
Complexité avancée - TD 10

Benjamin Bordais

December 16, 2020

Exercise 1 A little come back to P and RP

We define a random language A by setting that each word x ∈ {0, 1}∗ is in A with
probability 1/2. Show that almost surely (on the probabilistic choice on the language A)
we have PA = RPA.

Hint: Fix an ε > 0 and an enumeration (Mi)i∈N of probabilistic Turing machine
running in polynomial time with an oracle. Exhibit deterministic polynomial time Turing
machines (Ni)i∈N such that the probability (over the random language considered) that
there is one i such that Mi and Ni do not coincide is lower than C · ε for a constant C.
You may use the language A as a random bit generator.

Solution:
For all languages A, we have PA ⊆ RPA. Now, consider the other inclusion. Let

(Mi)i∈N be an enumeration of probabilistic Turing machine running in polynomial time
with an oracle. Fix an ε > 0. Let us denote by (M ′i)i∈N the Turing machine that executes
i+ 2 · n+ log ε (with n the size of the input) time the machine Mi, to get the probability
of error ≤ ε · 2−i−2n (if the machine Mi has a behavior as in RP) and let us denote by t′i
its execution time. Now, we consider the deterministic machine NA

i that simulates the
execution of the machine M ′Ai by replacing random bits read by the call to the oracle
machine on (arbitrary) words of size bigger that t′i (therefore, which are not used by
M ′Ai). Since A is random, so are the bits from the oracle and they also are independent.
Note that all the machines Ni run in polynomial time. Then, if we consider MA

i with the
acceptance condition of type RPA and which then recognizes the language L(MA

i), for all
x of size n we have (since either of the two machine may make a mistake):

PrA[NA
i (x) 6= [x ∈ L(MA

i)]] ≤ ε · 2−i−2n

By summing over all such x:

PrA[∃x ∈ {0, 1}n, NA
i (x) 6= [x ∈ L(MA

i)]] ≤ ε · 2−i−n

Now, we sum over all such n:

PrA[∃x ∈ {0, 1}∗, NA
i (x) 6= [x ∈ L(MA

i)]] ≤ 2 · ε · 2−i

Finally, we sum over all such i:

PrA[∃i, ∃x ∈ {0, 1}∗, NA
i (x) 6= [x ∈ L(MA

i)]] ≤ 4 · ε

Therefore, we have PrA[RPA (PA] ≤ 4 · ε. This holds for all ε > 0. That is, almost
surely, PA and RPA coincide.

1

Exercise 2 Multi-Prover Protocol

Definition 1 Let P1, . . . , Pk be infinitely powerful machines whose output is polynomially
bounded. Let V be a probabilistic polynomial-time machine. V is called the verifier, and
P1, . . . , Pk are called the provers.

A round of a multi-prover interactive protocol on input x consists of an exchange of
messages (i.e. words over a given alphabet) between the verifier and the provers, and
works as follows:

• The verifier V is executed on an input consisting of x, the history of all previous
messages exchanged with all provers (both sent and received messages), and a ran-
dom tape content of size polynomial in |x|. The output of the verifier is computed
in time polynomial in |x|, and consists of messages to some or all of the provers.

• Each message qi sent from the verifier to prover Pi is followed by an answer ai,
of size polynomial in |x|, sent from the prover Pi to the verifier. The answer ai is
computed by Pi on input consisting of x and the history of all messages previously
exchanged between the verifier and the prover Pi (and only Pi).

• Alternatively the verifier may decide not to produce messages, and terminates the
protocol by either accepting or rejecting, based on the input x and the history of all
previous messages exchanged with all provers.

You can view the protocol as executed by the verifier sharing communication tapes with
each Pi, where different provers Pi and Pj (for i 6= j) have no tapes they can both access,
besides the input tape. In a round the verifier stores each message qi to prover Pi on the
i-th communication tape, shared between the prover and Pi. The answer of Pi is put on
tape i as well. The verifier has access to the input and all communication tapes, while
each prover Pi has access only to the input and tape i.

P1, . . . , Pk and V form a multi-prover interactive protocol for a language L if the
execution of the protocol between V and P1, . . . Pk terminates after a polynomial number
of rounds (in the size of the input x) and:

• if x ∈ L, then Pr[(V, P1, . . . , Pk) accepts x] > 1− 2−n;

• if x /∈ L, then for all provers P ′1, . . . , P
′
k, Pr[(V, P ′1, . . . , P

′
k) accepts x] < 2−n;

where q is a polynomial and the probability is computed over all possible random choices
of V .

