
Complexité avancée - TD 9

Benjamin Bordais

December 09, 2020

We recall the definition of the Arthur-Merlin hierarchy.

Definition 1 An Arthur and Merlin triplet is the data of (M,A, D) where M is a Merlin
function, that is a function with the size of the output polynomial in the size of the input,
possibly not computable, a randomized Turing machine A running in polynomial time and
a language D ∈ P. Then, for all w ∈ {A,M}∗, let us denote by k the number of times A
appears in the word w. We consider the following algorithm induced by the word w (with
n = |w| and r1, . . . , rk k random tapes of size polynomial in n).

protw(M ;x, r1, . . . , rk) :
imp = x
i = 0
for j = 1 , . . . , n :

if wj = A then ( i = i +1, qj = A( imp , ri ) ; imp = imp # ri # qj )
else (yj = M( imp ) ; imp := imp # yj )

accept if ( imp ∈ D) , else reject

We denote prot[A,M ]D(x, r1, . . . , rk) = > if the previous algorithm accepts, otherwise
prot[A,M ]D(x, r1, . . . , rk) = ⊥.

Recall the definition of the Arthur-Merlin hierarchy: AM[f ] for a proper function
f denotes the class of languages L such that there exists an Arthur and Merlin triplet
(M,A, D) such that for any x of size n, letting w ∈ {A,M}f(n):

1. Completeness: if x ∈ L then Pr[protw[A,M ]D(x, r1, . . . , rk) = >] ≥ 2/3

2. Soundness: if x /∈ L then for any Merlin’s function M ′, Pr[protw[A,M ′]D(x, r1, . . . , rk) =
⊥] ≥ 2/3

Exercise 1 NP and BPP

• if P = NP then BPP = P.

• if NP ⊆ BPP then AM = MA (you may use the fact (or even prove!) that BPPBPP =
BPP).

Solution:

• In that case, PH = P, and therefore P ⊆ BPP ⊆ Σp
2 ⊆ P.

• We know that BPP = A ⊆ MA ⊆ AM ⊆ BPPNP ⊆ BPPBPP = BPP. Therefore, if
NP ⊆ BPP we have AM = MA.

Exercise 2 AM with perfect soundness

1



Define AMps as AM with perfect soundness, that is, in the case x 6∈ L, for all Merlin’s
function, the probability to reject is equal to 1. Show that AMps = C ⊆ AM, where C is a
known complexity class.

Solution: We have NP ⊆ AM. In addition, for L ⊆ AMps we have a Arthur-Merlin
triplet (M,A, D) from the definition of AMps. Now, let L′ be the language decided by
the non-deterministic polynomial time algorithm on an input x that guesses r and y (of
size bounded by the execution time of A on x and size of the output of the function M ,
respectively) and returns return x#r#A(x, r)#y ∈ D. It follows that:

• if x ∈ L then Prr[prot[A,M ]D(x, r) = >] ≥ 1 − 1/2n. Hence, there exists y and r
such that x#r#A(x, r)#y ∈ D, therefore x ∈ L′.

• if x /∈ L, then for all Merlin function M ′, Prr[prot[A,M ]D = ⊥] = 1. Therefore, for
all r, y, we have x#r#A(x, r)#y /∈ D, hence x /∈ L′.

That is L = L′ and L ∈ NP. That is, AMps ⊆ NP.
Furthermore, for L ∈ NP, there exists L′ ∈ P and a polynom p such that L = {x |

∃y, |y| ≤ p(|x|), (x, y) ∈ L′}. Now, we set D = {y#x## | (x, y) ∈ L′} ∈ P. Then the
language L is recognized by the Arthur-Merlin triplet (M,A, D) for M sending the non
deterministic choice associated to L and for a lazy Arthur A.

Exercise 3 BPP-completeness? – A follow up

Recall the exercise from TD07:

1. Show that the language LNP = {(M,x, 1t) |M accepts on input x in time at most t},
where M is the code of a non-deterministic Turing machine, x an input of M and t
a natural number, is NP-complete.

