1 Let P1, . . . , Pk be infinitely powerful machines whose output is polynomially
bounded. Let V be a probabilistic polynomial-time machine. V is called the verifier, and
P1, . . . , Pk are called the provers.

A round of a multi-prover interactive protocol on input x consists of an exchange of
messages (i.e. words over a given alphabet) between the verifier and the provers, and
works as follows:

• The verifier V is executed on an input consisting of x, the history of all previous
messages exchanged with all provers (both sent and received messages), and a ran-
dom tape content of size polynomial in |x|. The output of the verifier is computed
in time polynomial in |x|, and consists of messages to some or all of the provers.

• Each message qi sent from the verifier to prover Pi is followed by an answer ai,
of size polynomial in |x|, sent from the prover Pi to the verifier. The answer ai is
computed by Pi on input consisting of x and the history of all messages previously
exchanged between the verifier and the prover Pi (and only Pi).

• Alternatively the verifier may decide not to produce messages, and terminates the
protocol by either accepting or rejecting, based on the input x and the history of all
previous messages exchanged with all provers.

You can view the protocol as executed by the verifier sharing communication tapes with
each Pi, where different provers Pi and Pj (for i 6= j) have no tapes they can both access,
besides the input tape. In a round the verifier stores each message qi to prover Pi on the
i-th communication tape, shared between the prover and Pi. The answer of Pi is put on
tape i as well. The verifier has access to the input and all communication tapes, while
each prover Pi has access only to the input and tape i.

1

P1, . . . , Pk and V form a multi-prover interactive protocol for a language L if the
execution of the protocol between V and P1, . . . Pk terminates after a polynomial number
of rounds (in the size of the input x) and:

• if x ∈ L, then Pr[(V, P1, . . . , Pk) accepts x] > 1− 2−n;

• if x /∈ L, then for all provers P ′1, . . . , P
′
k, Pr[(V, P ′1, . . . , P

′
k) accepts x] < 2−n;

where q is a polynomial and the probability is computed over all possible random choices
of V .

In this case, we denote L ∈ MIPk. The number of provers k need not be fixed and may
be a polynomial in the size of the input x. We say that L ∈ MIP if L ∈ MIPp(n) for some
polynomial p. Clearly MIP1 = IP = PSPACE (as you will see in the lecture), but allowing
more provers makes the interactive protocol model potentially more powerful.

1. Let M be a probabilistic polynomial-time Turing machine with access to an oracle.
A language L is accepted by M iff:

• if x ∈ L, then there exists an oracle O s.t. MO accepts x with probability
greater than 1− 2−n;

• if x /∈ L, then for any oracle O′, MO′
accepts x with probability lower than

2−n.

Show that L ∈ MIP if and only if L is accepted by a probabilistic polynomial time
oracle machine.

2. Show that MIP = MIP2 (assuming we can use error-reduction).

3. Show that MIP ⊆ NEXP (this is, in fact, an equality. It can be shown by using the
same kind of idea (but more involved) that was used to prove that IP = PSPACE).

Exercise 3 Polynomial Identity Testing

An n-variable algebraic circuit is a directed acyclic graph having exactly one node with
out-degree zero, and exactly n nodes with in-degree zero. The latter are called sources,
and are labelled by variables x1, . . . xn; the former is called the output of the circuit.
Moreover each non-source node is labelled by an operator in the set {+,−,×}, and has
in-degree two.

This can be seen with an array (s1, . . . , sn, g1, . . . , gm) (the number of nodes), with
first the n sources and then the m internal nodes (or gates) where an input of a gate gi
can either be a source sj or another gate gk with k < i.

An algebraic circuit defines a function from Zn to Z, associating to each integer assign-
ment of the sources the value of the output node, computed through the circuit. It is easy
to show that this function can be described by a polynomial in the variables x1, . . . xn.
Algebraic circuits are indeed a form of implicit representation of multivariate polynomials.
Nevertheless algebraic circuits are more compact than polynomials.

An algebraic circuit C is said to be identically zero if it evaluates to zero for all possible
integer assignments of the sources.

The Polynomial identity problem is as follows:

• Input: An algebraic circuit C

2

• Ouput: C is identically zero

1. Show that if the variables x may range from 0 to X ∈ N, then the maximum (abso-
lute) value of a cricuit with m internal gates is X2m and show that this maximum
value can achieved (this justifies the sentence “Algebraic circuits are more compact
than polynomials”).

2. Show that Polynomial identity is in coRP (note that it is not known whether Polyno-
mial identity is in P).

Hint: you may need the following statements

• Schwartz-Zippel lemma If p(x1, . . . xn) is a nonzero polynomial with coefficients
in Z and total degree at most d, and S ⊆ Z, then the number of roots of p belonging
to Sn is at most d · |S|n−1.

• Prime number theorem There exists a known integer X0 ≥ 0 such that, for all
integers X ≥ X0, the number of prime numbers in the set [1..2X] is at least 2X

X .

3