In this case, we denote L ∈ MIPk. The number of provers k need not be fixed and may
be a polynomial in the size of the input x. We say that L ∈ MIP if L ∈ MIPp(n) for some
polynomial p. Clearly MIP1 = IP = PSPACE (as you will see in the lecture), but allowing
more provers makes the interactive protocol model potentially more powerful.

1. Let M be a probabilistic polynomial-time Turing machine with access to an oracle.
A language L is accepted by M iff:

• if x ∈ L, then there exists an oracle O s.t. MO accepts x with probability
greater than 1− 2−n;

• if x /∈ L, then for any oracle O′, MO′
accepts x with probability lower than

2−n.

2

Show that L ∈ MIP if and only if L is accepted by a probabilistic polynomial time
oracle machine.

2. Show that MIP = MIP2 (assuming we can use error-reduction).

3. Show that MIP ⊆ NEXP (this is, in fact, an equality. It can be shown by using the
same kind of idea (but more involved) that was used to prove that IP = PSPACE).

Solution:

1. Suppose that L ∈ MIP with a verifier V . We define the probabilistic polynomial
time Turing machine M that simulates V . However, M can only call an oracle that
only gives yes-or-no answers, not a polynomially-bounded size response like a prover.
Therefore, we call an oracle to get each bit of the response of the prover. That is,
when V sends a message to a prover, M asks the query (x, i, j, l, qi,1, . . . , qi,j) to the
oracle, which, in turn, will be used as the l-th bit of the j-th message of V sent
to prover i with qi,1, . . . , qi,j the first j message sent from the verifier to prover i.
Then, M accepts iff the verifier V does. We get:

• If x ∈ L, then the oracle O that faithfully simulates the calls to the differ-
ent provers by sending the corresponding bits ensures that the probability of
acceptance is greater than 1− 2−n (since L ∈ MIP).

• Suppose now that x /∈ L and that there exists an oracle O′ such that the
probability of acceptance by MO′

is at least 1− 2−n. Then, we can construct
the prover (Pi)i by using the oracle O′ (the same way M does, by calling it bit
by bit). It would follow that the probability of acceptance is at least 1− 2−n,
hence the contradiction since L ∈ MIP.

Suppose now that L is accepted by an oracle probabilistic polynomial-time Turing
machine M running in time nc (with n the size of the input). We want to simulate
the oracle with provers. If we use only one prover to simulate the oracle, then
the answer to a query may depend on previous queries, which is different from the
specification of an oracle. However, we could use one prover per query, so that no
prover has an history of previous exchanges. However, if we want to prove that the
probability of accepting if below 2−n when x /∈ L, then we have to use the hypothesis
that for any oracle, the probability of error is below 2−n. But we do not know which
prover is used on a given query since this may depend on the probabilistic tape. A
solution may be to consider the majority of the choice of all provers used, but in
that case the probability that at least one prover does not agree with the majority
on at least one query is very high. To circumvent this phenomenon, for each call
to the oracle we use several provers and require that they are all unanimous on the
answer. More, formally, we use 2 · nc+1 provers. We consider a verifier V that first
chooses randomly (and uniformly) an ordering of these provers. Then, the verifier
V simulates M and, each time M makes a query to the oracle, V asks the question
to the next 2n provers. If they are unanimous, V proceeds with the simulation of
M with the common answers of the provers as answer of the oracle, otherwise it
rejects. Then, V accepts iff M does (assuming that all queries to the oracle passed
successfully). Note that indeed 2 · nc+1 provers suffice.

• If x ∈ L, there exists an oracle O such that the probability of acceptance is at
least 1− 2−n, hence if the provers faithfully simulates the answer of the oracle
O, then the probability of acceptance will be the same.