2. Let now LBPP be the language of words (M,x, 1t) where M designates the encoding
of a probabilistic Turing machine and x a string on M ′s alphabet such that M
accepts x in at most t steps, for at least 2/3 of the possible random tapes of size t.

Is LBPP BPP-hard? Is it in BPP ?

It is straightforward to prove that LBPP is BPP-hard, however, it is not known if it is
in BPP. To this day, no BPP-complete problem is known. This can be circumvent with
promise problem. However, promise problems also ensure counter intuitive properties.

Definition 2 A promise problem L is a pair (Lyes, Lno) ⊆ ({0, 1}∗)2 such that Lyes ∩
Lno = ∅. The set Lyes ∪ Lno is called the promise.

Definition 3 A promise problem L = (Lyes, Lno) is Karp-reducible to the promise prob-
lem L′ = (L′yes, L

′
no) if there exists a polynomial time computable function f : {0, 1}∗ →

{0, 1}∗ such that:

• if x ∈ Lyes, then f(x) ∈ L′yes;

• if x ∈ Lno, then f(x) ∈ L′no.

Definition 4 A promise problem L = (Lyes, Lno) is Cook-reducible to the promise prob-
lem L′ = (L′yes, L

′
no) if there exists polynomial time Turing machine ML′ with an oracle

in L′ such that:

2



• if x ∈ Lyes, then ML′(x) = >;

• if x ∈ Lno, then ML′(x) = ⊥.

Note that the correctness of the answer of the oracle is only guaranteed if the query is in
the promise of the language L′.

We can now define the alternative to BPP with promise problems.

Definition 5 Let BPPprm be the set of promise problems L = (Lyes, Lno) such that there
exists a probabilistic Turing machine M running in polynomial time such that:

• if x ∈ Lyes, then Prr[M(x, r) = >] ≥ 2/3;

• if x ∈ Lno, then Prr[M(x, r) = >] ≤ 1/3.

1. Exhibit a BPPprm-complete problem (for Karp reductions).

2. Define analogously to BPPprm the classes NPprm and coNPprm.

3. Give a NPprm-complete problem (for Karp-reduction).

4. Prove that if L is Karp-reducible to L′ and L′ is Cook-reducible to L′′ then L is
Cook reducible to L′′.

5. Prove that the following problem xSAT is in NPprm ∩ coNPprm and is NPprm-hard
for Cook reductions:

• Lyes = {(ϕ1, ϕ2) | ϕ1 ∈ SAT, ϕ2 /∈ SAT}
• Lno = {(ϕ1, ϕ2) | ϕ1 /∈ SAT, ϕ2 ∈ SAT}

Solution:

1. The following promise problem

• Lyes = {(M,x, 1t) |M accepts x in at most t steps with probablity at least 2/3}
• Lno = {(M,x, 1t) |M accepts x in at most t steps with probablity at most 1/3}

is BPPprm-complete.

2. Definition 6 Let NPprm (resp. coNPprm) be the set of promise problems L =
(Lyes, Lno) such that there exists a non-deterministic Turing machine M running
in polynomial time such that:

• if x ∈ Lyes, then there exists an accepting run (resp. all runs are accepting) of
M on input x;

• if x ∈ Lno, then all runs are rejecting (resp. there exists a rejecting run) of M
on input x.

3. The promise problem that is equivalent to SAT is:

• Lyes = {ϕ | ϕ is satisfiable}
• Lno = {ϕ | ϕ is not satisfiable}

3



It is straightforwardly in NPprm. It is in addition NPprm-hard for Karp reductions
by using the same reduction used to prove that SAT is NP-hard.

4. Let us assume that L = (Lyes, Lno) is Karp-reducible to the promise problem L′ =
(L′yes, L

′
no) and consider the associated function f and that L′ = (L′yes, L

′
no) is Cook-

reducible to L′′ = (L′′yes, L
′′
no). Let us prove that L is also Cook reducible to L′′.

