
Complexité avancée - TD 9

Benjamin Bordais

December 09, 2020

We recall the definition of the Arthur-Merlin hierarchy.

Definition 1 An Arthur and Merlin triplet is the data of (M,A, D) where M is a Merlin
function, that is a function with the size of the output polynomial in the size of the input,
possibly not computable, a randomized Turing machine A running in polynomial time and
a language D ∈ P. Then, for all w ∈ {A,M}∗, let us denote by k the number of times A
appears in the word w. We consider the following algorithm induced by the word w (with
n = |w| and r1, . . . , rk k random tapes of size polynomial in n).

protw(M ;x, r1, . . . , rk) :
imp = x
i = 0
for j = 1 , . . . , n :

if wj = A then (i = i +1, qj = A(imp , ri) ; imp = imp # ri # qj)
else (yj = M(imp) ; imp := imp # yj)

accept if (imp ∈ D) , else reject

We denote prot[A,M]D(x, r1, . . . , rk) = > if the previous algorithm accepts, otherwise
prot[A,M]D(x, r1, . . . , rk) = ⊥.

Recall the definition of the Arthur-Merlin hierarchy: AM[f] for a proper function
f denotes the class of languages L such that there exists an Arthur and Merlin triplet
(M,A, D) such that for any x of size n, letting w ∈ {A,M}f(n):

1. Completeness: if x ∈ L then Pr[protw[A,M]D(x, r1, . . . , rk) = >] ≥ 2/3

2. Soundness: if x /∈ L then for any Merlin’s function M ′, Pr[protw[A,M ′]D(x, r1, . . . , rk) =
⊥] ≥ 2/3

Exercise 1 NP and BPP

• if P = NP then BPP = P.

• if NP ⊆ BPP then AM = MA (you may use the fact (or even prove!) that BPPBPP =
BPP).

Exercise 2 AM with perfect soundness

Define AMps as AM with perfect soundness, that is, in the case x 6∈ L, for all Merlin’s
function, the probability to reject is equal to 1. Show that AMps = C ⊆ AM, where C is a
known complexity class.

Exercise 3 BPP-completeness? – A follow up

1

Recall the exercise from TD07:

1. Show that the language LNP = {(M,x, 1t) |M accepts on input x in time at most t},
where M is the code of a non-deterministic Turing machine, x an input of M and t
a natural number, is NP-complete.

2. Let now LBPP be the language of words (M,x, 1t) where M designates the encoding
of a probabilistic Turing machine and x a string on M ′s alphabet such that M
accepts x in at most t steps, for at least 2/3 of the possible random tapes of size t.

Is LBPP BPP-hard? Is it in BPP ?

It is straightforward to prove that LBPP is BPP-hard, however, it is not known if it is
in BPP. To this day, no BPP-complete problem is known. This can be circumvent with
promise problem. However, promise problems also ensure counter intuitive properties.

Definition 2 A promise problem L is a pair (Lyes, Lno) ⊆ ({0, 1}∗)2 such that Lyes ∩
Lno = ∅. The set Lyes ∪ Lno is called the promise.

Definition 3 A promise problem L = (Lyes, Lno) is Karp-reducible to the promise prob-
lem L′ = (L′yes, L

′
no) if there exists a polynomial time computable function f : {0, 1}∗ →

{0, 1}∗ such that:

• if x ∈ Lyes, then f(x) ∈ L′yes;

• if x ∈ Lno, then f(x) ∈ L′no.

Definition 4 A promise problem L = (Lyes, Lno) is Cook-reducible to the promise prob-
lem L′ = (L′yes, L

′
no) if there exists polynomial time Turing machine ML′

with an oracle
in L′ such that:

• if x ∈ Lyes, then ML′
(x) = >;

• if x ∈ Lno, then ML′
(x) = ⊥.

Note that the correctness of the answer of the oracle is only guaranteed if the query is in
the promise of the language L′.

We can now define the alternative to BPP with promise problems.

Definition 5 Let BPPprm be the set of promise problems L = (Lyes, Lno) such that there
exists a probabilistic Turing machine M running in polynomial time such that:

• if x ∈ Lyes, then Prr[M(x, r) = >] ≥ 2/3;

• if x ∈ Lno, then Prr[M(x, r) = >] ≤ 1/3.

1. Exhibit a BPPprm-complete problem (for Karp reductions).

2. Define analogously to BPPprm the classes NPprm and coNPprm.

3. Give a NPprm-complete problem (for Karp-reduction).

4. Prove that if L is Karp-reducible to L′ and L′ is Cook-reducible to L′′ then L is
Cook reducible to L′′.

2

5. Prove that the following problem xSAT is in NPprm ∩ coNPprm and is NPprm-hard
for Cook reductions:

• Lyes = {(ϕ1, ϕ2) | ϕ1 ∈ SAT, ϕ2 /∈ SAT}
• Lno = {(ϕ1, ϕ2) | ϕ1 /∈ SAT, ϕ2 ∈ SAT}

Exercise 4 The PP class

This is the same exercise as last week. The only new question is question 4.
The class PP is the class of languages L for which there exists a polynomial time

probabilistic Turing machine M such that:

• if x ∈ L then Pr[M(x, r) accepts] > 1
2

• if x /∈ L then Pr[M(x, r) accepts] ≤ 1
2

Also define PP< as the class of languages L for which there exists a polynomial time
probabilistic Turing machine M such that:

• if x ∈ L then Pr[M(x, r) accepts] > 1
2

• if x /∈ L then Pr[M(x, r) accepts] < 1
2

1. Show that BPP ⊆ PP and NP ⊆ PP;

2. Show that PP = PP< and that PP is closed under complement;

3. Consider the decision problem MAJSAT:

(a) Input: a boolean formula φ on n variables

(b) Output: the (strict) majority of the 2n valuations satisfy φ.

Show that MAJSAT ∈ PP. In fact, MAJSAT is PP-complete.

One may also consider the decision problem MAXSAT:

(a) Input: a boolean formula φ on n variables, a number K

(b) Output: more than K valuations satisfy φ.

Show that MAXSAT is also PP-complete (to prove that MAXSAT ∈ PP one may
reduce MAXSAT to MAJSAT).

4. The class #P is the class of functions f : Σ∗ → N for which there exists a relation
R ⊆ Σ∗ × Σ∗ and a polynomial p such that:

(a) for every x, y ∈ Σ∗, R(x, y) implies |y| < p(|x|)
(b) R ∈ P

(c) for every x, f(x) = |{y | R(x, y)}|

The function f(x) counts the number of words y such that (x, y) ∈ R. In fact #P
is as powerful as PP, however this class cannot be compared directly since #P is
a class of functions. In fact, we need to use oracle machines. Specifically, for a
function f ∈ #P, a Turing machine can use as oracle the function f that, when a
word u is written on the oracle tape, writes in constant time f(u) in binary in that
oracle tape. Then, P#P = ∪f∈#PP

f . The class PPP is defined as usual.

Prove that: PPP = P#P.

3

5. Show that MA ⊆ PP.

Exercise 5 A little come back to P and RP

We define a random language A by setting that each word x ∈ {0, 1}∗ is in A with
probability 1/2. Show that almost surely (on the probabilistic choice on the language A)
we have PA = RPA.

Hint: Fix an ε > 0 and an enumeration (Mi)i∈N of probabilistic Turing machine
running in polynomial time with an oracle. Exhibit deterministic polynomial time Turing
machines (Ni)i∈N such that the probability (over the random language considered) that
there is one i such that Mi and Ni does not coincide is lower than C · ε for a constant C.
You may use the language A as a random bit generator.

4