3

• Suppose now that x /∈ L. Consider any provers P1, . . . , P2·nc+1 and the oracle
O′ that answers like the majority of the 2 · nc+1 provers. Now, there are two
possibilities: either all oracle queries in the simulation is consistent with O′, or
there is at least one difference. In the first case, the probability of acceptance
is less than 2−n (by definition of the acceptance condition of a probabilistic
Turing machine). In the other case, the probability of acceptance is bounded by
the probability that at least one oracle query is inconsistent with O′ and it did
not reject immediatly. That is, there exists a sequence of 2 ·n provers that are
unanimously inconsistent with O′ on a query. However, by definition of O′, at
least half of the provers are consistent with it. Therefore, the probability (for a
fixed sequence of 2 ·n provers) that the provers are unanimously inconsistent is
lower than 2−2n. By summing over all nc queries, it follows that the probability
that there is at least one inconsistency not rejected is lower than nc · 2−2n.
Overall, we have Pr[accept] < 2n + nc · 2−2n < 2−n+1 for n large enough.

We need to reduce that probability even further. Hence, we consider V ′ that simu-
lates V three times in a row and answers according to the majority. In that case:

• If x ∈ L, we have:

Pr[accept] > (1− 2−n)3 + 3(1− 2−n)2 · 2−n > 1− 3 · 2−2n > 1− ·2−n

• If x /∈ L, we have:

Pr[accept] < (2−n+1)3 + 3(2−n+1)2 · (1− 2−n+1) < 2−n

2. Consider a language L ∈ MIP with an arbitrary number of provers (Pi)i (but poly-
nomially bounded in the size of the input) with a verifier V . We want to simulate
what happens with these provers with only two provers. The idea is to use one
prover to simulate the calls to all these provers and then simulating V with these
calls. However, since these queries are made to a single prover, in the simulation, the
provers simulated may interact with each other (which is not allowed in a MIP pro-
tocol), hence we check with the second prover that the answer for a given prover Pi

can be obtained with a single prover that does not interact with the other. However,
we can only do one call to that second prover, otherwise the second call would have
the information of the first call (i.e. there would an interaction between provers).
Therefore, we randomly choose the prover Pi to check, and we use error reduction.

More formally, assume that the verifier V uses k provers in time nc on an input x.
We consider a verifier V ′ generating a random word r of length nc and sending it to
the first prover. This prover answers with the complete interaction of all k provers
with the verifier V over the whole computation of V on x with the random word r.
Then, V ′ simulates V with the given interaction with the provers. If V rejects, so
does V ′. Otherwise, it randomly picks a number j between 1 and k and simulates
the complete interaction with prover Pj with queries to the second prover (while
indicating the number j in the exchange). If it differs from what was sent by the
first prover, V ′ rejects, otherwise it accepts. Then, we have:

• If x ∈ L, then the two provers can just faithfully simulate the other provers
and get a probability greater then 1− 2−n.

• If x /∈ L, either the first prover simulates faithfully the other provers (in which
case, the probability of accepting is below 2−n), otherwise at least one prover

4

cannot have this interaction without exchanging with other provers (in which
case, the probability to reject is at least 1/k if the prover chosen at random is
the faulty one). Overall, the probability to accept is lower than:

Pr[accept] < 2−n + (1− 1/k)

We conclude by using error reduction with k2 rounds (where, at each round,
one new random word is chosen and therefore the knowledge of the previous
rounds is not an issue). Note this is possible since k is bounded polynomially
in n.

3. Consider a language L decided by an oracle probabilistic machine M running in
time nc. This machine makes at most nc calls to the oracle. Note that it is not
enough to only guess the result of the nc queries, and then counting the number of
accepting runs over all possible random word of the appropriate size (which would
yield a polynomial space algorithm) since the calls to the oracle may depend on the
random bits read. Hence, we consider a non-deterministic exponential time machine
M ′ that guesses the oracle O, or more precisely that guesses the answer of the oracle
O to all possible 2n

c+1 − 1 queries that the machine M can make (since the size of
a query is at most nc). Then, for a word r of size nc, denote f the function such
that f(x,O, r) = 1 if the simulation of M on the input x with r used as random
tape accepts, and 0 otherwise. Then, le machine M ′ accepts x iff:

S =
∑

r∈{0,1}nc

f(x,O, r) ≥ 2n
c−1

Then, if x ∈ L, there exists an oracle O such that S > (1 − 2n) · 2nc ≥ 2n
c−1

and if x /∈ L, for all oracle O′, we have S < 2−n · 2nc ≤ 2n
c−1. Therefore, L ∈

NTIME(2O(nc)) ⊆ NPTIME.