Consider the deterministic polynomial time Turing machine M for the reducibility
between L′ and L′′. Then, we construct M ′ that just computes f(x) on an input x
and then simulates M on f(x) (of polynomial size). Then:

• if x ∈ Lyes, then f(x) ∈ L′yes and ML′′(f(x)) returns >;

• if x ∈ Lno, then f(x) ∈ L′no and ML′′(f(x)) returns ⊥;

5. One can consider a non-deterministic machine that, on an input (ϕ1, ϕ2) guesses a
valuation and checks that it satisfies ϕ1 (resp. ¬ϕ2). By definition of the semantics
of NPprm and coNPprm, we have xSAT ∈ NPprm∩coNPprm. Let us now prove that it
is NPprm-hard under Cook-reductions. To do so, let us reduce the promise version
of the problem SAT from question 3 that is NPprm-hard under Karp-reductions.
From question 4, this will show that xSAT is NPprm-hard under Cook reductions.
Consider an input ϕ. Consider the following polynomial time algorithm with an
oracle to xSAT:

a (ϕ ) :
i f ϕ = True :
then accept ;
e l i f ϕ = False :
then r e j e c t ;
e l s e
l e t x in Var ( s ) ;
i f xSAT[ϕ[x← True], ϕ[x← False]] = > :
then a (ϕ[x← True])
e l s e a (ϕ[x← False])

Note that if xSAT[ϕ[x← True], ϕ[x← False]] = >, the only thing we can deduce is
that [ϕ[x← True], ϕ[x← False]] /∈ Lno. However, this is sufficient to only consider
the case where x is set to True since this means that either ϕ is not satisfiable, ϕ
is satisfiable regardless of the choice for x or it is satisfiable only if x is set to True.
Then, the reasoning is similar for the other case where xSAT[ϕ[x ← True], ϕ[x ←
False]] = ⊥. It follows that this algorithm finds a satisfying valuation of ϕ if and

only if it is satisfiable. Hence, we have exhibited a Cook reduction from the promise
version of SAT to xSAT.

Exercise 4 The PP class

This is the same exercise as last week. The only new question is question 4.
The class PP is the class of languages L for which there exists a polynomial time

probabilistic Turing machine M such that:

• if x ∈ L then Pr[M(x, r) accepts ] > 1
2

• if x /∈ L then Pr[M(x, r) accepts ] ≤ 1
2

4



Also define PP< as the class of languages L for which there exists a polynomial time
probabilistic Turing machine M such that:

• if x ∈ L then Pr[M(x, r) accepts ] > 1
2

• if x /∈ L then Pr[M(x, r) accepts ] < 1
2

1. Show that BPP ⊆ PP and NP ⊆ PP;

2. Show that PP = PP< and that PP is closed under complement;

3. Consider the decision problem MAJSAT:

(a) Input: a boolean formula φ on n variables

(b) Output: the (strict) majority of the 2n valuations satisfy φ.

Show that MAJSAT ∈ PP. In fact, MAJSAT is PP-complete.

One may also consider the decision problem MAXSAT:

(a) Input: a boolean formula φ on n variables, a number K

(b) Output: more than K valuations satisfy φ.

Show that MAXSAT is also PP-complete (to prove that MAXSAT ∈ PP one may
reduce MAXSAT to MAJSAT).

4. The class #P is the class of functions f : Σ∗ → N for which there exists a relation
R ⊆ Σ∗ × Σ∗ and a polynomial p such that:

(a) for every x, y ∈ Σ∗, R(x, y) implies |y| < p(|x|)
(b) R ∈ P

(c) for every x, f(x) = |{y | R(x, y)}|

The function f(x) counts the number of words y such that (x, y) ∈ R. In fact #P
is as powerful as PP, however this class cannot be compared directly since #P is
a class of functions. In fact, we need to use oracle machines. Specifically, for a
function f ∈ #P, a Turing machine can use as oracle the function f that, when a
word u is written on the oracle tape, writes in constant time f(u) in binary in that
oracle tape. Then, P#P = ∪f∈#PP

f . The class PPP is defined as usual.