Exercise 3 Polynomial Identity Testing

An n-variable algebraic circuit is a directed acyclic graph having exactly one node with
out-degree zero, and exactly n nodes with in-degree zero. The latter are called sources,
and are labelled by variables x1, . . . xn; the former is called the output of the circuit.
Moreover each non-source node is labelled by an operator in the set {+,−,×}, and has
in-degree two.

This can be seen with an array (s1, . . . , sn, g1, . . . , gm) (the number of nodes), with
first the n sources and then the m internal nodes (or gates) where an input of a gate gi
can either be a source sj or another gate gk with k < i.

An algebraic circuit defines a function from Zn to Z, associating to each integer assign-
ment of the sources the value of the output node, computed through the circuit. It is easy
to show that this function can be described by a polynomial in the variables x1, . . . xn.
Algebraic circuits are indeed a form of implicit representation of multivariate polynomials.
Nevertheless algebraic circuits are more compact than polynomials.

An algebraic circuit C is said to be identically zero if it evaluates to zero for all possible
integer assignments of the sources.

The Polynomial identity problem is as follows:

• Input: An algebraic circuit C

• Ouput: C is identically zero

5

1. Show that if the variables x may range from 0 to X ∈ N, then the maximum (abso-
lute) value of a cricuit with m internal gates is X2m and show that this maximum
value can achieved (this justifies the sentence “Algebraic circuits are more compact
than polynomials”).

2. Show that Polynomial identity is in coRP (note that it is not known whether Polyno-
mial identity is in P).

Hint: you may need the following statements

• Schwartz-Zippel lemma If p(x1, . . . xn) is a nonzero polynomial with coefficients
in Z and total degree at most d, and S ⊆ Z, then the number of roots of p belonging
to Sn is at most d · |S|n−1.

• Prime number theorem There exists a known integer X0 ≥ 0 such that, for all
integers X ≥ X0, the number of prime numbers in the set [1..2X] is at least 2X

X .

Solution:

1. We can prove this result by induction on the internal gates.

2. First, note that for all polynomial q, we have coRP = coRP(1− 1
q(n)) (the eroor can

be exponentially small or polynomially large).

Consider now a circuit with n sources and m internal gates. The straightforward
idea would be to use the Schwartz-Zippel lemma: We pick n numbers (x1, . . . , xn)
at random between 1 and 10 · 2m, compute the output y and accept iff y = 0. In
this case, we obtain:

• If p(x1, . . . , xn) is identically 0, then Pr[y = 0] = 1;

• If p(x1, . . . , xn) is not, then by using the Schwartz-Zippel lemma for S =
{1, . . . , 10 · 2m} and the polynom p of degree at most 2m, we get:

Pr[y = 0] ≤ 2m · |S|m−1

|S|m
=

2m

|S|
=

1

10

However, this does not work since y may be equal to (10 · 2m)2
m

which cannot be
represented in polynomial time. Hence, we will do the computation modulo a given
k chosen at random between 1 and 22m. Now, all along the computation, y mod k
is at most 22m which can be represented an used in computations in polynomial
time. Now, we have:

• If p(x1, . . . , xn) is identically 0, then Prx,k[y = 0[k]] ≤ P [y = 0] = 1;

• If p(x1, . . . , xn) is not, we have:

Pr[y = 0[k]] = Pr[y = 0[k] | y = 0] ·Pr[y = 0]+Pr[y = 0[k] | y 6= 0] ·Pr[y 6= 0]

We have already proven that Pr[y = 0] ≤ 1
10 . Hence, we have:

Pr[y = 0[k]] ≤ 1

10
+ Pr[y = 0[k] | y 6= 0] · 9

10

6

Let us now bound the probability Pr[y = 0[k] | y 6= 0]. Let us denote by Ky

the set of prime numbers that do not divide y. Note that if k ∈ Ky, then
assuming y 6= 0[k]. By the prime number theorem, for m large enough, there

is at least 22m

2m prime numbers lower than 22m. Furthermore, y has at most

log y = 2m(log 10 +m) ≤ 22m

4m prime divisors (since 4m · (log 10 +m) ≤ 2m, for

m large enough). Hence, |Ky| ≥ 22m

4m . Therefore:

Pr[y 6= 0[k] | y 6= 0] ≥ Pr[k ∈ Ky] =
|Ky|
22m

≥ 1

4m

It follows that:

Pr[y = 0[k]] ≤ 1

10
+ (1− 1

4m
) · 9

10
= 1− 1

40m/9

That is, Polynomialidentity ∈ coRP

7