Prove that: PPP = P#P.

5. Show that MA ⊆ PP.

Solution:

1. • A language L ∈ BPP is recognized by a PTM M such that if x ∈ L then
Pr[M(x, r) accepts ] ≥ 2

3 and if x /∈ L then Pr[M(x, r) accepts ] ≤ 1
3 . It

follows that L ∈ PP.

• The class PP is closed under logspace reduction. It suffice to show that SAT ∈
PP. Consider now a probabilistic Turing machine with an input that is a
formula ϕ. According to the first bit of the random tape, it either accepts or
reads what remains of the random tape for a valuation and accepts if and only
if it satisfies ϕ. Then, if ϕ ∈ SAT, we have Pr[M(x, r) accepts ] > 1

2 , otherwise
Pr[M(x, r) accepts ] = 1

2 .

5



2. Trivially, we have PP< ⊆ PP. Now, consider L ∈ PP and its associated Turing
machine M running in polynomial time p. Without loss of generality, we assume
that the alphabet of the random tape is of size 2, hence the probability of a random
word for M on an input x such that |x| = n is 2−p(n). Therefore, if x ∈ L then
Pr[M(x, r) accepts ] ≥ 1

2 + 1
2p(n) . Now, we construct another Turing machine M ′

that runs M on an input. If M would reject, M ′ rejects too, and if M would accept
then M ′ rejects with probability 1

2p(n) (for instance, by reading a word in the random
tape of length p(n)and accepting only if there are only 0s). Then:

• if x ∈ L: Pr[M(x, r) accepts] ≥ (1
2 + 1

2p(n) ) ·(1− 1
2p(n) ) = 1

2 + 1
2p(n)+1 − 1

22·p(n) >
1
2

• if x /∈ L: Pr[M(x, r) accepts] ≤ 1
2 · (1−

1
2p(n) ) < 1

2

That is, L ∈ PP<. The stability under complement then follows by inverting the
accepting and rejecting states.

3. A probabilistic Turing machine that checks that a valuation read on the random
tape satisfies the formula decides MAJSAT for PP. Then, MAJSAT can be reduced
to MAXSAT in logarithmic space as one has to write on the output tape the number
2n−1 + 1 in binary, which consists in a 1, n− 2 0s and then a 1 which only requires
a counter in binary up to n − 2. Therefore, MAXSAT is also PP-hard. Let us
now show that MAXSAT ∈ PP. To do so, let us reduce MAXSAT to MAJSAT.
Consider an instance (ϕ, i) of MAXSAT with 0 ≤ r1 < r2 < . . . < rk ≤ n such
that 2n − i = 2n−r1 + . . . + 2n−rk (the values n − rj refers to the 1s in the binary
decomposition of 2n − i). Let us denote x1, . . . , xn the variables of ϕ. Then, we
consider the formula ψ as:

ψ = (x1 ∧ . . . ∧ xr1)

∨ (¬x1 ∧ . . . ∧ ¬xr1 ∧ xr1+1 ∧ . . . ∧ xr2)

∨ · · ·
∨ (¬x1 ∧ . . . ∧ ¬xrk−1

∧ xrk−1+1 ∧ . . . ∧ xrk)

We can see there are exactly 2n−rj valuations satisfying the j-th line of ψ. With the
negation at beginning of the lines, no valuation satisfies two lines of ψ. Therefore,
there are exactly 2n−r1 + . . . + 2n−rk = 2n − i valuations satisfying ψ. Consider
now a fresh variable y and the formula: ϕ′ = (y ∧ ϕ) ∨ (¬y ∧ ψ). Then, we have ϕ′

computable in polynomial time from ϕ and ϕ is satisfied by more than i valuations
if and only if ϕ′ is satisfied by more than 2n− i+ i = 2n+1/2 valuations, that is half
of valuations, i.e. ϕ ∈ MAXSAT⇔ ϕ′ ∈ MAJSAT.

4. Let A ∈ PP. Consider the probabilistic Turing machine M as in the definition of PP
and the polynom p that bounds the running time of M . Let us define the function
f : Σ∗ → N by f(x) = |{r ∈ Σp(|x|) | M(x, r) accepts}|. By definition, we have

f ∈ #P. Furthermore, x ∈ A ⇔ f(x) > |Σ|p(|x|)
2 . Hence, for a Turing machine

TA running in polynomial time with oracle calls to A, we can construct a Turing
machine Tf running in polynomial time with oracle calls to f that simulates TA
with each call to the oracle A replaced by a call to the oracle function f , and then

comparing the result with |Σ|p(|x|)
2 which can be done in polynomial time. Hence,

PPP ⊆ P#P.

Now, let f ∈ #P and R and p as in the definition of #P. For x in Σ∗, let us denote
by Rx the set {y ∈ Σp(|x|) | (x, y) ∈ R}. It ensures |Rx| = f(x). Consider now

6



the set B = {(x, z) ∈ Σ∗ × N | f(x) ≥ z} (with z written in binary). Let us prove
that B ∈ PP. Consider now the following randomized polynomial time algorithm
on an input x: according to the first random bit, either it accepts with probability
1 − z−1

|Σ|p(|x|) (for instance by reading p(|x|) bits and rejecting iff the word obtained

is one of the first z − 1 word in lexicographic order, which can be done in time
polynomial in the number of bits necessary to encode z) or it chooses randomly
(and uniformly) an instance y ∈ Σp(|x|) of Rx and accepts if (x, y) ∈ R. Then, if we
denote by q the probability of accepting, it ensures:

q =
1

2
· (1− z − 1

|Σ|p(|x|) ) +
1

2
· |Rx|
|Σ|p(|x|)

Hence:

f(x) = |Rx| ≥ z ⇔ q >
1

2

Therefore, B ∈ PP. Now, for a Turing machine Tf running in polynomial time with
oracle calls to f , we can construct a Turing machine TB running in polynomial time
with oracle calls to B that simulates Tf with each call to the oracle f replaced by
binary search with calls to the oracle B (note that the number of steps in the binary
search in polynomial as f(x) ≤ |Σ|p(|x|) for all x ∈ Σ∗). Hence, P#P ⊆ PPP.

5. Consider the characterization MA of exercise 1. Let L ∈MA and the correspond-
ing Arthur-Merlin triplet (M,A, D). Here, once y is fixed (which is the result of
the Merlin map M whose size is bounded by the polynom p), we can repeat the
experience – that is, iterate 36 · q(|x|) · log(2) calls to the Arthur probabilistic Tur-
ing machine – and use majority voting and the Chernoff bound to have the error
rate below 1/2q(|x|) for all polynom q. This new probabilistic Turing machine works
in polynomial time, specifically 36 · q(|x|) · log(2) · p(|x|), which is also the length
of the random tape used by this new Turing machine on an input (x, y) of size
|x| + p(|x|). Let q = p + 2, u = 36 · q · log(2), and D′x = {(r1, . . . , ru(|x|), y) | |y| =
p(|x|)∧∀i, |ri| = p(|x|) and the majority of the ri ensure (x, ri, y) ∈ D}. Note that
deciding if (r, y) ∈ D′x can be done in polynomial time. Then,

• x ∈ L⇒ ∃y ∈ {0, 1}p(|x|), P rr∈{0,1}u(|x|)·p(|x|) [(r, y) ∈ D′x] ≥ 1− 1/2p(|x|)+2

• x /∈ L⇒ ∀y ∈ {0, 1}p(|x|), P rr∈{0,1}u(|x|)·p(|x|) [(r, y) ∈ D′x] ≤ 1/2p(|x|)+2

Let us now consider the size of the set D′x. If x ∈ L, we have:∑
y∈{0,1}p(|x|)

∑
r∈{0,1}u(|x|)·p(|x|)

[(r, y) ∈ D′x] ≥ 2u(|x|)·p(|x|) · (1−1/2p(|x|)+2) ≥ 2u(|x|)·p(|x|)−1

If x /∈ L, we have:∑
y∈{0,1}p(|x|)

∑
r∈{0,1}u(|x|)·p(|x|)

[(r, y) ∈ D′x] ≤ 2p(|x|)·2u(|x|)·p(|x|)·(1/2p(|x|)+2) = 2u(|x|)·p(|x|)−2

Therefore, we have x ∈ L⇔ |D′x| ≥ 2u(|x|)·p(|x|)−1.

Consider now the following randomized polynomial time algorithm on an input x:
according to the first random bit, either it accepts with probability 1 − 1/2p(|x|)+1

(for instance by reading p(|x|) + 1 bits and rejecting iff all are 0s) or it chooses

7



randomly (and uniformly) an instance (r, y) of D′x and accepts if (r, y) ∈ D′x. Then,
if we denote by px the probability of accepting, it ensures:

px =
1

2
· (1− 1

2p(|x|)+1
) +

1

2
· |D′x|

2p(|x|)+u(|x|)·p(|x|)

Hence:

x ∈ L⇔ |D′x|
2p(|x|)+u(|x|)·p(|x|) ≥

1

2p(|x|)+1
⇔ px ≥

1

2

It follows that L ∈ PP (since PP is closed under complement, we can assume, in the
definition of PP that if x ∈ L, then the probability to accept is ≥ 1/2 and if x /∈ L,
then the probability is < 1/2).

Exercise 5 A little come back to P and RP

We define a random language A by setting that each word x ∈ {0, 1}∗ is in A with
probability 1/2. Show that almost surely (on the probabilistic choice on the language A)
we have PA = RPA.

Hint: Fix an ε > 0 and an enumeration (Mi)i∈N of probabilistic Turing machine
running in polynomial time with an oracle. Exhibit deterministic polynomial time Turing
machines (Ni)i∈N such that the probability (over the random language considered) that
there is one i such that Mi and Ni does not coincide is lower than C · ε for a constant C.
You may use the language A as a random bit generator.

Solution:
For all languages A, we have PA ⊆ RPA. Now, consider the other inclusion. Let

(Mi)i∈N be an enumeration of probabilistic Turing machine running in polynomial time
with an oracle. Fix an ε > 0. Let us denote (M ′i) the Turing machine that executes
i+ 2 · n+ log ε (with n the size of the input) time the machine Mi, to get the probability
of error ≤ ε · 2−i−2n (if the machine Mi has a behavior as in RP) and let us denote by t′i
its execution time. Now, we consider the deterministic machine NA

i that simulates the
execution of the machine M ′Ai by replacing random bits read by the call to the oracle
machine on (arbitrary) words of size bigger that t′i (therefore, which are not used by
M ′Ai ). Since A is random, so are the bits from the oracle and they also are independent.
Note that all the machines Ni run in polynomial time. Then, if we consider MA

i with the
acceptance condition of type RPA and which then recognizes the language L(MA

i ), for all
x of size n we have:

PrA[NA
i (x) 6= [x ∈ L(MA

i )]] ≤ ε · 2−i−2n

By summing over all such x:

PrA[∃x ∈ {0, 1}n, NA
i (x) 6= [x ∈ L(MA

i )]] ≤ ε · 2−i−n

Now, we sum over all such n:

PrA[∃x ∈ {0, 1}∗, NA
i (x) 6= [x ∈ L(MA

i )]] ≤ 2 · ε · 2−i

Finally, we sum over all such i:

PrA[∃i, ∃x ∈ {0, 1}∗, NA
i (x) 6= [x ∈ L(MA

i )]] ≤ 4 · ε

Therefore, we have PrA[RPA 6= PA] ≤ 4ε. This holds for all ε > 0. That is, almost
surely, PA and RPA coincide.

8


